JP2005061872A - 特定高分子結晶の評価装置 - Google Patents

特定高分子結晶の評価装置 Download PDF

Info

Publication number
JP2005061872A
JP2005061872A JP2003207771A JP2003207771A JP2005061872A JP 2005061872 A JP2005061872 A JP 2005061872A JP 2003207771 A JP2003207771 A JP 2003207771A JP 2003207771 A JP2003207771 A JP 2003207771A JP 2005061872 A JP2005061872 A JP 2005061872A
Authority
JP
Japan
Prior art keywords
sample
crystal
specific polymer
ray
sample container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003207771A
Other languages
English (en)
Other versions
JP4458513B2 (ja
Inventor
Takahisa Sato
貴久 佐藤
Akito Yamano
昭人 山野
Shoichi Yasukawa
昇一 安川
Hiroki Yoshida
博喜 吉田
Kensaku Hamada
賢作 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Denki Co Ltd
Rigaku Corp
RIKEN Institute of Physical and Chemical Research
Original Assignee
Rigaku Denki Co Ltd
Rigaku Corp
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Denki Co Ltd, Rigaku Corp, RIKEN Institute of Physical and Chemical Research filed Critical Rigaku Denki Co Ltd
Priority to JP2003207771A priority Critical patent/JP4458513B2/ja
Priority to PCT/JP2004/012142 priority patent/WO2005017513A1/ja
Priority to US10/568,740 priority patent/US7342995B2/en
Publication of JP2005061872A publication Critical patent/JP2005061872A/ja
Application granted granted Critical
Publication of JP4458513B2 publication Critical patent/JP4458513B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

【課題】X線の回折現象を利用した特定高分子結晶の構造解析を自動化して、処理の迅速化を図る。
【解決手段】試料容器10内の蛋白質結晶を検出するための試料検出ステージ500と、試料検出ステージ500とは離間した位置にあって、蛋白質結晶のX線回折測定を行うX線測定ステージ600と、試料検出ステージ500からX線測定ステージ600へ試料容器10を搬送する搬送ユニット400と、試料検出ステージ500で得られた情報に基づき、蛋白質結晶の位置を認識するとともに、該位置情報に基づき搬送ユニット400を制御して蛋白質結晶をX線測定ステージ600の試料配置部610へ位置決めする中央処理装置700(制御手段)と、を備えたことを特徴とする。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
この発明は、特定高分子結晶をX線の回折現象を利用して評価するための特定高分子結晶の評価装置に関し、特に蛋白質結晶等の生体高分子結晶の評価に好適な装置に関する。
【0002】
【従来の技術】
DNAの二重らせん構造が発見されて以来、ゲノム計画の展開と相まって、蛋白質結晶の構造解析が世界的に注目を集めている。蛋白質結晶の構造解析には、NMR(核磁気共鳴装置)を用いた手法、電子顕微鏡を用いた手法、X線の回折現象を利用した手法等が開発されており、特に、X線の回折現象を利用したX線結晶構造解析は、イメージングプレート等の二次元X線検出器や二次元データからの解析ソフトウエア等の開発に伴い飛躍的な進展をみせている。
【0003】
従来、X線の回折現象を利用した蛋白質結晶の構造解析は、まず溶液中で蛋白質を結晶化させて得られた蛋白質の結晶粒をキャピラリーと称するガラス製の細管に注入し、この状態でX線回折装置に装填して行われていた。
【0004】
【発明が解決しようとする課題】
さて、蛋白質結晶のX線構造解析を行うためには、X線照射位置にターゲットである蛋白質結晶を正確に位置決めする作業が必要となる。このため、従来は、蛋白質結晶を検出するための顕微鏡をX線回折装置に付設しておき、該顕微鏡を利用して作業者が目視観察により人手をもって蛋白質結晶の位置決め操作を行っていた。このような目視観察と手作業による位置決め操作は煩雑で時間がかかる。しかも、従来は一回の測定が終了する都度、X線回折装置での位置決め操作を行っており、多くの蛋白質結晶を迅速に評価することができなかった。
【0005】
例えば、人体を構成する蛋白質は5万〜10万種類にも及ぶとされており、それら多くの蛋白質結晶の構造を短期間で解明することが、近年の構造生物学における緊急の課題となっている。
【0006】
本発明はこのような事情に鑑みてなされたもので、X線の回折現象を利用した特定高分子結晶の構造解析を自動化して、処理の迅速化を図ることを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明は、X線、紫外線および可視光線を透過する試料容器を用い、該試料容器内に存在する特定高分子結晶を評価する装置であって、
試料容器内の特定高分子結晶を検出するための試料検出ステージと、
試料検出ステージとは離間した位置にあって、特定高分子結晶のX線回折測定を行うX線測定ステージと、
試料検出ステージからX線測定ステージへ試料容器を搬送する搬送手段と、
試料検出ステージで得られた情報に基づき、特定高分子結晶の位置を認識するとともに、該位置情報に基づき搬送手段を制御して該特定高分子結晶をX線測定ステージの試料配置部へ位置決めする制御手段と、を備えたことを特徴とする(請求項1)。
【0008】
このように、試料検出ステージで試料容器内の特定高分子結晶を検出し、そこで得られた情報に基づき搬送手段を制御することで、特定高分子結晶をX線測定ステージの試料配置部へ位置決めするようにしたので、特定高分子結晶の検出から試料配置部への位置決めまでの作業を自動化することができ、評価処理の迅速化を図ることが可能となる。
【0009】
特に、蛋白質結晶の評価に際しては、蛋白質結晶を生成するための多数の凹部が形成された結晶化プレートを試料容器として用い、該結晶化プレートの各凹部で蛋白質結晶を生成させ、それら各蛋白質結晶を試料検出ステージで検出しておき、その後、該結晶化プレートをX線測定ステージへ搬送させて、逐次、各凹部内の蛋白質結晶を試料配置部へ位置決めしてX線回折測定を実施していけば、多数の蛋白質結晶を連続的に評価することができ、作業時間の大幅な短縮を図ることができる。
【0010】
ここで、試料検出ステージは、試料容器に紫外線を照射し、該試料容器内の試料が発する蛍光像を検出する特定高分子検出手段と、試料容器内に存在する試料の可視光像から該試料の外形を検出する結晶検出手段と、を備えた構成とすることができる(請求項2)。
また、制御手段は、特定高分子検出手段により蛍光像が検出され、かつ結晶検出手段により結晶を示す外形が検出された試料を特定高分子結晶と判定するとともに、該特定高分子結晶の位置を認識する構成とすることができる(請求項2)。
【0011】
高分子結晶、特に生体高分子の多くは、紫外線を照射したとき蛍光を発する。本明細書では、このように紫外線を照射したとき蛍光を発する特性を有した高分子結晶を「特定高分子結晶」と称する。例えば、蛋白質結晶がこの特定高分子結晶に該当する。
【0012】
本発明は、かかる特定高分子結晶の特性に着目して、試料容器に紫外線を照射し、該試料容器内の試料が発する蛍光像を検出することにより試料容器内の特定高分子を検出するようにしている。
しかし、検出された特定高分子が、結晶を形成するものか否かは、蛍光像だけでは判別できない場合がある。例えば、特定高分子の凝集が試料容器内に存在した場合、かかる凝集も蛍光を発するため、結晶の蛍光像と凝集の蛍光像とが混在して検出されてしまう。
そこで、本発明は、試料容器内に存在する試料の可視光像から該試料の外形を検出することで、その外形から結晶とそれ以外のものとを区別し、上記蛍光像の検出結果と相俟って「特定高分子」の「結晶」を判定するとともに、該特定高分子結晶の位置を認識する構成とした。
【0013】
また、X線測定ステージは、試料配置部に配置された試料容器内の特定高分子結晶に対し、上方又は下方からX線を照射するX線照射手段と、
試料容器を介してX線照射手段と対向配置され、試料容器を透過してきた特定高分子結晶からの回折X線を検出するX線検出手段と、
X線照射手段およびX線検出手段を支持する回転アームと、
回転アームをほぼ水平な軸中心に任意の角度回転させる回転駆動機構と、を備えた構成とすることができる(請求項3)。
【0014】
この構成によれば、試料容器を回転させることなく、特定高分子結晶に対する回折X線の積分強度を求めることができる。回折X線の積分強度は、結晶に対するX線の照射角度を変えて、様々な角度からX線を照射したときの回折X線強度を検出し、それらの強度データを積分して求められる。従来は、結晶試料を封入したキャピラリーを回転させることで、回折X線の積分強度が求められていた。
【0015】
蛋白質結晶等の特定高分子結晶の構造を解析するには、結晶で回折してきたX線の積分強度を求める必要がある。すなわち、回折を生じる可能性のある結晶からの反射X線は、逆格子空間(回折空間)において球状に分布している。したがって、結晶に対し固定された位置で検出される回折X線のピーク強度(回折斑点)は、この球状に分布する反射X線の一断面のみを観察して得られたものであり、結晶の構造解析(すなわち、分子構造の決定)に必要なピーク強度のわずか数百分の一乃至数千分の一に過ぎない。
【0016】
本発明によれば、試料ホルダに対しX線照射手段及びX線検出手段を回転させることにより、球状に分布する結晶からの反射X線に対して複数の断面からピーク強度(回折斑点)を検出して、その積分強度を求めることができる。その結果、検出された回折X線の積分強度に基づいて、高い信頼性をもった結晶構造の解析・評価を実現することができる。
特に、結晶化プレートを試料容器として利用した場合、結晶化プレートの凹部には溶液が充填されており、蛋白質結晶等の特定高分子結晶はこの溶液中に浮遊した状態で存在する。したがって、結晶化プレートを回転させると溶液が零れ出たり、溶液中の結晶が移動したりするため、これを回転させることはできないが、本発明装置によれば上記のとおり結晶化プレートを回転させることなく回折X線の積分強度を求めることができる。
【0017】
また、搬送手段は、試料容器を載置する試料台と、試料台を搭載するとともに該試料台を水平面上で直交するX、Y方向および高さ方向に移動させるXYZテーブルと、このXYZテーブルを試料検出ステージからX線測定ステージへ搬送するスライダと、を含む構成とすることができる(請求項4)。
これらXYZテーブルとスライダの駆動制御をもって、試料容器内に存在する特定高分子結晶を、X線測定ステージに設けた試料配置部へ自動的に位置決めすることが可能となり、作業性が格段に向上する。
【0018】
【発明の実施の形態】
以下、蛋白質結晶を評価対象(特定高分子結晶)とした、本発明の実施の形態について図面を参照して詳細に説明する。
【0019】
〔装置の全体構成〕
図1は本実施形態に係る特定高分子結晶評価装置の全体構成を示す平面模式図、図2は同じく正面模式図である。
図1に示すように、特定高分子結晶評価装置は、試料容器収納部100、供給ロボット200、試料容器識別部300、搬送ユニット400(搬送手段)、試料検出ステージ500、X線測定ステージ600、および中央処理装置700(制御手段)を備えている。
【0020】
試料容器収納部100は、複数の試料容器10を並べて収納できる仕切棚によって形成されており、該試料容器収納部100に蛋白質結晶を収容する試料容器10が並べて載置されている。
試料容器10は、紫外線、可視光線およびX線を透過するポリイミド等の材料で形成された結晶化プレートを用いることが好ましい。結晶化プレートを利用した試料容器10には、図3(a)に示すように、多数の凹部11が形成されており、この凹部11内で蛋白質の結晶Sを生成することができる。結晶化プレートを用いた蛋白質の結晶生成方法は、蒸気拡散法をはじめとして種々の方法が知られている。図3(b)は、蒸気拡散法により蛋白質結晶Sが生成された状態を模式的に示す図であり、カバープレート12の下面においた試料溶液Lの滴中に蛋白質結晶Sが生成されている。試料容器10に形成された多数の凹部11には、それぞれ生成条件を違えたり、異なる種類の蛋白質結晶Sを別個に生成することができる。
【0021】
供給ロボット200は、軸方向に伸縮自在で、高さ方向に移動自在、かつ水平面上を旋回可能なロボットアーム201を備えており、このロボットアーム201の先端に開閉チャック202が設けられている。試料容器収納部100に収納されている試料容器10は、開閉チャック202により把持されて同収納部100から引き出され、まず試料容器識別部300に移送される。
【0022】
試料容器識別部300には、あらかじめ試料容器10に付された識別情報を読み取る情報読取装置が設置されており、該情報読取装置が識別情報を読み取ることのできる位置(情報読取位置)に試料容器10が配置される。ここで、識別情報としてバーコードを用いた場合は、バーコードリーダにより情報読取装置が構成される。
なお、本実施形態では、試料容器収納部100から引き出した試料容器10を、開閉チャック202で確実に把持して移送する目的から、試料容器収納部100の近傍位置に容器持ち換え部310が設けてある。試料容器収納部100から引き出され試料容器10は、いったんこの容器持ち換え部310に置かれ、再び開閉チャック202が正確に把持して試料容器識別部300へ移送される。
【0023】
搬送ユニット400は、試料容器10を載置する試料台401と、この試料台401を搭載するXYZテーブル402と、このXYZテーブル402を試料台401と一体に搬送するスライダ403とで構成されている。
試料台401には、図4に示すように、上面に位置合わせブロック404と押圧用のアクチュエータ405が設けてあり、上面に載置された試料容器10の角部をアクチュエータ405により押圧して、対角線上にある角部を位置合わせブロック404に当接させることにより、試料容器10を常に試料台401の一定位置に載置するようになっている。
【0024】
また、試料台401には、試料容器10が載置される部位に透孔401aが穿設してある。この透孔401aは、後述する試料検出ステージ500で試料容器10に照射される紫外線と可視光線、およびX線測定ステージ600で試料容器10内の蛋白質結晶Sに照射されるX線を透過するためのものである。
【0025】
XYZテーブル402は、試料台401を水平面上で直交するX方向およびY方向に移動させるとともに試料台401を高さ方向(Z方向)に移動させる機構である。このXYZテーブル402は、スライダ403に搭載されている。
【0026】
スライダ403は、試料検出ステージ500とX線測定ステージ600とを結ぶ搬送経路を形成しており、XYZテーブル402に搭載された試料台401を、試料検出ステージ500とX線測定ステージ600との間で直線的に搬送する機能を有している。
【0027】
試料検出ステージ500は、試料容器10内の蛋白質結晶Sを検出し、その重心位置を認識するためのステージである。また、X線測定ステージ600は、試料検出ステージ500で検出された試料容器10内の蛋白質結晶SをX線回折測定するためのステージである。これら各ステージについては、追って詳細に説明する。
【0028】
中央処理装置700は汎用コンピュータで構成され、上述した装置各部の駆動制御を実行する。また、中央処理装置700は、試料検出ステージ500における蛋白質結晶Sの判別と重心位置の認識を実行するとともに、X線測定ステージ600におけるX線測定処理を実行する。特に、この中央処理装置700は、試料検出ステージ500で得られた情報により認識した蛋白質結晶Sの位置情報(重心位置の情報)に基づき、XYZテーブル402とスライダ403を制御して、該蛋白質結晶SをX線測定ステージ600の試料配置部610へ位置決めする機能を有している。
【0029】
ここで、スライダ403は、始動時から一定期間は徐々に加速していき、その後、一定の速度でスライダ403を駆動し、次いで徐々に減速して試料配置部610に停止させるように駆動制御される。これにより慣性力を抑え試料台401に載置された試料容器10内での蛋白質結晶Sの移動を防止できる。
【0030】
〔試料検出ステージ〕
次に、試料検出ステージ500について更に詳細に説明する。
図5は試料検出ステージの概要を示す模式図である。
試料検出ステージ500には、試料容器10が配置される試料検出部510を基準として、その下方に可視光照射ユニット520および紫外線照射ユニット521が設置してある。これら可視光照射ユニット520および紫外線照射ユニット521は、試料検出部510に配置された試料容器10に対し、可視光又は紫外線を照射する光源である。
可視光照射ユニット520および紫外線照射ユニット521は、横方向にスライドしていずれか一方のユニットが試料容器10と対向配置される。なお、試料容器10と可視光照射ユニット520および紫外線照射ユニット521の中間に反射ミラーを配置して、可視光照射ユニット520から発射される可視光線または紫外線照射ユニット521から発射される紫外線を試料容器10に導く構成とすれば、これら各照射ユニット520,521は、試料容器10と対向配置する必要はない。
【0031】
試料容器10は、既述したように試料台401に載置されており、XYZテーブル402とスライダ403の移動により、試料検出部510に配置される。
試料検出部510の上方には、顕微鏡530と2次元撮像ユニット540が配設されている。顕微鏡530は、紫外線又は可視光の照射により試料容器10を透して得られる画像を拡大して2次元撮像ユニット540へ導く。なお、顕微鏡530は上下方向に焦点位置を変更して、試料容器10内の蛋白質結晶Sを探索することができるように構成されている。
【0032】
2次元撮像ユニット540としては、例えば、CCDを用いることができる。2次元撮像ユニット540は、顕微鏡530を介して入射した拡大画像を電気信号(画像データ)に変換し、中央処理装置700へ出力する。中央処理装置700は、2次元撮像ユニット540から入力された画像データを処理して、試料容器10内の蛋白質結晶Sを検出するとともに、その位置を認識する。
【0033】
図6および図7は中央処理装置により実行される蛋白質結晶の検出方法を示すフローチャートである。
まず、光源を紫外線照射ユニット521に設定し、該紫外線照射ユニット521から発射される紫外線を試料容器10に照射する。
【0034】
このとき、試料容器10を透して得られる画像は、顕微鏡530により拡大されて2次元撮像ユニット540へ入射する。中央処理装置700は、2次元撮像ユニット540から送られてくる画像データを入力し(ステップS1)、該画像データから蛍光像を検出する(ステップS2)。すなわち、試料溶液L中に生成された蛋白質結晶Sは、紫外線が照射されたとき蛍光を発するため、その蛍光像が2次元撮像ユニット540に入射する。そこで、中央処理装置700は、2次元撮像ユニット540から入力した画像データを分析して蛍光像を検出し、蛍光像すなわち蛋白質の位置を把握する。
なお、ここで把握される蛋白質の位置は、水平面(xy座標)上の位置であり、高さ方向(z座標)の位置は、顕微鏡530の焦点位置により把握される。
【0035】
次いで、光源を紫外線照射ユニット521から可視光照射ユニット520に切り替え、該可視光照射ユニット520から発射される可視光線を試料容器10に照射する。このとき、試料容器10を透して得られる可視光像は、顕微鏡530により拡大されて2次元撮像ユニット540へ入射する。中央処理装置700は、2次元撮像ユニット540から送られてくる画像データを入力し(ステップS3)、該画像データを処理して試料溶液L中の結晶を検出するとともに、その重心位置を認識する(ステップS4)。
【0036】
このステップS4(結晶検出ステップ)は、図7に示すサブルーチンに沿って処理される。すなわち、2次元撮像ユニット540から入力した画像データを、所定のしきい値を基準に2値化処理して、xy座標上の各画素を「1」「0」の2値データに変換する(ステップS10)。
【0037】
次いで、2値化処理された画像データから、試料溶液L中に存在する試料のエッジに該当する画素を検出する(ステップS11)。ここでは、例えば、図8に示すように判別対象である注目画素が黒(データ「1」)であるか否かを判別し、黒であったときは、その周囲の画素(画素1〜8)について、同様に黒(データ「1」)か白(データ「0」)かを判別していく。
【0038】
そして、周囲の画素(画素1〜8)がすべて白(データ「0」)であったときは、注目画素が孤立点であると結論付ける。また、周囲の画素(画素1〜8)がすべて黒(データ「1」)であったときは、注目画素が画像の内部点であると結論付ける。このようにして、孤立点と内部点に相当する画素はすべて除外し、周囲の画素(画素1〜8)の一部が白(データ「0」)である注目画素を試料のエッジと認識し、そのxy座標を記憶する。
上述した処理を、xy座標系のすべての画素について実行し、試料のエッジに該当する画素をすべて抽出する。
【0039】
続いて、抽出した試料のエッジに該当する画素に着目し、隣接する画素を連結していき、試料の輪郭線を検出する(ステップS12)。この輪郭線の始点と終点が一致すれば、該輪郭線は閉じた輪郭線と判定される。そして、閉じた輪郭線をもつ試料が、一定の面積を有する結晶と判別される。一方、輪郭線が閉じていない試料は、凝集など結晶化されていないものとして除外される。
【0040】
次に、閉じた輪郭線をもつ試料(すなわち結晶)の内部領域を認識し、該内部領域の重心位置を、公知の演算法を用いて算出する(ステップS13)。
平面画像の重心位置を求める手法としては、例えば、結晶として認識された連結図形Sのモーメント量を求め、このモーメント量から計算することができる。すなわち、連結図形Sの各画素の重みを均等に1とした場合、モーメントM(m,n)は次式(数1)で定義される。
【0041】
【数1】
Figure 2005061872
M(0,0)は、連結図形Sの面積
M(1,0)は、x軸に対するモーメント
M(0,1)は、y軸に対するモーメント
【0042】
そして、上記のモーメント量を用いて重心座標(p,q)は、次式で計算できる。
p=M(1,0)/M(0,0)
q=M(0,1)/M(0,0)
【0043】
中央処理装置700は、検出された結晶の重心位置を算出した後、再び図6に示すメインルーチンに戻り、蛍光像に基づき検出された蛋白質の位置と、可視光像に基づき検出された結晶の位置を重ね合わせて、蛋白質結晶Sを認識する。そして、該蛋白質結晶Sに対し図7のステップS13で得られた重心位置を記憶する(ステップS5)。以上により、試料容器10内に存在する蛋白質結晶Sの重心位置を自動的に検出することができる。
【0044】
図9は蛋白質結晶と自家蛍光を発しない物質の結晶とが混在して含まれる試料溶液を観察したときの顕微鏡画像のスケッチであり、(a)は同試料溶液に可視光線を照射して得られた可視光像、(b)は同試料溶液に紫外線を照射して得られた蛍光像である。
【0045】
同図(a)に示すように、試料溶液に可視光線を照射したときは、蛋白質結晶の可視光像Aとその他の結晶の可視光像Bが観察された。この画像では、いずれの可視光像が蛋白質結晶であるか判別がつかない。
しかし、同図(b)に示すように、試料溶液に紫外線を照射したとき、蛋白質結晶の蛍光像Cのみが観察され、その他の結晶は検出されない。よって、可視構造Aと蛍光像Cを重ね合わせることで、蛋白質結晶の位置を認識することができる。
【0046】
図10は蛋白質の凝集が含まれる試料溶液を観察したときの顕微鏡画像のスケッチであり、(a)は同試料溶液に紫外線を照射して得られた蛍光像、(b)は同試料溶液に可視光線を照射して得られた可視光像である。
【0047】
同図(a)に示すように、試料溶液に紫外線を照射したときは、蛋白質の凝集から発せられる蛍光像Dが観察された。この蛍光像Dでは、蛋白質の凝集か結晶かの判断はつかない。
しかし、同図(b)に示すように、試料溶液に可視光線を照射したとき、蛋白質の凝集に特徴的な針状の外形をもつ可視光像Eが観察され、よって該観察対象が蛋白質の凝集であると判定することができる。
【0048】
このように、試料溶液に紫外線を照射したとき得られる蛍光像と、試料溶液に可視光線を照射したとき得られる可視光像とを総合することで、蛋白質以外の結晶や蛋白質の凝集を除外して、蛋白質結晶の位置を認識することが可能となる。
【0049】
〔X線測定ステージ〕
次に、X線測定ステージについて更に詳細に説明する。
図11はX線測定ステージの構成を示す側面構成図、図12はX線測定ステージにおける蛋白質結晶の測定原理を模式的に示す図である。
【0050】
図11に示すように、X線測定ステージ600には、試料配置部610を基準として、その下方にX線照射ユニット620(X線照射手段)、上方にX線検出器630(X線検出手段)が配設されている。
試料配置部610には、既述したように試料台401上に載置された試料容器10が、XYZテーブル402とスライダ403の移動をもって位置決め配置される。
【0051】
X線照射ユニット620は、X線源621とX線光学系622を含んでいる。X線源621には、電子銃とターゲットを内蔵したラボ用のX線発生器が用いられる。この種のX線発生器は、放射光を発生させる大規模X線発生設備と異なり、寸法および重量が格段に小さい。そのため、後述するように回転アーム640に搭載して回転駆動することが可能である。
【0052】
X線光学系622は、X線源621から取り出されたX線のうち、特定波長のX線のみを選別したり(単色化)、試料配置部610へX線を収束する等の機能を有し、コンフォーカルミラーやコリメータ等の光学機器の組合せをもって構成されている。
【0053】
X線検出器630には、二次元X線検出器が用いられる。特に、本実施形態では、X線検出器630としてCCDを用いており、平面上に検出される回折X線の強度を電気信号に変換して、中央処理装置700へ出力するように構成されている。
【0054】
上述したX線照射ユニット620およびX線検出器630は、回転アーム640にそれぞれ搭載されている。なお、回転アーム640の形状は任意であり、例えば、板状であっても棒状であってもよい。この回転アーム640の一端部にX線照射ユニット620が搭載され、他端部にX線検出器630が対向するように搭載されている。
【0055】
回転アーム640の中心部は、回転駆動機構641の回転軸641aに装着されており、回転駆動機構641により回転軸641a中心に任意の角度回転可能となっている。回転駆動機構641の回転軸641aの中心線Oは、ほぼ水平に配置してあり、X線照射ユニット620から放射されるX線の光軸は、この回転軸641aの中心線Oと交わるように調整されている。この回転駆動機構641は、例えば、ステッピングモータ等の高精度に回転角度を制御可能な駆動モータとその回転を回転軸641aに伝達する歯車機構で構成されており、駆動モータは中央処理装置700によって回転角度が制御されている。回転角度は、正逆両方向へ45°程度の範囲で任意に制御できるようにすることが好ましい。
【0056】
本実施形態では、回転アーム640に搭載されたX線照射ユニット620を試料配置部610の下方に配置するとともに、X線検出器630を試料配置部610の上方に配置してあり、試料配置部610上の試料容器10内に生成された蛋白質結晶Sに対して下方からX線を照射し、蛋白質結晶Sで反射してきた回折X線を、試料容器10の上方でX線検出器630により検出する構成となっている。なお、X線照射ユニット620とX線検出器630の配置を上下逆転して、X線照射ユニット620を試料配置部610の上方に配置するとともに、X線検出器630をその下方に配置することもできる。
【0057】
また、X線検出器630には、検出位置調整機構650が付設されている。この検出位置調整機構650は、X線検出器630を回転半径方向(図示a方向)に移動させるとともに、試料配置部610に配置される試料容器10と平行な一方向(図示b方向)に移動させる機構である。図11に示す構成例では、検出位置調整機構650を、回転アーム640に設置された第1の案内レール651と、この第1の案内レール651に沿って移動可能な第1の移動台652と、この移動台652から図示b方向に延出する第2の案内レール653と、この第2の案内レール653に沿って移動可能な第2の移動台(図示せず)と、これら各移動台を駆動する駆動モータ(図示せず)とで構成してあり、第2の移動台にX線検出器630が固定されている。
【0058】
次に、X線測定ステージ600における蛋白質結晶の測定方法を説明する。
XYZテーブル402およびスライダ403の移動により試料配置部610に試料容器10内の蛋白質結晶Sが自動的に位置決め配置される。
【0059】
ここで、必要に応じて蛋白質結晶SとX線検出器630との間の距離を調整する。すなわち、蛋白質結晶SにX線検出器630を近づけるほど、蛋白質結晶Sから放射状に反射してくるX線の回折斑点を広い角度範囲で検出することができる。しかし、蛋白質結晶Sの逆格子密度が高い場合、蛋白質結晶SにX線検出器630を近づけると、蛋白質結晶Sから放射状に反射してくるX線の回折斑点が重なり合って検出されてしまうおそれがある。そこで、検出位置調整機構650をもってX線検出器630を図11のa方向に移動調整することで、蛋白質結晶SとX線検出器630との間の距離を適宜調整し好適な検出データを得ることが可能となる。
【0060】
さらに、検出位置調整機構650をもってX線検出器630を図11のb方向に移動調整することで、蛋白質結晶Sから放射状に反射してくる回折X線の検出範囲を変更することもできる。
【0061】
次いで、X線照射ユニット620からX線を放射してX線回折測定を実行する。図12に示すように、X線照射ユニット620から放射されたX線は、試料容器10内の蛋白質結晶Sに下方から入射する。そして、蛋白質結晶Sからは放射状にX線が回折して、この回折X線がX線検出器630で検出される。中央処理装置700は、検出された回折X線の強度データに基づき結晶評価や結晶構造解析を実行する。
【0062】
また、蛋白質結晶Sに対して様々な角度からX線を照射して回折X線の強度を検出する場合には、回転駆動機構641により回転アーム640を回転駆動して、蛋白質結晶Sの格子面に対するX線照射ユニット620およびX線検出器630の角度を調整し、上記X線回折測定を繰り返す。この操作をもって、試料容器10を回転させることなく、蛋白質結晶Sに対する回折X線の積分強度を求めることができ、さらに、積分強度に基づき高い信頼性をもった結晶構造解析を実現することができる。
【0063】
なお、上記実施形態および実施例では蛋白質結晶を検出対象として説明してきたが、本発明方法の対象はこれに限定されるものではなく、紫外線を照射したとき蛍光を発する特性を有した各種の特定高分子結晶を検出対象とすることができる。
【0064】
【発明の効果】
以上説明したように、本発明によれば、試料検出ステージで試料容器内の特定高分子結晶を検出し、そこで得られた情報に基づき搬送手段を制御することで、特定高分子結晶をX線測定ステージの試料配置部へ位置決めするようにしたので、特定高分子結晶の検出から試料配置部への位置決めまでの作業を自動化することができ、評価処理の迅速化を図ることが可能となる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る特定高分子結晶評価装置の全体構成を示す平面模式図である。
【図2】同じく正面模式図である。
【図3】試料容器の構成例を示す図である。
【図4】試料台の構成を示す図で、(a)は平面図、(b)は正面断面図である。
【図5】試料検出ステージの概要を示す模式図である。
【図6】中央処理装置により実行される蛋白質結晶の検出方法を示すフローチャートである。
【図7】図6のステップS4にかかるサブルーチンを示すフローチャートである。
【図8】図7に示すステップS11のエッジ検出処理を説明するための図である。
【図9】蛋白質結晶と自家蛍光を発しない物質の結晶とが混在して含まれる試料溶液を観察したときの顕微鏡画像のスケッチである。
【図10】蛋白質の凝集が含まれる試料溶液を観察したときの顕微鏡画像のスケッチである。
【図11】X線測定ステージの構成を示す側面構成図である。
【図12】X線測定ステージにおける蛋白質結晶の測定原理を模式的に示す図である。
【符号の説明】
S:蛋白質結晶
10:試料容器
11:凹部
12:カバープレート
100:試料容器収納部
200:供給ロボット
201:ロボットアーム
202:開閉チャック
300:試料容器識別部
310:容器持ち換え部
400:搬送ユニット
401:試料台
401a:透孔
402:XYZテーブル
403:スライダ
404:位置合わせブロック
405:アクチュエータ
500:試料検出ステージ
510:試料検出部
520:可視光照射ユニット
521:紫外線照射ユニット
530:顕微鏡
540:2次元撮像ユニット
600:X線測定ステージ
610:試料配置部
620:X線照射ユニット
621:X線源
622:X線光学系
630:X線検出器
640:回転アーム
641:回転駆動機構
641a:回転軸
650:検出位置調整機構
651:第1の案内レール
652:第1の移動台
653:第2の案内レール
700:中央処理装置

Claims (4)

  1. X線、紫外線および可視光線を透過する試料容器を用い、該試料容器内に存在する特定高分子結晶を評価する装置であって、
    前記試料容器内の特定高分子結晶を検出するための試料検出ステージと、
    前記試料検出ステージとは離間した位置にあって、前記特定高分子結晶のX線回折測定を行うX線測定ステージと、
    前記試料検出ステージから前記X線測定ステージへ試料容器を搬送する搬送手段と、
    前記試料検出ステージで得られた情報に基づき、特定高分子結晶の位置を認識するとともに、該位置情報に基づき前記搬送手段を制御して該特定高分子結晶を前記X線測定ステージの試料配置部へ位置決めする制御手段と、を備えたことを特徴とする特定高分子結晶の評価装置。
  2. 前記試料検出ステージは、前記試料容器に紫外線を照射し、該試料容器内の試料が発する蛍光像を検出する特定高分子検出手段と、
    前記試料容器内に存在する試料の可視光像から該試料の外形を検出する結晶検出手段と、を備え、
    前記制御手段は、前記特定高分子検出手段により蛍光像が検出され、かつ前記結晶検出手段により結晶を示す外形が検出された試料を特定高分子結晶と判定するとともに、該特定高分子結晶の位置を認識する構成であることを特徴とする請求項1に記載した特定高分子結晶の評価装置。
  3. 前記X線測定ステージは、試料配置部に配置された試料容器内の特定高分子結晶に対し、上方又は下方からX線を照射するX線照射手段と、
    前記試料容器を介して前記X線照射手段と対向配置され、前記試料容器を透過してきた前記特定高分子結晶からの回折X線を検出するX線検出手段と、
    前記X線照射手段およびX線検出手段を支持する回転アームと、
    前記回転アームをほぼ水平な軸中心に任意の角度回転させる回転駆動機構と、を備えたことを特徴とする請求項1又は2に記載した特定高分子結晶の評価装置。
  4. 前記搬送手段は、試料容器を載置する試料台と、前記試料台を搭載するとともに該試料台を水平面上で直交するX、Y方向および高さ方向に移動させるXYZテーブルと、このXYZテーブルを前記試料検出ステージから前記X線測定ステージへ搬送するスライダと、を含むことを特徴とする請求項1乃至3のいずれか一項に記載した特定高分子結晶の評価装置。
JP2003207771A 2003-08-18 2003-08-18 特定高分子結晶の評価装置 Expired - Fee Related JP4458513B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003207771A JP4458513B2 (ja) 2003-08-18 2003-08-18 特定高分子結晶の評価装置
PCT/JP2004/012142 WO2005017513A1 (ja) 2003-08-18 2004-08-18 特定高分子結晶の評価装置
US10/568,740 US7342995B2 (en) 2003-08-18 2004-08-18 Apparatus for estimating specific polymer crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003207771A JP4458513B2 (ja) 2003-08-18 2003-08-18 特定高分子結晶の評価装置

Publications (2)

Publication Number Publication Date
JP2005061872A true JP2005061872A (ja) 2005-03-10
JP4458513B2 JP4458513B2 (ja) 2010-04-28

Family

ID=34190072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003207771A Expired - Fee Related JP4458513B2 (ja) 2003-08-18 2003-08-18 特定高分子結晶の評価装置

Country Status (3)

Country Link
US (1) US7342995B2 (ja)
JP (1) JP4458513B2 (ja)
WO (1) WO2005017513A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527457A (ja) * 2010-05-28 2013-06-27 スネクマ 非破壊検査の方法及びこの方法を実施するための装置
JP2020502487A (ja) * 2016-10-28 2020-01-23 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト 物質の調製及び固体特性の分析
WO2020105721A1 (ja) * 2018-11-22 2020-05-28 株式会社リガク 単結晶x線構造解析装置と方法、そのための試料ホルダ及びアプリケータ
WO2020105722A1 (ja) * 2018-11-22 2020-05-28 株式会社リガク 単結晶x線構造解析装置とそのための方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4113063B2 (ja) * 2003-08-18 2008-07-02 株式会社リガク 特定高分子結晶の検出方法
US8229196B2 (en) * 2003-08-18 2012-07-24 Rigaku Corporation Method of detecting specific polymer crystal
JP2010526281A (ja) * 2007-05-04 2010-07-29 ファーミスカン・オーストラリア・ピーティーワイ・リミテッド 試料分析システム
EP2183644B1 (en) * 2007-08-16 2016-06-08 Icagen, Inc. Well plate for xrf measurements
WO2009073639A1 (en) * 2007-12-03 2009-06-11 X-Ray Optical Systems, Inc. Sliding sample cell insertion and removal apparatus for x-ray analyzer
US8946655B2 (en) 2009-09-28 2015-02-03 Purdue Research Foundation Multiphoton luminescence imaging of protein crystals
WO2015119056A1 (ja) * 2014-02-05 2015-08-13 Jfeスチール株式会社 X線回折装置およびx線回折測定方法
WO2018179744A1 (ja) * 2017-03-30 2018-10-04 株式会社リガク X線分析補助装置及びx線分析装置
AU2019268796A1 (en) * 2018-05-18 2020-12-17 Enersoft Inc. Systems, devices, and methods for analysis of geological samples

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8900028A (nl) * 1989-01-06 1990-08-01 Philips Nv Roentgen onderzoek apparaat met hulpinstelkracht.
JP2914758B2 (ja) * 1990-12-18 1999-07-05 富士通株式会社 タンパク質溶液濃度の2次元測定方法および装置
US5353236A (en) * 1992-04-23 1994-10-04 The Board Of Trustees Of The Leland Stanford University High-resolution crystallographic modelling of a macromolecule
JPH0735687A (ja) 1993-07-22 1995-02-07 Fujitsu Ltd 生体高分子結晶の検索方法
JP2004526949A (ja) 2000-10-19 2004-09-02 ストラクチュラル ジェノミックス,インコーポレーテッド その場x線回折による結晶識別のための装置および方法
JP2003194741A (ja) * 2001-12-27 2003-07-09 Seiko Epson Corp X線回折装置、反射x線測定方法および逆格子空間マップ作成方法
US7144457B1 (en) * 2002-03-21 2006-12-05 Takeda San Diego, Inc. Methods and devices for analyzing crystalline content of precipitates and crystals without isolation
JP3883060B2 (ja) 2002-06-17 2007-02-21 株式会社リガク 結晶評価装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527457A (ja) * 2010-05-28 2013-06-27 スネクマ 非破壊検査の方法及びこの方法を実施するための装置
JP2020502487A (ja) * 2016-10-28 2020-01-23 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト 物質の調製及び固体特性の分析
WO2020105721A1 (ja) * 2018-11-22 2020-05-28 株式会社リガク 単結晶x線構造解析装置と方法、そのための試料ホルダ及びアプリケータ
WO2020105722A1 (ja) * 2018-11-22 2020-05-28 株式会社リガク 単結晶x線構造解析装置とそのための方法
JPWO2020105721A1 (ja) * 2018-11-22 2021-10-14 株式会社リガク 単結晶x線構造解析装置と方法、そのための試料ホルダ及びアプリケータ
JP7237374B2 (ja) 2018-11-22 2023-03-13 株式会社リガク 単結晶x線構造解析装置と方法、そのための試料ホルダ及びアプリケータ

Also Published As

Publication number Publication date
WO2005017513A1 (ja) 2005-02-24
US7342995B2 (en) 2008-03-11
US20060266954A1 (en) 2006-11-30
JP4458513B2 (ja) 2010-04-28

Similar Documents

Publication Publication Date Title
JP3883060B2 (ja) 結晶評価装置
JP4458513B2 (ja) 特定高分子結晶の評価装置
US10134564B2 (en) Charged particle beam device
US4125828A (en) Method and apparatus for automated classification and analysis of cells
US7305112B2 (en) Method of converting rare cell scanner image coordinates to microscope coordinates using reticle marks on a sample media
JP2018523973A (ja) 同定及び抗生物質感受性試験の両方のための微生物試料を取得し調製するための自動化方法及びシステム
JP7291683B2 (ja) ピペット先端の撮像ベースの位置特定を伴う物体ピッキング装置
CN105247650A (zh) 带电粒子束装置、试样观察方法
CN116577317B (zh) 一种拉曼-激光剥蚀-质谱的联用检测装置及联用检测方法
US20200183140A1 (en) Dual parallel optical axis modules sharing sample stage for bioburden testing
WO2022174239A1 (en) Methods and apparatus adapted to identify 3d center location of a specimen container using a single image capture device
US20240019385A1 (en) Single-crystal x-ray structure analysis apparatus, and method therefor
JP4113063B2 (ja) 特定高分子結晶の検出方法
JPWO2020105718A1 (ja) 単結晶x線構造解析システム
JPWO2020105717A1 (ja) 単結晶x線構造解析装置と方法、及び、そのための試料ホルダユニット
US10526644B2 (en) Detection method and detection device
EP3748414A1 (en) A simple and efficient biopsy scanner with improved z-axis resolution
JPH05118999A (ja) X線分析装置
JPWO2020105716A1 (ja) 単結晶x線構造解析装置と方法、及び、そのための試料ホルダ
CN113287006A (zh) 单晶x射线结构解析装置以及试样保持架安装装置
US8229196B2 (en) Method of detecting specific polymer crystal
US20230075535A1 (en) Automated laboratory apparatus and a method of processing a sample
JPWO2020105721A1 (ja) 単結晶x線構造解析装置と方法、そのための試料ホルダ及びアプリケータ
JP2005061874A (ja) 特定高分子結晶の位置検出方法
BR112017025551B1 (pt) Método e sistema automatizado para obter e preparar amostra de micro-organismos tanto para identificação quanto para testes de susceptibilidade a antibióticos

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

R150 Certificate of patent or registration of utility model

Ref document number: 4458513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees