JP2005061699A - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP2005061699A
JP2005061699A JP2003291057A JP2003291057A JP2005061699A JP 2005061699 A JP2005061699 A JP 2005061699A JP 2003291057 A JP2003291057 A JP 2003291057A JP 2003291057 A JP2003291057 A JP 2003291057A JP 2005061699 A JP2005061699 A JP 2005061699A
Authority
JP
Japan
Prior art keywords
heat source
heat
heat exchanger
water
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003291057A
Other languages
Japanese (ja)
Other versions
JP3745352B2 (en
Inventor
Kuniaki Yamada
邦昭 山田
Takeshi Otsubo
剛 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Setsubi Kogyo Co Ltd
Original Assignee
Sanken Setsubi Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Setsubi Kogyo Co Ltd filed Critical Sanken Setsubi Kogyo Co Ltd
Priority to JP2003291057A priority Critical patent/JP3745352B2/en
Publication of JP2005061699A publication Critical patent/JP2005061699A/en
Application granted granted Critical
Publication of JP3745352B2 publication Critical patent/JP3745352B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioning system using heat stored in a heat storage tank as efficiently as possible at least when a heat exchanger system is independently operated. <P>SOLUTION: A heat source side system 20 which consists of a heat source equipment system 20a and a heat exchanger system 20b for creating heat source water of a preset temperature with a heat source equipment 21a and a heat exchanger 21b and a load side system 10 in which a load side equipment 14 is installed for treating an air conditioning load using the heat source water of the preset temperature created by the heat source side system 20 are mutually connected via an outward header 31 and a homeward header 32. The outward header 31 and the homeward header 32 are mutually connected via a bypass pipe 33. When the heat exchanger system 20b is operated, a PLC 40 changes the rotating speed of a heat exchanger primary pump 22b to control the flow rate of water to be delivered to the heat exchanger system 20b so that the flow rate of water to be delivered to the load side system 10 corresponds to that to be delivered to the heat source side system 20. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、冷凍機等の定流量タイプの熱源機器が生成した所定温度の熱源水や蓄熱槽に貯留された蓄熱媒体が保有する熱を利用して熱交換器が生成した所定温度の熱源水を、空調機等の負荷側機器に供給することによって建築物等の冷暖房を行う空調システムに関する。   This invention relates to heat source water having a predetermined temperature generated by a heat exchanger using heat source water having a predetermined temperature generated by a constant flow type heat source device such as a refrigerator or heat stored in a heat storage medium stored in a heat storage tank. The present invention relates to an air conditioning system that cools and heats buildings and the like by supplying to a load side device such as an air conditioner.

この種の空調システムとしては、図3に示すようなものがある。この空調システムは、同図に示すように、所定温度の熱源水(例えば、7℃の冷水等)を生成する熱源側系統50と、この熱源側系統50によって生成された所定温度の熱源水を利用して空調負荷を処理する空調機等の負荷側機器61が設置された負荷側系統60とを備えており、熱源側系統50と負荷側系統60とが、往きヘッダSH及び還りヘッダRHを介して、相互に接続されている。   An example of this type of air conditioning system is shown in FIG. As shown in the figure, the air conditioning system includes a heat source side system 50 that generates heat source water of a predetermined temperature (for example, cold water at 7 ° C.), and heat source water of a predetermined temperature generated by the heat source side system 50. A load side system 60 in which a load side device 61 such as an air conditioner for processing an air conditioning load is installed, and the heat source side system 50 and the load side system 60 use the forward header SH and the return header RH. Are connected to each other.

前記熱源側系統50は、冷凍機等の定流量タイプの熱源機器51a及び1次ポンプ52aが設置された熱源機器系統50aと、蓄熱槽53に貯留された蓄熱媒体(水)が保有する熱を利用して所定温度の熱源水を生成する熱交換器51b及び定流量タイプの1次ポンプ52bが設置された熱交換器系統50bとを有しており、空調負荷に応じて、熱源機器系統50a及び熱交換器系統50bの発停制御が行われるようになっている。   The heat source side system 50 has heat held by a heat source device system 50a in which a constant flow type heat source device 51a such as a refrigerator and a primary pump 52a are installed, and a heat storage medium (water) stored in a heat storage tank 53. A heat exchanger 51b that generates heat source water at a predetermined temperature and a heat exchanger system 50b in which a constant flow type primary pump 52b is installed, and according to the air conditioning load, the heat source equipment system 50a And the start / stop control of the heat exchanger system 50b is performed.

また、蓄熱槽53における蓄熱側(冷房の場合は低温側、暖房の場合は高温側)に貯留された蓄熱媒体は、蓄熱2次ポンプ54によって、熱交換器51bに供給され、熱交換器51bで放熱した蓄熱媒体が蓄熱槽53における放熱側(冷房の場合は高温側、暖房の場合は低温側)に戻されるようになっており、熱交換器51bから送出される熱源水の温度が所定温度に保持されるように、蓄熱2次ポンプ54は、インバータによって、その回転数を変化させることで、蓄熱媒体の循環量を調整するようになっている。   Further, the heat storage medium stored on the heat storage side in the heat storage tank 53 (the low temperature side in the case of cooling and the high temperature side in the case of heating) is supplied to the heat exchanger 51b by the heat storage secondary pump 54, and the heat exchanger 51b. The heat storage medium radiated by the heat is returned to the heat radiating side (high temperature side for cooling, low temperature side for heating) in the heat storage tank 53, and the temperature of the heat source water sent from the heat exchanger 51b is predetermined. The heat storage secondary pump 54 adjusts the circulation amount of the heat storage medium by changing the rotational speed of the heat storage secondary pump 54 with an inverter so as to be held at the temperature.

前記負荷側系統60は、熱源側系統50によって往きヘッダSHに導入された所定温度の熱源水を、負荷側往きヘッダ64を介して、負荷側機器61に送出する2次ポンプ62と、空調負荷に応じて、負荷側機器61への熱源水の送水量を調整する二方弁63とが設置されており、空調負荷に応じて二方弁63が開閉することによって、負荷側機器61への送水量が変化した場合でも、送水差圧、即ち、負荷側往きヘッダ64と往きヘッダSHとの間の差圧が設定差圧に保持されるように、2次ポンプ62は、インバータによって、その回転数を変化させることができるようになっている。   The load side system 60 includes a secondary pump 62 that sends heat source water having a predetermined temperature introduced into the forward header SH by the heat source side system 50 to the load side device 61 via the load side forward header 64, and an air conditioning load. Accordingly, a two-way valve 63 that adjusts the amount of heat source water supplied to the load-side device 61 is installed, and the two-way valve 63 opens and closes according to the air conditioning load. Even when the water supply amount changes, the secondary pump 62 is controlled by the inverter so that the water supply differential pressure, that is, the differential pressure between the load-side forward header 64 and the forward header SH is maintained at the set differential pressure. The number of rotations can be changed.

また、熱源側系統50の1次ポンプ52a、52bは、定格流量の熱源水を往きヘッダSHに送出するようになっているので、負荷側系統60における負荷側機器61への熱源水の送水量が、熱源側系統50によって往きヘッダSHに導入される熱源水の導入量より小さい場合は、往きヘッダSHに導入された熱源水の余剰分が、還りヘッダRHに直接戻されるように、往きヘッダSHと還りヘッダRHとが、バイパス配管BPによって接続されている。   Moreover, since the primary pumps 52a and 52b of the heat source side system 50 are configured to send the heat source water having the rated flow rate to the forward header SH, the amount of heat source water supplied to the load side device 61 in the load side system 60 However, if the amount of heat source water introduced into the forward header SH by the heat source side system 50 is smaller than the amount of heat source water introduced into the forward header SH, the surplus header of the heat source water introduced into the forward header SH is directly returned to the return header RH. SH and return header RH are connected by a bypass pipe BP.

特開平08−145417号公報Japanese Patent Laid-Open No. 08-145417

ところで、上述したように、定流量タイプの熱源側系統50を備えた空調システムでは、空調負荷と熱源側系統50(熱源機器51a、熱交換器51b)の能力とがバランスしている場合を除いて、往きヘッダSHから、バイパス配管BPを介して、熱源水の余剰分が還りヘッダRHに戻される状態で、熱源側系統50が運転されるので、通常は、負荷側系統60から還りヘッダRHに導入される放熱後の熱源水と、バイパス配管BPを介して、往きヘッダSHから還りヘッダRHに導入される放熱前の熱源水とが混合された状態で、熱源機器51aや熱交換器51bに導入されることになり、熱源機器51aや熱交換器51bへの熱源水の入水温度は、最大空調負荷を想定して計算された設計入水温度まで上昇(冷房時)または低下(暖房時)することはほとんどない。   Incidentally, as described above, in the air conditioning system including the constant flow type heat source side system 50, the case where the air conditioning load and the capabilities of the heat source side system 50 (heat source device 51a, heat exchanger 51b) are balanced is excluded. Thus, since the heat source side system 50 is operated in a state where the surplus heat source water is returned to the header RH from the forward header SH via the bypass pipe BP, the return header RH is normally returned from the load side system 60. The heat source water 51a and the heat exchanger 51b are mixed in a state where the heat source water after heat radiation introduced into the heat source water and the heat source water before heat radiation returned from the forward header SH and introduced into the header RH are mixed via the bypass pipe BP. Therefore, the incoming temperature of the heat source water to the heat source device 51a or the heat exchanger 51b is increased (cooling) or decreased (heating) to the designed incoming temperature calculated assuming the maximum air conditioning load. ) That there is little to be.

従って、例えば、熱交換器系統50bが単独運転している場合に、熱交換器51bに設計入水温度まで上昇または低下していない熱源水が導入されると、蓄熱槽53の蓄熱側から熱交換器51bに供給され、熱交換器51bで放熱した後、蓄熱槽53の放熱側に戻される蓄熱媒体の温度も、最大空調負荷を想定して計算された設計還り温度まで上昇(冷房時)または低下(暖房時)することがなく、蓄熱槽53の放熱側には、保有熱を使い切っていない蓄熱媒体が貯留されていくことになる。   Therefore, for example, when the heat exchanger system 50b is operating independently, if heat source water that has not increased or decreased to the design incoming water temperature is introduced into the heat exchanger 51b, heat exchange is performed from the heat storage side of the heat storage tank 53. The temperature of the heat storage medium returned to the heat radiating side of the heat storage tank 53 after being supplied to the heater 51b and radiated by the heat exchanger 51b also rises to the design return temperature calculated assuming the maximum air conditioning load (during cooling) or The heat storage medium that does not use up the stored heat is stored on the heat radiating side of the heat storage tank 53 without being lowered (during heating).

しかしながら、蓄熱媒体が蓄熱槽53の放熱側に一旦戻されると、その蓄熱媒体の保有熱を、最早、空調負荷を処理するために、即ち、所定温度の熱源水を生成するために利用することはできなくなるので、蓄熱槽53に蓄えられた熱を、効率よく利用することができなくなるといった問題がある。   However, once the heat storage medium is returned to the heat radiating side of the heat storage tank 53, the heat stored in the heat storage medium is used to process the air conditioning load, that is, to generate heat source water at a predetermined temperature. Therefore, there is a problem that the heat stored in the heat storage tank 53 cannot be used efficiently.

また、保有熱がほとんど使用されなかったため、蓄熱温度に近い温度の蓄熱媒体が蓄熱槽53内に部分的に貯留されていると、深夜電力等を利用して夜間に蓄熱運転を行う際、容量制御が働いて、冷凍機等の熱源機器が途中で運転を停止してしまう場合があり、円滑かつ確実に蓄熱運転を行うことができなくなるといった問題もある。   Further, since the retained heat was hardly used, when the heat storage medium having a temperature close to the heat storage temperature is partially stored in the heat storage tank 53, when performing the heat storage operation at night using midnight power or the like, the capacity As a result of the control, the heat source device such as a refrigerator may stop operation in the middle, and there is a problem that the heat storage operation cannot be performed smoothly and reliably.

そこで、この発明の課題は、少なくとも、熱交換器系統が単独で運転している場合は、蓄熱槽に蓄えられた熱をできるだけ効率よく利用することができる空調システムを提供することにある。   Then, the subject of this invention is providing the air-conditioning system which can utilize the heat | fever stored in the heat storage tank as efficiently as possible at least, when the heat exchanger system is operate | moving independently.

上記の課題を解決するため、請求項1にかかる発明は、往きヘッダ及び還りヘッダを介して相互に接続された、所定温度の熱源水を生成する熱源側系統と前記熱源側系統によって生成された所定温度の熱源水を利用して空調負荷を処理する負荷側機器が設置された負荷側系統とを備え、前記熱源側系統は、前記往きヘッダ及び前記還りヘッダに個別に接続される、所定温度の熱源水を生成する定流量タイプの熱源機器及び熱源機器用1次ポンプが設置された熱源機器系統と蓄熱槽に貯留された蓄熱媒体が保有する熱を利用して所定温度の熱源水を生成する熱交換器及び熱交換器用1次ポンプが設置された熱交換器系統とを有し、前記負荷側系統は、前記熱源側系統によって前記往きヘッダに導入された所定温度の熱源水を、前記負荷側機器に送出する2次ポンプを有し、前記熱源側系統によって前記往きヘッダに導入された所定温度の熱源水の余剰分を前記還りヘッダに戻すバイパス流路を有し、前記熱源側系統は、空調負荷に応じて、前記熱源機器系統及び前記熱交換器系統の発停制御が行われるようになっている空調システムにおいて、前記熱交換器系統が運転しているときは、前記負荷側系統における送水流量と前記熱源側系統における送水流量とが一致または略一致するように、前記熱交換器系統における送水流量を調整するようにしたことを特徴とする空調システムを提供するものである。   In order to solve the above-mentioned problem, the invention according to claim 1 is generated by a heat source side system that generates heat source water at a predetermined temperature and is connected to each other via a forward header and a return header, and the heat source side system. A load side system in which a load side device that processes an air conditioning load using heat source water at a predetermined temperature is installed, and the heat source side system is individually connected to the forward header and the return header. Heat source water at a predetermined temperature is generated using heat from the heat source equipment system in which the constant flow type heat source equipment and the primary pump for the heat source equipment are installed and the heat storage medium stored in the heat storage tank. A heat exchanger system and a heat exchanger system in which a primary pump for heat exchanger is installed, and the load side system supplies heat source water at a predetermined temperature introduced into the forward header by the heat source side system, For load side equipment A secondary pump for discharging, and having a bypass flow path for returning excess heat source water at a predetermined temperature introduced into the forward header by the heat source side system to the return header, and the heat source side system includes an air conditioning load In the air conditioning system in which start / stop control of the heat source equipment system and the heat exchanger system is performed according to the above, when the heat exchanger system is operating, the water flow rate in the load side system The air supply system is characterized in that the water supply flow rate in the heat exchanger system is adjusted so that the water supply flow rate in the heat source system matches or substantially matches.

また、上記の課題を解決するため、請求項2にかかる発明は、往きヘッダ及び還りヘッダを介して相互に接続された、所定温度の熱源水を生成する熱源側系統と前記熱源側系統によって生成された所定温度の熱源水を利用して空調負荷を処理する負荷側機器が設置された負荷側系統とを備え、前記熱源側系統は、前記往きヘッダ及び前記還りヘッダに個別に接続される、所定温度の熱源水を生成する定流量タイプの熱源機器及び熱源機器用1次ポンプが設置された熱源機器系統と蓄熱槽に貯留された蓄熱媒体が保有する熱を利用して所定温度の熱源水を生成する熱交換器及び熱交換器用1次ポンプが設置された熱交換器系統とを有し、前記負荷側系統は、前記熱源側系統によって前記往きヘッダに導入された所定温度の熱源水を、前記負荷側機器に送出する2次ポンプを有し、前記熱源側系統によって前記往きヘッダに導入された所定温度の熱源水の余剰分が、バイパス流路を介して、前記還りヘッダに戻されるようになっており、前記熱源側系統は、空調負荷に応じて、前記熱源機器系統及び前記熱交換器系統の発停制御が行われるようになっている空調システムにおいて、前記熱交換器系統は、前記熱交換器によって生成された所定温度の熱源水を、定流量タイプの前記熱交換器用1次ポンプによって、前記往きヘッダに送出するメイン流路と、前記2次ポンプの運転を停止した状態で、前記負荷側機器に前記熱源機器用1次ポンプの定格流量と同一流量の熱源水を循環供給可能な変流量タイプの共用ポンプが、前記熱源機器用1次ポンプ及び前記2次ポンプをバイパスするように、前記負荷側系統及び前記メイン流路に接続されたサブ流路とを有し、前記熱交換器系統の単独運転時は、前記2次ポンプ及び前記熱交換器用1次ポンプの運転を停止させると共に前記熱交換器系統を前記サブ流路に切り換えた状態で、前記負荷側系統の送水差圧が所定差圧に保持されるように、前記共用ポンプによる熱源水の送水流量を調整するようになっていることを特徴とする空調システムを提供するものである。   Moreover, in order to solve said subject, the invention concerning Claim 2 is produced | generated by the heat source side system | strain and the said heat source side system | strain which produce | generate the heat source water of the predetermined temperature mutually connected through the forward header and the return header A load side system in which a load side device that processes an air conditioning load using heat source water of a predetermined temperature is provided, and the heat source side system is individually connected to the forward header and the return header, Heat source water at a predetermined temperature using heat of a heat source device system in which a constant flow type heat source device for generating heat source water at a predetermined temperature and a heat source device system provided with a primary pump for the heat source device and a heat storage medium stored in a heat storage tank are stored. A heat exchanger system and a heat exchanger system in which a primary pump for the heat exchanger is installed, and the load side system supplies heat source water having a predetermined temperature introduced into the forward header by the heat source side system. The load side A surplus amount of heat source water having a predetermined temperature introduced into the forward header by the heat source side system is returned to the return header via a bypass channel. In the air conditioning system in which the on / off control of the heat source equipment system and the heat exchanger system is performed according to the air conditioning load, the heat source system is configured to perform the heat exchange. The heat source water generated at a predetermined temperature is sent to the forward header by the constant flow type primary pump for heat exchanger, and the operation of the secondary pump is stopped. A variable flow type shared pump that can circulate and supply heat source water of the same flow rate as the rated flow rate of the primary pump for the heat source device to the side device bypasses the primary pump and the secondary pump for the heat source device. And the sub-flow path connected to the load-side system and the main flow path, and the operation of the secondary pump and the primary pump for the heat exchanger is stopped during the independent operation of the heat exchanger system. In the state where the heat exchanger system is switched to the sub-flow path, the water supply flow rate of the heat source water by the shared pump is adjusted so that the water supply differential pressure of the load side system is maintained at a predetermined differential pressure. The present invention provides an air conditioning system characterized by the above.

上記の課題を解決するため、請求項3にかかる発明は、往きヘッダ及び還りヘッダを介して相互に接続された、所定温度の熱源水を生成する熱源側系統と前記熱源側系統によって生成された所定温度の熱源水を利用して空調負荷を処理する負荷側機器が設置された負荷側系統とを備え、前記熱源側系統は、前記往きヘッダ及び前記還りヘッダに個別に接続される、所定温度の熱源水を生成する定流量タイプの熱源機器及び熱源機器用1次ポンプが設置された熱源機器系統と蓄熱槽に貯留された蓄熱媒体が保有する熱を利用して所定温度の熱源水を生成する熱交換器及び熱交換器用1次ポンプが設置された熱交換器系統とを有し、前記負荷側系統は、前記熱源側系統によって前記往きヘッダに導入された所定温度の熱源水を、前記負荷側機器に送出する2次ポンプを有し、前記熱源側系統によって前記往きヘッダに導入された所定温度の熱源水の余剰分が、バイパス流路を介して、前記還りヘッダに戻されるようになっており、前記熱源側系統は、空調負荷に応じて、前記熱源機器系統及び前記熱交換器系統の発停制御が行われるようになっている空調システムにおいて、前記熱交換器系統は、前記熱交換器によって生成された所定温度の熱源水を、変流量タイプの前記熱交換器用1次ポンプによって、前記往きヘッダに送出するメイン流路と、前記2次ポンプの運転を停止した状態で、前記熱交換器用1次ポンプの定格流量を下回る所定流量の熱源水を循環供給可能な変流量タイプの共用ポンプが、前記熱源機器用1次ポンプ及び前記2次ポンプをバイパスするように、前記負荷側系統及び前記メイン流路に接続されたサブ流路とを有し、前記熱交換器系統の単独運転時であって、前記負荷側系統における熱源水の送水流量が所定流量を上回っているときは、前記熱交換器系統を前記メイン流路に切り換えた状態で、前記負荷側系統における熱源水の送水流量と前記熱交換器系統における熱源水の送水流量とが一致または略一致するように、前記熱交換器用1次ポンプによる熱源水の送水流量を調整するようになっており、前記熱交換器系統の単独運転時であって、前記負荷側系統における送水流量が所定流量以下に低下すると、前記2次ポンプ及び前記熱交換器用1次ポンプの運転を停止させると共に前記熱交換器系統を前記サブ流路に切り換えた状態で、前記負荷側系統の送水差圧が所定差圧に保持されるように、前記共用ポンプによる熱源水の送水流量を調整するようになっていることを特徴とする空調システムを提供するものである。   In order to solve the above-mentioned problem, the invention according to claim 3 is generated by a heat source side system that generates heat source water having a predetermined temperature and is connected to each other via a forward header and a return header, and the heat source side system. A load side system in which a load side device that processes an air conditioning load using heat source water at a predetermined temperature is installed, and the heat source side system is individually connected to the forward header and the return header. Heat source water at a predetermined temperature is generated using heat from the heat source equipment system in which the constant flow type heat source equipment and the primary pump for the heat source equipment are installed and the heat storage medium stored in the heat storage tank. A heat exchanger system and a heat exchanger system in which a primary pump for heat exchanger is installed, and the load side system supplies heat source water at a predetermined temperature introduced into the forward header by the heat source side system, For load side equipment A surplus of heat source water at a predetermined temperature introduced into the forward header by the heat source side system is returned to the return header via a bypass flow path. The heat source system is an air conditioning system in which start / stop control of the heat source device system and the heat exchanger system is performed according to an air conditioning load, and the heat exchanger system is controlled by the heat exchanger. The generated heat source water at a predetermined temperature is sent to the forward header by the variable flow type primary pump for heat exchanger, and the operation of the secondary pump is stopped for the heat exchanger. The variable flow type common pump that can circulate and supply the heat source water at a predetermined flow rate lower than the rated flow rate of the primary pump bypasses the primary pump and the secondary pump for the heat source device. And a sub-channel connected to the main channel, and when the heat exchanger system is in an independent operation and the water supply flow rate of the heat source water in the load-side system exceeds a predetermined flow rate In the state where the heat exchanger system is switched to the main flow path, the water supply flow rate of the heat source water in the load side system and the water supply flow rate of the heat source water in the heat exchanger system are matched or substantially matched. The water supply flow rate of the heat source water by the primary pump for heat exchanger is adjusted, and when the water supply flow rate in the load side system is lower than a predetermined flow rate when the heat exchanger system is operating alone, With the operation of the secondary pump and the primary pump for the heat exchanger stopped and the heat exchanger system switched to the sub flow path, the water supply differential pressure of the load side system is maintained at a predetermined differential pressure. And said The present invention provides an air conditioning system characterized in that the flow rate of water supplied from a heat source water by a common pump is adjusted.

なお、ここでは、便宜上、「往きヘッダ」及び「還りヘッダ」という用語を使用しているが、「往きヘッダ」及び「還りヘッダ」と同様の機能を配管によって実現することも可能であり、そのような形態の空調システムも本発明に含まれることはいうまでもない。   Here, for convenience, the terms “forward header” and “return header” are used, but the same functions as “forward header” and “return header” can be realized by piping. It goes without saying that such an air conditioning system is also included in the present invention.

以上のように、請求項1にかかる発明の空調システムでは、熱交換器系統が運転しているときは、負荷側系統における送水流量と熱源側系統における送水流量とが一致または略一致するように、熱交換器系統における送水流量を調整するようになっているので、少なくとも、熱交換器系統が運転しているときは、バイパス流路を介して往きヘッダから還りヘッダに所定温度の熱源水が戻されることがなく、負荷側系統における負荷側機器から送出される、最大空調負荷を想定して計算された設計入水温度以上の熱源水が熱交換器に導入されることになる。従って、熱交換器系統が運転しているときは、蓄熱槽の蓄熱側から熱交換器に供給され、熱交換器で放熱した後、蓄熱槽の放熱側に戻される蓄熱媒体の温度が、最大空調負荷を想定して計算された設計還り温度以上に上昇(冷房時)または設計還り温度以下に低下(暖房時)することになり、蓄熱槽の放熱側には、保有熱を使い切った蓄熱媒体が貯留されていくことになるので、蓄熱槽に蓄えられた熱を効率よく利用することが可能となる。   As described above, in the air conditioning system according to the first aspect of the present invention, when the heat exchanger system is operating, the water supply flow rate in the load side system and the water supply flow rate in the heat source side system are matched or substantially matched. Since the water supply flow rate in the heat exchanger system is adjusted, at least when the heat exchanger system is operating, the heat source water at a predetermined temperature is returned from the forward header to the return header via the bypass channel. Heat source water that is not returned and is sent from the load-side equipment in the load-side system and that is equal to or higher than the design water temperature calculated assuming the maximum air conditioning load is introduced into the heat exchanger. Therefore, when the heat exchanger system is in operation, the temperature of the heat storage medium supplied to the heat exchanger from the heat storage side of the heat storage tank and radiated by the heat exchanger and then returned to the heat dissipation side of the heat storage tank is the maximum. A heat storage medium that uses up the stored heat on the heat dissipation side of the heat storage tank, which rises above the design return temperature calculated during the air conditioning load (during cooling) or falls below the design return temperature (during heating). Therefore, it is possible to efficiently use the heat stored in the heat storage tank.

また、請求項2にかかる発明の空調システムでは、熱交換器系統の単独運転時は、2次ポンプ及び熱交換器用1次ポンプの運転を停止させると共に熱交換器系統をサブ流路に切り換えた状態で、負荷側系統の送水差圧が所定差圧に保持されるように、共用ポンプによる熱源水の送水流量を調整するようになっているので、即ち、熱源水を、1台の共用ポンプによって、負荷側系統と熱交換器系統との間で循環させるようになっているので、バイパス流路を介して往きヘッダから還りヘッダに所定温度の熱源水が戻されることがなく、負荷側系統における負荷側機器から送出される、最大空調負荷を想定して計算された設計入水温度以上の熱源水が熱交換器に導入されることになる。従って、熱交換器で放熱した後、蓄熱槽の放熱側に戻される蓄熱媒体の温度が、最大空調負荷を想定して計算された設計還り温度以上に上昇(冷房時)または設計還り温度以下に低下(暖房時)することになり、蓄熱槽の放熱側には、保有熱を使い切った蓄熱媒体が貯留されていくことになるので、蓄熱槽に蓄えられた熱を効率よく利用することが可能となる。   In the air conditioning system of the invention according to claim 2, when the heat exchanger system is operated alone, the operation of the secondary pump and the primary pump for the heat exchanger is stopped and the heat exchanger system is switched to the sub flow path. In this state, the water supply flow rate of the heat source water by the common pump is adjusted so that the water supply differential pressure of the load side system is maintained at a predetermined differential pressure, that is, the heat source water is supplied to one common pump. Circulates between the load side system and the heat exchanger system, so that the heat source water of a predetermined temperature is not returned to the return header from the forward header via the bypass flow path, and the load side system The heat source water that is sent from the load side equipment and is equal to or higher than the designed water temperature calculated assuming the maximum air conditioning load is introduced into the heat exchanger. Therefore, after the heat is radiated by the heat exchanger, the temperature of the heat storage medium returned to the heat radiating side of the heat storage tank rises above the design return temperature calculated for the maximum air conditioning load (at the time of cooling) or falls below the design return temperature. It will be reduced (during heating), and the heat storage medium that uses up the stored heat will be stored on the heat dissipation side of the heat storage tank, so it is possible to efficiently use the heat stored in the heat storage tank It becomes.

また、熱交換器系統の単独運転時は、上述したように、1台の共用ポンプだけを運転させればよく、しかも、共用ポンプの定格流量は、2次ポンプの定格流量(2次ポンプが複数台に分割されている場合は、各2次ポンプの定格流量の合計値)より小さくなるので、熱交換器系統分の揚程は同じであるが、負荷側系統分の揚程が2次ポンプの揚程より小さくなり、2次ポンプ及び熱交換器用1次ポンプの揚程の和より小さい揚程のポンプを共用ポンプとして選定することができる。従って、2次ポンプと熱交換器用1次ポンプとを同時に運転させなければならない従来の空調システムに比べて、ポンプ動力が小さくなり、ランニングコストを削減することができるという利点がある。   Further, when the heat exchanger system is operated alone, as described above, it is only necessary to operate one common pump, and the rated flow rate of the shared pump is the rated flow rate of the secondary pump (the secondary pump is When divided into multiple units, it is smaller than the total rated flow of each secondary pump), so the head for the heat exchanger system is the same, but the head for the load side system is A pump having a head that is smaller than the head and smaller than the sum of the heads of the secondary pump and the primary pump for the heat exchanger can be selected as the common pump. Therefore, compared with the conventional air conditioning system which must operate a secondary pump and the primary pump for heat exchangers simultaneously, there exists an advantage that pump power becomes small and a running cost can be reduced.

また、請求項3にかかる発明の空調システムでは、熱交換器系統の単独運転時において、負荷側系統における熱源水の送水流量が所定流量を上回っているときは、熱交換器系統をメイン流路に切り換えた状態で、負荷側系統における熱源水の送水流量と熱交換器系統における熱源水の送水流量とが一致または略一致するように、熱交換器用1次ポンプによる熱源水の送水流量を調整するようになっており、負荷側系統における送水流量が所定流量以下に低下すると、2次ポンプ及び熱交換器用1次ポンプの運転を停止させると共に熱交換器系統をサブ流路に切り換えた状態で、負荷側系統の送水差圧が所定差圧に保持されるように、共用ポンプによる熱源水の送水流量を調整するようになっているので、熱交換器系統の単独運転時に、バイパス流路を介して往きヘッダから還りヘッダに所定温度の熱源水が戻されることがなく、負荷側系統における負荷側機器から送出される設計入水温度以上の熱源水が熱交換器に導入されることになる。従って、熱交換器で放熱した後、蓄熱槽の放熱側に戻される蓄熱媒体の温度が、最大空調負荷を想定して計算された設計還り温度以上に上昇(冷房時)または設計還り温度以下に低下(暖房時)することになり、蓄熱槽の放熱側には、保有熱を使い切った蓄熱媒体が貯留されていくことになるので、蓄熱槽に蓄えられた熱を効率よく利用することが可能となる。   In the air conditioning system according to the third aspect of the present invention, when the water supply flow rate of the heat source water in the load side system exceeds a predetermined flow rate during the independent operation of the heat exchanger system, the heat exchanger system is connected to the main flow path. In the state switched to, adjust the water supply flow rate of the heat source water by the primary pump for the heat exchanger so that the water supply flow rate of the heat source water in the load side system and the water supply flow rate of the heat source water in the heat exchanger system match or substantially match. When the water supply flow rate in the load side system falls below the predetermined flow rate, the operation of the secondary pump and the primary pump for the heat exchanger is stopped and the heat exchanger system is switched to the sub flow path. Since the water supply flow rate of the heat source water by the shared pump is adjusted so that the water supply differential pressure of the load side system is maintained at a predetermined differential pressure, Heat source water at a predetermined temperature is not returned to the return header from the return header via the flow path, and heat source water that is higher than the design water temperature sent from the load side equipment in the load side system is introduced into the heat exchanger. become. Therefore, after the heat is radiated by the heat exchanger, the temperature of the heat storage medium returned to the heat radiating side of the heat storage tank rises above the design return temperature calculated for the maximum air conditioning load (at the time of cooling) or falls below the design return temperature. It will be reduced (during heating), and the heat storage medium that uses up the stored heat will be stored on the heat dissipation side of the heat storage tank, so it is possible to efficiently use the heat stored in the heat storage tank It becomes.

特に、この空調システムでは、共用ポンプの定格流量が熱交換器用1次ポンプの定格流量より小さくなっているので、負荷側系統分の揚程が2次ポンプの揚程より小さくなるだけでなく、熱交換器系統分の揚程も熱交換器用1次ポンプの揚程より小さくなるので、さらに揚程の小さなポンプを共用ポンプとして選定することができる。従って、負荷側系統における送水流量が所定流量以下に低下した状態では、熱交換器用1次ポンプの定格流量と同一の定格流量を有する共用ポンプを、その回転数を落としながら運転する場合に比べて、ポンプ動力を抑えることができ、ランニングコストをさらに削減することができる。   In particular, in this air conditioning system, the rated flow rate of the shared pump is smaller than the rated flow rate of the primary pump for heat exchanger, so that the lift for the load side system is not only smaller than the lift of the secondary pump, but also heat exchange. Since the head for the system is also smaller than the head of the primary pump for heat exchanger, a pump with a lower head can be selected as a common pump. Therefore, in a state where the water supply flow rate in the load side system is reduced below the predetermined flow rate, compared to the case where the common pump having the same rated flow rate as that of the primary pump for heat exchanger is operated while reducing the rotation speed. The pump power can be reduced, and the running cost can be further reduced.

以下、実施の形態について図面を参照して説明する。図1に示すように、この空調システム1は、空調負荷を処理する空調機等の負荷側機器14が設置された負荷側系統10と、所定温度の熱源水(例えば、7℃の冷水)を生成して負荷側系統10に送出する熱源側系統20とが往きヘッダ31及び還りヘッダ32を介して、相互に接続されたものであり、往きヘッダ31と還りヘッダ32とは、バイパス管33を介して、相互に接続されている。   Hereinafter, embodiments will be described with reference to the drawings. As shown in FIG. 1, the air conditioning system 1 includes a load side system 10 in which a load side device 14 such as an air conditioner that processes an air conditioning load is installed, and heat source water of a predetermined temperature (for example, 7 ° C. cold water). The heat source side system 20 that is generated and sent to the load side system 10 is connected to each other via the forward header 31 and the return header 32. The forward header 31 and the return header 32 are connected to the bypass pipe 33. Are connected to each other.

前記負荷側系統10は、2次ポンプ11が設置された負荷側往き配管11a及びバイパス弁12が設置された負荷側バイパス配管12aを介して往きヘッダ31に接続される負荷側往きヘッダ13を備えており、負荷側機器14が、負荷側配管15を介して、負荷側往きヘッダ13及び還りヘッダ32に接続されている。   The load side system 10 includes a load side forward header 13 connected to the forward header 31 via a load side forward piping 11a where the secondary pump 11 is installed and a load side bypass piping 12a where the bypass valve 12 is installed. The load side device 14 is connected to the load side forward header 13 and the return header 32 via the load side pipe 15.

負荷側配管15には、負荷側機器14の上流側に二方弁16が設置されており、この二方弁16を空調負荷に応じて開閉させることにより、負荷側機器14への熱源水の供給量が調整されるようになっている。   A two-way valve 16 is installed upstream of the load-side device 14 in the load-side piping 15, and the heat source water to the load-side device 14 is opened and closed by opening and closing the two-way valve 16 according to the air conditioning load. The supply amount is adjusted.

また、2次ポンプ11は、インバータによって、その回転数を変化させることで、送水量を調整することができるようになっており、空調負荷に応じて二方弁16が開閉することで、負荷側機器14への送水量が変化した場合でも、負荷側系統10への送水差圧、即ち、差圧発信器41によって検出される、負荷側往きヘッダ13と往きヘッダ31との間の差圧が設定差圧になるように、プログラマブル・ロジック・コントローラ40が、2次ポンプ11の回転数を制御するようになっている。   Moreover, the secondary pump 11 can adjust the water supply amount by changing the rotation speed by an inverter, and the two-way valve 16 opens and closes according to the air conditioning load. Even when the amount of water supplied to the side device 14 changes, the differential pressure between the load side forward header 13 and the forward header 31 detected by the differential pressure transmitter 41, that is, the differential pressure of water delivery to the load side system 10. The programmable logic controller 40 controls the rotational speed of the secondary pump 11 so that the differential pressure becomes the set differential pressure.

ただし、負荷側系統10の二方弁16が全閉または全閉近くまで閉弁すると、2次ポンプ11が締め切り運転またはそれに近い運転を行うことになるので、負荷側機器14への送水量が少なくなったときは、バイパス弁12が開弁し、2次ポンプ11によって負荷側往きヘッダ13に導入された熱源水が、負荷側バイパス配管12aを介して、往きヘッダ31に戻されるようになっている。   However, when the two-way valve 16 of the load side system 10 is fully closed or close to the fully closed state, the secondary pump 11 performs a deadline operation or an operation close thereto, so that the amount of water supplied to the load side device 14 is reduced. When the number is reduced, the bypass valve 12 is opened, and the heat source water introduced into the load-side forward header 13 by the secondary pump 11 is returned to the forward header 31 via the load-side bypass pipe 12a. ing.

前記熱源側系統20は、所定温度の熱源水を生成する冷凍機等の定流量タイプの熱源機器21aを備えた熱源機器系統20aと、蓄熱槽26に貯留された蓄熱媒体(水)が保有する熱を利用して所定温度の熱源水を生成する熱交換器21bを備えた熱交換器系統20bとから構成されており、プログラマブル・ロジック・コントローラ40が、負荷側配管15における負荷側機器14の下流側に設置された流量計42によって検出される負荷側流量と、負荷側系統10における送水温度差、即ち、往きヘッダ31と還りヘッダ32との間の温度差とに基づいて算出した空調負荷に応じて、熱源機器系統20a及び熱交換器系統20bの発停制御を行うようになっている。   The heat source side system 20 includes a heat source device system 20 a including a constant flow type heat source device 21 a such as a refrigerator that generates heat source water of a predetermined temperature, and a heat storage medium (water) stored in the heat storage tank 26. The heat exchanger system 20b is provided with a heat exchanger 21b that generates heat source water at a predetermined temperature using heat, and the programmable logic controller 40 is connected to the load side device 14 in the load side piping 15. Air conditioning load calculated based on the load-side flow rate detected by the flow meter 42 installed on the downstream side and the water supply temperature difference in the load-side system 10, that is, the temperature difference between the forward header 31 and the return header 32. Accordingly, the start / stop control of the heat source device system 20a and the heat exchanger system 20b is performed.

前記熱源機器系統20aは、熱源機器21a及び熱源機器用1次ポンプ22aが、熱源側配管23aによって、往きヘッダ31及び還りヘッダ32に接続されており、熱源機器用1次ポンプ22aは、定格流量の熱源水を還りヘッダ32から熱源機器21aを通して往きヘッダ31に送出することができる揚程を有している。   In the heat source device system 20a, a heat source device 21a and a heat source device primary pump 22a are connected to a forward header 31 and a return header 32 by a heat source side pipe 23a, and the heat source device primary pump 22a has a rated flow rate. The head has a head that can return the heat source water from the header 32 to the header 31 through the heat source device 21a.

前記熱交換器系統20bは、熱交換器21b及び熱交換器用1次ポンプ22bが、熱源側配管23bによって、往きヘッダ31及び還りヘッダ32に接続されたメイン流路と、共用ポンプ24bが、熱源機器用1次ポンプ22a及び2次ポンプ11をバイパスするように、熱源側配管25bによって、負荷側往きヘッダ13及びメイン流路(熱源側配管23b)における熱交換器21bの下流側とに接続されたサブ流路とを備えており、熱交換器用1次ポンプ22b及び共用ポンプ24bは、インバータによって、それぞれの回転数を変化させることで、送水流量を調整することができるようになっている。   In the heat exchanger system 20b, a heat exchanger 21b and a heat exchanger primary pump 22b are connected to a forward header 31 and a return header 32 by a heat source side pipe 23b, and a shared pump 24b is a heat source. The heat source side piping 25b is connected to the downstream side of the heat exchanger 21b in the load side forward header 13 and the main flow path (heat source side piping 23b) so as to bypass the equipment primary pump 22a and the secondary pump 11. In addition, the heat exchanger primary pump 22b and the common pump 24b can adjust the water supply flow rate by changing the number of rotations of each of them by an inverter.

熱交換器用1次ポンプ22bは、定格流量の熱源水を、還りヘッダ32から熱交換器21bを通して往きヘッダ31に送出することができる揚程を有しており、共用ポンプ24bは、熱交換器用1次ポンプ22bの定格流量を下回る定格流量の熱源水を、還りヘッダ32から、熱交換器21b及び負荷側系統(負荷側機器14)を通して還りヘッダ32に戻すことができる揚程を有している。   The primary pump 22b for heat exchanger has a head that can send the heat source water of the rated flow rate from the return header 32 through the heat exchanger 21b to the forward header 31. The common pump 24b is the heat exchanger 1 It has a head that can return heat source water having a rated flow rate lower than the rated flow rate of the next pump 22b from the return header 32 to the return header 32 through the heat exchanger 21b and the load side system (load side device 14).

熱交換器系統20bが単独で運転している場合において、負荷側系統10における熱源水の送水流量が共用ポンプ24bの定格流量を上回っているときは、共用ポンプ24bが運転することなく、負荷側系統10における熱源水の送水流量と熱交換器系統20bにおける熱源水の送水流量とが一致または略一致するように、プログラマブル・ロジック・コントローラ40が、熱交換器用1次ポンプ22bの回転数を変化させることによって、熱交換器系統20bにおける熱源水の送水流量を調整するようになっている。即ち、プログラマブル・ロジック・コントローラ40には、2次ポンプ11の回転数を変化させるインバータの周波数と負荷側系統10における熱源水の送水流量との関係を示すテーブルまたは関係式が予め記憶されており、このテーブルや関係式に従って、実際に2次ポンプ11が運転しているときのインバータの周波数から、負荷側系統10における熱源水の送水流量を算出し、熱交換器用1次ポンプ22bの送水流量が、算出された負荷側系統10における熱源水の送水流量と一致するように、プログラマブル・ロジック・コントローラ40が、インバータによって、熱交換器用1次ポンプ22bの回転数を変化させるようになっている。   In the case where the heat exchanger system 20b is operating alone, when the feed flow rate of the heat source water in the load system 10 exceeds the rated flow rate of the shared pump 24b, the shared pump 24b is not operated and the load side The programmable logic controller 40 changes the rotation speed of the heat pump primary pump 22b so that the water supply flow rate of the heat source water in the system 10 and the water supply flow rate of the heat source water in the heat exchanger system 20b match or substantially match. By doing so, the water supply flow rate of the heat source water in the heat exchanger system 20b is adjusted. That is, the programmable logic controller 40 stores in advance a table or a relational expression that indicates the relationship between the frequency of the inverter that changes the rotation speed of the secondary pump 11 and the water supply flow rate of the heat source water in the load side system 10. In accordance with this table and the relational expression, the water supply flow rate of the heat source water in the load side system 10 is calculated from the frequency of the inverter when the secondary pump 11 is actually operating, and the water supply flow rate of the heat exchanger primary pump 22b. However, the programmable logic controller 40 changes the rotational speed of the primary pump 22b for heat exchanger by an inverter so that it matches the calculated flow rate of the heat source water in the load side system 10. .

また、熱交換器系統20bが単独で運転している場合において、負荷側系統10における熱源水の送水流量が共用ポンプ24bの定格流量以下に低下すると、2次ポンプ11及び熱交換器用1次ポンプ22bの運転を停止させると共に共用ポンプ24bを起動し、差圧発信器41によって検出される、負荷側系統10の送水差圧(負荷側往きヘッダ13と往きヘッダ31との間の差圧)が設定差圧になるように、プログラマブル・ロジック・コントローラ40が、インバータによって、共用ポンプ24bの回転数を変化させることで、熱源水の送水流量を調整するようになっている。   In addition, when the heat exchanger system 20b is operating alone, if the feed flow rate of the heat source water in the load side system 10 falls below the rated flow rate of the shared pump 24b, the secondary pump 11 and the primary pump for the heat exchanger The operation of 22b is stopped and the common pump 24b is started, and the water supply differential pressure (the differential pressure between the load side forward header 13 and the forward header 31) detected by the differential pressure transmitter 41 is detected by the differential pressure transmitter 41. The programmable logic controller 40 adjusts the water supply flow rate of the heat source water by changing the rotation speed of the shared pump 24b by an inverter so that the set differential pressure is obtained.

なお、図には示していないが、熱交換器用1次ポンプ22b及び共用ポンプ24bの吐出側には、通常、逆止弁が設置されているので、メイン流路とサブ流路とを切り換える際に、サブ流路やメイン流路に熱源水が逆流することがない。従って、ポンプの切換バルブ等を設ける必要がなく、ポンプの発停を行うだけで、メイン流路とサブ流路との切り換えを簡単に行うことができる。また、メイン流路からサブ流路に切り換える際は、2次ポンプ11及び熱交換器用1次ポンプ22bが運転を行っている状態で、共用ポンプ24bを、その回転数を落とした状態で起動させ、その後に、2次ポンプ11及び熱交換器用1次ポンプ22bの運転を停止させることによって、スムースに切り換えることができる。   Although not shown in the figure, since a check valve is usually installed on the discharge side of the heat exchanger primary pump 22b and the common pump 24b, the main flow path and the sub flow path are switched. In addition, the heat source water does not flow back into the sub-channel and the main channel. Therefore, it is not necessary to provide a pump switching valve or the like, and switching between the main flow path and the sub flow path can be performed simply by starting and stopping the pump. Further, when switching from the main flow path to the sub flow path, the shared pump 24b is started with the rotation speed reduced while the secondary pump 11 and the heat exchanger primary pump 22b are operating. Then, the operation can be smoothly switched by stopping the operation of the secondary pump 11 and the heat exchanger primary pump 22b.

また、蓄熱槽26における蓄熱側(冷房の場合は低温側、暖房の場合は高温側)に貯留された蓄熱媒体は、蓄熱2次ポンプ27によって、蓄熱2次配管28を介して、熱交換器21bに供給され、熱交換器21bで放熱した蓄熱媒体が蓄熱槽26における放熱側(冷房の場合は高温側、暖房の場合は低温側)に戻されるようになっており、熱源側配管23bにおける熱交換器21bの下流側でサブ流路(熱源側配管25b)の接続部より上流側に設置された送水温度センサ43によって検出される、熱交換器21bから送出される熱源水の送水温度が所定温度に保持されるように、プログラマブル・ロジック・コントローラ40が、インバータによって、蓄熱2次ポンプ27の回転数を変化させることで、熱交換器21bへの蓄熱媒体の供給量を調整するようになっている。   Further, the heat storage medium stored on the heat storage side in the heat storage tank 26 (the low temperature side in the case of cooling and the high temperature side in the case of heating) is transferred to the heat exchanger by the heat storage secondary pump 27 via the heat storage secondary pipe 28. The heat storage medium supplied to the heat exchanger 21b and radiated by the heat exchanger 21b is returned to the heat radiating side (the high temperature side in the case of cooling, the low temperature side in the case of heating) in the heat storage tank 26, and in the heat source side pipe 23b The water supply temperature of the heat source water sent from the heat exchanger 21b, which is detected by the water supply temperature sensor 43 installed on the downstream side of the heat exchanger 21b and upstream of the connecting portion of the sub flow path (heat source side pipe 25b), is The programmable logic controller 40 supplies the heat storage medium to the heat exchanger 21b by changing the rotation speed of the heat storage secondary pump 27 with an inverter so that the temperature is maintained at a predetermined temperature. It is adapted to adjust.

以上のように、この空調システム1では、熱交換器系統20bの単独運転時において、負荷側系統10における熱源水の送水流量が共用ポンプ24bの定格流量を上回っているときは、熱交換器系統20bをメイン流路に切り換えた状態で、負荷側系統10における熱源水の送水流量と熱交換器系統20bにおける熱源水の送水流量とが一致または略一致するように、熱交換器用1次ポンプ22bによる熱源水の送水流量を調整するようになっており、負荷側系統10における送水流量が共用ポンプ24bの定格流量以下に低下すると、2次ポンプ11及び熱交換器用1次ポンプ22bの運転を停止させると共に熱交換器系統20bをサブ流路に切り換えた状態で、負荷側系統10の送水差圧が設定差圧に保持されるように、共用ポンプ24bによる熱源水の送水流量を調整するようになっているので、熱交換器系統20bの単独運転時に、バイパス管33を介して往きヘッダ31から還りヘッダ32に所定温度の熱源水が戻されることがなく、負荷側系統10における負荷側機器14から送出される設計入水温度以上の熱源水が熱交換器21bに導入されることになる。従って、熱交換器21bで放熱した後、蓄熱槽26の放熱側に戻される蓄熱媒体の温度が、最大空調負荷を想定して計算された設計還り温度以上に上昇(冷房時)または設計還り温度以下に低下(暖房時)することになり、蓄熱槽26の放熱側には、保有熱を使い切った蓄熱媒体が貯留されていくことになるので、蓄熱槽26に蓄えられた熱を効率よく利用することが可能となる。   As described above, in the air conditioning system 1, when the heat source water supply flow rate in the load side system 10 exceeds the rated flow rate of the shared pump 24b during the independent operation of the heat exchanger system 20b, the heat exchanger system In the state where 20b is switched to the main flow path, the heat pump primary pump 22b so that the water flow rate of the heat source water in the load side system 10 and the water flow rate of the heat source water in the heat exchanger system 20b match or substantially match. When the water supply flow rate in the load side system 10 falls below the rated flow rate of the shared pump 24b, the operation of the secondary pump 11 and the heat exchanger primary pump 22b is stopped. In the state where the heat exchanger system 20b is switched to the sub flow path, the common pump 24 is configured so that the water supply differential pressure of the load side system 10 is maintained at the set differential pressure. Since the water supply flow rate of the heat source water is adjusted, the heat source water at a predetermined temperature may be returned to the return header 32 from the return header 31 via the bypass pipe 33 when the heat exchanger system 20b is operated alone. Instead, heat source water having a temperature equal to or higher than the design water temperature sent from the load side device 14 in the load side system 10 is introduced into the heat exchanger 21b. Therefore, after the heat exchanger 21b radiates heat, the temperature of the heat storage medium returned to the heat radiating side of the heat storage tank 26 rises above the design return temperature calculated during the maximum air conditioning load (during cooling) or the design return temperature. Since the heat storage medium that uses up the stored heat will be stored on the heat radiation side of the heat storage tank 26, the heat stored in the heat storage tank 26 is used efficiently. It becomes possible to do.

また、熱交換器系統20bの単独運転時において、負荷側系統10における送水流量が共用ポンプ24bの定格流量以下に低下すると、1台の共用ポンプ24bだけを運転させればよく、しかも、共用ポンプ24bの定格流量は、2次ポンプ11や熱交換器用1次ポンプ22bの定格流量より小さくなっているので、負荷側系統分の揚程が2次ポンプ11の揚程より小さくなると共に、熱交換器系統分の揚程も熱交換器用1次ポンプ22bの揚程より小さくなるので、2次ポンプ11及び熱交換器用1次ポンプ22bの揚程の和より小さい揚程のポンプを共用ポンプ24bとして選定することができる。従って、負荷側系統10における送水流量が共用ポンプ24bの定格流量以下に低下した状態では、2次ポンプと熱交換器用1次ポンプとを同時に運転させなければならない従来の空調システムに比べて、ポンプ動力が小さくなり、ランニングコストを削減することができるという利点がある。   Further, when the water supply flow rate in the load side system 10 falls below the rated flow rate of the shared pump 24b during the independent operation of the heat exchanger system 20b, only one shared pump 24b needs to be operated, and the shared pump Since the rated flow rate of 24b is smaller than the rated flow rate of the secondary pump 11 and the primary pump 22b for heat exchanger, the lift for the load side system is smaller than the lift of the secondary pump 11, and the heat exchanger system Since the lift of the minute is also smaller than the lift of the primary pump 22b for the heat exchanger, a pump having a lift smaller than the sum of the lifts of the secondary pump 11 and the primary pump 22b for the heat exchanger can be selected as the common pump 24b. Therefore, in a state where the water supply flow rate in the load side system 10 is lower than the rated flow rate of the common pump 24b, the pump is more than the conventional air conditioning system in which the secondary pump and the primary pump for heat exchanger must be operated simultaneously. There is an advantage that the power is reduced and the running cost can be reduced.

こういったランニングコストの削減効果は、夜間等に定時系統が空調運転を停止するため、極端に空調負荷が小さくなるような空調負荷特性を有している場合に、特に顕著に発揮されることになる。   This reduction in running costs is particularly noticeable when the air-conditioning load characteristic is extremely low because the scheduled system stops air-conditioning operation at night, etc. become.

なお、上述した実施形態では、共用ポンプ24bとして、定格流量が熱交換器用1次ポンプ22bの定格流量より小さなポンプを使用しているが、これに限定されるものではなく、例えば、熱交換器用1次ポンプ22bの定格流量と同一の定格流量を有する共用ポンプ24bを使用することも可能であり、その場合は、熱交換器系統20bの単独運転時に、2次ポンプ11及び熱交換器用1次ポンプ22bの運転を停止させると共に共用ポンプ24bを起動し、負荷側系統10の送水差圧が設定差圧に保持されるように、共用ポンプ24bによる熱源水の送水流量を調整すればよい。また、熱交換器用1次ポンプ22bの定格流量と同一の定格流量を有する変流量タイプの共用ポンプ24bを使用する場合は、熱交換器用1次ポンプ22bによる熱源水の送水流量を調整する必要がないので、熱交換器用1次ポンプ22bにインバータを設ける必要はない。   In the above-described embodiment, a pump having a smaller rated flow rate than the rated flow rate of the primary pump 22b for heat exchanger is used as the shared pump 24b. However, the present invention is not limited to this, and for example, for the heat exchanger It is also possible to use a shared pump 24b having the same rated flow rate as that of the primary pump 22b. In this case, the secondary pump 11 and the primary for heat exchanger are used during the independent operation of the heat exchanger system 20b. What is necessary is just to adjust the water supply flow rate of the heat source water by the common pump 24b so that the operation of the pump 22b is stopped and the common pump 24b is started and the water supply differential pressure of the load side system 10 is maintained at the set differential pressure. Moreover, when using the variable flow type common pump 24b having the same rated flow rate as that of the heat exchanger primary pump 22b, it is necessary to adjust the water supply flow rate of the heat source water by the heat exchanger primary pump 22b. Therefore, it is not necessary to provide an inverter in the heat exchanger primary pump 22b.

このように、熱交換器用1次ポンプ22bの定格流量と同一の定格流量を有する変流量タイプの共用ポンプ24bを使用する場合は、熱交換器系統分の揚程が熱交換器用1次ポンプ22bの揚程より小さくなることはないが、共用ポンプ24bの定格流量は、2次ポンプ11の定格流量より小さくなっているので、負荷側系統分の揚程が2次ポンプ11の揚程より小さくなり、2次ポンプ11及び熱交換器用1次ポンプ22bの揚程の和より小さい揚程のポンプを共用ポンプ24bとして選定することができる。従って、熱交換器系統20bの単独運転時には、2次ポンプと熱交換器用1次ポンプとを同時に運転させなければならない従来の空調システムに比べて、ポンプ動力が小さくなり、ランニングコストを削減することができるという利点がある。   Thus, when the variable flow type common pump 24b having the same rated flow rate as the rated flow rate of the heat exchanger primary pump 22b is used, the head for the heat exchanger system has a lift of the heat exchanger primary pump 22b. The nominal flow rate of the shared pump 24b is smaller than the rated flow rate of the secondary pump 11, but the lift for the load side system becomes smaller than the lift of the secondary pump 11, but the secondary pump 24b does not become smaller than the lift. A pump having a head smaller than the sum of the heads of the pump 11 and the primary pump 22b for heat exchanger can be selected as the common pump 24b. Therefore, when the heat exchanger system 20b is operated independently, the pump power is reduced and the running cost is reduced as compared with the conventional air conditioning system in which the secondary pump and the primary pump for heat exchanger must be operated simultaneously. There is an advantage that can be.

また、上述した実施形態では、熱交換器系統20bが熱交換器用1次ポンプ22b及び共用ポンプ24bといった2台のポンプを備えているが、これに限定されるものではなく、例えば、図2に示す空調システム2のように、共用ポンプを設けることなく、熱交換器用1次ポンプ22bにインバータを設置し、熱交換器系統20bが運転しているときは、上述した空調システム1における熱交換器用1次ポンプ22bと同様に、負荷側系統10における送水流量と熱源側系統20における送水流量とが一致または略一致するように、プログラマブル・ロジック・コントローラ40が、インバータによって、熱交換器用1次ポンプ22bの回転数を変化させることで、熱交換器系統20bにおける送水流量を調整するようにしておくと、少なくとも、熱交換器系統20bが運転を行っているときは、バイパス管33を介して往きヘッダ31から還りヘッダ32に所定温度の熱源水が戻されることがなく、負荷側系統10における負荷側機器14から送出される設計入水温度以上の熱源水が熱交換器21bに導入されることになり、蓄熱槽26の放熱側には、保有熱を使い切った蓄熱媒体が貯留されていくことになるので、蓄熱槽26に蓄えられた熱を効率よく利用することが可能となる。この場合、熱源機器系統20aと熱交換器系統20bとが同時運転を行っているときは、熱源機器系統20aが最大能力で運転を行い、熱源機器系統20aが処理することができない空調負荷の不足分を補うように、熱交換器系統20bが能力を抑えながら運転を行うことになるので、蓄熱槽26に蓄えられた熱を温存しながら、空調運転を行うことになる。   Moreover, in embodiment mentioned above, although the heat exchanger system | strain 20b is provided with two pumps, such as the primary pump 22b for heat exchangers, and the common pump 24b, it is not limited to this, For example, FIG. When the inverter is installed in the primary pump 22b for heat exchanger and the heat exchanger system 20b is operating without providing a common pump as shown in the air conditioning system 2 shown, for the heat exchanger in the above-described air conditioning system 1 Similar to the primary pump 22b, the programmable logic controller 40 uses an inverter to heat the primary pump for the heat exchanger so that the water supply flow rate in the load side system 10 and the water supply flow rate in the heat source side system 20 match or substantially match. By changing the number of rotations of 22b, the water supply flow rate in the heat exchanger system 20b is adjusted. However, when the heat exchanger system 20b is operating, the heat source water of a predetermined temperature is not returned to the return header 32 from the return header 31 via the bypass pipe 33, and the load side equipment 10 in the load side system 10 Since the heat source water having a temperature equal to or higher than the design incoming water temperature delivered from 14 is introduced into the heat exchanger 21b, the heat storage medium that uses up the stored heat is stored on the heat radiation side of the heat storage tank 26. The heat stored in the heat storage tank 26 can be used efficiently. In this case, when the heat source equipment system 20a and the heat exchanger system 20b are operating simultaneously, the heat source equipment system 20a operates at the maximum capacity, and the heat source equipment system 20a lacks an air conditioning load that cannot be processed. Since the heat exchanger system 20b performs the operation while suppressing the capacity so as to compensate for the minute, the air conditioning operation is performed while preserving the heat stored in the heat storage tank 26.

また、上述した実施形態では、バイパス管33が往きヘッダ31及び還りヘッダ32に直接接続されているが、これに限定されるものではなく、例えば、往きヘッダ31に接続されたバイパス管を、還りヘッダ32に代えて、負荷側配管15における流量計42の下流側に接続することも可能である。   In the above-described embodiment, the bypass pipe 33 is directly connected to the forward header 31 and the return header 32. However, the present invention is not limited to this. For example, the bypass pipe connected to the forward header 31 is returned to the return pipe 31. Instead of the header 32, it is possible to connect to the downstream side of the flow meter 42 in the load side pipe 15.

また、上述した実施形態では、熱源側系統20が、一の熱源機器系統20aと一の熱交換器系統20bとを備えている空調システム1、2について説明したが、これに限定されるものではなく、二以上の熱源機器系統と一の熱交換器系統とを備えている空調システムについても、本発明を適用することができる。   Moreover, although the heat source side system | strain 20 demonstrated the air conditioning systems 1 and 2 provided with the one heat source apparatus system | strain 20a and the one heat exchanger system | strain 20b in embodiment mentioned above, it is not limited to this. The present invention can also be applied to an air conditioning system including two or more heat source device systems and one heat exchanger system.

また、上述した実施形態では、負荷側系統10が1台の2次ポンプ11を備えている空調システム1について説明したが、これに限定されるものではなく、2台以上の2次ポンプを備えた空調システムについても本発明を適用することができることはいうまでもなく、その場合は、複数台の2次ポンプを同時に運転しながら、同じように回転数を変化させたり、複数台の2次ポンプの台数制御を行うことも可能である。   Moreover, although the load side system | strain 10 demonstrated the air conditioning system 1 provided with the one secondary pump 11 in embodiment mentioned above, it is not limited to this, It is provided with two or more secondary pumps. Needless to say, the present invention can be applied to an air-conditioning system. In that case, while simultaneously operating a plurality of secondary pumps, the number of revolutions can be changed in the same way, It is also possible to control the number of pumps.

また、上述した実施形態では、プログラマブル・ロジック・コントローラ40が、熱交換器用1次ポンプ22b、共用ポンプ24b、蓄熱2次ポンプ27、2次ポンプ11の回転数制御及びバイパス弁12の開閉制御を行っているが、これに限定されるものではなく、例えば、温度調節器や差圧調節器といった種々の制御手段を組み合わせて使用することも可能である。   In the above-described embodiment, the programmable logic controller 40 controls the rotational speed of the primary pump 22b for the heat exchanger, the common pump 24b, the heat storage secondary pump 27, the secondary pump 11 and the opening / closing control of the bypass valve 12. However, the present invention is not limited to this. For example, various control means such as a temperature controller and a differential pressure controller may be used in combination.

また、上述した各実施形態では、熱交換器用1次ポンプ22bや共用ポンプ24bの回転数を調整することによって、熱交換器系統20bにおける熱源水の送水量を調整するようになっているが、これに限定されるものではなく、例えば、熱交換器用1次ポンプ22bや共用ポンプ24bとして定流量ポンプを使用し、熱源側配管23b、25bに設けた流量制御弁等の開閉動作によって、熱交換器系統20bにおける熱源水の送水量を調整することも可能である。ただし、その場合は、十分なランニングコストの低減効果を得ることができないことはいうまでもない。   Moreover, in each embodiment mentioned above, although adjusting the rotation speed of the primary pump 22b for heat exchangers, or the common pump 24b, the amount of water supply of the heat source water in the heat exchanger system 20b is adjusted, For example, a constant flow pump is used as the heat exchanger primary pump 22b or the common pump 24b, and heat exchange is performed by opening and closing operations such as flow control valves provided in the heat source side pipes 23b and 25b. It is also possible to adjust the water supply amount of the heat source water in the vessel system 20b. In this case, however, it is needless to say that a sufficient running cost reduction effect cannot be obtained.

また、上述した実施形態では、負荷側バイパス配管12aが負荷側往きヘッダ13及び往きヘッダ31に接続されているが、これに限定されるものではなく、例えば、負荷側往きヘッダ13に接続された負荷側バイパス配管を、往きヘッダ31に代えて、還りヘッダ32に接続したり、負荷側配管15における流量計42の下流側に接続することも可能である。   In the above-described embodiment, the load-side bypass pipe 12a is connected to the load-side forward header 13 and the forward header 31. However, the present invention is not limited to this, and is connected to the load-side forward header 13, for example. The load side bypass pipe may be connected to the return header 32 instead of the forward header 31 or connected to the downstream side of the flow meter 42 in the load side pipe 15.

この発明にかかる空調システムの一実施形態を示す概略構成図である。It is a schematic structure figure showing one embodiment of an air-conditioning system concerning this invention. 他の実施形態である空調システムを示す概略構成図である。It is a schematic block diagram which shows the air conditioning system which is other embodiment. 従来の空調システムを示す概略構成図である。It is a schematic block diagram which shows the conventional air conditioning system.

符号の説明Explanation of symbols

1、2 空調システム
10 負荷側系統
11 2次ポンプ
11a 負荷側往き配管
12 バイパス弁
12a 負荷側バイパス配管
13 負荷側往きヘッダ
14 負荷側機器
15 負荷側配管
16 二方弁
20 熱源側系統
20a 熱源機器系統
20b 熱交換器系統
21a 熱源機器
21b 熱交換器
22a 熱源機器用1次ポンプ
22b 熱交換器用1次ポンプ
23a、23b、25b 熱源側配管
24b 共用ポンプ
26 蓄熱槽
27 蓄熱2次ポンプ
28 蓄熱2次配管
31 往きヘッダ
32 還りヘッダ
33 バイパス管(バイパス流路)
40 プログラマブル・ロジック・コントローラ
41 差圧発信器
42 流量計
43 送水温度センサ
1, 2 Air conditioning system 10 Load side system 11 Secondary pump 11a Load side forward piping 12 Bypass valve 12a Load side bypass piping 13 Load side forward header 14 Load side equipment 15 Load side piping 16 Two-way valve 20 Heat source side system 20a Heat source equipment System 20b Heat exchanger system 21a Heat source equipment 21b Heat exchanger 22a Primary pump for heat source equipment 22b Primary pump for heat exchanger 23a, 23b, 25b Heat source side piping 24b Shared pump 26 Heat storage tank 27 Heat storage secondary pump 28 Heat storage secondary Piping 31 Outgoing header 32 Return header 33 Bypass pipe (bypass flow path)
40 Programmable logic controller 41 Differential pressure transmitter 42 Flow meter 43 Water supply temperature sensor

Claims (3)

往きヘッダ及び還りヘッダを介して相互に接続された、所定温度の熱源水を生成する熱源側系統と前記熱源側系統によって生成された所定温度の熱源水を利用して空調負荷を処理する負荷側機器が設置された負荷側系統とを備え、
前記熱源側系統は、前記往きヘッダ及び前記還りヘッダに個別に接続される、所定温度の熱源水を生成する定流量タイプの熱源機器及び熱源機器用1次ポンプが設置された熱源機器系統と蓄熱槽に貯留された蓄熱媒体が保有する熱を利用して所定温度の熱源水を生成する熱交換器及び熱交換器用1次ポンプが設置された熱交換器系統とを有し、
前記負荷側系統は、前記熱源側系統によって前記往きヘッダに導入された所定温度の熱源水を、前記負荷側機器に送出する2次ポンプを有し、
前記熱源側系統によって前記往きヘッダに導入された所定温度の熱源水の余剰分を前記還りヘッダに戻すバイパス流路を有し、
前記熱源側系統は、空調負荷に応じて、前記熱源機器系統及び前記熱交換器系統の発停制御が行われるようになっている空調システムにおいて、
前記熱交換器系統が運転しているときは、前記負荷側系統における送水流量と前記熱源側系統における送水流量とが一致または略一致するように、前記熱交換器系統における送水流量を調整するようにしたことを特徴とする空調システム。
A heat source side system that generates heat source water of a predetermined temperature and a load side that processes the air conditioning load using the heat source water of a predetermined temperature generated by the heat source side system, connected to each other via a forward header and a return header With the load side system where the equipment is installed,
The heat source side system is connected to the forward header and the return header individually, and the heat source equipment system and the heat source equipment system in which the primary pump for the heat source equipment and the heat source equipment for generating the heat source water of the predetermined temperature are installed and the heat storage A heat exchanger system that generates heat source water at a predetermined temperature using heat stored in the heat storage medium stored in the tank, and a heat exchanger system in which a primary pump for the heat exchanger is installed,
The load side system has a secondary pump that sends heat source water of a predetermined temperature introduced into the forward header by the heat source side system to the load side device,
A bypass flow path for returning an excess of heat source water at a predetermined temperature introduced into the forward header by the heat source side system to the return header;
The heat source side system is an air conditioning system in which start / stop control of the heat source device system and the heat exchanger system is performed according to an air conditioning load,
When the heat exchanger system is operating, the water supply flow rate in the heat exchanger system is adjusted so that the water supply flow rate in the load side system and the water supply flow rate in the heat source side system match or substantially match. An air conditioning system characterized by
往きヘッダ及び還りヘッダを介して相互に接続された、所定温度の熱源水を生成する熱源側系統と前記熱源側系統によって生成された所定温度の熱源水を利用して空調負荷を処理する負荷側機器が設置された負荷側系統とを備え、
前記熱源側系統は、前記往きヘッダ及び前記還りヘッダに個別に接続される、所定温度の熱源水を生成する定流量タイプの熱源機器及び熱源機器用1次ポンプが設置された熱源機器系統と蓄熱槽に貯留された蓄熱媒体が保有する熱を利用して所定温度の熱源水を生成する熱交換器及び熱交換器用1次ポンプが設置された熱交換器系統とを有し、
前記負荷側系統は、前記熱源側系統によって前記往きヘッダに導入された所定温度の熱源水を、前記負荷側機器に送出する2次ポンプを有し、
前記熱源側系統によって前記往きヘッダに導入された所定温度の熱源水の余剰分が、バイパス流路を介して、前記還りヘッダに戻されるようになっており、
前記熱源側系統は、空調負荷に応じて、前記熱源機器系統及び前記熱交換器系統の発停制御が行われるようになっている空調システムにおいて、
前記熱交換器系統は、前記熱交換器によって生成された所定温度の熱源水を、定流量タイプの前記熱交換器用1次ポンプによって、前記往きヘッダに送出するメイン流路と、前記2次ポンプの運転を停止した状態で、前記負荷側機器に前記熱源機器用1次ポンプの定格流量と同一流量の熱源水を循環供給可能な変流量タイプの共用ポンプが、前記熱源機器用1次ポンプ及び前記2次ポンプをバイパスするように、前記負荷側系統及び前記メイン流路に接続されたサブ流路とを有し、
前記熱交換器系統の単独運転時は、前記2次ポンプ及び前記熱交換器用1次ポンプの運転を停止させると共に前記熱交換器系統を前記サブ流路に切り換えた状態で、前記負荷側系統の送水差圧が所定差圧に保持されるように、前記共用ポンプによる熱源水の送水流量を調整するようになっていることを特徴とする空調システム。
A heat source side system that generates heat source water of a predetermined temperature and a load side that processes the air conditioning load using the heat source water of a predetermined temperature generated by the heat source side system, connected to each other via a forward header and a return header With the load side system where the equipment is installed,
The heat source side system is connected to the forward header and the return header individually, and the heat source equipment system and the heat source equipment system in which the primary pump for the heat source equipment and the heat source equipment for generating the heat source water of the predetermined temperature are installed and the heat storage A heat exchanger system that generates heat source water at a predetermined temperature using heat stored in the heat storage medium stored in the tank, and a heat exchanger system in which a primary pump for the heat exchanger is installed,
The load side system has a secondary pump that sends heat source water of a predetermined temperature introduced into the forward header by the heat source side system to the load side device,
The excess heat source water at a predetermined temperature introduced into the forward header by the heat source side system is returned to the return header via a bypass channel,
The heat source side system is an air conditioning system in which start / stop control of the heat source device system and the heat exchanger system is performed according to an air conditioning load,
The heat exchanger system includes a main flow path for sending heat source water having a predetermined temperature generated by the heat exchanger to the forward header by a constant flow type primary pump for the heat exchanger, and the secondary pump. A variable flow type shared pump capable of circulatingly supplying heat source water having the same flow rate as the rated flow rate of the primary pump for heat source equipment to the load side equipment with the operation of A sub-flow path connected to the load side system and the main flow path so as to bypass the secondary pump;
At the time of independent operation of the heat exchanger system, the operation of the secondary pump and the primary pump for heat exchanger is stopped and the heat exchanger system is switched to the sub flow path, An air conditioning system characterized in that the water supply flow rate of the heat source water by the shared pump is adjusted so that the water supply differential pressure is maintained at a predetermined differential pressure.
往きヘッダ及び還りヘッダを介して相互に接続された、所定温度の熱源水を生成する熱源側系統と前記熱源側系統によって生成された所定温度の熱源水を利用して空調負荷を処理する負荷側機器が設置された負荷側系統とを備え、
前記熱源側系統は、前記往きヘッダ及び前記還りヘッダに個別に接続される、所定温度の熱源水を生成する定流量タイプの熱源機器及び熱源機器用1次ポンプが設置された熱源機器系統と蓄熱槽に貯留された蓄熱媒体が保有する熱を利用して所定温度の熱源水を生成する熱交換器及び熱交換器用1次ポンプが設置された熱交換器系統とを有し、
前記負荷側系統は、前記熱源側系統によって前記往きヘッダに導入された所定温度の熱源水を、前記負荷側機器に送出する2次ポンプを有し、
前記熱源側系統によって前記往きヘッダに導入された所定温度の熱源水の余剰分が、バイパス流路を介して、前記還りヘッダに戻されるようになっており、
前記熱源側系統は、空調負荷に応じて、前記熱源機器系統及び前記熱交換器系統の発停制御が行われるようになっている空調システムにおいて、
前記熱交換器系統は、前記熱交換器によって生成された所定温度の熱源水を、変流量タイプの前記熱交換器用1次ポンプによって、前記往きヘッダに送出するメイン流路と、前記2次ポンプの運転を停止した状態で、前記熱交換器用1次ポンプの定格流量を下回る所定流量の熱源水を循環供給可能な変流量タイプの共用ポンプが、前記熱源機器用1次ポンプ及び前記2次ポンプをバイパスするように、前記負荷側系統及び前記メイン流路に接続されたサブ流路とを有し、
前記熱交換器系統の単独運転時であって、前記負荷側系統における熱源水の送水流量が所定流量を上回っているときは、前記熱交換器系統を前記メイン流路に切り換えた状態で、前記負荷側系統における熱源水の送水流量と前記熱交換器系統における熱源水の送水流量とが一致または略一致するように、前記熱交換器用1次ポンプによる熱源水の送水流量を調整するようになっており、
前記熱交換器系統の単独運転時であって、前記負荷側系統における送水流量が所定流量以下に低下すると、前記2次ポンプ及び前記熱交換器用1次ポンプの運転を停止させると共に前記熱交換器系統を前記サブ流路に切り換えた状態で、前記負荷側系統の送水差圧が所定差圧に保持されるように、前記共用ポンプによる熱源水の送水流量を調整するようになっていることを特徴とする空調システム。
A heat source side system that generates heat source water of a predetermined temperature and a load side that processes the air conditioning load using the heat source water of a predetermined temperature generated by the heat source side system, connected to each other via a forward header and a return header With the load side system where the equipment is installed,
The heat source side system is connected to the forward header and the return header individually, and the heat source equipment system and the heat source equipment system in which the primary pump for the heat source equipment and the heat source equipment for generating the heat source water of the predetermined temperature are installed and the heat storage A heat exchanger system that generates heat source water at a predetermined temperature using heat stored in the heat storage medium stored in the tank, and a heat exchanger system in which a primary pump for the heat exchanger is installed,
The load side system has a secondary pump that sends heat source water of a predetermined temperature introduced into the forward header by the heat source side system to the load side device,
The excess heat source water at a predetermined temperature introduced into the forward header by the heat source side system is returned to the return header via a bypass channel,
The heat source side system is an air conditioning system in which start / stop control of the heat source device system and the heat exchanger system is performed according to an air conditioning load,
The heat exchanger system includes a main flow path for sending heat source water having a predetermined temperature generated by the heat exchanger to the forward header by the variable flow type primary pump for heat exchanger, and the secondary pump. The variable flow type common pump that can circulate and supply the heat source water at a predetermined flow rate lower than the rated flow rate of the primary pump for the heat exchanger while the operation of the primary pump for the heat source and the secondary pump are stopped. And having a sub-flow path connected to the load side system and the main flow path,
During the independent operation of the heat exchanger system, when the water supply flow rate of the heat source water in the load side system exceeds a predetermined flow rate, the heat exchanger system is switched to the main flow path, The water supply flow rate of the heat source water by the primary pump for heat exchanger is adjusted so that the water supply flow rate of the heat source water in the load side system and the water supply flow rate of the heat source water in the heat exchanger system match or substantially match. And
When the water supply flow rate in the load side system drops below a predetermined flow rate when the heat exchanger system is operating alone, the operation of the secondary pump and the primary pump for the heat exchanger is stopped and the heat exchanger In a state where the system is switched to the sub flow path, the water supply flow rate of the heat source water by the shared pump is adjusted so that the water supply differential pressure of the load side system is maintained at a predetermined differential pressure. Characteristic air conditioning system.
JP2003291057A 2003-08-11 2003-08-11 Air conditioning system Expired - Lifetime JP3745352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003291057A JP3745352B2 (en) 2003-08-11 2003-08-11 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003291057A JP3745352B2 (en) 2003-08-11 2003-08-11 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2005061699A true JP2005061699A (en) 2005-03-10
JP3745352B2 JP3745352B2 (en) 2006-02-15

Family

ID=34368862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003291057A Expired - Lifetime JP3745352B2 (en) 2003-08-11 2003-08-11 Air conditioning system

Country Status (1)

Country Link
JP (1) JP3745352B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036422A (en) * 2007-08-01 2009-02-19 Techno Ryowa Ltd Heat source system
WO2014010738A1 (en) * 2012-07-13 2014-01-16 株式会社日立製作所 Heat source system
CN107166587A (en) * 2017-05-31 2017-09-15 四川建源节能科技有限公司 A kind of new blower fan system of intelligent frequency-conversion based on PLC
CN107289580A (en) * 2017-05-31 2017-10-24 四川建源节能科技有限公司 A kind of Intelligent fresh air ventilator control system
CN108469103A (en) * 2017-02-21 2018-08-31 群光电能科技股份有限公司 Air conditioner water pump control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105987535A (en) * 2015-02-03 2016-10-05 宁波奈兰环境系统有限公司 High-capacity multi-split air-condition heat pump unit for ultra-long-distance conveying of refrigerant

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036422A (en) * 2007-08-01 2009-02-19 Techno Ryowa Ltd Heat source system
WO2014010738A1 (en) * 2012-07-13 2014-01-16 株式会社日立製作所 Heat source system
JP2014020630A (en) * 2012-07-13 2014-02-03 Hitachi Ltd Heat source system
CN108469103A (en) * 2017-02-21 2018-08-31 群光电能科技股份有限公司 Air conditioner water pump control method
CN108469103B (en) * 2017-02-21 2020-07-31 群光电能科技股份有限公司 Air conditioner water pump control method
CN107166587A (en) * 2017-05-31 2017-09-15 四川建源节能科技有限公司 A kind of new blower fan system of intelligent frequency-conversion based on PLC
CN107289580A (en) * 2017-05-31 2017-10-24 四川建源节能科技有限公司 A kind of Intelligent fresh air ventilator control system

Also Published As

Publication number Publication date
JP3745352B2 (en) 2006-02-15

Similar Documents

Publication Publication Date Title
JP2008128809A (en) Temperature adjustment device for testing
JP2009299941A (en) Hot water supply system
JP4960795B2 (en) Heat source system
JP3851285B2 (en) Control device
JP3880546B2 (en) Air conditioning system
JP3828485B2 (en) Control device
JP3745352B2 (en) Air conditioning system
JP2008309428A (en) Flow rate control device of heat source system and flow rate control method of heat source system
JP4249591B2 (en) Primary pump type heat source variable flow rate control system and primary pump minimum flow rate securing method
JP5470520B2 (en) Multi-system cooling device and its water supply setting method
JP2007271120A (en) Heating medium conveyance system
JP3688694B2 (en) Air conditioning system
JP3745357B2 (en) Air conditioning system
WO2018180903A1 (en) Heating device and heating method
JP2009243718A (en) Heat medium transporting system
JP2003130428A (en) Connection type cold/hot water device
JP4101198B2 (en) Heat pump water heater / heater
JP3699097B2 (en) Air conditioning system
JP4369841B2 (en) Heat medium piping system
JP3884718B2 (en) Control device
JP2009236465A (en) Water supply pressure control system and method
JP4568119B2 (en) Heat supply system having a plurality of heat source units and pump groups
JP6848114B1 (en) Heat supply control system
JP2019039596A (en) Heat pump heat source machine
KR101562112B1 (en) Hot water supply heating system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051116

R150 Certificate of patent or registration of utility model

Ref document number: 3745352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term