JP2005062570A - マルチビームスキャナ及び画像形成装置 - Google Patents

マルチビームスキャナ及び画像形成装置 Download PDF

Info

Publication number
JP2005062570A
JP2005062570A JP2003293832A JP2003293832A JP2005062570A JP 2005062570 A JP2005062570 A JP 2005062570A JP 2003293832 A JP2003293832 A JP 2003293832A JP 2003293832 A JP2003293832 A JP 2003293832A JP 2005062570 A JP2005062570 A JP 2005062570A
Authority
JP
Japan
Prior art keywords
laser
signal
light
scanning
detection means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003293832A
Other languages
English (en)
Inventor
Katsumi Inukai
勝己 犬飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2003293832A priority Critical patent/JP2005062570A/ja
Priority to US10/916,614 priority patent/US6882454B2/en
Publication of JP2005062570A publication Critical patent/JP2005062570A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/123Multibeam scanners, e.g. using multiple light sources or beam splitters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)

Abstract

【課題】 BD信号出力タイミングのバラツキを抑え、安定性の高いBD信号を低コストで取得できるマルチビームスキャナ、及びそれを備えた画像形成装置を提供する。
【解決手段】 主走査方向に対して相互に所定距離d隔てた状態で走査される二つのレーザビームのうち、t11にてまず一つのレーザビームがBDセンサを照射するが、このときはまだBDセンサからのセンサ信号Vsの変化が小さく、これを反転増幅したセンサ増幅信号VgもスレッショルドレベルVthに満たない。その後、t12になって他方のレーザビームもBDセンサを照射することにより、二つのレーザビームが同時にBDセンサを照射するようになると、センサ増幅信号Vgが更に上昇してスレッショルドレベルVthを越え、BD信号が出力される(Low レベルになる)。このように、二つのレーザビームの同時受光でBD信号を出力することにより、BD信号の安定性が向上される。
【選択図】 図8

Description

本発明は、複数のレーザ光源から射出されたレーザビームを所定方向に一定周期で走査するマルチビームスキャナ、及び、それを備えた画像形成装置に関する。
レーザプリンタや複写機、ファクシミリなどの画像形成装置において、感光ドラムにレーザビームを照射・露光して画像を形成するために、レーザダイオードやそのレーザビームを主走査方向に走査するポリゴンミラー等を備えたレーザスキャナが設けられている。
レーザダイオードからは、感光ドラム表面上の所定の画像書き込み開始位置から、画像データによって変調されたレーザビームが照射されるが、その画像書き込み開始位置を検出するために、BD(Beam Detect )センサが設けられる。このBDセンサは、レーザビームがその走査範囲内において画像書き込み開始位置前の所定の位置を走査されたときに、そのレーザビームを受光できるよう設けられ、受光量に応じたセンサ信号を出力する。そして後述のように、BDセンサからのセンサ信号に基づいて、画像書き込み開始位置を決定するための同期信号(BD信号)が出力される。具体的には、受光量が、少なくともそのレーザビームが感光ドラムを照射(露光)して静電潜像を形成するのに必要な光量以上の場合に、BD信号が出力される。図9に、BDセンサと、そのセンサ信号に基づいてBD信号を出力するための各種回路とを備えたBD信号出力回路の概略構成を示す。
図9に示す如く、BD信号出力回路は、BDセンサ84と、増幅回路85と、AD変換回路86とからなる。BDセンサ84は、レーザダイオード(図示略)からのレーザビームを受光するものであって、受光素子であるフォトダイオードPD2を備える。具体的には、フォトダイオードPD2のアノードは接地され、カソードは、負荷抵抗RLを介して電源電圧Vccにプルアップされている。つまり、負荷抵抗RLとフォトダイオードPD2とからなる直列回路に対し、フォトダイオードPD2に対して逆バイアスとなるように電源電圧Vccが印加されている。フォトダイオードPD2は、PIN型フォトダイオードである。そして、負荷抵抗RLとフォトダイオードPD2との接続点の電位が、レーザビームの受光量に応じたセンサ信号Vsとして出力される。
このセンサ信号Vsは、受光量が増加するほど減少するものであるため、増幅回路85で所定の増幅率にて反転増幅することにより、受光量に応じて増加するセンサ増幅信号VgとしてAD変換回路86へ出力する。そして、この反転増幅後のセンサ増幅信号Vgが、AD変換回路86でAD変換されてBD信号として出力される。AD変換回路86は、センサ増幅信号VgによってトランジスタT1がオン・オフされ、オンしたときにBD信号(Low レベル)が出力されるものである。即ち、センサ増幅信号Vgは、コンデンサC1にて直流成分がカットされた後、ベース抵抗R3を介してトランジスタT1のベースに入力される。トランジスタT1は、エミッタが接地され、コレクタがプルアップ抵抗R2を介して電源電圧Vccにプルアップされており、このコレクタの電位がBD信号として出力される。
図10に、センサ信号Vsに対するBD信号の変化を示す。図示の如く、フォトダイオードPD2でレーザビームが受光されると、その受光量に応じてセンサ信号VsはPP(peak to peak)値Vsp-p だけ低下する(t21〜t22)。つまり、受光しない場合のセンサ信号Vsと受光したときのセンサ信号Vsとの差がPP値Vsp-p である。センサ信号Vsの低下に伴ってセンサ増幅信号Vgは上昇し、所定のスレッショルドレベルVth以上になると、トランジスタT1がオンしてBD信号が出力される。スレッショルドレベルVthは、トランジスタT1がオンするのに最低限必要なレベルである。
ここで、スレッショルドレベルVthは一般に、図10に示すようにある程度のバラツキがあり、このバラツキによってBD信号の出力タイミング(Low レベルへの立ち下がりタイミング)にもバラツキが生じて、BD信号の精度・安定性が悪化してしまう。このBD信号のバラツキ範囲は、例えば数nsec.〜数十nsec.程度ではあるが、画像形成装置における印字の高速化・高密度化が進む中で、このバラツキ範囲は印字精度を悪化させるのに十分な値である。
そこで、BD信号出力タイミングのバラツキを抑えるために、レーザビーム受光時にセンサ信号Vsが早く変化するようにすること、つまり、受光してからPP値Vsp-p 低下するまでの期間t21〜t22を短くすることが考えられる。具体的には、負荷抵抗RLの抵抗値(以下「負荷抵抗値」という。図10の例ではr)を小さくすれば、受光量の変化に早く反応してセンサ信号Vsが早く変化するようになる。
しかし、負荷抵抗値を小さくすると、受光量に対する反応は早くなるものの、PP値Vsp-p が小さくなり、耐ノイズ性が弱くなってノイズによる誤動作の可能性が増加してしまう。フォトダイオードPD2自体を受光量に対する反応速度の高いものにすることも技術的には可能であるが、そのようなフォトダイオードは非常に高価であるため現実的ではない。
一方、近年になって、複数の半導体レーザ発光素子(以下単に「半導体レーザ」ともいう)からなるレーザダイオードを搭載したマルチビームスキャナが使用されるようになってきた。複数の半導体レーザからなるレーザダイオードを使用することにより、一周期分の走査で複数行の画像を形成できるため、画像形成速度を高速化できる。
そして、上記マルチビームスキャナにおいて、BD信号を安定して得るために、一つのレーザビームだけではなく、複数の半導体レーザからの各レーザビームを同時に受光して受光パワーを上昇させることにより、PP値Vsp-p が十分なレベルとなるよう構成された、複数ビーム書き込み装置が知られている(例えば、特許文献1参照。)。
特開2003−25626号公報
しかしながら、上記特許文献1に開示された技術は、受光パワーを十分に確保して受光量不足が生じないようにすることでBD信号を確実に得ることが可能になるものの、単に受光量を増加させているだけであるため、負荷抵抗値に起因する上記反応速度の問題は残されたままである。
そのため、図9のBD信号出力回路に対して上記技術を適用しても、受光量増加によってPP値Vsp-p は増加するが、BD信号出力タイミングのバラツキはさほど小さくならない。
本発明は上記課題に鑑みなされたものであり、BD信号(同期信号)出力タイミングのバラツキを抑え、安定性の高い同期信号を低コストで取得できるマルチビームスキャナ、及びそれを備えた画像形成装置を提供することを目的とする。
上記課題を解決するためになされた請求項1記載のマルチビームスキャナは、複数のレーザ光源を有する半導体レーザ装置と、各レーザ光源から射出されたレーザビームを所定方向に一定周期で走査する走査手段と、走査手段により走査されたレーザビームをその走査範囲内における所定の位置で受光し、その受光量に応じた受光信号を出力する受光検出手段と、受光検出手段からの受光信号のレベルが所定の同期検知レベル以上のときに、走査手段によるレーザビームの走査開始タイミングを示す同期信号を出力する同期信号出力手段と、を備えたものである。
そして、前記走査手段による走査範囲内において、少なくとも二つのレーザビームがその走査方向に対して所定距離ずつ隔てて照射されるよう構成され、受光検出手段は、その所定距離ずつ隔てて照射される各レーザビームのうち少なくとも二つを同時に受光できるよう構成され、同期検知レベルは、その所定距離ずつ隔てて照射される各レーザビームのうち少なくとも二つを受光検出手段が同時に受光したときに、該受光検出手段からの受光信号のレベルが当該同期検知レベル以上となるように設定されている。
即ち、複数のレーザ光源からの各レーザビームのうち、走査方向に対して所定距離ずつ隔てて照射される各レーザビーム(以下「隔離レーザビーム」ともいう)については、走査手段により走査されるに従って順次、受光検出手段に受光されることになる。そして、受光検出手段では少なくとも二つの隔離レーザビームが同時に受光される。そのため受光検出手段の受光量は、同時に受光可能な最大数の隔離レーザビームが同時に受光されるまでは、各隔離レーザビームを順次受光する毎に増加していくことになる。
そして、同期信号出力手段は、受光検出手段が少なくとも二つの隔離レーザビームを同時に受光したときに同期信号を出力するよう構成されている。つまり、隔離レーザビームを一つ受光しただけでは受光検出手段からの受光信号レベルが不十分であるが、二つ以上の任意の数の隔離レーザビームを同時に受光することで、同期信号出力手段から同期信号が出力され得る程度の受光信号レベルに達するのである。
従って、本発明(請求項1)のマルチビームスキャナによれば、各隔離レーザビームが受光検出手段により順次受光され、同時受光可能な所定数の隔離レーザビームを同時受光したときに同期信号出力手段から同期信号が出力されるため、受光検出手段を受光量の変化に対する反応速度の速い高価なもので構成することなく、同期信号の出力タイミングのバラツキを抑え、安定性の高い同期信号を低コストで取得できるマルチビームスキャナの提供が可能となる。
なお、受光検出手段によるレーザビームの受光は、走査範囲内における所定位置で直接受光することのみを意味するものではなく、例えばその所定位置に反射鏡を設け、これに反射させて走査範囲とは異なる別の位置で受光する、という構成でもよい。
次に、請求項2記載のマルチビームスキャナは、複数のレーザ光源を有する半導体レーザ装置と、各レーザ光源から射出されたレーザビームを所定方向に一定周期で走査する走査手段と、走査手段により走査されたレーザビームをその走査範囲内における所定の位置で受光し、その受光量に応じた受光信号を出力する受光検出手段と、受光検出手段からの受光信号のレベルが所定の同期検知レベル以上のときに、走査手段によるレーザビームの走査開始タイミングを示す同期信号を出力する同期信号出力手段と、を備えたマルチビームスキャナである。
受光検出手段は、抵抗と光電変換素子との直列回路に定電圧バイアスが印加されて該抵抗と該光電変換素子との接続点の電位が受光量に応じて減少する光電変換部と、該光電変換部における上記接続点の電位が受光量に応じて増加するようにその電位変化を反転させてその反転後の電位を受光信号として出力する反転出力部とからなり、且つ、各レーザビームのうち少なくとも二つを同時に受光できるよう構成されている。そして、上記抵抗の抵抗値は、受光検出手段が二つ以上のレーザビームを同時に受光したときに同期検知レベル以上の受光信号が得られる値であって、且つ、該受光検出手段が一つのレーザビームを受光したときに同期検知レベルの受光信号を得るために必要な値より小さい値に設定される。
上記構成のマルチビームスキャナでは、受光量が増加するに従って受光信号のレベルも増加する。また、受光量を一定とした場合、光電変換部を構成する抵抗の抵抗値が大きいほど受光信号のレベルも大きくなる。一方、既述の通り抵抗値が大きいほど受光量の変化に対する上記接続点の電位の変化速度(反応速度)が遅くなり、延いては受光量に対する受光信号の反応速度が遅くなる。
そこで、同時に二つ以上のレーザビームを受光可能な受光検出手段において、上記抵抗値を、二つ以上のレーザビームを同時に受光したときに受光信号が同期検知レベル以上となるような値に設定する。但し、一つのレーザビームを受光したときに同期検知レベル以上の受光信号を得るために必要な値よりは小さい値に設定する。
従って、請求項2記載のマルチビームスキャナによれば、二つ以上のレーザビームを同時に受光したときに受光信号のレベルが同期検知レベル以上となればよく、光電変換部を構成する抵抗の抵抗値を、一つのレーザビームの受光のみで同期検知レベル以上の受光信号を得るために必要な抵抗値より小さく設定しているため、受光量の変化に対する上記反応速度を速くすることが可能となる。
この場合(請求項2)、更に、例えば請求項3に記載のように、走査手段による走査範囲内において、少なくとも二つのレーザビームがその走査方向に対して所定距離ずつ隔てて照射されるよう構成され、受光検出手段は、その所定距離ずつ隔てて照射される各レーザビームのうち少なくとも二つを同時に受光できるよう構成され、同期検知レベルは、その所定距離ずつ隔てて照射される各レーザビームのうち少なくとも二つを受光検出手段が同時に受光したときに、該受光検出手段からの受光信号のレベルが当該同期検知レベル以上となるように設定されたものであってもよい。
請求項3記載のマルチビームスキャナによれば、走査方向に対して所定距離ずつ隔てて照射される各レーザビーム(隔離レーザビーム)が受光検出手段により順次受光され、同時受光可能な所定数の隔離レーザビームを同時受光したときに同期信号出力手段から同期信号が出力されるため、請求項2の効果に加え、請求項1と同様、受光検出手段を受光量の変化に対する反応速度の速い高価なもので構成することなく、同期信号の出力タイミングのバラツキを抑え、安定性の高い同期信号を低コストで取得できるマルチビームスキャナを提供することが可能となる。
請求項4記載の発明は、請求項1〜3いずれかに記載のマルチビームスキャナであって、受光検出手段は複数のレーザビームを全て同時に受光できるよう構成されており、同期検知レベルは、受光検出手段が複数のレーザビームを全て同時に受光したときに、該受光検出手段からの受光信号のレベルが当該同期検知レベル以上となるように設定されたものである。
上記構成のマルチビームスキャナによれば、レーザビームが受光検出手段で受光され始めても、全てのレーザビームが同時に受光されるまでは同期信号は出力されず、全てのレーザビームが同時に受光されたときにはじめて、受光信号が同期検知レベル以上となって同期信号が出力されるため、同期信号の出力タイミングのバラツキをより抑制し、より安定性の高い同期信号を得ることが可能となる。
また、例えば請求項5記載のように、上記走査範囲内において、各レーザビームの全てがその走査方向と直交する直線に対して所定の角度だけ傾いた傾斜直線上を同時に照射するよう構成してもよい。このような構成のマルチビームスキャナによれば、受光検出手段において各レーザビームが順次一つずつ受光さるのに伴って受光信号のレベルも順次増加していくため、同期信号の出力タイミングのバラツキをより抑制し、より安定性の高い同期信号を得ることが可能となる。
特に、請求項4記載のマルチビームスキャナにおいて、更に請求項5記載のように全てのレーザビームが上記傾斜直線上を同時に照射するよう構成すれば、各レーザビームが順次一つずつ受光検出手段により受光されていき、全てのレーザビームが同時に受光されたときに受光信号が同期検知レベル以上となって同期信号が出力されるため、同期信号出力タイミングのバラツキの抑制効果をより高めることができ、同期信号の安定性もより高めることが可能となる。
次に、請求項6に記載の発明は、請求項1〜5いずれかに記載のマルチビームスキャナと、各レーザ光源毎に設けられ、対応する該レーザ光源を構成する半導体発光素子への通電電流を画像データに応じて変調する変調手段と、レーザ光源からのレーザ光が走査手段により走査されることによって表面に静電潜像が形成される感光体と、感光体の表面に形成された静電潜像を現像する現像手段と、現像手段により現像された画像を被記録媒体に転写する転写手段と、を備えた画像形成装置である。
上記構成の画像形成装置によれば、請求項1〜5いずれかに記載のマルチビームスキャナからのレーザビーム(正確には各レーザ光源からのレーザビーム)によって感光体表面に静電潜像が形成され、そのレーザビームは、安定性の高い同期信号に同期して感光体の表面を走査されるため、被記録媒体上に転写される画像の精度が良好な画像形成装置を提供することが可能となる。
以下に、本発明の好適な実施形態を図面に基づいて説明する。
図1は、本発明の画像形成装置としてのレーザプリンタの一実施形態を示す側断面図である。図1に示す如く、本実施形態のレーザプリンタ1は、本体ケーシング2内に、被記録媒体としての用紙3を給紙するためのフィーダ部4や、給紙された用紙3に所定の画像を形成するための画像形成部5などを備えている。
フィーダ部4は、本体ケーシング2内の底部に、着脱可能に装着される給紙トレイ6と、給紙トレイ6内に設けられた用紙押圧板7と、給紙トレイ6の一端側端部の上方に設けられる給紙ローラ8および給紙パット9と、給紙ローラ8に対し用紙3の搬送方向の下流側に設けられる紙紛取りローラ10および11と、紙紛取りローラ10および11に対し用紙3の搬送方向の下流側に設けられるレジストローラ12とを備えている。
用紙押圧板7は、用紙3を積層状にスタック可能とされ、給紙ローラ8に対して遠い方の端部において揺動可能に支持されることによって、近い方の端部が上下方向に移動可能とされており、また、その裏側から図示しないばねによって上方向に付勢されている。そのため、用紙押圧板7は、用紙3の積層量が増えるに従って、給紙ローラ8に対して遠い方の端部を支点として、ばねの付勢力に抗して下向きに揺動される。給紙ローラ8および給紙パット9は、互いに対向状に配設され、給紙パット9の裏側に配設されるばね13によって、給紙パット9が給紙ローラ8に向かって押圧されている。用紙押圧板7上の最上位にある用紙3は、用紙押圧板7の裏側から図示しないばねによって給紙ローラ8に向かって押圧され、その給紙ローラ8の回転によって給紙ローラ8と給紙パット9とで挟まれた後、1枚毎に給紙される。給紙された用紙3は、紙紛取りローラ10および11によって、紙紛が取り除かれた後、レジストローラ12に送られる。レジストローラ12は、1対のローラから構成されており、用紙3を所定のレジスト後に、画像形成部5に送るようにしている。
なお、このフィーダ部4は、さらに、マルチパーパストレイ14と、マルチパーパストレイ14上に積層される用紙3を給紙するためのマルチパーパス側給紙ローラ15およびマルチパーパス側給紙パット25とを備えており、マルチパーパス側給紙ローラ15およびマルチパーパス側給紙パット25は、互いに対向状に配設され、マルチパーパス側給紙パット25の裏側に配設されるばね25aによって、マルチパーパス側給紙パット25がマルチパーパス側給紙ローラ15に向かって押圧されている。マルチパーパストレイ14上に積層される用紙3は、マルチパーパス側給紙ローラ15の回転によってマルチパーパス側給紙ローラ15とマルチパーパス側給紙パット25とで挟まれた後、1枚毎に給紙される。
画像形成部5は、マルチビームスキャナ16、プロセスユニット17、定着部18などを備えている。
マルチビームスキャナ16は、本体ケーシング2内の上部に設けられ、レーザダイオードLD(図1では図示略。図2参照。)、回転駆動されるポリゴンミラー19、レンズ20および21、反射鏡22、23および24などを備えており、レーザ発光部から発光(射出)される、所定の印字データ(本発明の画像データ;詳細は後述)に基づくレーザビームを、鎖線で示すように、ポリゴンミラー19、fθレンズ20、反射鏡22および23、シリンダーレンズ21、反射鏡24の順に通過あるいは反射させて、後述するプロセスユニット17の感光ドラム27の表面上に高速走査にて照射させている。
プロセスユニット17は、マルチビームスキャナ16の下方に配設され、本体ケーシング2に対して着脱自在に装着されるドラムカートリッジ26内に、感光体としての感光ドラム27、現像手段としての現像カートリッジ28、スコロトロン型帯電器29、転写手段としての転写ローラ30および導電性ブラシ51などを備えている。
現像カートリッジ28は、ドラムカートリッジ26に対して着脱自在に装着されており、現像ローラ31、層厚規制ブレード32、供給ローラ33およびトナーボックス34などを備えている。
トナーボックス34内には、現像剤として、正帯電性の非磁性1成分のトナーが充填されている。このトナーとしては、重合性単量体、たとえば、スチレンなどのスチレン系単量体や、アクリル酸、アルキル(C1〜C4)アクリレート、アルキル(C1〜C4)メタアクリレートなどのアクリル系単量体を、懸濁重合などの公知の重合方法によって共重合させることにより得られる重合トナーが使用されている。このような重合トナーは、球状をなし、流動性が極めて良好である。なお、このようなトナーには、カーボンブラックなどの着色剤やワックスなどが配合されるとともに、流動性を向上させるために、シリカなどの外添剤が添加されている。その粒子径は、約6〜10μm程度である。
そして、トナーボックス34内のトナーは、トナーボックス34の中心に設けられる回転軸35に支持されるアジテータ36により攪拌されて、トナーボックス34の側部に開口されたトナー供給口37から放出される。なお、トナーボックス34の側壁には、トナーの残量検知用の窓38が設けられており、回転軸35に支持されたクリーナ39によって清掃される。
トナー供給口37の側方位置には、供給ローラ33が回転可能に配設されており、また、この供給ローラ33に対向して、現像ローラ31が回転可能に配設されている。そして、これら供給ローラ33と現像ローラ31とは、そのそれぞれがある程度圧縮するような状態で互いに当接されている。
供給ローラ33は、金属製のローラ軸に、導電性の発泡材料からなるローラが被覆されている。また、現像ローラ31は、金属製のローラ軸に、導電性のゴム材料からなるローラが被覆されている。より具体的には、現像ローラ31のローラ部分は、カーボン微粒子などを含む導電性のウレタンゴムまたはシリコーンゴムからなるローラ本体の表面に、フッ素が含有されているウレタンゴムまたはシリコーンゴムのコート層が被覆されている。なお、現像ローラ31には、感光ドラム27に対して、所定の現像バイアスが印加されている。
また、現像ローラ31の近傍には、層厚規制ブレード32が配設されている。この層厚規制ブレード32は、金属の板ばね材からなるブレード本体の先端部に、絶縁性のシリコーンゴムからなる断面半円形状の押圧部40を備えており、現像ローラ31の近くにおいて現像カートリッジ28に支持されて、押圧部40がブレード本体の弾性力によって現像ローラ31上に圧接されるように構成されている。
そして、トナー供給口37から放出されるトナーは、供給ローラ33の回転により、現像ローラ31に供給され、この時、供給ローラ33と現像ローラ31との間で正に摩擦帯電され、さらに、現像ローラ31上に供給されたトナーは、現像ローラ31の回転に伴って、層厚規制ブレード32の押圧部40と現像ローラ31との間に進入し、ここでさらに十分に摩擦帯電されて、一定厚さの薄層として現像ローラ31上に担持される。
感光ドラム27は、現像ローラ31の側方位置において、その現像ローラ31と対向するような状態で回転可能に配設されている。この感光ドラム27は、ドラム本体が接地されるとともに、その表面部分がポリカーボネートなどから構成される正帯電性の感光層により形成されている。
スコロトロン型帯電器29は、感光ドラム27の上方に、感光ドラム27に接触しないように、所定の間隔を隔てて配設されている。このスコロトロン型帯電器29は、タングステンなどの帯電用ワイヤからコロナ放電を発生させる正帯電用のスコロトロン型の帯電器であり、感光ドラム27の表面を一様に正極性に帯電させるように構成されている。
そして、感光ドラム27の表面は、スコロトロン型帯電器29により一様に正帯電された後、マルチビームスキャナ16からのレーザビームの高速走査により露光され、所定の印字データに基づく静電潜像が形成される。次いで、現像ローラ31の回転により、現像ローラ31上に担持されかつ正帯電されているトナーが、感光ドラム27に対向して接触する時に、感光ドラム27の表面上に形成される静電潜像、すなわち、一様に正帯電されている感光ドラム27の表面のうち、レーザビームによって露光され電位が下がっている露光部分に供給され、選択的に担持されることによって可視像化され、これによって反転現像が達成される。
転写ローラ30は、感光ドラム27の下方において、この感光ドラム27に対向するように配置され、ドラムカートリッジ26に回転可能に支持されている。この転写ローラ30は、金属製のローラ軸52に、過塩素酸リチウムなどのイオン性物質が添加されている弾性体からなるローラが被覆されている、イオン導電タイプの転写ローラが用いられており、22℃、50%RHにおける抵抗値が、約107〜108.5Ωとされている。転写ローラ30によれば、感光ドラム27に形成される静電潜像を用紙3に転写しつつ、用紙3を良好に搬送することができる。
そして、この転写ローラ30には、転写時に、図示しない転写バイアス印加回路によって感光ドラム27に対して所定の転写バイアスが印加されるように構成されている。そのため、感光ドラム27の表面上に担持された可視像は、転写ローラ30と対向して、用紙3が感光ドラム27と転写ローラ30との間を通る間に、その用紙3に転写される。
導電性ブラシ51は、感光ドラム27の回転方向における転写ローラ30の下流側であって、かつ、スコロトロン型帯電器29の上流側において、感光ドラム27の表面に接触するように設けられている。この導電性ブラシ51によって、転写後に感光ドラム27の表面に付着する紙粉が除去される。
定着部18は、図1に示すように、プロセスユニット17の側方下流側に配設され、加熱ローラ41、加熱ローラ41を押圧する押圧ローラ42、および、これら加熱ローラ41および押圧ローラ42の下流側に設けられる1対の搬送ローラ43を備えている。加熱ローラ41は、金属製で加熱のためのハロゲンランプを備えており、プロセスユニット17において用紙3上に転写されたトナーを、用紙3が加熱ローラ41と押圧ローラ42との間を通過する間に熱定着させ、その後、その用紙3を搬送ローラ43によって、排紙パス44に搬送するようにしている。排紙パス44に送られた用紙3は、排紙ローラ45に送られて、その排紙ローラ45によって排紙トレイ46上に排紙される。
また、このレーザプリンタ1には、用紙3の両面に画像を形成するために、反転搬送部47が設けられている。この反転搬送部47は、排紙ローラ45と、反転搬送パス48と、フラッパ49と、複数の反転搬送ローラ50とを備えている。
排紙ローラ45は、1対のローラからなり、正回転および逆回転の切り換えができるように構成されている。この排紙ローラ45は、上記したように、排紙トレイ46上に用紙3を排紙する場合には、正方向に回転するが、用紙3を反転させる場合には、逆方向に回転する。
反転搬送パス48は、排紙ローラ45から画像形成部5の下方に配設される複数の反転搬送ローラ50まで用紙3を搬送することができるように、上下方向に沿って設けられており、その上流側端部が、排紙ローラ45の近くに配置されるとともに、その下流側端部が、反転搬送ローラ50の近くに配置されている。
フラッパ49は、排紙パス44と反転搬送パス48との分岐部分に臨むように、揺動可能に設けられており、図示しないソレノイドの励磁または非励磁により、排紙ローラ45によって反転された用紙3の搬送方向を、排紙パス44に向かう方向から、反転搬送パス48に向かう方向に切り換えることができるように構成されている。
反転搬送ローラ50は、給紙トレイ6の上方において、略水平方向に複数設けられており、最も上流側の反転搬送ローラ50が、反転搬送パス48の後端部の近くに配置されるとともに、最も下流側の反転搬送ローラ50が、レジストローラ12の下方に配置されるように設けられている。
そして、用紙3の両面に画像を形成する場合には、この反転搬送部47が、次のように動作される。すなわち、一方の面に画像が形成された用紙3が搬送ローラ43によって排紙パス44から排紙ローラ45に送られてくると、排紙ローラ45は、用紙3を挟んだ状態で正回転して、この用紙3を一旦外側(排紙トレイ46側)に向けて搬送し、用紙3の大部分が外側に送られ、用紙3の後端が排紙ローラ45に挟まれた時に、正回転を停止する。次いで、排紙ローラ45は、逆回転するとともに、フラッパ49が、用紙3が反転搬送パス48に搬送されるように、搬送方向を切り換えて、用紙3を前後逆向きの状態で反転搬送パス48に搬送するようにする。なお、フラッパ49は、用紙3の搬送が終了すると、元の状態、すなわち、搬送ローラ43から送られる用紙3を排紙ローラ45に送る状態に切り換えられる。次いで、反転搬送パス48に逆向きに搬送された用紙3は、反転搬送ローラ50に搬送され、この反転搬送ローラ50から、上方向に反転されて、レジストローラ12に送られる。レジストローラ12に搬送された用紙3は、裏返しの状態で、再び、所定のレジスト後に、画像形成部5に向けて送られ、これによって、用紙3の両面に所定の画像が形成される。
また、このレーザプリンタ1では、転写ローラ30によって用紙3に転写された後に感光ドラム27の表面上に残存するトナーを、現像ローラ31によって回収する、いわゆるクリーナレス方式によって残存トナーを回収するようにしている。このようなクリーナレス方式によって感光ドラム27上に残存するトナーを回収すれば、ブレードなどのクリーナ装置や廃トナーの貯留手段を設ける必要がないため、装置構成の簡略化、小型化およびコストの低減化を図ることができる。
次に、感光ドラム27の表面へレーザビームを走査するマルチビームスキャナ16について、図2に基づいて説明する。図2は、マルチビームスキャナ16の概略構成を示す平面図である。尚、図2の平面図は、マルチビームスキャナ16の構成とその作用の概略を説明するために、各構成要素をレーザビームの進路に沿って平面的に展開して表示している。
図2に示す如く、本実施形態のマルチビームスキャナ16は、レーザ光源であるレーザダイオードLDを備えており、このレーザダイオードLDからのレーザビームはコリメートレンズ61によって平行光に直された後、シリンダーレンズ62により副走査方向のみ絞り込まれてポリゴンミラー19の側面上に結像される。
走査手段としてのポリゴンミラー19は、図示しないモータで矢印Mの方向に高速回転しており、レーザビームは、このポリゴンミラー19の回転によって角度が変えられ、感光ドラム27の表面において主走査方向(矢印L方向;本発明の走査方向に相当)に一定周期で走査される。ポリゴンミラー19で反射したレーザビームは、fθレンズ20で歪曲収差補正を受けた後、反射鏡22,23(図1参照)での反射を経て、シリンダーレンズ21で副走査方向のみ絞り込まれる。そして、シリンダーレンズ21からのレーザビームは、反射鏡24で反射されて、マルチビームスキャナ16の外部に設けられた感光ドラム27上を照射する。
また、ポリゴンミラー19で反射したレーザビームが、感光ドラム27上を含む全走査範囲内における所定位置に設けられた反射鏡63に照射されると、そのレーザビームは反射鏡63で反射してBDセンサ84の受光面84aを照射する。この反射鏡63は、ポリゴンミラー19による一回の走査において、その走査開始から感光ドラム27上を走査するまでの期間にレーザビームが照射されるよう設置されている。
BDセンサ84は、内部にフォトダイオードPD2を備え(図5参照)、受光面84aにて受光されたレーザビームの受光量に応じた信号を出力するものであり、感光ドラム27上を走査する前のレーザビームを検出して、その走査開始タイミングを示す同期信号(BD信号)を取得するために設けられるものである。なお、ポリゴンミラー19からのレーザビームを反射鏡63で反射させて受光する構成はあくまでも一例であり、例えば反射鏡63の位置にBDセンサ84を設けてポリゴンミラー19からの光を直接受光するようにしてもよいことはいうまでもない。
レーザダイオードLDは、主として、2つの半導体レーザ(第1半導体レーザLD1,第2半導体レーザLD2)(図5参照)からなるレーザ光源を備えるレーザ装置と、2つの半導体レーザLD1,LD2からのバックビームを検出すフォトダイオードPD1(図5参照)とにより構成される。この2つの半導体レーザLD1,LD2からの各レーザビームにより、BD信号に同期して感光ドラム27上が2ラインずつ露光される。そして、このレーザダイオードLDの概略構成例は、図3に示す通りである。
図3に示す如く、本実施形態のレーザダイオードLDは、ステム72の一方の面に基台73が設けられ、基台73上に発光点74a,74bを有するレーザ装置(レーザチップ)74とフォトダイオードPD1とが固定されている。このレーザ装置74内に2つの半導体レーザLD1,LD2が形成されており、このうち第1半導体レーザLD1からのレーザビームLB1は発光点74aから発光し、第2半導体レーザLD2からのレーザビームLB2は発光点74bから発光する。
これらレーザ装置74とフォトダイオードPD1を載置した基台73をカバーするようにしてキャップ76がステム72に取り付けられ、キャップ76の先端面にはレーザビーム(フロントビーム)LB1,LB2が通過する窓77が設けられている。また、そのバックビームL1−b,L2−bをフォトダイオードPD1が受光している。一方、ステム72の逆側の面には、レーザ装置74とフォトダイオードPD1をレーザ制御装置(図5参照)に接続するための通電端子78が設けられている。
次に、レーザダイオードLDからの各レーザビームLB1,LB2が感光ドラム27上あるいは反射鏡63などの照射対象を照射したときの、各レーザビームLB1,LB2による照射対象上の各ビームスポットの相対的位置関係について、図4に基づいて説明する。
図4に示す如く、レーザダイオードLDから射出されポリゴンミラー19にて主走査方向へ走査される各レーザビームLB1,LB2は、走査一周期における走査開始直後の所定のタイミングで反射鏡63を照射し、その反射光がBDセンサ84の受光面84aにて受光される。この受光面84aは、二つのレーザビームLB1,LB2を同時に受光できるよう構成されている。そして、反射鏡63の照射からさらに走査が進むと、感光ドラム27上の所定の画像形成領域(現像剤を露光すべき領域)を照射することになる。
ここで、反射鏡63あるいは感光ドラム27上などの照射対象に各レーザビームLB1,LB2が照射されたときの照射対象上の各ビームスポットBS1,BS2は、図示の如く、主走査方向に対して相互に所定距離d隔てて位置している。言い換えれば、各ビームスポットBS1,BS2の各中心は、主走査方向と直交する直交直線Lv上に同時に位置することはなく、直交直線Lvに対して所定の傾斜角θだけ傾斜した傾斜直線Ls上に同時に位置する。なお、ビームスポットBS1はレーザビームLB1によるビームスポットであり、ビームスポットBS2はレーザビームLB2によるビームスポットである。
そのため、BDセンサ84の受光面84aに対しても、図7に示すように、レーザビームLB1,LB2は相互に時間的にずれて照射される。本実施形態では、受光面84aに向かって左側からレーザビームが照射されることになり(図7(a))、まずレーザビームLB1が先に受光面84aを照射する(図7(b))。図7(b)は、レーザビームLB1だけが受光面84aを照射してビームスポットBS1が生じ、レーザビームLB2はまだ受光面84aを照射していない様子を示している。この状態から更に走査が進むと、図7(c)に示すように、レーザビームLB2も受光面84aを照射するようになる。つまり、二つのレーザビームLB1,LB2が同時に照射している状態である。この状態から更に走査が進むと、図7(d)に示すように、レーザビームLB1が先に受光面84aから外れてしまい、レーザビームLB2のみが受光面84aを照射している状態となる。
尚、二つのビームスポットBS1,BS2が感光ドラム27上や受光面84aにおいて主走査方向に対し所定距離d隔てて位置するようにする構成は、例えばレーザダイオードLDの配置によってそのようになるようにしてもよいし、また例えば、レーザダイオードLDからポリゴンミラー19を経て照射対象に到達するまでの間に、レンズや反射鏡などにより光学的にレーザビームLB1,LB2を調整して実現してもよい。また、必ずしも、感光ドラム27上における所定距離dと受光面84aにおける所定距離dとが等しくなるようにする必要はなく、感光ドラム27までの光路と受光面84aまでの光路の違いによって両者が異なるものとなってもよい。
次に、上記のように構成された本実施形態のレーザプリンタ1における、レーザダイオードLDを構成する2つの半導体レーザLD1,LD2の駆動制御について、図5に基づいて説明する。図5は、本実施形態のレーザ制御装置を示す概略ブロック図であり、制御全体の中枢を担うCPU80と、CPU80からの各種指令に従って2つの半導体レーザLD1,LD2への通電を制御するための各種制御信号を生成し出力するASIC81と、レーザダイオードLDを構成する2つの半導体レーザLD1,LD2のうち、第1半導体レーザLD1の通電を制御する第1レーザ制御部82と、第2半導体レーザLD2の通電を制御する第2レーザ制御部83と、受光量に応じたセンサ信号Vsを出力する既述のBDセンサ84と、増幅回路85と、AD変換回路86とを備える。
レーザダイオードLDの電気的接続は、図示の如く、各半導体レーザLD1,LD2のカソード、及びフォトダイオードPD1のカソードがいずれも接地されている。一方、第1半導体レーザLD1のアノードは、第1レーザ制御部82内の高速変調回路87に接続され、第2半導体レーザLD2のアノードは、第2レーザ制御部83内の高速変調回路93に接続され、フォトダイオードPD1のアノードは、第1レーザ制御部82内のスイッチ92と第2レーザ制御部83内のスイッチ98に接続されると共に、抵抗R1を介して接地電位に接続されている。
BDセンサ84、増幅回路85、及びAD変換回路86からなるBD信号出力回路は、BDセンサ84を構成する負荷抵抗RLの抵抗値(負荷抵抗値)を除き、図9に示した従来のBD信号出力回路と全く同じ構成である。そのため、このBD信号出力回路については図9と同じ符号を付し、その詳細説明を省略する。
負荷抵抗値は、図9の例ではrだったのに対し、本実施形態ではほぼr/2である。ただし、このように負荷抵抗値は従来(図9)に比べて約1/2にしているものの、同じ光量を受光したときのセンサ信号VsのPP値Vsp-p は、図9と本実施形態とはほぼ同じレベルである。
即ち、図9では、レーザビームが一つであってその一つのレーザビームを受光したときにトランジスタT1がオンしてBD信号が出力されるよう、負荷抵抗値をrとしていた。しかし、本実施形態では、二つのレーザビームLB1,LB2がフォトダイオードPD2にて同時に受光されたとき、つまり図7(c)のような状態になったときに、トランジスタT1がオンしてBD信号が出力されるよう構成することができる。そのため、負荷抵抗値を1/2程度に抑えることができる。
仮に、本実施形態においても負荷抵抗値をrとすると、センサ信号VsのPP値Vsp-p は、図9の場合のPP値Vsp-p (図10参照)の約2倍程度となる。そこで本実施形態では、負荷抵抗値を約1/2にしてPP値Vsp-p を従来とほぼ同レベルにしている。そしてこれにより、受光量に対する反応速度の高速化を実現している。
AD変換回路86では、増幅回路85からのセンサ増幅信号Vgが所定のスレッショルドレベルVth(本発明の同期検知レベルに相当)以上のときにトランジスタT1がオンし、BD信号(/BD信号;「/」は負論理を示す)が出力される。この/BD信号はASIC81内の制御部81aに入力され、制御部81aにおける各種制御の同期用に用いられる。
ASIC81内の制御部81aは、CPU80からの指示に従って第1レーザ制御部82及び第2レーザ制御部83をそれぞれ制御することにより、各半導体レーザLD1,LD2への通電(点灯)を制御する。まず、各半導体レーザLD1,LD2への通電を制御する各レーザ制御部82,83のうち、第1半導体レーザLD1への通電を制御する第1レーザ制御部82について説明する。
図示の如く、第1レーザ制御部82は、第1半導体レーザLD1への通電電流値を制御するLD駆動電流制御回路88と、このLD駆動電流制御回路88により制御された値の通電電流をASIC81内の制御部81aからの印字データ1(/DATA1信号)によって高速変調する変調手段としての高速変調回路87と、同じく制御部81aからのイネーブル信号1(/ENB1信号)に応じて第1半導体レーザLD1への通電自体を許可・不許可するための信号を出力するLD制御イネーブル回路89と、フォトダイオードPD1のアノードとピークホールド回路部91との電気的接続をオン・オフするスイッチ92と、スイッチ92がオンのときのフォトダイオードPD1からの出力信号(電圧信号)のピーク値を保持するピークホールド回路部91と、ピークホールド回路部91により保持されたピーク値と所定の基準電圧値Vrefとの差を増幅するエラーアンプ90と、を備える。
LD制御イネーブル回路89は、制御部81aからLレベルの/ENB1信号が入力されたら、第1半導体レーザLD1への通電を許可する旨の信号をLD駆動電流制御回路88へ出力する。これを受けたLD駆動電流制御回路88は、エラーアンプ90からの信号に応じた電流を第1半導体レーザLD1側へ供給する。具体的には、エラーアンプ90からの出力が0(つまりピークホールド回路部91が保持したピーク値とエラーアンプ内の基準電圧値Vrefとが等しい状態)になるような方向に通電電流値を制御して第1半導体レーザLD1のレーザビーム光量を一定に制御する、いわゆるAPC(Automatic Power Control )制御を行う。但し、たとえ/ENB1信号がLレベルであっても、/DATA1信号がHレベル状態の場合(つまり印字データがない場合)は、第1半導体レーザLD1への通電を行わない。
また、ピークホールド回路部91は、例えば、入力及び出力インピーダンスを変換するための2組のボルテージフォロワ回路と、ピーク値を保持するために各ボルテージフォロワ回路の間に接続されるコンデンサとによる、一般的な構成のものである。但し、本実施形態では、正確にはコンデンサの充電電圧(ピーク値)が常に保持されず、徐々に放電するようにするための抵抗等による放電回路を備えている。これは、仮に放電回路を設けずにピーク値がそのまま常時保持されるようにすると、あるタイミングで保持したピーク値に対し、その後にそれより小さい値が入力されても、その小さい値は反映されない(保持されない)からである。放電回路を設けることにより、あるタイミングでピーク値を保持した後、スイッチ92をオフすると、そのピーク値、つまりコンデンサの充電電圧は僅かではあるが徐々に低下していく。そして再びスイッチ92をオンすると、そのときのフォトダイオードPD1の出力電圧がコンデンサ充電電圧値より低くない限り、その出力電圧値がピーク値として保持される。
スイッチ92は、制御部81aからの制御信号により制御され、第1半導体レーザLD1を点灯してAPC制御するときにオンされて、フォトダイオードPD1からの出力信号をピークホールド回路部91に入力する。なお、後述する第2レーザ制御部83が備えるスイッチ98も制御部81aからの制御信号により制御され、第2半導体レーザLD2を点灯してAPC制御するときにオンされて、フォトダイオードPD1からの出力信号をピークホールド回路部97に入力する。これにより、第1レーザ制御部82内のピークホールド回路部91には第1半導体レーザLD1の光量に応じた信号が入力され、第2レーザ制御部83内のピークホールド回路部97には第2半導体レーザLD2の光量に応じた信号が入力されるように制御される。
エラーアンプ90は、ピークホールド回路部91からのピーク値と所定の基準電圧値Vrefとの差を増幅するための周知のアンプであるが、本実施形態では、基準電圧値を常にVref一定とはせず、印字開始時に第1半導体レーザLD1へ通電を開始する際は、0からVrefまで徐々に増加するよう構成されている。これは、基準電圧値を常にVref一定にすると、通電開始時に第1半導体レーザLD1に過大な突入電流が流れて第1半導体レーザLD1が破壊するおそれがあるからである。尚、基準電圧値Vrefは、第1半導体レーザLD1からのレーザビーム量が、感光ドラム27の表面に確実に静電潜像を形成するのに十分な所定光量となるような値である。
一方、第2半導体レーザLD2への通電電流を制御する第2レーザ制御部83は、基本的に第1レーザ制御部82と同じ構成である。即ち、第2レーザ制御部83は、第2半導体レーザLD2への通電電流値を制御するLD駆動電流制御回路94と、このLD駆動電流制御回路94により制御された値の通電電流をASIC81内の制御部81aからの印字データ2(/DATA2信号)によって高速変調する変調手段としての高速変調回路93と、同じく制御部81aからのイネーブル信号2(/ENB2信号)に応じて第2半導体レーザLD2への通電自体を許可・不許可するための信号を出力するLD制御イネーブル回路95と、フォトダイオードPD1のアノードとピークホールド回路部97との電気的接続をオン・オフするスイッチ98と、スイッチ98がオンのときのフォトダイオードPD1からの出力電圧のピーク値を保持するピークホールド回路部97と、ピークホールド回路部97により保持されたピーク値と基準電圧値Vrefとの差を増幅するエラーアンプ96と、を備える。
LD制御イネーブル回路95は、制御部81aからLレベルの/ENB2信号が入力されたら、第2半導体レーザLD2への通電を許可する旨の信号をLD駆動電流制御回路94へ出力する。これを受けたLD駆動電流制御回路94は、エラーアンプ96からの信号に応じた電流を第2半導体レーザLD2側へ供給する。具体的には、エラーアンプ96からの出力が0(つまりピークホールド回路部97が保持したピーク値とエラーアンプ内の基準電圧値Vrefとが等しい状態)になるような方向に通電電流値を制御するAPC制御を行う。但し、たとえ/ENB2信号がLレベルであっても、/DATA2信号がHレベル状態の場合(つまり印字データがない場合)は、第2半導体レーザLD2への通電を行わない。ピークホールド回路部91及びエラーアンプ96はそれぞれ、第1レーザ制御部82におけるピークホールド回路部91及びエラーアンプ90と全く同じ構成である。
次に、図5に示した本実施形態のレーザ制御装置による、第1半導体レーザLD1及び第2半導体レーザLD2の制御動作について説明する。例えばパーソナルコンピュータ(図示略)等の端末装置で作成された印字データが印字指令と共にレーザプリンタ1へ送信されてきた場合、CPU80は、その印字データをラスタライズして制御部81aへ出力し、これに基づいて制御部81aは印字データ1,2(/DATA1,/DATA2)を出力する。但し、印字データ1,2の出力は、各半導体レーザLD1,LD2への通電開始後直ちにできるわけではなく、実際に印字データ1,2を出力する前に、各半導体レーザLD1,LD2からのレーザビームを、感光ドラム27の表面上に静電潜像を形成するのに十分な光量にまで立ち上げると共に、同期信号(/BD信号)を取得する必要がある。

図5は、本実施形態のレーザ制御装置により行われる、各半導体レーザLD1,LD2の制御動作を示すタイムチャートである。図示の如く、各半導体レーザLD1,LD2からの各レーザビームLB1,LB2は、感光体ドラム27上を走査されている間、対応する各印字データ1,2(/DATA1信号,/DATA2信号)に基づいて照射される。そして、感光ドラム27上の照射が終わり(t1)、所定時間経過後のt2にて、Low レベルの/DATA1信号を出力する。この/DATA1信号はAPC制御あるいはBD信号検出のためのダミーデータである。
その後、t3にて更にLow レベルの/DATA2信号(ダミーデータ)を出力することで、二つの半導体レーザLD1,LD2から共にレーザビームを射出する。この状態で更に時間が経過し(即ち走査が続き)、二つのレーザビームLB1,LB2が図7(c)のように受光面84aを同時に照射したとき、BD信号が出力される。つまり、Low レベルの/BD信号がASIC81内の制御部81aへ入力される。
制御部81aでは、この/BD信号がLow レベルとなる立ち下がりタイミングでBD信号が出力されたことを検出すると、その後t4にて、/DATA1信号及び/DATA2信号をいずれもオフ(Highレベル)にして/BD信号の出力もオフ(Highレベル)にする。その後、各レーザビームLB1,LB2が感光ドラム27上における所定の露光開始位置まで走査されてきたとき(t5)、再び、各印字データ1,2(/DATA1信号,/DATA2信号)に基づく照射が開始される。t6〜t9については、上記説明したt1〜t4と全く同様である。このようにして、走査一周期毎にBD信号の検出を行っている。
次に、図6のタイムチャートにおいて、t3にて二つの半導体レーザLD1,LD2から共にレーザビームが射出された状態となった後、BD信号(Low レベルの/BD信号)が出力されるまでの過程について、図8に基づいて説明する。尚、図8では、説明の簡略化のため、二つの半導体レーザLD1,LD2から共にレーザビームが継続して射出されている状態で、図7(a)〜(d)に示したように各レーザビームLB1,LB2が走査されていく場合を示している。
図8において、t11までは各レーザビームLB1,LB2がいずれもBDセンサ84の受光面84aを照射していない期間である(図7(a)の状態)。そして、t11を過ぎると、半導体レーザLD1からのレーザビームLB1のみが受光面84aを照射することにより、センサ信号Vsが低下してセンサ増幅信号Vgは増加する(図7(b)の状態)。更に走査が進み、t12を過ぎると、半導体レーザLD2からのレーザビームLB2も受光面84aを照射するようになる。つまり、図7(c)のように、二つのレーザビームLB1,LB2が同時に受光面84aを照射している状態となる。この状態になると、センサ信号Vsは更に低下してセンサ増幅信号Vgは更に増加することになり、このセンサ増幅信号VgがスレッショルドレベルVth以上になると、AD変換回路86を構成するトランジスタT1がオンし、/BD信号がLow レベルとなる。
その後、図7(d)のようにレーザビームLB1が受光面84aから外れると、センサ信号Vsが再び上昇し、センサ増幅信号Vgは低下してスレッショルドレベルVthを下回ることになり、/BD信号がHighレベルとなる。そして、t13を過ぎるとレーザビームLB2も受光面84aから外れていき、t14以降は、受光面84aにおける受光量が0の状態となる。
このように、本実施形態では、二つのレーザビームLB1,LB2が同時に受光面84aを照射したときにBD信号を出力するようにしていることにより、スレッショルドレベルVthに多少のバラツキがあっても、BD信号出力タイミングのバラツキは、図8に示す如く微小なものとなり、印字結果にはほとんど影響を与えない。
尚、図8におけるセンサ信号VsのPP値Vsp-p は、既述の通り、図10に示した従来のPP値Vsp-p とほぼ同じである。つまり、PP値Vsp-p は従来と同等でありながら負荷抵抗値を約1/2に低減したのである。このように負荷抵抗RLを低抵抗としたことにより、図9に比べて、受光量変化に対するBDセンサ84の反応速度の高速化を実現している。
以上詳述した本実施形態のマルチビームスキャナ16では、二つのレーザビームLB1,LB2が受光面84aを順次照射(換言すれば、フォトダイオードPD2が各ビームLB1,LB2を順次受光)し、各ビームLB1,LB2が同時に受光面84aを照射したときにBD信号(Low レベルの/BD信号)を出力する。そして、二つのレーザビームLB1,LB2を同時に受光したときにトランジスタT1をオンしてBD信号を出力する構成のため、BDセンサ84を構成する負荷抵抗RLの抵抗値を、PP値Vsp-p は従来と同等にしつつ、従来(r)の約半分程度にまで小さくしている。
従って、BDセンサ84の反応速度、つまり受光量の変化に対するセンサ信号Vsの変化の速度を速くすることができる。そのため、フォトダイオードPD2として反応速度の速い高価なものを使用する必要なく、BD信号の出力タイミングのバラツキを抑え、安定性の高いBD信号を低コストで取得することが可能となる。
また、二つのレーザビームLB1,LB2を、主走査方向と直交する直交直線Lvに対して所定の傾斜角θだけ傾斜した傾斜直線上を同時に照射するよう構成している。換言すれば、二つのレーザビームLB1,LB2が主走査方向に対して所定距離dだけ隔てて照射されるよう構成されている。これにより、レーザビームLB1のみが受光面84aにて受光されただけではBD信号は出力されず、二つのレーザビームLB1,LB2が同時に受光されたときにはじめてBD信号が出力されるため、BD信号の出力タイミングのバラツキをより抑制し、より安定性の高いBD信号を得ることが可能となる。
そして、このマルチビームスキャナ16を搭載した本実施形態のレーザプリンタ1によれば、マルチビームスキャナ16からの各レーザビームLB1,LB2によって感光ドラム27の表面に静電潜像が形成され、そのレーザビームLB1,LB2は、上記のように安定性の高いBD信号に同期して感光ドラム27の表面を走査されるため、用紙3上に形成される画像の精度をより良好にすることが可能となる。
ここで、本実施形態において、BDセンサ84は本発明の受光検出素子に相当し、増幅回路85は本発明の反転出力部に相当し、AD変換回路86は本発明の同期信号出力手段に相当する。また、BDセンサ84において負荷抵抗RLに印加される電源電圧Vccが本発明の定電圧バイアスに相当し、増幅回路85からのセンサ増幅信号Vgが本発明の受光信号に相当する。
尚、本発明の実施の形態は、上記実施形態に何ら限定されるものではなく、本発明の技術的範囲に属する限り種々の形態を採り得ることはいうまでもない。
例えば、上記実施形態では、レーザダイオードLDとして、二つの光源を備えたもの、即ち、二つの半導体レーザLD1,LD2を備えたものを例示したが、3つ以上の光源を備えたレーザダイオードに対しても本発明を適用できる。
例えば図4において、傾斜直線Ls上におけるビームスポットBS1から更に主走査方向へ所定距離d隔てた位置に3つ目のビームスポットがくるよう、光源を増やすことができる。そしてこの場合、3つのレーザビーム全てが受光面84aを同時に照射したときにBD信号を出力するようにしてもよいし、3つのうち先に二つのレーザビームが受光面84aを照射した時点でBD信号を出力するようにしてもよい。
つまり、受光面84aは、所定距離隔てて照射される複数のレーザビームを全て同時に受光できるよう構成される場合はもちろん、全てではなく少なくとも二つのレーザビームを同時に受光できるよう構成されたものであってもよい。そしていずれの場合も、受光面84aが同時に受光可能な全てのレーザビームを同時受光したときにBD信号を出力するようにしてもよいし、同時に受光可能なレーザビームのうち二つ以上の任意の数だけ同時受光したときにBD信号を出力するようにしてもよい。
また本実施形態では、AD変換回路86を、トランジスタT1のスイッチング動作を利用したものとして構成したが、例えばコンパレータを用いて、所定のスレッショルドレベルVthを基準にしてHighレベル又はLow レベルの信号を出力する構成にしてもよい。このようにすれば、スレッショルドレベルVth自体のバラツキを抑制することができる。但し、汎用のコンパレータは入力信号の変化に対する反応速度が遅いため実用性に欠け、反応速度を速くするためには高価なコンパレータを使用する必要がある。そのため、コスト的な面からいえば、本実施形態のようにトランジスタt1で構成したAD変換回路86を使用するのが好ましい。
更に、本実施形態では、負荷抵抗RLを、抵抗値一定(約r/2)の固定抵抗としたが、これを可変抵抗として、負荷抵抗値を適宜設定できるようにしてもよい。このようにすれば、例えばマルチビームスキャナ16を交換したりするなどの各種外部パラメータの変化に対して適切な負荷抵抗値の設定を迅速に行うことができる。
また、上記各実施形態では、本発明をレーザプリンタに適用した場合を例に挙げて説明したが、本発明は、レーザプリンタに限らず、例えば複写機やファクシミリなど、複数の半導体レーザにより感光ドラム上に静電潜像を形成するよう構成されたあらゆる画像形成装置に対して適用可能である。
実施形態のレーザプリンタの概略構成を示す側断面図である。 実施形態のマルチビームスキャナの概略構成を示す平面図である。 実施形態のレーザダイオードの概略構成を示す斜視図である。 各レーザビームLB1,LB2による照射対象上の各ビームスポットの相対的位置関係を示す説明図である。 実施形態のレーザ制御装置を示す概略ブロック図である。 実施形態のレーザ制御装置による半導体レーザLD1,LD2の制御動作を示すタイムチャートである。 各レーザビームLB1,LB2がBDセンサの受光面を照射する様子を説明する説明図である。 BD信号の出力過程を示すタイムチャートである。 BD信号出力回路の概略構成を示す説明図である。 センサ信号Vsに対するBD信号の変化を示すタイムチャートである。
符号の説明
1…レーザプリンタ、5…画像形成部、16…マルチビームスキャナ、19…ポリゴンミラー、20…fθレンズ、21,62…シリンダーレンズ、22,23,24,63…反射鏡、27…感光ドラム、28…現像カートリッジ、30…転写ローラ、31…現像ローラ、61…コリメートレンズ、74…レーザ装置、81a…制御部、82…第1レーザ制御部、83…第2レーザ制御部、84…BDセンサ、84a…受光面、85…増幅回路、86…AD変換回路、87,93…高速変調回路、88,94…LD駆動電流制御回路、89,95…LD制御イネーブル回路、90,96…エラーアンプ、91,97…ピークホールド回路部、92,98…スイッチ、BS1,BS2…ビームスポット、LB1、LB2…レーザビーム、LD…レーザダイオード、LD1…第1半導体レーザ、LD2…第2半導体レーザ、Ls…傾斜直線、Lv…直交直線、PD1,PD2…フォトダイオード、R1…抵抗、R2…プルアップ抵抗、R3…ベース抵抗、RL…負荷抵抗、C1…コンデンサ、T1…トランジスタ

Claims (6)

  1. 複数のレーザ光源を有する半導体レーザ装置と、
    前記各レーザ光源から射出されたレーザビームを所定方向に一定周期で走査する走査手段と、
    前記走査手段により走査された前記レーザビームをその走査範囲内における所定の位置で受光し、その受光量に応じた受光信号を出力する受光検出手段と、
    前記受光検出手段からの受光信号のレベルが所定の同期検知レベル以上のときに、前記走査手段による前記レーザビームの走査開始タイミングを示す同期信号を出力する同期信号出力手段と、
    を備えたマルチビームスキャナであって、
    少なくとも二つの前記レーザビームが、前記走査範囲内において、その走査方向に対して所定距離ずつ隔てて照射されるよう構成され、
    前記受光検出手段は、前記所定距離ずつ隔てて照射される各レーザビームのうち少なくとも二つを同時に受光できるよう構成され、
    前記同期検知レベルは、前記所定距離ずつ隔てて照射される各レーザビームのうち少なくとも二つを前記受光検出手段が同時に受光したときに、該受光検出手段からの前記受光信号のレベルが当該同期検知レベル以上となるように設定されている
    ことを特徴とするマルチビームスキャナ。
  2. 複数のレーザ光源を有する半導体レーザ装置と、
    前記各レーザ光源から射出されたレーザビームを所定方向に一定周期で走査する走査手段と、
    前記走査手段により走査された前記レーザビームをその走査範囲内における所定の位置で受光し、その受光量に応じた受光信号を出力する受光検出手段と、
    前記受光検出手段からの受光信号のレベルが所定の同期検知レベル以上のときに、前記走査手段による前記レーザビームの走査開始タイミングを示す同期信号を出力する同期信号出力手段と、
    を備えたマルチビームスキャナであって、
    前記受光検出手段は、抵抗と光電変換素子との直列回路に定電圧バイアスが印加されて該抵抗と該光電変換素子との接続点の電位が受光量に応じて減少する光電変換部と、該光電変換部における前記接続点の電位が受光量に応じて増加するようにその電位変化を反転させてその反転後の電位を前記受光信号として出力する反転出力部とからなり、且つ、前記各レーザビームのうち少なくとも二つを同時に受光できるよう構成されており、
    前記抵抗の抵抗値は、
    前記受光検出手段が二つ以上の前記レーザビームを同時に受光したときに前記同期検知レベル以上の前記受光信号が得られる値であって、且つ、該受光検出手段が一つの前記レーザビームを受光したときに前記同期検知レベルの前記受光信号を得るために必要な値より小さい値に設定される
    ことを特徴とするマルチビームスキャナ。
  3. 少なくとも二つの前記レーザビームが、前記走査範囲内において、その走査方向に対して所定距離ずつ隔てて照射されるよう構成され、
    前記受光検出手段は、前記所定距離ずつ隔てて照射される各レーザビームのうち少なくとも二つを同時に受光できるよう構成され、
    前記同期検知レベルは、前記所定距離ずつ隔てて照射される各レーザビームのうち少なくとも二つを前記受光検出手段が同時に受光したときに、該受光検出手段からの前記受光信号のレベルが当該同期検知レベル以上となるように設定されている
    ことを特徴とする請求項2記載のマルチビームスキャナ。
  4. 前記受光検出手段は、前記複数のレーザビームを全て同時に受光できるよう構成されており、
    前記同期検知レベルは、前記受光検出手段が前記複数のレーザビームを全て同時に受光したときに、該受光検出手段からの前記受光信号のレベルが当該同期検知レベル以上となるように設定されている
    ことを特徴とする請求項1〜3いずれかに記載のマルチビームスキャナ。
  5. 前記走査範囲内において、前記各レーザビームの全てが、その走査方向と直交する直線に対し所定の角度だけ傾いた傾斜直線上を同時に照射するよう構成されている
    ことを特徴とする請求項1〜4いずれかに記載のマルチビームスキャナ。
  6. 請求項1〜5いずれかに記載のマルチビームスキャナと、
    前記各レーザ光源毎に設けられ、対応する該レーザ光源を構成する半導体発光素子への通電電流を画像データに応じて変調する変調手段と、
    前記レーザ光源からのレーザ光が前記走査手段により走査されることによって表面に静電潜像が形成される感光体と、
    前記感光体の表面に形成された静電潜像を現像する現像手段と、
    前記現像手段により現像された画像を被記録媒体に転写する転写手段と、
    を備えたことを特徴とする画像形成装置。
JP2003293832A 2003-08-15 2003-08-15 マルチビームスキャナ及び画像形成装置 Pending JP2005062570A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003293832A JP2005062570A (ja) 2003-08-15 2003-08-15 マルチビームスキャナ及び画像形成装置
US10/916,614 US6882454B2 (en) 2003-08-15 2004-08-12 Multi-beam scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003293832A JP2005062570A (ja) 2003-08-15 2003-08-15 マルチビームスキャナ及び画像形成装置

Publications (1)

Publication Number Publication Date
JP2005062570A true JP2005062570A (ja) 2005-03-10

Family

ID=34131771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003293832A Pending JP2005062570A (ja) 2003-08-15 2003-08-15 マルチビームスキャナ及び画像形成装置

Country Status (2)

Country Link
US (1) US6882454B2 (ja)
JP (1) JP2005062570A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047484A (ja) * 2005-08-10 2007-02-22 Kyocera Mita Corp 画像形成装置
JP2008216276A (ja) * 2007-02-28 2008-09-18 Ricoh Co Ltd 光走査装置及び画像形成装置
US8593495B2 (en) 2010-12-14 2013-11-26 Canon Kabushiki Kaisha Image forming apparatus that forms image by scanning photosensitive member with multiple beams

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4836267B2 (ja) * 2007-02-22 2011-12-14 株式会社リコー 光走査装置及び画像形成装置
JP5006810B2 (ja) * 2008-02-06 2012-08-22 株式会社リコー 光走査装置及び画像形成装置
CN105403689A (zh) * 2015-06-12 2016-03-16 杭州微策生物技术有限公司 采用激光调阻系统加工生物传感器试纸的方法
KR101826739B1 (ko) * 2016-11-21 2018-02-08 주식회사 신도리코 선형 레이저 광원을 이용한 3차원 프린터

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163333A (en) * 1998-03-27 2000-12-19 Matsushita Electric Industrial Co., Ltd. Multi-beam scanning optical apparatus
US6466247B1 (en) * 1999-05-31 2002-10-15 Fujitsu Limited Timing control of light beam scan
JP2003025626A (ja) 2001-07-17 2003-01-29 Ricoh Co Ltd 複数ビーム書き込み装置及びそれを用いた画像形成装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047484A (ja) * 2005-08-10 2007-02-22 Kyocera Mita Corp 画像形成装置
JP2008216276A (ja) * 2007-02-28 2008-09-18 Ricoh Co Ltd 光走査装置及び画像形成装置
US8593495B2 (en) 2010-12-14 2013-11-26 Canon Kabushiki Kaisha Image forming apparatus that forms image by scanning photosensitive member with multiple beams

Also Published As

Publication number Publication date
US6882454B2 (en) 2005-04-19
US20050036188A1 (en) 2005-02-17

Similar Documents

Publication Publication Date Title
JPH0443248B2 (ja)
JPH11245439A (ja) レーザ駆動方法および装置、画像形成装置
US6483529B1 (en) Multibeam scanner
JP2005062570A (ja) マルチビームスキャナ及び画像形成装置
JP2009292075A (ja) 光書込装置および画像形成装置
JP2007227638A (ja) 光学制御装置
JPH04329512A (ja) 画像記録装置
US7020405B2 (en) Image forming device capable of interrupting application of driving signal at a drive unit
JP4929894B2 (ja) 画像形成装置
JP4810921B2 (ja) 半導体レーザ駆動装置及び画像形成装置
JP4168865B2 (ja) レーザ制御装置及び画像形成装置
US7054047B2 (en) Polygon mirror and optical scanning device having the same
JP4175011B2 (ja) 画像形成装置
JP3747873B2 (ja) 画像形成装置
JP2006095735A (ja) 画像形成装置
JP2010217353A (ja) 光源装置、光走査装置及び画像形成装置
JP2001080113A (ja) デジタル画像形成装置
JP4386828B2 (ja) 画像形成装置
JP2009063925A (ja) 光源装置ならびに光源装置を利用した露光装置および画像形成装置
US20050057635A1 (en) Image forming apparatus
JP2007223109A (ja) 光学制御装置
JP2005022259A (ja) 焦点調整装置および画像形成装置
JP5875324B2 (ja) 画像形成装置
JPH05100554A (ja) レーザプリンタ
JP2007098681A (ja) 電子写真画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310