JP2009068295A - Elevated structure - Google Patents

Elevated structure Download PDF

Info

Publication number
JP2009068295A
JP2009068295A JP2007239957A JP2007239957A JP2009068295A JP 2009068295 A JP2009068295 A JP 2009068295A JP 2007239957 A JP2007239957 A JP 2007239957A JP 2007239957 A JP2007239957 A JP 2007239957A JP 2009068295 A JP2009068295 A JP 2009068295A
Authority
JP
Japan
Prior art keywords
main structure
bridge
pier
joint
energy absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007239957A
Other languages
Japanese (ja)
Inventor
Atsushi Watanabe
厚 渡辺
Hideaki Yoshikawa
秀章 吉川
Yasushi Ichikawa
康 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2007239957A priority Critical patent/JP2009068295A/en
Publication of JP2009068295A publication Critical patent/JP2009068295A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an elevated structure so constructed that energy absorbing members absorb energy and thus a main structure mainly receives a dead load and a live load, to prevent the destruction of joint parts between the energy absorbing member and the main structure. <P>SOLUTION: The elevated structure comprises the rigid-frame main structure made of reinforced concrete and having a plurality of bridge piers 114, and beams 112 and bridge girders 115 mounted on the bridge piers, the energy absorbing members 130 skewingly extending from the bridge piers and each having one end connected to one bridge pier of the main structure and the other end connected to one of the other bridge pier, the bridge girder and the beam of the main structure, and adapted to be expanded in the longitudinal direction for absorbing energy input from the outside, the joint parts 134 provided at the ends of the energy absorbing members for abutting on or coming close to the main structure, and movement constraining members installed on the main structure for constraining the movement of the joint parts while each coming close to or abutting on one end of the joint part. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高架構造物に関し、高架橋に適用して好適な高架構造物に関する。   The present invention relates to an elevated structure, and more particularly to an elevated structure suitable for application to a viaduct.

高架橋(高架構造物)は、新幹線などの鉄道や高速道路に使用され、連続して立設された複数の橋脚と、橋脚間を連接する梁及び橋桁からなる連続桁橋が多く用いられている。高架橋は、図1に示すような鉄筋コンクリート(RC)造のラーメン構造が多く適用される。以下、この高架橋をRCラーメン高架橋という。図1は、従来のRCラーメン高架橋を示す側面図である。図1に示すように、高架橋10は、地盤に固定された基礎16及び杭18を有する橋脚14と、橋脚14と一体に形成された梁12及び橋桁15からなる。   Viaducts (elevated structures) are used for railways and highways such as the Shinkansen, and many continuous piers, and continuous girder bridges consisting of beams and bridge girders connecting between the piers are often used. . For the viaduct, a reinforced concrete (RC) ramen structure as shown in FIG. 1 is often applied. Hereinafter, this viaduct is referred to as RC ramen viaduct. FIG. 1 is a side view showing a conventional RC ramen viaduct. As shown in FIG. 1, the viaduct 10 includes a bridge pier 14 having a foundation 16 and a pile 18 fixed to the ground, a beam 12 and a bridge girder 15 formed integrally with the pier 14.

従来のRCラーメン高架橋は、中小地震時において、橋脚、梁、橋桁からなる主構造体の変形が弾性範囲に留まるように設計されることで、地震被害がないように設計される。一方、大地震時では、従来のRCラーメン高架橋は、頑強に設計した主構造体を塑性化させることでRCラーメン高架橋の倒壊を防ぐ。   The conventional RC ramen viaduct is designed so that there is no earthquake damage by designing the main structure consisting of piers, beams, and bridge girders to stay within the elastic range during small and medium earthquakes. On the other hand, in the event of a large earthquake, the conventional RC ramen viaduct prevents the collapse of the RC ramen viaduct by plasticizing the robustly designed main structure.

しかし、大地震時においてRCラーメン高架橋を塑性化させると、RCラーメン高架橋はコンクリートのひび割れ、かぶりコンクリートの剥離又は脱落、鉄筋の降伏などが発生し被害が大きい。そのため、従来のRCラーメン高架橋では、RCラーメン高架橋の地震後の継続利用が困難となるおそれがあり、修復費用と修復期間が増大するおそれがある。   However, if the RC ramen viaduct is plasticized during a large earthquake, the RC ramen viaduct will cause damage due to cracks in the concrete, peeling or falling off of the cover concrete, and yielding of the reinforcing bars. Therefore, with the conventional RC ramen viaduct, there is a risk that it will be difficult to continue using the RC ramen viaduct after an earthquake, and there is a risk that the repair cost and the repair period will increase.

また、日本は地震多発地帯であるため、従来のRCラーメン高架橋の耐震設計において地震発生時の荷重が支配的である。そのため、地震によって主構造体のサイズが決定され、大地震に対しても主構造体が弾性を保つためには、RCラーメン高架橋の主構造体は非常に太く丈夫な部材となる。従って、RCラーメン高架橋の柱部材プロポーションは、部材の縦横比が1:4以下となることもあり、せん断破壊が生じやすい形状となっている。また、太い部材では経済的にRCラーメン高架橋を建設することができない。   In addition, since Japan is an earthquake-prone area, the load at the time of the earthquake is dominant in the conventional RC ramen viaduct seismic design. For this reason, the size of the main structure is determined by the earthquake, and the main structure of the RC ramen viaduct is a very thick and strong member in order to keep the main structure elastic even in the event of a large earthquake. Therefore, the RC ramen viaduct pillar member proportion has a shape in which the aspect ratio of the member may be 1: 4 or less, and shear fracture is likely to occur. In addition, it is not possible to construct an RC ramen viaduct economically with thick members.

更に、RCラーメン高架橋のせん断破壊を防いだとしても、ラーメン構造のRCラーメン高架橋においては、曲げモーメントが橋脚又は橋桁などの部材の端部で最大となる。従って、大地震の発生によって部材端部の塑性化が始まった後は、変形が進みにつれて、端部の塑性化部分にひずみが集中する。また、その後、変形部分は、ひずみの急激な増幅をもたらすため、RCラーメン高架橋の鉄筋が破断するおそれがある。   Further, even if the shear failure of the RC rigid frame viaduct is prevented, the bending moment becomes the maximum at the end of a member such as a bridge pier or a bridge girder in the rigid frame RC rigid frame viaduct. Therefore, after plasticization of the end portion of the member has started due to the occurrence of a large earthquake, strain concentrates on the plasticized portion of the end portion as the deformation progresses. Moreover, since the deformed portion brings about rapid amplification of strain, the RC ramen viaduct rebar may be broken.

図2は、RCラーメン高架橋の水平変形と水平地震力との関係を示すグラフである。図2(b)は、縦軸に荷重、横軸に変形量をとっており、曲線内部が地震エネルギー吸収量を示す。図2(b)に示すように、RCラーメン高架橋の地震エネルギー吸収量は少なく、減衰が少ない挙動を示す。また、RCラーメン高架橋は、水平変形が多い。   FIG. 2 is a graph showing the relationship between horizontal deformation of RC ramen viaduct and horizontal seismic force. In FIG. 2 (b), the vertical axis represents the load and the horizontal axis represents the amount of deformation, and the inside of the curve represents the seismic energy absorption. As shown in FIG. 2B, the seismic energy absorption amount of the RC ramen viaduct is small and shows a behavior with little attenuation. In addition, the RC ramen viaduct has many horizontal deformations.

主構造体は、地震後の死荷重や活荷重を負担し続けるべき重要な部材である。しかし、大地震によって、上記のようなせん断破壊や曲げモーメントによる変形が発生し、RCラーメン高架橋に被害があると、調査や補修工事の期間中は使用することができない。従って、経済的、社会的な影響が甚大となるため、RCラーメン高架橋は地震による被害ができるだけ低減するように建設しておく必要がある。   The main structure is an important member that should continue to bear the dead load and live load after the earthquake. However, if a large earthquake causes deformation due to shear failure or bending moment as described above and damage to the RC ramen viaduct, it cannot be used during the investigation or repair work. Therefore, since the economic and social impacts are enormous, it is necessary to construct the RC ramen viaduct so that damage caused by the earthquake is reduced as much as possible.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、エネルギー吸収部材がエネルギーを吸収することにより、主構造体は死荷重や活荷重を主に受ける構造とし、エネルギー吸収部材と主構造体との接合部の破壊を防止することが可能な、新規かつ改良された高架構造物を提供することにある。   Then, this invention is made | formed in view of the said problem, The place made into the objective of this invention is that the main structure receives a dead load and a live load mainly, when an energy absorption member absorbs energy. It is an object of the present invention to provide a new and improved elevated structure which has a structure and can prevent the breakage of the joint between the energy absorbing member and the main structure.

上記課題を解決するために、本発明のある観点によれば、複数の橋脚と橋脚に架構された梁及び橋桁を有し、鉄筋コンクリート造からなるラーメン構造の主構造体と、橋脚に対して斜行するように延在し、一端部が主構造体のうちの1の橋脚と接続され、他端部が主構造体のうちの他の橋脚、橋桁及び梁のいずれかに接続され、長手方向に伸縮して外部から入力されるエネルギーを吸収するエネルギー吸収部材と、エネルギー吸収部材の端部に設けられ、主構造体に当接又は近接した接合部と、接合部の一端部に近接又は当接して接合部の移動を拘束する、主構造体に設置された移動拘束部材とを備えることを特徴とする高架構造物が提供される。   In order to solve the above problems, according to one aspect of the present invention, there is provided a main structure having a rigid frame structure having a plurality of bridge piers, beams and bridge girders erected on the pier, and made of reinforced concrete. One end is connected to one pier of the main structure, and the other end is connected to one of the other piers, bridge girders and beams of the main structure. An energy absorbing member that expands and contracts to absorb energy input from the outside, a joint provided at or near the end of the energy absorbing member, and a joint near or against one end of the joint. There is provided an elevated structure including a movement restraining member installed in a main structure that comes into contact with and restrains movement of a joint portion.

かかる構成により、主構造体は、複数の橋脚と橋脚に架構された梁及び橋桁を有し、鉄筋コンクリート造からなるラーメン構造であり、エネルギー吸収部材は、橋脚に対して斜行するように延在し、一端部が主構造体のうちの1の橋脚と接続され、他端部が主構造体のうちの他の橋脚、橋桁及び梁のいずれかに接続され、長手方向に伸縮して外部から入力されるエネルギーを吸収し、接合部は、エネルギー吸収部材の端部に設けられ、主構造体に当接又は近接し、移動拘束部材は、接合部の一端部に近接又は当接して接合部の移動を拘束し、主構造体に設置される。エネルギー吸収部材は、例えばダンパーである。外部から入力されるエネルギーとは、例えば地震エネルギーである。   With such a configuration, the main structure has a plurality of bridge piers and beams and bridge girders built on the pier, and is a rigid frame structure made of reinforced concrete, and the energy absorbing member extends so as to be inclined with respect to the pier. One end is connected to one pier of the main structure, and the other end is connected to one of the other piers, bridge girders and beams of the main structure, and expands and contracts in the longitudinal direction from the outside. Absorbs the input energy, the joint is provided at the end of the energy absorbing member, and abuts or approaches the main structure, and the movement restraining member approaches or abuts one end of the joint. It is installed in the main structure. The energy absorbing member is, for example, a damper. The energy input from the outside is, for example, earthquake energy.

上記接合部は、橋脚の一面と梁又は橋桁の一面によって構成された隅部に設置され、接合部の一端部は移動拘束部材に近接又は当接し、接合部の他端部は主構造体に近接又は当接して、接合部の移動が拘束されるものであってもよい。   The joint is installed at a corner formed by one surface of a pier and one surface of a beam or a bridge girder, one end of the joint is close to or abuts the movement restraining member, and the other end of the joint is on the main structure. The movement of the joint portion may be restrained by approaching or abutting.

上記橋脚は下部に略水平方向に張り出した基礎を有し、接合部は、橋脚の一面と基礎の一面によって構成された隅部に設置され、接合部の一端部は移動拘束部材に近接又は当接し、接合部の他端部は主構造体に近接又は当接して、接合部の移動が拘束されるものであってもよい。   The above-mentioned pier has a foundation projecting in a substantially horizontal direction at the bottom, and the joint portion is installed at a corner formed by one surface of the pier and one surface of the foundation, and one end portion of the joint portion is close to or against the movement restraining member. The other end portion of the joint portion may be in contact with or in contact with the main structure to restrain movement of the joint portion.

上記接合部は、梁又は橋桁の一面に設置され、接合部の相対向する両端部が移動拘束部材に近接又は当接して、接合部の移動が拘束されるものであってもよい。   The joint may be installed on one surface of a beam or a bridge girder, and opposite ends of the joint may be close to or abut on the movement restraining member to restrain the movement of the joint.

上記接合部は、少なくとも一部が主構造体に固定されたものであってもよい。   The joint portion may be at least partially fixed to the main structure.

上記エネルギー吸収部材は、起こりうる軸力の最大値が制限されたダンパー部材であってもよい。   The energy absorbing member may be a damper member in which a maximum value of a possible axial force is limited.

上記移動拘束部材の耐力は、エネルギー吸収部材の起こりうる最大の軸力よりも大きいものであってもよい。   The proof stress of the movement restraining member may be larger than the maximum axial force that can occur in the energy absorbing member.

上記エネルギー吸収部材は、弾塑性履歴ダンパー、オイルダンパー、粘弾性ダンパー又は摩擦ダンパーであってもよい。   The energy absorbing member may be an elastic-plastic hysteresis damper, an oil damper, a viscoelastic damper, or a friction damper.

上記エネルギー吸収部材は、橋軸方向に対して直交方向に配置されたものであってもよい。また、上記エネルギー吸収部材は、橋軸方向に対して平行方向に配置されたものであってもよい。   The energy absorbing member may be arranged in a direction orthogonal to the bridge axis direction. The energy absorbing member may be arranged in a direction parallel to the bridge axis direction.

上記複数の隣接する橋脚の下部は接続されておらず、互いに離隔しているものであってもよい。   The lower portions of the plurality of adjacent piers may not be connected but may be separated from each other.

地震発生時、エネルギー吸収部材が地震エネルギーを吸収することによって、エネルギー吸収部材が設置されない場合に比して主構造体が受ける地震荷重が減少するように調整されたものであってもよい。   When the earthquake occurs, the energy absorbing member may absorb the seismic energy, and the seismic load received by the main structure may be reduced as compared with the case where the energy absorbing member is not installed.

地震発生時、エネルギー吸収部材が地震エネルギーを吸収することによって、主体構造体は、弾性変形範囲内で変形するように調整されたものであってもよい。   When the earthquake occurs, the main body structure may be adjusted so as to be deformed within the elastic deformation range by the energy absorbing member absorbing the seismic energy.

本発明によれば、エネルギー吸収部材がエネルギーを吸収することにより、主構造体は死荷重や活荷重を主に受ける構造とし、エネルギー吸収部材と主構造体との接合部の破壊を防止することができる。   According to the present invention, when the energy absorbing member absorbs energy, the main structure is configured to mainly receive a dead load or a live load, and the destruction of the joint between the energy absorbing member and the main structure is prevented. Can do.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

(第1の実施形態)
まず、本発明の第1の実施形態に係る高架橋100について説明する。図3は、本実施形態に係る高架橋を示す橋軸方向に対して直交する面で切断した断面図である。
(First embodiment)
First, the viaduct 100 according to the first embodiment of the present invention will be described. FIG. 3 is a cross-sectional view taken along a plane orthogonal to the bridge axis direction showing the viaduct according to the present embodiment.

本実施形態に係る高架橋100は、高架構造物の一例であり、鉄道や高速道路などに適用される。高架橋100は、例えば、連続して立設された複数の橋脚114と、橋脚114間を連接する梁112及び橋桁115からなる連続桁橋である。高架橋100には、制振部材130が設けられ、地震エネルギーなどの外力を吸収することができる。   The viaduct 100 according to the present embodiment is an example of an elevated structure, and is applied to railways, highways, and the like. The viaduct 100 is, for example, a continuous girder bridge including a plurality of bridge piers 114 that are erected continuously, and a beam 112 and a bridge girder 115 that connect the piers 114. The viaduct 100 is provided with a damping member 130 and can absorb external force such as seismic energy.

橋脚114、梁112、橋桁115は、高架橋100にかかる死荷重及び活荷重を主に負担する。橋脚114、梁112、橋桁115を総称して、以下、主構造体ともいう。高架橋100の主構造体は、鉄筋コンクリート(RC)造のラーメン構造であり、一体的に形成される。本実施形態の高架橋100は、制振部材130が設けられているため、主構造体が負担する地震力やエネルギー吸収量を削減することができる。   The pier 114, the beam 112, and the bridge girder 115 mainly bear a dead load and a live load applied to the viaduct 100. Hereinafter, the pier 114, the beam 112, and the bridge girder 115 are collectively referred to as a main structure. The main structure of the viaduct 100 is a rigid frame structure made of reinforced concrete (RC) and is integrally formed. Since the viaduct 100 of the present embodiment is provided with the vibration damping member 130, it is possible to reduce the seismic force and the amount of energy absorbed by the main structure.

橋脚114は、橋軸方向に対して直交方向に2本を1対(2本で1スパン)として立設される。高架橋100は、橋軸方向に1対の橋脚114が複数連続して立設される。   The bridge piers 114 are erected as a pair (two spans are one span) in a direction orthogonal to the bridge axis direction. In the viaduct 100, a plurality of pairs of piers 114 are continuously provided in the bridge axis direction.

橋脚114の上部は、梁112及び橋桁115と連結され、橋脚114の下部は、略水平に張り出して形成された基礎116に連結される。基礎116は地盤に固定され、例えば、フーチング基礎などの直接基礎、図3に示すような杭118が設けられた杭基礎などを適用することができる。   The upper part of the bridge pier 114 is connected to the beam 112 and the bridge girder 115, and the lower part of the bridge pier 114 is connected to a foundation 116 formed to project substantially horizontally. The foundation 116 is fixed to the ground, and for example, a direct foundation such as a footing foundation or a pile foundation provided with a pile 118 as shown in FIG. 3 can be applied.

橋軸方向に対して直交方向に立設した1対の橋脚114の基礎116は、図3に示すように互いに離れていてもよいし、図示しないが連結していてもよい。基礎116が互いに離隔している場合、高架橋100の主構造体の橋軸方向に対して直交方向の断面は、図3に示すように下部側で開いた構成となる。一方、基礎が互いに連結している場合は、高架橋100の主構造体の橋軸方向に対して直交方向の断面は、閉じた構成を有する。   The foundations 116 of the pair of bridge piers 114 erected in a direction perpendicular to the bridge axis direction may be separated from each other as shown in FIG. 3, or may be connected although not shown. When the foundations 116 are separated from each other, the cross section in the direction perpendicular to the bridge axis direction of the main structure of the viaduct 100 is configured to be open on the lower side as shown in FIG. On the other hand, when the foundations are connected to each other, the cross section in the direction perpendicular to the bridge axis direction of the main structure of the viaduct 100 has a closed configuration.

梁112は、橋軸方向に対して直交方向に立接した1対の橋脚114の上部に設けられる。また、橋桁115は、橋軸方向に連続して立接した橋脚114の上部に設けられる。   The beam 112 is provided on the upper part of a pair of bridge piers 114 standing in a direction perpendicular to the bridge axis direction. Moreover, the bridge girder 115 is provided on the upper part of the bridge pier 114 which stood continuously in the bridge axis direction.

床版120は、梁112及び橋桁115の上面に、高架橋100の上部構造として橋軸方向に延在される。床版120の上面には例えば線路や道路が設けられる。   The floor slab 120 is extended on the upper surface of the beam 112 and the bridge girder 115 as the superstructure of the viaduct 100 in the bridge axis direction. For example, tracks and roads are provided on the upper surface of the floor slab 120.

制振部材130は、エネルギー吸収部材の一例であり、例えば長軸方向に伸縮可能な直線部材である。制振部材130は、高架橋100に地震エネルギーが入力されたとき、地震エネルギーを吸収することが可能なダンパー部材を適用することができる。制振部材130は、小さな変形時から地震エネルギーを吸収する性質を有するものであり、例えば、弾塑性履歴ダンパー、オイルダンパー、粘弾性ダンパー又は摩擦ダンパー等を適用することができる。高架橋100が振動したとき、制振部材130が圧縮力と引張り力を交互に作用させることで、高架橋100に入力された地震エネルギーを吸収する。   The damping member 130 is an example of an energy absorbing member, and is, for example, a linear member that can expand and contract in the long axis direction. A damper member capable of absorbing seismic energy when seismic energy is input to the viaduct 100 can be applied to the damping member 130. The damping member 130 has a property of absorbing seismic energy from a small deformation, and for example, an elastic-plastic hysteresis damper, an oil damper, a viscoelastic damper, a friction damper, or the like can be applied. When the viaduct 100 vibrates, the damping member 130 absorbs the seismic energy input to the viaduct 100 by causing the compression force and the tensile force to act alternately.

制振部材130は、図3に示すように橋脚114に対して斜行するように延在される。制振部材130は、一端が橋脚114と基礎116の側面から構成される隅部に設置され、他端が橋脚114と梁112の側面から構成される隅部に設置される。2つの制振部材130が図3に示すように交差して設置されてもよい。このとき、2つの制振部材130は、橋軸方向に対して直交に配置される。制振部材130は、高架橋100の設計に応じて、橋軸方向に複数連続して立設された橋脚114のうち任意の1対の橋脚114に設けることができる。   The damping member 130 extends so as to be inclined with respect to the pier 114 as shown in FIG. One end of the damping member 130 is installed at a corner portion formed by the side surfaces of the pier 114 and the foundation 116, and the other end is installed at a corner portion formed by the side surfaces of the pier 114 and the beam 112. Two damping members 130 may be installed crossing each other as shown in FIG. At this time, the two damping members 130 are arranged orthogonal to the bridge axis direction. Depending on the design of the viaduct 100, the damping member 130 can be provided on any one pair of bridge piers 114 among a plurality of bridge piers 114 that are continuously provided in the bridge axis direction.

制振部材130が、例えば弾塑性履歴ダンパー、摩擦ダンパー等であって、起こりうる軸力の最大値(上限)が明確なものであるとき、制振部材130と後述する接合構造を組み合わせることで、制振部材130と主構造体との接合部分が、想定外の大きな地震で破壊することを防止することができる。   When the damping member 130 is, for example, an elastoplastic hysteresis damper, a friction damper, or the like, and the maximum value (upper limit) of the axial force that can occur is clear, the damping member 130 is combined with a joining structure described later. In addition, it is possible to prevent the joint portion between the damping member 130 and the main structure from being destroyed by an unexpected large earthquake.

次に、図4を参照して、制振部材130と主構造体との接合部分について説明する。図4は、本実施形態の橋脚の側面と基礎の上面から構成される隅部における接合部分を示す側面図である。   Next, with reference to FIG. 4, the joint part of the damping member 130 and the main structure will be described. FIG. 4 is a side view showing a joint portion at a corner constituted by the side surface of the pier and the upper surface of the foundation according to the present embodiment.

橋脚114と基礎116が交差する隅部における接合構造は、接合部134と移動拘束部材144からなり、接合部134が移動拘束部材144によって移動が拘束される構造を有する。接合構造は、例えば、特開2006−177135号公報に開示された技術を適用することができる。   The joint structure at the corner where the bridge pier 114 and the foundation 116 intersect includes a joint 134 and a movement restraining member 144, and the joint 134 has a structure in which movement is restrained by the movement restraining member 144. For example, a technique disclosed in Japanese Patent Application Laid-Open No. 2006-177135 can be applied to the bonding structure.

接合部134は、橋脚114の側面に接合される第1接合プレート136と基礎116の上に載置される第2接合プレート137と、第1接合プレート136と第2接合プレート137のそれぞれに対して直交する向きに溶接されるガセットプレート138により構成される。ガセットプレート138には、制振部材130がスプライスプレート132を介して連結ボルトにより連結される。   The joining portion 134 is connected to each of the first joining plate 136 joined to the side surface of the pier 114, the second joining plate 137 placed on the foundation 116, and the first joining plate 136 and the second joining plate 137. The gusset plate 138 is welded in an orthogonal direction. A damping member 130 is connected to the gusset plate 138 via a splice plate 132 by a connecting bolt.

接合部134の第1接合プレート136と第2接合プレート137は、橋脚114の側面又は基礎116の上面に対して載置されるだけであり、接着剤等で固定されない。   The first bonding plate 136 and the second bonding plate 137 of the bonding portion 134 are merely placed on the side surface of the pier 114 or the upper surface of the foundation 116, and are not fixed with an adhesive or the like.

移動拘束部材144は、例えば所定の厚みと大きさ(面積)を有する矩形の鋼板プレートからなる。移動拘束部材144は、第1接合プレート136又は第2接合プレート137の先端部に近接又は当接して橋脚114の側面又は基礎116の上面に固着している。移動拘束部材144は、エポキシ樹脂系接着剤などの接着剤145で橋脚114又は基礎116に固定されている。移動拘束部材144の端部146で第1接合プレート136又は第2接合プレート137の先端部に作用する水平力を受け止めるため、第1接合プレート136又は第2接合プレート137と移動拘束部材144の端面同士は同一レベルに設置するのが好ましい。但し、接着剤145の厚さ分だけ高さに差が生じるので図示のように金属板からなるスペーサ147を移動拘束部材144の端部146の下面に固着するとよい。   The movement restraining member 144 is made of, for example, a rectangular steel plate having a predetermined thickness and size (area). The movement restraining member 144 is fixed to the side surface of the bridge pier 114 or the upper surface of the foundation 116 in proximity to or in contact with the distal end portion of the first joining plate 136 or the second joining plate 137. The movement restraining member 144 is fixed to the pier 114 or the foundation 116 with an adhesive 145 such as an epoxy resin adhesive. In order to receive the horizontal force which acts on the front-end | tip part of the 1st joining plate 136 or the 2nd joining plate 137 in the edge part 146 of the movement restraining member 144, the end surface of the 1st joining plate 136 or the 2nd joining plate 137 and the movement restraining member 144 They are preferably installed at the same level. However, since the height is different by the thickness of the adhesive 145, a spacer 147 made of a metal plate is preferably fixed to the lower surface of the end 146 of the movement restraining member 144 as shown.

従って、地震発生時に制振部材130に作用する引張力により、接合部134の第1接合プレート136と第2接合プレート137に垂直力と水平力が作用する。垂直力は、移動拘束部材144で受け、第1接合プレート136を介して橋脚114で受ける。一方、水平力は、移動拘束部材144で受け、第1接合プレート136を介して基礎116で受ける。このように本実施形態の接合構造は、エポキシ樹形接着剤などの接着剤145で固定された2つのプレート(第1接合プレート136、第2接合プレート137)にせん断力が加わることによって、制振部材130の引き抜き力に対し2つの反力の合力で抵抗する機構を有する。   Accordingly, a vertical force and a horizontal force act on the first joining plate 136 and the second joining plate 137 of the joining portion 134 due to the tensile force acting on the damping member 130 when the earthquake occurs. The normal force is received by the movement restraining member 144 and received by the pier 114 via the first joining plate 136. On the other hand, the horizontal force is received by the movement restraining member 144 and received by the foundation 116 via the first joining plate 136. As described above, the bonding structure of the present embodiment is controlled by applying a shearing force to the two plates (first bonding plate 136 and second bonding plate 137) fixed by the adhesive 145 such as an epoxy dendritic adhesive. It has a mechanism that resists the pulling force of the vibrating member 130 with the resultant force of two reaction forces.

後施工アンカー149は、橋脚114又は基礎116に打設され、スペーサ147を貫通して移動拘束部材144の先端146の上面から突出されて、ナット148で定着される。後施工アンカー149は、第1接合プレート136に垂直力が作用するとき、又は第2接合プレート137に水平力が作用するとき、モーメントが第1接合プレート136又は第2接合プレート137の先端部に作用するときの上向きの力を抑え、移動拘束部材144の先端146がめくれ上がる不具合を確実に阻止できる。   The post-installed anchor 149 is driven on the pier 114 or the foundation 116, passes through the spacer 147, protrudes from the upper surface of the tip 146 of the movement restraining member 144, and is fixed by the nut 148. The post-installed anchor 149 has a moment at the tip of the first joint plate 136 or the second joint plate 137 when a vertical force acts on the first joint plate 136 or when a horizontal force acts on the second joint plate 137. The upward force at the time of acting can be suppressed, and the trouble that the tip 146 of the movement restraining member 144 is turned up can be reliably prevented.

後施工アンカー149は、ケミカルアンカー、機械式アンカー等である。後施工アンカー149をケミカルアンカーとする場合、橋脚114又は基礎116に孔を削孔し、その孔に例えば2液混合固定性の液体を別々に収容したカプセルを収容し、ボルトを挿入してカプセルを破壊し、2液を混合固化させ、橋脚114又は基礎116にボルトを固定する。後施工アンカー149を機械式アンカーとする場合、ボルトにより先端を拡開して橋脚114又は基礎116に固定する。なお、後施工アンカー149、ナット148は必ずしも設けられる必要はなく、接合構造は後施工アンカー149、ナット148を有さない構造とすることもできる。このとき、主構造体が既設の構造物であり、制振部材130を新たに設置する場合、本実施形態の接合構造は、既設の構造物を削ったり穴を開けたりする必要がないため、騒音や振動が発生しない。   The post-installed anchor 149 is a chemical anchor, a mechanical anchor, or the like. When the post-installed anchor 149 is a chemical anchor, a hole is drilled in the pier 114 or the foundation 116, and a capsule containing, for example, a two-component mixed fixability liquid is accommodated in the hole, and a bolt is inserted into the capsule. The two liquids are mixed and solidified, and the bolt is fixed to the pier 114 or the foundation 116. When the post-installed anchor 149 is a mechanical anchor, the tip is expanded with a bolt and fixed to the pier 114 or the foundation 116. The post-construction anchor 149 and the nut 148 are not necessarily provided, and the joining structure may be a structure without the post-construction anchor 149 and the nut 148. At this time, when the main structure is an existing structure and the damping member 130 is newly installed, the joining structure of the present embodiment does not need to scrape the existing structure or open a hole. There is no noise or vibration.

補剛リブ150は、移動拘束部材144の先端146近くの上面に設けられる。補剛リブ150は、移動拘束部材144の先端146に作用する上向きの力によって移動拘束部材144の先端146が局部的に曲がるのを防止する。補剛リブ150の高さや幅や数は剛性確保の必要から設定される。なお、補剛リブ150は必ずしも設けられる必要はなく、接合構造は補剛リブ150を有さない構造とすることもできる。   The stiffening rib 150 is provided on the upper surface near the tip 146 of the movement restraining member 144. The stiffening rib 150 prevents the distal end 146 of the movement restraining member 144 from bending locally due to an upward force acting on the distal end 146 of the movement restraining member 144. The height, width, and number of the stiffening ribs 150 are set to ensure rigidity. The stiffening rib 150 is not necessarily provided, and the joining structure may be a structure without the stiffening rib 150.

本実施形態の接合部134によれば、制振部材130の引張力により接合部134に掛る垂直力又は水平力を橋脚114又は基礎116で受けることができ、接着剤145のせん断力で受けることができる。したがって、橋脚114又は基礎116には従来の接合構造のように局部的な引張力がコンクリートに作用せず、橋脚114又は基礎116が破損する不具合を解消できる。   According to the joint portion 134 of the present embodiment, the vertical force or the horizontal force applied to the joint portion 134 by the tensile force of the damping member 130 can be received by the bridge pier 114 or the foundation 116, and the shear force of the adhesive 145 can be received. Can do. Therefore, the local tensile force does not act on the concrete like the conventional joint structure on the pier 114 or the foundation 116, and the problem that the pier 114 or the foundation 116 is damaged can be solved.

さらに、制振部材130には圧縮力が作用する場合があるが、接合部134の第1接合プレート136又は第2接合プレート137は、移動拘束部材144が配置される側と反対側の端部で、橋脚114又は基礎116に接触している。従って、制振部材130が圧縮力を受けた場合は、接合部134に作用する力を橋脚114又は基礎116に支圧力として伝達することができる。   Furthermore, although a compression force may act on the damping member 130, the first joining plate 136 or the second joining plate 137 of the joining portion 134 is an end portion on the opposite side to the side where the movement restraining member 144 is disposed. In contact with the pier 114 or the foundation 116. Therefore, when the damping member 130 receives a compressive force, the force acting on the joint 134 can be transmitted to the bridge pier 114 or the foundation 116 as a supporting pressure.

なお、上述の接合構造を、本実施形態のようなエネルギー吸収性能を有する制振部材130ではなく、一般的なブレース材に適用すると、地震エネルギーが入力されたとき、当該ブレース材は、圧縮力によって座屈が発生し、例えば「く」の字形状に変形する。また、座屈したブレース材に引張力が働いても、もとの形状のように直線状には戻らず、屈曲した変形が残留する。そのため、地震のように継続的に外力が入力されている状態では、ブレース材の両端部にP−Δによる曲げモーメントが作用し、接合構造の移動拘束部材144に偏心した力が作用する。そして、移動拘束部材144と主構造体それぞれにかかるせん断応力が均等でなくなるため、移動拘束部材144のせん断耐力(例えば、接着耐力)が低下してしまう。   When the above-described joint structure is applied to a general brace material instead of the vibration damping member 130 having the energy absorption performance as in the present embodiment, when the seismic energy is input, the brace material has a compressive force. Causes buckling, and for example, deforms into a "<" shape. Further, even if a tensile force is applied to the buckled brace material, it does not return to a linear shape as in the original shape, and a bent deformation remains. Therefore, when an external force is continuously input as in an earthquake, a bending moment due to P-Δ acts on both ends of the brace material, and an eccentric force acts on the movement restraining member 144 of the joint structure. And since the shear stress applied to each of the movement restricting member 144 and the main structure is not uniform, the shear strength (for example, adhesion strength) of the movement restricting member 144 is lowered.

一方、接合構造を本実施形態のように制振部材130に適用すると、制振部材130が座屈を防止するエネルギー吸収性能を有するため、上述したような部材端部の屈曲変形による接合構造への偏心荷重が作用することがない。そのため、本実施形態によれば、地震発生時の接合構造の破壊を防止することができる。   On the other hand, when the joining structure is applied to the damping member 130 as in the present embodiment, the damping member 130 has an energy absorption performance that prevents buckling, and thus the joining structure by bending deformation of the end portion of the member as described above. The eccentric load does not act. Therefore, according to the present embodiment, it is possible to prevent the joint structure from being destroyed when an earthquake occurs.

また、制振部材130が、例えば弾塑性履歴ダンパー、摩擦ダンパー等であって、起こりうる最大の地震を想定して算出される軸力の最大値(上限)が明確なものであるとき、制振部材130と本実施形態の接合構造を組み合わせた場合、大きな地震が発生した場合でも、制振部材130に発生する軸力に限界があるため、本実施形態の接合構造が破壊しないように接合構造の耐力を決定することができる。即ち、いかなるレベルの地震に対しても、制振部材130の端部に発生する力には制限があるため、本実施形態の接合構造は破壊することなく、いつまでも地震エネルギーを吸収することができるようになる。   Further, when the damping member 130 is, for example, an elastoplastic hysteresis damper, a friction damper, or the like, and the maximum value (upper limit) of the axial force calculated assuming the maximum possible earthquake is clear, the damping member 130 is When the vibration member 130 and the bonding structure of the present embodiment are combined, even if a large earthquake occurs, the axial force generated in the vibration damping member 130 is limited, so that the bonding structure of the present embodiment is not destroyed. The yield strength of the structure can be determined. That is, since there is a limit to the force generated at the end of the damping member 130 for any level of earthquake, the joint structure of this embodiment can absorb the seismic energy indefinitely without breaking. It becomes like this.

そして、例えば、制振部材130として弾塑性履歴ダンパーを適用する場合、接合構造、特に移動拘束部材144の水平耐力が、弾塑性履歴ダンパーの最大軸力(最大に持ちこたえられる限界耐力)よりも大きくなるように設定されるとよい。弾塑性履歴ダンパーは、入力されるエネルギーが最大軸力に近づいたとしても、その性能により軸力を保持し続けることができる。一方、接合構造の水平耐力は、最大耐力に達すると脆性破壊を起こす。そのため、接合構造が最大耐力に達しないように、接合構造、特に移動拘束部材144の水平耐力は、弾塑性履歴ダンパーの最大軸力(最大に持ちこたえられる限界耐力)よりも大きくなるように設定されるとよく、その結果、接合構造の破壊を防止することができる。   For example, when an elastoplastic hysteresis damper is applied as the damping member 130, the horizontal proof stress of the joint structure, in particular the movement restraining member 144, is greater than the maximum axial force of the elastoplastic hysteresis damper (the limit proof strength that can be held to the maximum). It is good to set so that it becomes. Even if the input energy approaches the maximum axial force, the elastic-plastic history damper can continue to hold the axial force due to its performance. On the other hand, when the horizontal strength of the joint structure reaches the maximum strength, brittle fracture occurs. Therefore, in order to prevent the joint structure from reaching the maximum proof stress, the horizontal proof stress of the joint structure, particularly the movement restraining member 144, is set to be larger than the maximum axial force (maximum proof stress that can be held to the maximum) of the elastic-plastic hysteresis damper. As a result, destruction of the joint structure can be prevented.

なお、上記では、橋脚114の側面と基礎116の上面から構成される隅部における接合部134について説明したが、接合部134が、橋脚114の側面と梁112の下面から構成される隅部に設けられる場合や、橋脚114の側面と橋桁115の下面から構成される隅部に設けられる場合についても同様である。   In the above description, the joint portion 134 at the corner portion constituted by the side surface of the pier 114 and the upper surface of the foundation 116 has been described. However, the joint portion 134 is formed at the corner portion constituted by the side surface of the pier 114 and the lower surface of the beam 112. The same applies to the case where it is provided, or the case where it is provided at the corner composed of the side surface of the pier 114 and the lower surface of the bridge girder 115.

以上の通り、本実施形態によれば、図5(a)に示すように、本実施形態の高架橋100は、制振部材130の変形特性と主構造体の変形特性を合わせた特性を有している。また、本実施形態の高架橋100は制振部材130の特性を利用するため、図5(b)に示すように、地震エネルギー吸収量が多く、その結果、水平変形を少なくすることができる。図5は、本実施形態に係る高架橋100の水平変形と水平地震力との関係を示すグラフである。   As described above, according to the present embodiment, as shown in FIG. 5A, the viaduct 100 of the present embodiment has characteristics that combine the deformation characteristics of the vibration damping member 130 and the deformation characteristics of the main structure. ing. In addition, since the viaduct 100 of the present embodiment uses the characteristics of the damping member 130, the amount of seismic energy absorbed is large as shown in FIG. 5B, and as a result, horizontal deformation can be reduced. FIG. 5 is a graph showing the relationship between horizontal deformation and horizontal seismic force of the viaduct 100 according to this embodiment.

本実施形態は、制振部材130が地震エネルギーを吸収することによって、高架橋100の地震応答加速度、地震応答変位を低減させることができる。その結果、高架橋100の主構造体は、地震発生時、弾性変形範囲内で変形するように調整され、地震発生後も主構造体はひび割れ程度に留めることができる。従って、本実施形態の高架橋100は、主構造体の地震被害を大幅に低減することができる。   This embodiment can reduce the earthquake response acceleration and the earthquake response displacement of the viaduct 100 when the damping member 130 absorbs the earthquake energy. As a result, the main structure of the viaduct 100 is adjusted to be deformed within the elastic deformation range when an earthquake occurs, and the main structure can be kept cracked even after the earthquake occurs. Therefore, the viaduct 100 of this embodiment can significantly reduce the earthquake damage of the main structure.

また、制振部材130が地震エネルギーを吸収し、高架橋100の地震応答加速度、地震応答変位を低減させることができるため、主構造体が受ける地震力やエネルギー吸収量を大幅に低減することができる。そのため、主構造体の橋脚114や梁112などの部材を細くすることができる。従って、本実施形態の高架橋100は、経済的に建設することができ、柱材としての橋脚114が細いことからせん断破壊が生じにくくなる。   Moreover, since the damping member 130 can absorb the seismic energy and reduce the seismic response acceleration and seismic response displacement of the viaduct 100, the seismic force and energy absorption received by the main structure can be greatly reduced. . Therefore, members such as the pier 114 and the beam 112 of the main structure can be made thin. Therefore, the viaduct 100 according to the present embodiment can be economically constructed, and shear breakage is less likely to occur because the bridge pier 114 as a pillar is thin.

更に、主構造体の部材が細いことから、制振部材130が設置されないRCラーメン高架橋に比べて弾性変形範囲が大きくなり、本実施形態の高架橋100は主構造体の塑性化を遅らせる効果を有する。また、主構造体の部材が細いことから、主構造体の剛性と耐力が下がるため、主構造体が受ける地震荷重が減少する。その結果、地震発生時、制振部材130に地震エネルギーを集中させることかできる。従って、主構造体と制振部材130とで機能を分離することができる。即ち、主構造体は、死荷重又は活荷重に対し安全となる断面とし、制振部材は、地震エネルギーに対し安全となるサイズとすることで、それぞれの役割分担を明確にすることができる。   Further, since the main structure member is thin, the elastic deformation range is larger than that of the RC rigid frame viaduct where the damping member 130 is not installed, and the viaduct 100 of the present embodiment has an effect of delaying plasticization of the main structure. . In addition, since the main structure member is thin, the rigidity and proof stress of the main structure are reduced, so that the seismic load received by the main structure is reduced. As a result, the earthquake energy can be concentrated on the damping member 130 when an earthquake occurs. Therefore, the function can be separated between the main structure and the damping member 130. That is, the main structure has a cross section that is safe against dead loads or live loads, and the vibration damping member has a size that is safe against earthquake energy, so that the division of roles can be clarified.

また、地震発生後、制振部材130が変形したままになり残留変形が生じて、万が一、高架橋100が傾斜したままとなっても、主構造体には地震による被害がないため主構造体の復元力(弾性の戻る作用)を利用し、制振部材130を接合部134から外すことによって残留変形を解消することができる。そのため、本実施形態によれば、制振部材130を再度設置することで、当初の構造性能を有する高架橋100に復旧することができる。   In addition, after the earthquake occurs, the damping member 130 remains deformed and residual deformation occurs, and even if the viaduct 100 remains inclined, the main structure is not damaged by the earthquake, so Residual deformation can be eliminated by removing the damping member 130 from the joint portion 134 by utilizing a restoring force (an effect of returning elasticity). Therefore, according to this embodiment, it is possible to restore the viaduct 100 having the original structural performance by installing the damping member 130 again.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

上述した実施形態では、橋軸方向に対して直交方向に制振部材130が設置される場合について説明したが、本発明はかかる例に限定されない。例えば、図6に示すように、制振部材130は、橋軸方向に対して平行方向に配置されてもよい。図6は、本実施形態に係る高架橋の変更例を示す橋軸方向と平行な面で切断した断面である。このとき、制振部材130は、橋脚114と基礎116で構成される隅部、橋脚114と橋桁115で構成される隅部で主構造体と接合される。なお、図6では、接合部134の第2接合プレート162が基礎116にケミカルアンカーなどの後施工アンカー160で接合されている例を示す。   In the above-described embodiment, the case where the damping member 130 is installed in the direction orthogonal to the bridge axis direction has been described, but the present invention is not limited to such an example. For example, as shown in FIG. 6, the damping member 130 may be disposed in a direction parallel to the bridge axis direction. FIG. 6 is a cross section cut along a plane parallel to the bridge axis direction showing a modified example of the viaduct according to the present embodiment. At this time, the damping member 130 is joined to the main structure at a corner portion constituted by the pier 114 and the foundation 116 and at a corner portion constituted by the pier 114 and the bridge girder 115. In addition, in FIG. 6, the example in which the 2nd joining plate 162 of the junction part 134 is joined to the foundation | substrate 116 with the post-installation anchors 160, such as a chemical anchor, is shown.

また、図3で示す実施形態や図6で示す変更例では、制振部材130が橋脚114と基礎116で構成される隅部、橋脚114と梁112で構成される隅部、又は橋脚114と橋桁115で構成される隅部で主構造体と接合される例を示したが、本発明はかかる例に限定されない。例えば、図7に示すように、制振部材130の一端は、橋桁115の中間部で橋桁115と接合されてもよい。このとき、制振部材130は、接合プレート336と移動拘束部材344などからなる接合部によって橋桁115と接合される。図7は、本実施形態に係る高架橋の変更例を示す橋軸方向と平行な面で切断した断面である。また、図示しないが、制振部材130が橋軸方向に対して直交方向に配置される場合、制振部材130の一端が梁112の中間部で梁112と接合されてもよい。   Further, in the embodiment shown in FIG. 3 and the modification shown in FIG. 6, the damping member 130 is a corner constituted by the pier 114 and the foundation 116, a corner constituted by the pier 114 and the beam 112, or the pier 114 Although an example in which the main structure is joined at the corner portion constituted by the bridge girder 115 is shown, the present invention is not limited to such an example. For example, as shown in FIG. 7, one end of the damping member 130 may be joined to the bridge girder 115 at an intermediate portion of the bridge girder 115. At this time, the vibration damping member 130 is joined to the bridge girder 115 by a joint portion including the joining plate 336 and the movement restraining member 344. FIG. 7 is a cross-section cut along a plane parallel to the bridge axis direction showing a modified example of the viaduct according to the present embodiment. Although not shown, when the damping member 130 is disposed in a direction orthogonal to the bridge axis direction, one end of the damping member 130 may be joined to the beam 112 at an intermediate portion of the beam 112.

なお、図6及び図7を用いて説明した変更例では、1の橋桁115と2の橋脚114によって囲まれて形成される構面全てに制振部材130が設置される例について説明したが、本発明はこの例に限定されない。例えば、高架橋は、制振部材130が設置される構面と制振部材130が設置されない構面の両方を含んで構成されるものであってもよい。   In the modification example described with reference to FIGS. 6 and 7, the example in which the damping member 130 is installed on all the structural surfaces surrounded and formed by the one bridge girder 115 and the two bridge piers 114 is described. The present invention is not limited to this example. For example, the viaduct may include both a structural surface where the damping member 130 is installed and a structural surface where the damping member 130 is not installed.

従来のRCラーメン高架橋を示す側面図である。It is a side view which shows the conventional RC ramen viaduct. 従来のRCラーメン高架橋の水平変形と水平地震力との関係を示すグラフであるIt is a graph which shows the relationship between horizontal deformation and horizontal seismic force of the conventional RC ramen viaduct. 本発明の第1の実施形態に係る高架橋を示す橋軸方向に対して直交する面で切断した断面図である。It is sectional drawing cut | disconnected by the surface orthogonal to the bridge-axis direction which shows the viaduct concerning the 1st Embodiment of this invention. 同実施形態の橋脚の側面と基礎の上面から構成される隅部における接合部分を示す側面図である。It is a side view which shows the junction part in the corner comprised from the side surface of the bridge pier of the same embodiment, and the upper surface of a foundation. 同実施形態に係る高架橋の水平変形と水平地震力との関係を示すグラフであるIt is a graph which shows the relationship between the horizontal deformation of a viaduct and horizontal seismic force which concerns on the same embodiment. 同実施形態に係る高架橋の変更例を示す橋軸方向と平行な面で切断した断面である。It is the cross section cut | disconnected by the surface parallel to the bridge-axis direction which shows the example of a change of the viaduct concerning the embodiment. 同実施形態に係る高架橋の変更例を示す橋軸方向と平行な面で切断した断面である。It is the cross section cut | disconnected by the surface parallel to the bridge-axis direction which shows the example of a change of the viaduct concerning the embodiment.

符号の説明Explanation of symbols

100 高架橋
112 梁
114 橋脚
115 橋桁
116 基礎
118 杭
120 床版
130 制振部材
132 スプライスプレート
134 接合部
136 第1接合プレート
137 第2接合プレート
144 移動拘束部材
150 補剛リブ
100 viaduct 112 beam 114 bridge pier 115 bridge girder 116 foundation 118 pile 120 floor slab 130 damping member 132 splice plate 134 joint 136 first joint plate 137 second joint plate 144 movement restraining member 150 stiffening rib

Claims (13)

複数の橋脚と前記橋脚に架構された梁及び橋桁を有し、鉄筋コンクリート造からなるラーメン構造の主構造体と、
前記橋脚に対して斜行するように延在し、一端部が前記主構造体のうちの1の前記橋脚と接続され、他端部が前記主構造体のうちの他の前記橋脚、前記橋桁及び前記梁のいずれかに接続され、長手方向に伸縮して外部から入力されるエネルギーを吸収するエネルギー吸収部材と、
前記エネルギー吸収部材の端部に設けられ、前記主構造体に当接又は近接した接合部と、
前記接合部の一端部に近接又は当接して前記接合部の移動を拘束する、前記主構造体に設置された移動拘束部材と、
を備えることを特徴とする、高架構造物。
A main structure of a ramen structure having a plurality of bridge piers and beams and bridge girders constructed on the pier, and made of reinforced concrete;
Extending obliquely with respect to the pier, one end is connected to the pier of one of the main structures, and the other end is the other pier of the main structure, the bridge girder And an energy absorbing member that is connected to any of the beams and absorbs energy input from outside by expanding and contracting in the longitudinal direction;
A joint provided at an end of the energy absorbing member, in contact with or close to the main structure;
A movement restraining member installed in the main structure that restrains the movement of the joining portion in proximity to or in contact with one end of the joining portion;
An elevated structure characterized by comprising:
前記接合部は、前記橋脚の一面と前記梁又は前記橋桁の一面によって構成された隅部に設置され、
前記接合部の一端部は前記移動拘束部材に近接又は当接し、前記接合部の他端部は前記主構造体に近接又は当接して、前記接合部の移動が拘束されることを特徴とする、請求項1に記載の高架構造物。
The joint is installed at a corner formed by one surface of the pier and one surface of the beam or the bridge girder,
One end portion of the joint portion is close to or abuts on the movement restraining member, and the other end portion of the joint portion is close to or abuts on the main structure to restrain the movement of the joint portion. The elevated structure according to claim 1.
前記橋脚は下部に略水平方向に張り出した基礎を有し、
前記接合部は、前記橋脚の一面と前記基礎の一面によって構成された隅部に設置され、
前記接合部の一端部は前記移動拘束部材に近接又は当接し、前記接合部の他端部は前記主構造体に近接又は当接して、前記接合部の移動が拘束されることを特徴とする、請求項1又は2に記載の高架構造物。
The pier has a foundation projecting in a substantially horizontal direction at the bottom,
The joint is installed at a corner constituted by one surface of the pier and one surface of the foundation,
One end portion of the joint portion is close to or abuts on the movement restraining member, and the other end portion of the joint portion is close to or abuts on the main structure to restrain the movement of the joint portion. The elevated structure according to claim 1 or 2.
前記接合部は、前記梁又は前記橋桁の一面に設置され、
前記接合部の相対向する両端部が前記移動拘束部材に近接又は当接して、前記接合部の移動が拘束されることを特徴とする、請求項1〜3のいずれかに記載の高架構造物。
The joint is installed on one side of the beam or the bridge girder,
The elevated structure according to any one of claims 1 to 3, wherein both opposite ends of the joint portion approach or abut against the movement restraining member and restrain the movement of the joint portion. .
前記接合部は、少なくとも一部が前記主構造体に固定されたことを特徴とする、請求項1〜4のいずれかに記載の高架構造物。   The elevated structure according to claim 1, wherein at least a part of the joint is fixed to the main structure. 前記エネルギー吸収部材は、起こりうる軸力の最大値が制限されたダンパー部材であることを特徴とする、請求項1〜5のいずれかに記載の高架構造物。   The elevated structure according to claim 1, wherein the energy absorbing member is a damper member in which a maximum value of a possible axial force is limited. 前記移動拘束部材の耐力は、前記エネルギー吸収部材の起こりうる最大の軸力よりも大きいことを特徴とする、請求項1〜6のいずれかに記載の高架構造物。   The elevated structure according to any one of claims 1 to 6, wherein a proof stress of the movement restraining member is larger than a maximum axial force that the energy absorbing member can occur. 前記エネルギー吸収部材は、弾塑性履歴ダンパー、オイルダンパー、粘弾性ダンパー又は摩擦ダンパーであることを特徴とする、請求項1〜6のいずれかに記載の高架構造物。   The elevated structure according to claim 1, wherein the energy absorbing member is an elastic-plastic hysteresis damper, an oil damper, a viscoelastic damper, or a friction damper. 前記エネルギー吸収部材は、橋軸方向に対して直交方向に配置されたことを特徴とする、請求項1〜8のいずれかに記載の高架構造物。   The elevated structure according to claim 1, wherein the energy absorbing member is disposed in a direction orthogonal to the bridge axis direction. 前記エネルギー吸収部材は、橋軸方向に対して平行方向に配置されたことを特徴とする、請求項1〜9のいずれかに記載の高架構造物。   The elevated structure according to claim 1, wherein the energy absorbing member is disposed in a direction parallel to the bridge axis direction. 前記複数の隣接する橋脚の下部は接続されておらず、互いに離隔していることを特徴とする、請求項1〜10のいずれかに記載の高架構造物。   The elevated structure according to any one of claims 1 to 10, wherein lower portions of the plurality of adjacent piers are not connected but are separated from each other. 地震発生時、前記エネルギー吸収部材が地震エネルギーを吸収することによって、前記エネルギー吸収部材が設置されない場合に比して前記主構造体が受ける地震荷重が減少するように調整されたことを特徴とする、請求項1〜11のいずれかに記載の高架構造物。   When an earthquake occurs, the energy absorbing member absorbs seismic energy, and the seismic load received by the main structure is reduced compared to a case where the energy absorbing member is not installed. The elevated structure according to any one of claims 1 to 11. 地震発生時、前記エネルギー吸収部材が地震エネルギーを吸収することによって、前記主構造体は、弾性変形範囲内で変形するように調整されたことを特徴とする、請求項1〜12のいずれかに記載の高架構造物。   13. The structure according to claim 1, wherein the main structure is adjusted to be deformed within an elastic deformation range when the energy absorbing member absorbs seismic energy when an earthquake occurs. The elevated structure described.
JP2007239957A 2007-09-14 2007-09-14 Elevated structure Pending JP2009068295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007239957A JP2009068295A (en) 2007-09-14 2007-09-14 Elevated structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007239957A JP2009068295A (en) 2007-09-14 2007-09-14 Elevated structure

Publications (1)

Publication Number Publication Date
JP2009068295A true JP2009068295A (en) 2009-04-02

Family

ID=40604841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007239957A Pending JP2009068295A (en) 2007-09-14 2007-09-14 Elevated structure

Country Status (1)

Country Link
JP (1) JP2009068295A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255330A (en) * 2011-05-18 2012-12-27 Chubu Electric Power Co Inc Damper to be rigid-frame in earthquake, earthquake resistance improving construction method of dam sluice gate piers and earthquake resistance improving construction method of bridge
JP2015045212A (en) * 2013-07-29 2015-03-12 Jfeシビル株式会社 Seismic strengthening structure of existing bridge pier, and newly-constructed bridge pier structure
CN104452566A (en) * 2014-10-22 2015-03-25 大连海事大学 Swing self-reset bridge bent frame with ductility replaceable collar beam and installation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064624A (en) * 2001-08-24 2003-03-05 Railway Technical Res Inst Earthquake resistant reinforcing method of existing reinforced concrete elevated bridge
JP2003239220A (en) * 2002-02-18 2003-08-27 Shimizu Corp Vibration control elevated structure
JP2005188240A (en) * 2003-12-26 2005-07-14 Central Japan Railway Co Vibration control structure
JP2006177135A (en) * 2004-11-26 2006-07-06 Nippon Steel Corp Joint structure for antiseismic reinforcement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064624A (en) * 2001-08-24 2003-03-05 Railway Technical Res Inst Earthquake resistant reinforcing method of existing reinforced concrete elevated bridge
JP2003239220A (en) * 2002-02-18 2003-08-27 Shimizu Corp Vibration control elevated structure
JP2005188240A (en) * 2003-12-26 2005-07-14 Central Japan Railway Co Vibration control structure
JP2006177135A (en) * 2004-11-26 2006-07-06 Nippon Steel Corp Joint structure for antiseismic reinforcement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255330A (en) * 2011-05-18 2012-12-27 Chubu Electric Power Co Inc Damper to be rigid-frame in earthquake, earthquake resistance improving construction method of dam sluice gate piers and earthquake resistance improving construction method of bridge
JP2015045212A (en) * 2013-07-29 2015-03-12 Jfeシビル株式会社 Seismic strengthening structure of existing bridge pier, and newly-constructed bridge pier structure
CN104452566A (en) * 2014-10-22 2015-03-25 大连海事大学 Swing self-reset bridge bent frame with ductility replaceable collar beam and installation method thereof
CN104452566B (en) * 2014-10-22 2016-04-20 大连海事大学 What arrange the replaceable binder of ductility waves Self-resetting bridge framed bent and mounting method thereof

Similar Documents

Publication Publication Date Title
KR101632255B1 (en) Earthquake resisting design method on the basis of pc binding articulation construction method
JP5007380B2 (en) Seismic isolation / damping mechanism
US7367075B2 (en) Girder bridge protection device using sacrifice member
KR20140040089A (en) Coupling member for damping vibrations in building structures
JP2005207111A (en) Seismic response controlled bridge pier
JP4957295B2 (en) Seismic control pier structure
US8196368B2 (en) Ductile seismic shear key
JP2009068295A (en) Elevated structure
KR100492335B1 (en) Reinforcement method to resist earthquakes for lower structure of bridge and there of apparatus
JP2006233591A (en) Support structure of fixed support part in bridge, and aseismatic reinforcing method for existing bridge
JP4334448B2 (en) Concrete member joint structure
Mashal et al. Experimental testing of emulative and post-tensioned earthquake damage resistant technologies for accelerated bridge construction
JP3882633B2 (en) Steel pipe damper and rocking foundation structure using the same
JP2005083136A (en) Composite structure support
JP2004270816A (en) Vibration control device and vibration control structure
JP5142213B2 (en) Seismic reinforcement structure for viaduct
JP2020114980A (en) Road bridge pier structure
KR100492336B1 (en) Reinforcement method to resist earthquakes for lower structure of bridge and there of apparatus
Arzoumanidis et al. The new Tacoma Narrows suspension bridge: critical issues in seismic analysis and design
KR102094814B1 (en) Bridge seismic reinforcement structure
JP2005188240A (en) Vibration control structure
KR102408101B1 (en) Out-of-plane overturning prevention device of masonry partition wall and construction method of the same
JP6006352B2 (en) Seismic control pier structure
KR101404509B1 (en) Earthquake-proof reinforcement structures having ductile failure characteristics and the reinforcing method using it
JPH1171934A (en) Vibration control structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100317

A977 Report on retrieval

Effective date: 20110921

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110927

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20111125

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20111213

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20120210

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20120327

Free format text: JAPANESE INTERMEDIATE CODE: A02