JP2005068711A - Bearing side block - Google Patents

Bearing side block Download PDF

Info

Publication number
JP2005068711A
JP2005068711A JP2003297381A JP2003297381A JP2005068711A JP 2005068711 A JP2005068711 A JP 2005068711A JP 2003297381 A JP2003297381 A JP 2003297381A JP 2003297381 A JP2003297381 A JP 2003297381A JP 2005068711 A JP2005068711 A JP 2005068711A
Authority
JP
Japan
Prior art keywords
slit
side block
groove
support
support side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003297381A
Other languages
Japanese (ja)
Other versions
JP3561782B1 (en
Inventor
Toshiyuki Kitada
俊行 北田
Masahide Matsumura
政秀 松村
Takeshi Suzuki
威 鈴木
Minoru Sakaida
実 坂井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawaguchi Metal Industries Co Ltd
Original Assignee
Kawaguchi Metal Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawaguchi Metal Industries Co Ltd filed Critical Kawaguchi Metal Industries Co Ltd
Priority to JP2003297381A priority Critical patent/JP3561782B1/en
Application granted granted Critical
Publication of JP3561782B1 publication Critical patent/JP3561782B1/en
Publication of JP2005068711A publication Critical patent/JP2005068711A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing side block less deforming horizontally until it is broken, enabling the easy estimation of a breaking load, and having excellent restorability. <P>SOLUTION: This rubber bearing side block installed at a connection part between an upper structure and a lower structure. A slit-like groove is formed from a side compressed by the actio of a bending moment by a horizontal force in earthquake toward a side tensed by the action of the bending moment. The tip of the slit-like groove is extended at least to near a neutral axis when the bearing side block in which the slit-like groove is not formed receives the bending moment. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、主として橋梁のジョイントプロテクターとして用いられる支承サイドブロックに関するものである。   The present invention relates to a bearing side block mainly used as a joint protector for a bridge.

ゴム支承は、道路橋示方書で示すレベル1地震動までは地震時水平力を橋軸方向に分散させる一方、橋軸直角方向のゴム支承の変位を支承サイドブロックで規制することによって橋桁間の道路伸縮装置の破損等を防止している。   The rubber bearing distributes the horizontal force during the earthquake in the direction of the bridge axis up to level 1 ground motion shown in the road bridge specifications, while the displacement of the rubber bearing in the direction perpendicular to the bridge axis is regulated by the bearing side block to bridge the road between the bridge girders. This prevents damage to the telescopic device.

しかしながら、大規模地震動の地震時水平力(道路橋示方書で示すレベル2地震動の地震時水平力)が作用した場合でも、支承サイドブロックのプロテクト機能が解除されなければ、橋梁等の上部構造の地震時慣性力が下部構造にそのまま伝達されて下部構造が破壊されることになる。   However, even if the horizontal force at the time of large-scale ground motion (level 2 ground motion at the level 2 ground motion shown in the road bridge specifications) is applied, if the protection function of the support side block is not released, the superstructure of the bridge etc. The inertia force during an earthquake is transmitted to the lower structure as it is, and the lower structure is destroyed.

したがって、中小規模地震時の地震時水平力(同書で示すレベル1地震動の地震時水平力)を超え、且つ、橋脚等の下部構造の保有水平耐力を超えない範囲の地震時水平力によってプロテクト機能が解除される支承サイドブロックが求められる。   Therefore, the protection function is provided by the horizontal force at the time of earthquake that exceeds the horizontal force at the time of earthquake in the case of small and medium-sized earthquakes (the horizontal force at the time of earthquake of level 1 ground motion shown in the same book) and does not exceed the retained horizontal strength of the substructure such as bridge piers. Support side block is required to be released.

そこで、図9乃至図12のような支承サイドブロックが提案されていた。図9は特別な加工を施さずに曲げ強度設計を行った支承サイドブロック101であり、図10はノッチ102aによって断面縮小部を形成した曲げ強度設計のノッチ型支承サイドブロック102であり、図11は貫通孔103aによって断面縮小部を設けた曲げ強度設計の貫通孔型支承サイドブロック103であり、図12は、支承サイドブロックを設置するセットボルト104aをせん断破壊させるせん断強度設計の支承サイドブロック104である。   Therefore, a support side block as shown in FIGS. 9 to 12 has been proposed. FIG. 9 shows a bearing side block 101 in which bending strength design is performed without performing special processing, and FIG. 10 shows a bending strength design notched bearing side block 102 in which a cross-sectional reduced portion is formed by a notch 102a. Is a through-hole type support side block 103 of bending strength design in which a cross-sectional reduced portion is provided by the through-hole 103a. FIG. 12 shows a support side block 104 of shear strength design that shears and breaks a set bolt 104a on which the support side block is installed. It is.

しかしながら、図9乃至図11に示すような曲げ強度設計に基づく支承サイドブロックは、破断時までの水平変位が大きく、破断荷重を想定し難いので、想定地震時水平力では破壊に至らないおそれがあり、特に、想定地震時水平力の範囲が狭い場合には、破断荷重の設定が極めて困難になる。このように、これらの支承サイドブロックは、道路伸縮装置のプロテクト機能に重点が置かれ、上限強度(破断強度)の配慮に乏しいので、保有水平耐力を超える力が下部構造に作用してしまうという問題があった。   However, since the bearing side block based on the bending strength design as shown in FIGS. 9 to 11 has a large horizontal displacement until the time of breakage and it is difficult to assume a breakage load, there is a possibility that the horizontal force at the time of the earthquake will not cause breakage. Yes, especially when the range of the horizontal force at the time of the assumed earthquake is narrow, the setting of the breaking load becomes extremely difficult. In this way, these bearing side blocks are focused on the protection function of the road expansion and contraction device, and there is little consideration of the upper limit strength (breaking strength), so that the force exceeding the retained horizontal strength acts on the lower structure. There was a problem.

図12に示す支承サイドブロックでは、セットボルトがせん断破壊した後に支承サイドブロックのボルト孔内に残存する破断ボルトの撤去作業が必要になり、復旧作業が面倒になるという問題があった。   The support side block shown in FIG. 12 has a problem that the work for removing the broken bolt remaining in the bolt hole of the support side block after the set bolt is sheared and broken is troublesome.

本発明は、上記の点に鑑みてなされたものであって、破断時までの水平変位が小さく、破断荷重の想定が容易になり、かつ、復旧性にも優れた支承サイドブロックを提供することにある。   The present invention has been made in view of the above points, and provides a bearing side block that has a small horizontal displacement until breakage, facilitates the assumption of a break load, and is excellent in recoverability. It is in.

本発明の支承サイドブロックは、上部構造と下部構造との接合部に設置されるゴム支承のサイドブロックであって、地震時水平力による曲げモーメントの作用により圧縮される側から、該曲げモーメントの作用により引張られる側に向けて、スリット状溝を形成し、該スリット状溝の先端を、少なくとも、該スリット状溝を形成しない支承サイドブロックが前記曲げモーメントを受けるときの中立軸近くまで延ばしたことを特徴とする。   The bearing side block of the present invention is a side block of a rubber bearing that is installed at the joint between the upper structure and the lower structure, and from the side compressed by the action of the bending moment due to the horizontal force during an earthquake, A slit-like groove was formed toward the side pulled by the action, and the tip of the slit-like groove was extended to at least near the neutral axis when the support side block that does not form the slit-like groove receives the bending moment. It is characterized by that.

また、前記スリット状溝の先端を、前記中立軸を超えて前記引張側にまで延ばすのが望ましい。   Moreover, it is desirable to extend the front-end | tip of the said slit-shaped groove | channel to the said tension | pulling side exceeding the said neutral axis | shaft.

また、前記スリット状溝内に圧縮力伝達材を配設するのが望ましい。   Moreover, it is desirable to arrange a compressive force transmitting material in the slit-like groove.

更に、前記圧縮力伝達材を摩擦係数の小さい材料で形成するのが望ましい。   Furthermore, it is desirable that the compressive force transmitting material is made of a material having a small friction coefficient.

本発明の支承サイドブロックによれば、地震時水平力による曲げモーメントの作用により圧縮される側から、該曲げモーメントの作用により引張られる側に向けて、スリット状溝を形成し、該スリット状溝の先端を、少なくとも、該スリット状溝を形成しない支承サイドブロックが前記曲げモーメントを受けるときの中立軸近くまで延ばしたので、地震時水平力によってスリット状溝の開口が塞がった後は、引張応力作用部分のせん断応力を局所的に高め、大きな変位を伴うことなく破断させることができ、下部構造の保有水平耐力を超えない想定地震時水平力によって確実に破壊させることができる。   According to the support side block of the present invention, the slit-shaped groove is formed from the side compressed by the action of the bending moment caused by the horizontal force at the time of the earthquake toward the side pulled by the action of the bending moment. Since at least the support side block that does not form the slit groove is extended to the vicinity of the neutral axis when the bending moment is received, the tensile stress is reduced after the opening of the slit groove is blocked by a horizontal force during an earthquake. The shear stress of the action part can be locally increased, and can be broken without a large displacement, and can be reliably broken by the assumed earthquake horizontal force that does not exceed the horizontal strength of the lower structure.

また、支承サイドブロックの破断荷重は、支承サイドブロックを固定するためのセットボルトの破断荷重よりも小さく設定することにより、セットボルトの破断前に支承サイドブロックを破断させることができ、破断ボルトを除去する手間が省けて復旧が容易になる。しかも、上述のように想定地震時水平力によって確実に破壊できるので、必要以上にセットボルトの強度を高める必要がなく、セットボルトの使用本数を削減できて支承サイドブロックの設置作業の効率化が図れる。更に、セットボルトを再利用することが可能になるなど、メンテナンス面・コスト面でも有利になる。   In addition, by setting the breaking load of the support side block to be smaller than the breaking load of the set bolt for fixing the support side block, the support side block can be broken before the set bolt breaks. Recovery is easy because it eliminates the need for removal. Moreover, as described above, it can be reliably broken by the assumed horizontal force during an earthquake, so there is no need to increase the strength of set bolts more than necessary, and the number of set bolts used can be reduced and the installation work of the support side block can be made more efficient. I can plan. In addition, it is advantageous in terms of maintenance and cost, such as making it possible to reuse set bolts.

また、スリット状溝の切り込み深さを調整することによって、破断特性を容易に制御できるので、全水平方向に分散・免震効果を期待する設計を行なう場合に、想定する水平力で確実に破壊され、過大な地震時慣性力を下部構造に作用させずに済み、下部構造に対して最適な設計が可能となる。   In addition, the fracture characteristics can be easily controlled by adjusting the depth of the slit-shaped grooves. Therefore, when designing for the expectation of dispersion and seismic isolation effect in all horizontal directions, it is possible to reliably break with the assumed horizontal force. Therefore, it is not necessary to apply an excessive earthquake inertia force to the lower structure, and an optimum design for the lower structure becomes possible.

また、前記スリット状溝内に圧縮力伝達材を配設すれば、破断に至るまでの支承サイドブロックの変位量を更に小さくできて破断荷重の設定が更に容易になる。   Further, if a compressive force transmitting material is provided in the slit-like groove, the displacement amount of the support side block until the breakage can be further reduced, and the setting of the breakage load is further facilitated.

また、前記圧縮力伝達材を摩擦係数の小さい材料で形成すれば、スリット状溝の内壁面と圧縮力伝達材との間の摩擦の増加を抑えることができて破断荷重の想定が更に容易になる。   Further, if the compressive force transmitting material is made of a material having a small friction coefficient, an increase in friction between the inner wall surface of the slit-like groove and the compressive force transmitting material can be suppressed, and the assumption of the breaking load is further facilitated. Become.

以下、本発明を実施するための最良の形態を図面に基づいて説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

図2は支承サイドブロック1の橋軸方向の部分断面図、図3は支承サイドブロック1の橋軸直角方向の部分断面図である。   2 is a partial cross-sectional view of the support side block 1 in the bridge axis direction, and FIG. 3 is a partial cross-sectional view of the support side block 1 in the direction perpendicular to the bridge axis.

支承サイドブロック1は積層ゴム支承2(ゴム支承の一例)の両側に配設され、常時は積層ゴム支承2が橋軸直角方向に変形することによる上部構造Aの橋軸直角方向の移動を規制し、且つ、上述の想定地震時水平力によってプロテクト機能が解除されるように構成されている。   The bearing side blocks 1 are disposed on both sides of a laminated rubber bearing 2 (an example of a rubber bearing), and normally restrict the movement of the superstructure A in the direction perpendicular to the bridge axis when the laminated rubber bearing 2 is deformed in the direction perpendicular to the bridge axis. In addition, the protect function is canceled by the above-described horizontal force at the time of the assumed earthquake.

積層ゴム支承2は、上鋼板3と下鋼板4との間にゴム層5と中間鋼板6とを交互に積層してなるゴム支承本体7と、その上下部にボルト8により固定される上沓9及び下沓10とを備えている。また、橋桁Aが鋼桁の場合には道路伸縮装置の下部フランジA1にはソールプレート13が固定され、橋脚(下部構造)Bにはボルト又は溶接によって下沓10が固定されている。また、ゴム支承本体7と上沓9及び下沓10との間で水平力を伝達するためのせん断キー14,15が設けられている。なお、橋桁AがRC桁やPC桁等の場合には、それらに応じた手段によって橋桁Aに積層ゴム支承2が固定される。   The laminated rubber bearing 2 includes a rubber bearing body 7 in which rubber layers 5 and intermediate steel plates 6 are alternately laminated between an upper steel plate 3 and a lower steel plate 4, and an upper flange fixed to the upper and lower portions thereof by bolts 8. 9 and lower arm 10. When the bridge girder A is a steel girder, the sole plate 13 is fixed to the lower flange A1 of the road expansion / contraction device, and the lower pier 10 is fixed to the pier (lower structure) B by bolts or welding. Further, shear keys 14 and 15 for transmitting a horizontal force between the rubber bearing body 7 and the upper and lower collars 9 and 10 are provided. When the bridge girder A is an RC girder, a PC girder or the like, the laminated rubber support 2 is fixed to the bridge girder A by means corresponding to them.

支承サイドブロック1は、一般構造用圧延鋼材等で形成され、図1のようにブロック本体1aと該ブロック本体1aの下部から側方に延設された取付部1bとを備えている。   The support side block 1 is formed of a general structural rolled steel or the like, and includes a block main body 1a and a mounting portion 1b extending laterally from the lower portion of the block main body 1a as shown in FIG.

ブロック本体1aのうち想定地震時水平力の作用線よりも下方の部位にスリット状溝1cを切り込むと共に、スリット状溝1cが切り込まれない部分を残存部1dとしている。該スリット状溝1cは、地震時水平力による曲げモーメントの作用により圧縮される側から、該曲げモーメントの作用により引張られる側に向けて中立軸Nを超えて引張側にまで水平に切り込まれている。   In the block main body 1a, the slit-like groove 1c is cut into a portion below the line of action of the assumed earthquake horizontal force, and a portion where the slit-like groove 1c is not cut is defined as a remaining portion 1d. The slit-like groove 1c is cut horizontally from the side compressed by the action of the bending moment due to the horizontal force during the earthquake, to the side pulled by the action of the bending moment and beyond the neutral axis N to the tension side. ing.

支承サイドブロック1の取付部1bにはセットボルト1fの挿通孔1eが設けられ、また、積層ゴム支承2の下沓10にはボルト孔が設けられ、セットボルト1fを挿通孔に挿通してボルト孔に嵌合することにより、支承サイドブロック1が積層ゴム支承2の両側に固定されてブロック本体1aが立設される。   An insertion hole 1e for the set bolt 1f is provided in the mounting portion 1b of the support side block 1, and a bolt hole is provided in the lower collar 10 of the laminated rubber support 2, and the set bolt 1f is inserted into the insertion hole to provide a bolt. By fitting into the holes, the support side block 1 is fixed to both sides of the laminated rubber support 2 and the block body 1a is erected.

また、図2及び図3中の符号1gは、破断した支承サイドブロック1の飛散を防止する鎖であって、該鎖の一端はスリット状溝1cの上方のブロック本体1aに固定され、他端はスリット状溝1cよりも下方の支承サイドブロック1または下沓10に固定されている。   2 and 3 is a chain for preventing the broken support side block 1 from scattering, and one end of the chain is fixed to the block main body 1a above the slit-like groove 1c, and the other end Is fixed to the support side block 1 or the lower collar 10 below the slit-like groove 1c.

上述の支承サイドブロック1に、図4(a)(b)のように地震時水平力Hを作用させると、スリット状溝1cよりも上のブロック本体1aが傾いてスリット状溝1cの開口1hが塞がれ、同図(c)(d)のように、スリット状溝1cの開口1hが塞がれた状態で地震時水平力Hにより生じる曲げモーメントによって支承サイドブロック1のブロック本体1aの外側に圧縮応力が、内側に引張応力がそれぞれ作用する。   When an earthquake horizontal force H is applied to the above-mentioned support side block 1 as shown in FIGS. 4A and 4B, the block body 1a above the slit-like groove 1c is inclined to open the opening 1h of the slit-like groove 1c. As shown in FIGS. 2C and 2D, the block body 1a of the supporting side block 1 is supported by the bending moment generated by the horizontal force H during the earthquake in the state where the opening 1h of the slit groove 1c is closed. A compressive stress acts on the outside and a tensile stress acts on the inside.

そして、地震時水平力が更に大きくなると、可塑化域が残存部1d及びその周辺部に集中することによって同図(e)のようにブロック本体1aが一気に破断する。これは、スリット状溝1cを設けることにより引張応力作用部分に作用する水平方向のせん断応力のみが局所的に高くなるためと考えられる。   When the horizontal force at the time of the earthquake is further increased, the plastic body is concentrated on the remaining portion 1d and its peripheral portion, so that the block body 1a is broken at a stretch as shown in FIG. This is presumably because the provision of the slit-like groove 1c locally increases only the horizontal shear stress acting on the tensile stress acting portion.

このように、本実施形態の支承サイドブロック1によれば、スリット状溝1cの開口1hが塞がれることによって曲げ剛性が確保されつつ、小さい変位量でせん断破壊させることができるので、破断荷重の設定が容易になり、想定地震時水平力によって確実に破断させることができる。   As described above, according to the support side block 1 of the present embodiment, the opening 1h of the slit-shaped groove 1c is blocked, so that the bending rigidity can be secured and the shear fracture can be performed with a small amount of displacement. Can be easily set, and can be reliably broken by a horizontal force during an assumed earthquake.

なお、スリット状溝1cの切り込み先端1jを中立軸N又は中立軸Nの手前の圧縮側でとどめるようにしても良い。スリット状溝1cの先端1jの位置については、ブロック本体1aが矩形の断面形状またはそれに近い断面形状の場合には、以下の範囲内にあるのが望ましい。すなわち、図1に示す縦寸法A(ブロック本体1aの圧縮側外側面と引張側外側面との間の距離)に対して、中立軸Nから圧縮側に10%から、中立軸Nから引張側に40%まで、の範囲内とされるのが望ましく、中立軸Nから引張側に30%から、中立軸Nから引張側に40%まで、に範囲内とされるのがより望ましい。   Note that the cutting tip 1j of the slit-like groove 1c may be kept on the neutral axis N or the compression side before the neutral axis N. About the position of the front-end | tip 1j of the slit-shaped groove | channel 1c, when the block main body 1a is a rectangular cross-sectional shape or a cross-sectional shape close | similar to it, it is desirable to exist in the following ranges. That is, with respect to the longitudinal dimension A shown in FIG. 1 (distance between the compression-side outer surface and the tension-side outer surface of the block body 1a), the neutral axis N is 10% from the compression side and the neutral axis N is the tension side. It is desirable to be within the range of up to 40%, more preferably within the range of 30% from the neutral axis N to the tension side and 40% from the neutral axis N to the tension side.

図5は本発明の他の実施形態を示し、スリット状溝1cに板状の圧縮力伝達材1iを挿入している。圧縮力伝達材1iの材質としては、例えば鋼板のように支圧強度が大きいものを用いる。   FIG. 5 shows another embodiment of the present invention, in which a plate-like compressive force transmitting material 1i is inserted into the slit-like groove 1c. As a material of the compressive force transmitting material 1i, a material having a large bearing strength such as a steel plate is used.

このように、圧縮力伝達材1iを用いれば、スリット状溝1cを塞ぐことなく、曲げ抵抗を発揮できるので、破断に至るまでの支承サイドブロック1の変位量を更に小さくできる。   In this way, if the compressive force transmitting material 1i is used, bending resistance can be exhibited without blocking the slit-like groove 1c, so that the displacement amount of the support side block 1 until it breaks can be further reduced.

圧縮力伝達材1iの材質として、例えばテフロン(R)、ポリアミド樹脂などのように、ある程度の支圧強度を有し、且つ、摩擦係数の小さいものを用いれば、スリット状溝1cの内壁面と圧縮力伝達材1iとの間の摩擦力の増加を抑えることができて破断荷重の想定が更に容易になる。なお、圧縮力伝達材1iはエポキシ系樹脂等のシール材によって固定される。   As a material of the compressive force transmitting material 1i, for example, a material having a certain bearing strength and a small friction coefficient such as Teflon (R), polyamide resin or the like can be used. An increase in frictional force with the compressive force transmitting material 1i can be suppressed, and the assumption of a breaking load is further facilitated. The compressive force transmitting material 1i is fixed by a sealing material such as an epoxy resin.

次に、圧縮力伝達材1iを用いたスリット状溝1c付き支承サイドブロック1の設計手法の一例を示す。上述のようにスリット状溝1cによって引張応力作用部分のせん断応力を局所的に高めることができるものであり、破断面における応力度及びサイドブロック寸法は、図1の記号により以下の式(1),(2)で表される。   Next, an example of the design method of the support side block 1 with the slit-shaped groove 1c using the compressive force transmitting material 1i is shown. As described above, the shear stress of the tensile stress acting portion can be locally increased by the slit-like groove 1c, and the stress level and the side block size at the fracture surface are expressed by the following formula (1) by the symbols in FIG. , (2).

Figure 2005068711
Figure 2005068711

Figure 2005068711
Figure 2005068711

また、せん断応力が破断応力に達した時、曲げ応力は弾性域にあるという条件で設計するものとし、その式を(3)に示す。   Also, when the shear stress reaches the breaking stress, the design is made under the condition that the bending stress is in the elastic region, and the equation is shown in (3).

Figure 2005068711
Figure 2005068711

また、スリット状溝1cの切り込み深さDを求める式を(4)に示す。   Further, an equation for obtaining the cut depth D of the slit-like groove 1c is shown in (4).

Figure 2005068711
Figure 2005068711

ここで、σc:破断時圧縮応力度、σt:破断時引張応力度、τ:破断時せん断応力度、μ:圧縮部静摩擦係数、τu:鋼材のせん断強度、σu:鋼材の引張強度、σy:鋼材の降伏点または耐力、h:水平荷重の作用線とスリット状溝1cとの距離、A:ブロック本体1aの縦寸法、B:ブロック本体1aの横寸法、C:残存部1dの幅寸法、D:スリット状溝の切り込み深さ、H:地震時水平力を示す。   Here, σc: compressive stress at break, σt: tensile stress at break, τ: shear stress at break, μ: static friction coefficient of compression part, τu: shear strength of steel, σu: tensile strength of steel, σy: Yield point or proof stress of steel material, h: distance between action line of horizontal load and slit-like groove 1c, A: vertical dimension of block body 1a, B: lateral dimension of block body 1a, C: width dimension of remaining portion 1d, D: Depth of slit groove, H: Horizontal force during earthquake.

また、破断特性の制御を目的としたスリット状溝1c付き支承サイドブロック1の有効性を確認するために、スリット状溝1cの切り込み深さDが異なる2体の供試体(実寸法レベル)を用意して載荷実験を実施した。また、2体とも鋼板製の圧縮力伝達材1iを用いた。その結果、せん断破断応力に達したとき(τ=τu)でも、曲げ応力は弾性域内にあるように設計すると、ほぼ想定される荷重でせん断破壊が発生した(表1参照)。この結果、前記式(2)により破断荷重を概ね算定できることが確認でき、提案する設計手法の妥当性を検証することができた。   In addition, in order to confirm the effectiveness of the support side block 1 with the slit-like groove 1c for the purpose of controlling the breaking characteristics, two specimens (actual dimension levels) having different slit depths D of the slit-like groove 1c are used. A loading experiment was conducted. Moreover, the compression force transmission material 1i made from a steel plate was used for both bodies. As a result, even when the shear rupture stress was reached (τ = τu), when the bending stress was designed to be in the elastic region, shear failure occurred under an almost assumed load (see Table 1). As a result, it was confirmed that the rupture load can be roughly calculated by the equation (2), and the validity of the proposed design method could be verified.

このように、本実施形態の支承サイドブロックによれば、せん断応力で破断特性を制御するというように力学的特性が明確であり、設計式も簡素なため、設計が容易になり、かつ、ジョイントプロテクターとしての機能を確実に発揮させることができることが明らかになった。   Thus, according to the support side block of this embodiment, the mechanical characteristics are clear, such as controlling the fracture characteristics by shear stress, the design formula is simple, the design is easy, and the joint It became clear that the function as a protector can be demonstrated reliably.

Figure 2005068711
Figure 2005068711

供試体I,IIは、A寸法が130mm、B寸法は120mm、C寸法は18mm、33mmである。   Specimens I and II have an A dimension of 130 mm, a B dimension of 120 mm, and a C dimension of 18 mm and 33 mm.

供試体Iのスリット状溝1cの切り込み深さDは112mm、供試体IIのスリット状溝1cの切り込み深さDは97mmであり、スリット状溝1cの隙間寸法Sは共に3mmである。   The slit depth 1c of the slit groove 1c of the specimen I is 112 mm, the slit depth D of the slit groove 1c of the specimen II is 97 mm, and the gap dimension S of the slit groove 1c is 3 mm.

次に、表2に示す梁型供試体III〜Vを用い、表3に示す静摩擦係数の異なる3種類のフィラープレート(圧縮力伝達材1i)を梁型供試体III〜Vのスリット状溝1cに挿入し、図8のように梁型供試体III〜Vを単純梁形式で支持し、矢印のように集中荷重を加えて実験を行った。梁型供試体III〜Vは、スリット状溝1cにおける破断時の曲げ及びせん断応力が実寸法モデル供試体I,IIと一致する縮小モデル(縮小率0.4)である。   Next, using the beam-type specimens III to V shown in Table 2, three types of filler plates (compressive force transmitting material 1i) having different static friction coefficients shown in Table 3 are used as slit-like grooves 1c of the beam-type specimens III to V. The beam type specimens III to V were supported in a simple beam form as shown in FIG. 8, and concentrated load was applied as shown by the arrows. The beam-type specimens III to V are reduced models (reduction ratio 0.4) in which bending and shear stresses at the time of fracture in the slit-shaped groove 1c coincide with the actual size model specimens I and II.

Figure 2005068711
Figure 2005068711

Figure 2005068711
Figure 2005068711

なお、図6中のA寸法は52mm、B寸法は18mm、スリット状溝の切り込み深さCは45mm、スパン長Dは128mm、支点からスリット状溝までの距離Eは49mm、スリット状溝から載荷点までの距離Fは15mm、スリット状溝の隙間は3mmである。   In FIG. 6, dimension A is 52 mm, dimension B is 18 mm, slit groove depth C is 45 mm, span length D is 128 mm, distance E from the fulcrum to the slit groove is 49 mm, and loading from the slit groove is performed. The distance F to the point is 15 mm, and the gap between the slit grooves is 3 mm.

この実験結果を表4に示す。この表からも明らかなように、計算破断荷重と実験破断荷重とは良好に一致していることが判明した。   The experimental results are shown in Table 4. As is clear from this table, it was found that the calculated breaking load and the experimental breaking load were in good agreement.

Figure 2005068711
Figure 2005068711

図7及び図8は他の形態を示している。図7は、残存部1dのうち延性破壊部分を切除した形態を示し、該切除部1kの存在によって破断に至るまでの変位を更に少なくしている。図8(a)は、圧縮側から引張側にかけて幅狭の残存部1mを設けた形態を示し、同図(b)は、残存部1dを引張側に向けて突出させた形態を示す。   7 and 8 show another embodiment. FIG. 7 shows a form in which a ductile fracture portion of the remaining portion 1d is excised, and the displacement until the fracture is further reduced by the presence of the excised portion 1k. FIG. 8A shows a form in which a narrow remaining part 1m is provided from the compression side to the tension side, and FIG. 8B shows a form in which the remaining part 1d is protruded toward the tension side.

なお、本発明の支承サイドブロックは橋梁の支承以外にも適用可能である。   The bearing side block of the present invention can be applied to applications other than bridge support.

(a)は本発明の実施形態の支承サイドブロックを示す正面図、(b)は同支承サイドブロックの側面図、(c)は(b)のX−X断面図である。(A) is a front view which shows the support side block of embodiment of this invention, (b) is a side view of the support side block, (c) is XX sectional drawing of (b). 同支承サイドブロックをゴム支承の側方に設置した状態を示す破断した正面図である。It is the front view which fractured | ruptured and shows the state which installed the support side block in the side of the rubber support. 同支承サイドブロックをゴム支承の側方に設置した状態を示す破断した側面図である。It is the side view which fractured | ruptured and shows the state which installed the same bearing side block in the side of the rubber bearing. 同支承サイドブロックに水平力を作用させた状態を示す図である。It is a figure which shows the state which made the horizontal force act on the support side block. 本発明の他の実施形態の支承サイドブロックを示す斜視図である。It is a perspective view which shows the support side block of other embodiment of this invention. (a)は実験方法を示す正面図、(b)はその側断面図である。(A) is a front view which shows an experimental method, (b) is the sectional side view. 本発明の他の形態の支承サイドブロックを示す断面図である。It is sectional drawing which shows the support side block of the other form of this invention. 本発明の他の形態の支承サイドブロックを示す断面図である。It is sectional drawing which shows the support side block of the other form of this invention. (a)は従来の支承サイドブロックを示す正面図、(b)は同支承サイドブロックの側面図である。(A) is a front view which shows the conventional support side block, (b) is a side view of the support side block. (a)は従来の支承サイドブロックを示す正面図、(b)は同支承サイドブロックの側面図である。(A) is a front view which shows the conventional support side block, (b) is a side view of the support side block. (a)は従来の支承サイドブロックを示す正面図、(b)は同支承サイドブロックの側面図である。(A) is a front view which shows the conventional support side block, (b) is a side view of the support side block. (a)は従来の支承サイドブロックを示す正面図、(b)は同支承サイドブロックの側面図である。(A) is a front view which shows the conventional support side block, (b) is a side view of the support side block.

符号の説明Explanation of symbols

1 支承サイドブロック
1a ブロック本体
1b 取付部
1c スリット状溝
1d 残存部
2 積層ゴム支承(ゴム支承)
H 地震時水平力
DESCRIPTION OF SYMBOLS 1 Support side block 1a Block main body 1b Mounting part 1c Slit-like groove 1d Remaining part 2 Laminated rubber support (rubber support)
H Earthquake horizontal force

本発明の支承サイドブロックは、上部構造と下部構造との接合部に設置されるゴム支承のサイドブロックであって、上端側が自由端で下端側が固定されるものであり、地震時水平力による曲げモーメントの作用により圧縮される側から、該曲げモーメントの作用により引張られる側に向けて、スリット状溝を形成し、該スリット状溝の先端は、少なくとも、該スリット状溝を形成しない支承サイドブロックが前記曲げモーメントを受けるときの中立軸近くまで延びるように設定され、前記スリット状溝よりも上位に前記地震時水平力が作用することにより、該上位の部分が僅かに倒れて前記スリット状溝の入口が塞がるように構成されたことを特徴とする支承サイドブロック。 The bearing side block of the present invention is a side block of a rubber bearing installed at the joint between the upper structure and the lower structure. The upper end side is a free end and the lower end side is fixed. A slit-like groove is formed from the side compressed by the action of the moment toward the side pulled by the action of the bending moment, and the tip of the slit-like groove is at least a supporting side block that does not form the slit-like groove. Is set so as to extend to near the neutral axis when receiving the bending moment, and when the horizontal force acts during the earthquake above the slit-like groove, the upper part falls slightly and the slit-like groove The side block of the bearing is constructed so as to close the entrance .

また、本発明の支承サイドブロックは、上部構造と下部構造との接合部に設置されるゴム支承のサイドブロックであって、地震時水平力による曲げモーメントの作用により圧縮される側から、該曲げモーメントの作用により引張られる側に向けて、スリット状溝を形成し、該スリット状溝の先端を、少なくとも、該スリット状溝を形成しない支承サイドブロックが前記曲げモーメントを受けるときの中立軸近くまで延ばし、前記スリット状溝内に圧縮力伝達材を配設したことを特徴とする The bearing side block of the present invention is a side block of a rubber bearing installed at a joint between the upper structure and the lower structure, and is bent from the side compressed by the action of a bending moment caused by a horizontal force during an earthquake. A slit-shaped groove is formed toward the side pulled by the action of the moment, and the tip of the slit-shaped groove is at least near the neutral axis when the supporting side block that does not form the slit-shaped groove receives the bending moment. It is extended and the compression force transmission material is arrange | positioned in the said slit-shaped groove | channel, It is characterized by the above-mentioned .

また、前記圧縮力伝達材を摩擦係数の小さい材料で形成するのが望ましい。更に、前記スリット状溝の先端を、前記中立軸を超えて前記引張側にまで延ばしても良い。 Further , it is desirable that the compressive force transmitting material is made of a material having a small friction coefficient. Furthermore, you may extend the front-end | tip of the said slit-shaped groove | channel to the said tension | pulling side exceeding the said neutral axis | shaft.

本発明の支承サイドブロックによれば、上端側が自由端で下端側が固定されるものであり、地震時水平力による曲げモーメントの作用により圧縮される側から、該曲げモーメントの作用により引張られる側に向けて、スリット状溝を形成し、該スリット状溝の先端は、少なくとも、該スリット状溝を形成しない支承サイドブロックが前記曲げモーメントを受けるときの中立軸近くまで延びるように設定され、前記スリット状溝よりも上位に前記地震時水平力が作用することにより、該上位の部分が僅かに倒れて前記スリット状溝の入口が塞がるように構成されたので、地震時水平力によってスリット状溝の開口が塞がった後は、引張応力作用部分のせん断応力を局所的に高め、大きな変位を伴うことなく破断させることができ、下部構造の保有水平耐力を超えない想定地震時水平力によって確実に破壊させることができる。 According to the support side block of the present invention, the upper end side is a free end and the lower end side is fixed, and from the side compressed by the action of the bending moment due to the horizontal force during an earthquake, to the side pulled by the action of the bending moment. A slit-shaped groove is formed, and the tip of the slit-shaped groove is set to extend at least near the neutral axis when the supporting side block that does not form the slit-shaped groove receives the bending moment. Since the horizontal force at the time of the earthquake acts on the upper side of the groove, the upper part is slightly tilted and the entrance of the slit groove is blocked . After the opening is closed, the shear stress at the portion where the tensile stress acts is locally increased and can be broken without a large displacement. It can be reliably destroyed by the assumed seismic horizontal force that does not exceed the horizontal strength.

Claims (3)

コンクリートをせき止めるための縦長の脚体を支持体に沿って並設してくし歯状に形成されるコンクリート用せき止め治具において、
前記支持体は水平方向に並設される各々上下方向に延びる複数のガイド棒を支持フレームに固定して形成され、
前記脚体の上部の外側に縦貫通孔を有する被ガイド体を設け、
該被ガイド体の縦貫通孔を前記支持体のガイド体に挿通することによって前記脚体を上下に移動自在にしたことを特徴とするコンクリート用せき止め治具。
In a concrete damming jig that is formed in a tooth shape by arranging vertically long legs for damming concrete along the support,
The support is formed by fixing a plurality of guide bars extending in the vertical direction in parallel to the horizontal direction to the support frame,
A guided body having a vertical through hole is provided outside the upper portion of the leg,
A concrete dampening jig characterized in that the leg is movable up and down by inserting a longitudinal through hole of the guided body into the guide body of the support.
前記縦貫通孔を下方に向けて拡開した漏斗状に形成することにより、前記脚体を前後左右に揺動自在にしたことを特徴とする請求項1に記載のコンクリート用せき止め治具。   2. The concrete damming jig according to claim 1, wherein the leg is swingable back and forth and from side to side by forming the vertical through hole in a funnel shape widened downward. 前記支持体のガイド棒及び支持フレームを鉄棒で形成し、ガイド棒及び支持フレームを溶接で連結したことを特徴とする請求項1又は2に記載にコンクリート用せき止め治具。


3. The concrete damming jig according to claim 1, wherein the guide rod and the support frame of the support are formed of iron bars, and the guide rod and the support frame are connected by welding.


JP2003297381A 2003-08-21 2003-08-21 Bearing side block Expired - Lifetime JP3561782B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003297381A JP3561782B1 (en) 2003-08-21 2003-08-21 Bearing side block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003297381A JP3561782B1 (en) 2003-08-21 2003-08-21 Bearing side block

Publications (2)

Publication Number Publication Date
JP3561782B1 JP3561782B1 (en) 2004-09-02
JP2005068711A true JP2005068711A (en) 2005-03-17

Family

ID=33028452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003297381A Expired - Lifetime JP3561782B1 (en) 2003-08-21 2003-08-21 Bearing side block

Country Status (1)

Country Link
JP (1) JP3561782B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019206832A (en) * 2018-05-29 2019-12-05 首都高速道路株式会社 Anti-fall device of side block of bridge bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019206832A (en) * 2018-05-29 2019-12-05 首都高速道路株式会社 Anti-fall device of side block of bridge bearing
JP7121543B2 (en) 2018-05-29 2022-08-18 首都高速道路株式会社 Fall prevention device for side blocks in bridge bearings

Also Published As

Publication number Publication date
JP3561782B1 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
Jankowski et al. Reduction of pounding effects in elevated bridges during earthquakes
KR101936186B1 (en) Coupling member for damping vibrations in building structures
CN102859097B (en) Vibration damping metal sheet and building construction
KR100690198B1 (en) Steel beam with U-shaped connector and Steel composite beam using the steel beam
JP2015218475A (en) Aseismatic design method by pc press-fitting joint method
JP4917168B1 (en) Seismic reinforcement structure and method using compression braces
KR100654075B1 (en) Steel beam with capping shear connector and Composite Beam using the steel beam
JP5393263B2 (en) Masonry wall reinforcement method and masonry structure.
JP2007262746A (en) Bridge fall preventing structure
CN108425506A (en) To the method that punches of existing prestressed structure plate
JP2005068711A (en) Bearing side block
KR101767845B1 (en) Bridge bearing replacement method for preventing drop of upper structure
KR101098688B1 (en) Reinforced Concrete Frame Structure having High Flexibility in Beam-Column Joint
JP3579811B2 (en) Method of installing seismic isolation device on existing structure and seismic isolation device used therefor
KR100684395B1 (en) Shear connector
JP4581729B2 (en) Calculation method of shear stress of reinforced concrete beam, design method of reinforced concrete beam, reinforced concrete beam
JP2005307477A (en) Continuous construction method of highway bridge
JP2001132262A (en) Vibration control frame provided with friction damping mechanism
JP2009068295A (en) Elevated structure
JP4131470B2 (en) Temporary support structure of building
JP7482803B2 (en) Column and beam structure
KR102325834B1 (en) Method of disassembling external tendon and apparatus used therein
JP7467530B2 (en) Method for crushing concrete around block dowels in composite girder decks.
JP4642373B2 (en) Concrete member joint structure
JP2019210686A (en) Method for reinforcing rc member and reinforcement structure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040517

R150 Certificate of patent or registration of utility model

Ref document number: 3561782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term