JP2009236465A - Water supply pressure control system and method - Google Patents

Water supply pressure control system and method Download PDF

Info

Publication number
JP2009236465A
JP2009236465A JP2008086468A JP2008086468A JP2009236465A JP 2009236465 A JP2009236465 A JP 2009236465A JP 2008086468 A JP2008086468 A JP 2008086468A JP 2008086468 A JP2008086468 A JP 2008086468A JP 2009236465 A JP2009236465 A JP 2009236465A
Authority
JP
Japan
Prior art keywords
differential pressure
valve
load
pressure
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008086468A
Other languages
Japanese (ja)
Other versions
JP4984302B2 (en
Inventor
Atsushi Mizutaka
淳 水高
Hideta Sekine
秀太 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2008086468A priority Critical patent/JP4984302B2/en
Priority to TW98103817A priority patent/TW200940834A/en
Priority to CN2009101317183A priority patent/CN101545661B/en
Publication of JP2009236465A publication Critical patent/JP2009236465A/en
Application granted granted Critical
Publication of JP4984302B2 publication Critical patent/JP4984302B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To save energy of secondary pumps under low load without causing insufficient differential pressure of a loading apparatus having a large load requirement under low load of another loading apparatus at a terminal end. <P>SOLUTION: Valve differential pressures ΔPV1-ΔPV3 measured in loading apparatuses 12-1 to 12-3 are transmitted to a control device 11. The control device 11 obtains the valve differential pressures ΔPV1-ΔPV3 from the loading apparatuses 12-1 to 12-3, extracts a minimum differential pressure ΔPVmin from the obtained valve differential pressures ΔPV1-ΔPV3, determines a set value PSsp of the water supply pressure so that the extracted minimum differential pressure ΔPVmin becomes a prescribed value (0.3 kg/cm<SP>2</SP>, for example) or more, and controls the rotational speed of secondary pumps 6-1 to 6-3 and the opening of a bypass valve 8 so that a measurement value PSpv of the water supply pressure becomes the set value PSsp. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、熱源機により生成された冷温水の負荷機器(ファンコイルユニットや空調機等)への送水圧を制御する送水圧制御システム及び送水圧制御方法に関するものである。   The present invention relates to a water supply pressure control system and a water supply pressure control method for controlling a water supply pressure to a load device (fan coil unit, air conditioner, etc.) of cold / hot water generated by a heat source device.

従来より、熱源機により生成された冷温水の負荷機器への送水圧を制御する送水圧制御の一つとして、例えば特許文献1に示されたシステムでは、熱源機からの冷温水の往水管路と還水管路との間に設けられた複数の負荷機器のうち、末端に位置する負荷機器の入力側と出力側との間の差圧を末端差圧として計測し、この計測した末端差圧に基づいて熱源機からの負荷機器への冷温水の送水圧を設定するようにしている。   Conventionally, as one of the water supply pressure controls for controlling the water supply pressure to the load equipment of the cold / hot water generated by the heat source machine, for example, in the system disclosed in Patent Document 1, the supply pipe of the cold / hot water from the heat source machine The differential pressure between the input side and the output side of the load device located at the end of the plurality of load devices provided between the pipe and the return water pipe is measured as the end differential pressure. Based on the above, the supply pressure of cold / hot water from the heat source device to the load device is set.

この特許文献1に示されたシステムによれば、末端に位置する負荷機器の入力側と出力側との間の差圧(末端差圧)に基づいて熱源機からの負荷機器への冷温水の送水圧が変更されるものとなり、末端差圧が小さい場合には冷温水の送水圧が高くされ、末端差圧が大きい場合には冷温水の送水圧が低くされる。   According to the system disclosed in Patent Document 1, cold / hot water from a heat source device to a load device based on a differential pressure (terminal differential pressure) between an input side and an output side of the load device located at the end. The water supply pressure is changed. When the terminal differential pressure is small, the water supply pressure of the cold / hot water is increased, and when the terminal differential pressure is large, the water supply pressure of the cold / hot water is decreased.

例えば、負荷機器を空調機とした場合、末端に位置する空調機(末端空調機)の入力側と出力側との間の差圧(末端空調機差圧)を1.0kg/cm2 に保持するように、熱源機からの空調機への冷温水の送水圧が制御される。これにより、空調機への冷温水の搬送動力を削減することが可能となり、省エネルギー化を実現することができる。 For example, if the load equipment is an air conditioner, the differential pressure (terminal air conditioner differential pressure) between the input side and output side of the air conditioner located at the end (terminal air conditioner) is maintained at 1.0 kg / cm 2 . Thus, the supply pressure of cold / hot water from the heat source device to the air conditioner is controlled. Thereby, it becomes possible to reduce the conveyance power of the cold / hot water to an air conditioner, and can implement | achieve energy saving.

特開2005−299980号公報JP 2005-299980 A

しかしながら、上述した従来の送水圧の制御方法によると、末端空調機差圧を例えば1.0kg/cm2 に保持するようにしているので、末端空調機が低負荷の場合、次のような問題が生じていた。以下、その問題について、説明する。 However, according to the conventional water supply pressure control method described above, since the terminal air conditioner differential pressure is maintained at, for example, 1.0 kg / cm 2 , the following problem occurs when the terminal air conditioner has a low load. Has occurred. The problem will be described below.

空調機は、冷温水コイルと、この冷温水コイルへの冷温水の流量を調節するバルブを備えている。この空調機において、最大負荷時には、例えば1.0kg/cm2 の差圧が必要である。この場合、空調機の最大負荷時には、バルブに0.3kg/cm2 の差圧が加わり、冷温水コイルに0.7kg/cm2 の差圧が加わる。 The air conditioner includes a cold / hot water coil and a valve for adjusting the flow rate of the cold / hot water to the cold / hot water coil. In this air conditioner, at the maximum load, for example, a differential pressure of 1.0 kg / cm 2 is required. In this case, at the time of maximum load of the air conditioner, joined by differential pressure 0.3 kg / cm 2 to the valve, a differential pressure of 0.7 kg / cm 2 is applied to the cold water coils.

これに対し、空調機の負荷が小さい場合には、バルブの抵抗が高い状態となり、バルブの全閉付近では、ほゞ1.0kg/cm2 の差圧がバルブに加わることになる。すなわち、バルブには0.3kg/cm2 の差圧がかかれば十分なところ、末端空調機が低負荷の場合には、ほゞ1.0kg/cm2 の差圧がかかることになり、その分エネルギーのロスが生じる。 On the other hand, when the load of the air conditioner is small, the resistance of the valve is high, and a differential pressure of approximately 1.0 kg / cm 2 is applied to the valve near the fully closed state of the valve. That is, where the valve of sufficient Kakare differential pressure of 0.3 kg / cm 2, when terminal air conditioner of low load, results in the differential pressure of Ho Isuzu 1.0 kg / cm 2 is applied, the Loss of energy will occur.

なお、末端空調機のバルブに常に0.3kg/cm2 の差圧がかかるように送水圧を制御することが考えられるが、このような制御方法とすると、末端空調機の低負荷時に、他の空調機での負荷要求が大きくなった場合、その空調機における差圧が不足し、設計流量を保持することができないという問題が生じる。 Note that it is conceivable to control the water supply pressure so that a differential pressure of 0.3 kg / cm 2 is always applied to the valve of the terminal air conditioner. When the load demand in the air conditioner becomes large, the differential pressure in the air conditioner becomes insufficient and the design flow rate cannot be maintained.

本発明は、このような課題を解決するためになされたもので、その目的とするところは、末端の負荷機器の低負荷時に負荷要求が大きい他の負荷機器の差圧が不足するという問題を生じさせることなく、低負荷時の2次ポンプの省エネルギーを図ることができる送水圧制御システムおよび送水圧制御方法を提供することにある。   The present invention has been made to solve such a problem, and the object of the present invention is to solve the problem that the differential pressure of another load device having a large load requirement is insufficient when the load device at the end is low. An object of the present invention is to provide a water pressure control system and a water pressure control method capable of saving energy of a secondary pump at low load without causing them.

このような目的を達成するために本発明は、冷温水を生成する熱源機と、この熱源機からの冷温水の往水管路と還水管路との間に設けられた複数の負荷機器と、これら負荷機器への熱源機からの冷温水の送水圧を制御する制御装置とを備えた送水圧制御システムにおいて、各負荷機器に、自己の負荷機器に流れる冷温水の流量を調整するバルブの入口側と出口側との間の差圧をバルブ差圧として計測する差圧計測手段を設け、制御装置に、各負荷機器の差圧計測手段によって計測されたバルブ差圧を取得するバルブ差圧取得手段と、このバルブ差圧取得手段によって取得されたバルブ差圧より最小差圧を抽出する最小差圧抽出手段と、この最小差圧抽出手段によって抽出された最小差圧が予め定められた所定の値以上となるように熱源機からの負荷機器への冷温水の送水圧を設定する送水圧設定手段とを設けたものである。   In order to achieve such an object, the present invention includes a heat source device that generates cold / hot water, and a plurality of load devices provided between an outlet pipe and a return water pipe of cold / hot water from the heat source machine, In a water supply pressure control system comprising a control device for controlling the supply pressure of cold / hot water from the heat source device to these load devices, each load device has an inlet of a valve for adjusting the flow rate of the cold / hot water flowing to its own load device. A differential pressure measurement unit that measures the differential pressure between the outlet side and the outlet side as a valve differential pressure is provided, and the valve differential pressure obtained by the differential pressure measurement unit of each load device is obtained in the control device. Means, a minimum differential pressure extraction means for extracting a minimum differential pressure from the valve differential pressure acquired by the valve differential pressure acquisition means, and a minimum differential pressure extracted by the minimum differential pressure extraction means is a predetermined predetermined value. From the heat source machine so that it is above the value Is provided with a hydraulically setting means feeding sets a feed pressure of hot and cold water to the load equipment.

この発明において、各負荷機器は、自己の負荷機器に流れる冷温水の流量を調整するバルブの入口側と出口側との間の差圧をバルブ差圧として計測する。例えば、負荷機器を空調機として、この空調機にその冷温水コイルへの冷温水の流量を調整するバルブが設けられ、このバルブに差圧計測手段が既設の手段として設けられているものとすれば、差圧計測手段によって計測されるバルブの入口側と出口側との間の差圧がバルブ差圧として、制御装置へ送られる。   In this invention, each load device measures the differential pressure between the inlet side and the outlet side of the valve that adjusts the flow rate of the cold / hot water flowing through the load device as the valve differential pressure. For example, assuming that the load device is an air conditioner, a valve for adjusting the flow rate of cold / hot water to the cold / hot water coil is provided in the air conditioner, and a differential pressure measuring means is provided as an existing means on the valve. For example, the differential pressure between the inlet side and the outlet side of the valve measured by the differential pressure measuring means is sent to the control device as the valve differential pressure.

制御装置は、各負荷機器から送られてくるバルブ差圧を取得し、この取得したバルブ差圧より最小差圧を抽出し、この抽出した最小差圧が予め定められた所定の値以上となるように、熱源機からの負荷機器への冷温水の送水圧を設定する。   The control device acquires the valve differential pressure sent from each load device, extracts the minimum differential pressure from the acquired valve differential pressure, and the extracted minimum differential pressure becomes equal to or greater than a predetermined value. Thus, the water supply pressure of the cold / hot water from the heat source device to the load device is set.

この場合、例えば、末端の負荷機器が低負荷で、他の負荷機器での負荷要求が大きく、この負荷機器のバルブ差圧が最小差圧となれば、この最小差圧が所定の値(例えば、0.3kg/cm2 )以上となるように、熱源機からの負荷機器への冷温水の送水圧が設定される。 In this case, for example, if the load device at the end is low load and the load requirement at other load devices is large, and the valve differential pressure of this load device becomes the minimum differential pressure, the minimum differential pressure is a predetermined value (for example, , 0.3 kg / cm 2 ) or higher, the supply pressure of cold / hot water from the heat source device to the load device is set.

したがって、末端の負荷機器の低負荷時に、他の負荷機器での負荷要求が大きくなった場合、その負荷機器における差圧が不足し、設計流量を保持することができないという問題は生じない。また、この負荷要求が大きくなった他の負荷機器での差圧を確保しながら、末端の負荷機器のバルブに加わる差圧は可能な限り小さくなる。これにより、末端の負荷機器の低負荷時に負荷要求が大きい他の負荷機器の差圧が不足するという問題を生じさせることなく、低負荷時の2次ポンプの省エネルギーが図られる。   Therefore, when the load requirement at the other load device becomes large at the time of low load of the load device at the end, there is no problem that the differential pressure in the load device is insufficient and the design flow rate cannot be maintained. In addition, the differential pressure applied to the valve of the terminal load device is as small as possible while ensuring the differential pressure in the other load devices that have increased the load requirement. Thereby, the energy saving of the secondary pump at the time of low load can be achieved without causing the problem that the differential pressure of other load devices having a large load requirement at the time of low load of the terminal load device is insufficient.

なお、本発明は、送水圧制御システムとしてではなく、送水圧制御方法として実現することも可能である。送水圧制御方法とする場合、冷温水を生成する熱源機と、この熱源機からの冷温水の往水管路と還水管路との間に設けられた複数の負荷機器と、これら負荷機器への熱源機からの冷温水の送水圧を制御する制御装置とを備えたシステムにおいて、負荷機器毎にその負荷機器に流れる冷温水の流量を調整するバルブの入口側と出口側との間の差圧をバルブ差圧として計測する差圧計測ステップと、この差圧計測ステップによって計測された各負荷機器のバルブ差圧を取得するバルブ差圧取得ステップと、このバルブ差圧取得ステップによって取得されたバルブ差圧より最小差圧を抽出する最小差圧抽出ステップと、この最小差圧抽出ステップによって抽出された最小差圧が予め定められた所定の値以上となるように熱源機からの負荷機器への冷温水の送水圧を設定する送水圧設定ステップとを設ける。   The present invention can be realized not as a water supply pressure control system but as a water supply pressure control method. In the case of the water supply pressure control method, a heat source device that generates cold / hot water, a plurality of load devices provided between the outgoing and return water pipelines of the cold / hot water from the heat source device, and the load devices In a system equipped with a control device that controls the supply pressure of cold / hot water from the heat source unit, the differential pressure between the inlet side and the outlet side of the valve that adjusts the flow rate of cold / hot water flowing to the load device for each load device The differential pressure measurement step for measuring the differential pressure as a valve differential pressure, the differential valve pressure acquisition step for acquiring the differential valve pressure of each load device measured in the differential pressure measurement step, and the valve acquired by the differential valve pressure acquisition step The minimum differential pressure extraction step for extracting the minimum differential pressure from the differential pressure, and the load device from the heat source unit to the load device so that the minimum differential pressure extracted by the minimum differential pressure extraction step is equal to or greater than a predetermined value. cold Providing a hydraulically setting step sent to set the feed water pressure of the water.

本発明によれば、計測された各負荷機器のバルブ差圧を取得し、この取得したバルブ差圧より最小差圧を抽出し、この最小差圧が予め定められた所定の値以上となるように、熱源機からの負荷機器への冷温水の送水圧を設定するようにしたので、例えば、末端の負荷機器が低負荷で、他の負荷機器での負荷要求が大きく、この負荷機器のバルブ差圧が最小差圧となれば、この最小差圧が所定の値以上となるように熱源機からの負荷機器への冷温水の送水圧が設定されるようになり、末端の負荷機器の低負荷時に負荷要求が大きい他の負荷機器の差圧が不足するという問題を生じさせることなく、低負荷時の2次ポンプの省エネルギーを図ることができるようになる。   According to the present invention, the measured valve differential pressure of each load device is acquired, the minimum differential pressure is extracted from the acquired valve differential pressure, and the minimum differential pressure is equal to or greater than a predetermined value. In addition, the supply pressure of cold / hot water from the heat source unit to the load device is set, so for example, the load device at the end is low and the load demand at other load devices is large. If the differential pressure becomes the minimum differential pressure, the supply pressure of the cold / hot water from the heat source unit to the load device is set so that the minimum differential pressure becomes a predetermined value or more. Energy saving of the secondary pump at the time of low load can be achieved without causing the problem that the differential pressure of other load equipment having a large load requirement at the time of load is insufficient.

以下、本発明を図面に基づいて詳細に説明する。図1はこの発明に係る送水圧制御システムの一実施の形態の構成を示す計装図である。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is an instrumentation diagram showing a configuration of an embodiment of a water supply pressure control system according to the present invention.

この送水圧制御システムは、冷温水発生器、ヒートポンプ、冷凍機、ボイラーなどの冷温水を生成する熱源機1−1〜1−3と、熱源機1−1〜1−3に対して補機として設けられた1次ポンプ2−1〜2−3と、往ヘッダ3−1,3−2と、還ヘッダ4と、往ヘッダ3−1と還ヘッダ4との間に設けられた第1のバイパス管路5と、往ヘッダ3−1と3−2との間に設けられた2次ポンプ6−1〜6−3と、往ヘッダ3−1と往ヘッダ3−2との間に設けられた第2のバイパス管路7と、バイパス管路7に設けられたバイパス弁8と、往水管路9と、還水管路10と、制御装置11とを備えており、往水管路9と還水管路10との間には並列にファンコイルユニットや空調機等の負荷機器12−1〜12−3が設けられている。   The water supply pressure control system includes heat source devices 1-1 to 1-3 that generate cold / hot water such as a cold / hot water generator, a heat pump, a refrigerator, and a boiler, and auxiliary devices for the heat source devices 1-1 to 1-3. Primary pumps 2-1 to 2-3, forward headers 3-1 and 3-2, return header 4, and first header provided between forward header 3-1 and return header 4. Between the bypass pump 5, the secondary pumps 6-1 to 6-3 provided between the forward headers 3-1 and 3-2, and the forward header 3-1 and the forward header 3-2 A second bypass pipe 7 provided, a bypass valve 8 provided in the bypass pipe 7, a forward water pipe 9, a return water pipe 10, and a control device 11 are provided. In addition, load devices 12-1 to 12-3 such as a fan coil unit and an air conditioner are provided in parallel with the return water pipe 10.

この送水圧制御システムにおいて、1次ポンプ2−1〜2−3により圧送され熱源機1−1〜3により熱量が加えられた冷温水は、往ヘッダ3−1に送られ、2次ポンプ6−1〜6−3によりさらに圧送されて、往ヘッダ3−2を経て往水管路9に供給され、負荷機器12−1〜12−3を介し、還水管路10を通って還ヘッダ4に至り、再び1次ポンプ2−1〜2−3によって圧送され、以上の経路を循環する。   In this water supply pressure control system, cold / hot water pumped by the primary pumps 2-1 to 2-3 and heated by the heat source units 1-1 to 1-3 is sent to the forward header 3-1, and the secondary pump 6 is supplied. -1 to 6-3 are further pumped, supplied to the outgoing water line 9 via the outgoing header 3-2, and passed to the returning header 4 through the return water pipe 10 via the load devices 12-1 to 12-3. Then, it is again pumped by the primary pumps 2-1 to 2-3 and circulates the above path.

この冷温水の循環経路中、往水管路9には、往ヘッダ3−2から吐出される冷温水の圧力を熱源機1−1〜1−3からの負荷機器12−1〜12−3への冷温水の送水圧PSpvとして計測する圧力センサ13が設けられている。また、2次ポンプ6−1〜6−3には、そのポンプの回転数を調整するためのインバータ6−1a〜6−3aが付設されており、負荷機器12−1〜12−3には、負荷機器12−1〜12−3に流れる冷温水の流量を調整するためのバルブV1〜V3が設けられている。   In this cold / hot water circulation path, the pressure of the cold / hot water discharged from the forward header 3-2 is sent to the load devices 12-1 to 12-3 from the heat source units 1-1 to 1-3 in the outgoing water line 9. A pressure sensor 13 for measuring the cold / hot water feed pressure PSpv is provided. Further, the secondary pumps 6-1 to 6-3 are provided with inverters 6-1a to 6-3a for adjusting the rotation speed of the pump, and the load devices 12-1 to 12-3 are provided with the inverters 6-1a to 6-3a. Valves V1 to V3 for adjusting the flow rate of the cold / hot water flowing through the load devices 12-1 to 12-3 are provided.

図2に負荷機器12(12−1〜12−3)の内部構成の概略を示す。負荷機器12は、冷温水コイル12Aと、ファン12Bとを備えており、冷温水コイル12Aへの冷温水の供給通路LにはバルブVが設けられている。   FIG. 2 shows an outline of the internal configuration of the load device 12 (12-1 to 12-3). The load device 12 includes a cold / hot water coil 12A and a fan 12B, and a valve V is provided in the cold / hot water supply passage L to the cold / hot water coil 12A.

バルブVには、このバルブVの開度調整を行うために必要な物理量を計測する既設の手段として、バルブVを流れる冷水の流量を計測する流量計測手段とバルブVの入口側と出口側との間の差圧を計測する差圧計測手段とを兼ねた計測手段S1が設けられている。本実施の形態では、この計測手段S1によって計測される冷水の流量を負荷機器流量Qとして、入口側と出口側との間の差圧をバルブ差圧ΔPVとして、制御装置11へ送るようにしている。   In the valve V, as existing means for measuring a physical quantity necessary for adjusting the opening degree of the valve V, a flow rate measuring means for measuring the flow rate of cold water flowing through the valve V, an inlet side and an outlet side of the valve V, There is provided a measuring means S1 which also serves as a differential pressure measuring means for measuring the differential pressure between the two. In the present embodiment, the flow rate of cold water measured by the measuring means S1 is set as the load device flow rate Q, and the differential pressure between the inlet side and the outlet side is sent to the control device 11 as the valve differential pressure ΔPV. Yes.

なお、負荷機器12からの負荷機器流量Qおよびバルブ差圧ΔPVの制御装置11への送信は、無線であってもよいし、有線であってもよい。   The transmission of the load device flow rate Q and the valve differential pressure ΔPV from the load device 12 to the control device 11 may be wireless or wired.

制御装置11は、プロセッサや記憶装置からなるハードウェアと、これらのハードウェアと協働して制御装置としての各種機能を実現させるプログラムとによって実現され、本実施の形態特有の機能として送水圧制御機能を有している。以下、図3に示すフローチャートに従って、制御装置11が有する送水圧制御機能について説明する。   The control device 11 is realized by hardware including a processor and a storage device, and a program that realizes various functions as the control device in cooperation with these hardware. Water supply pressure control is a function unique to the present embodiment. It has a function. Hereinafter, the water supply pressure control function of the control device 11 will be described with reference to the flowchart shown in FIG.

制御装置11は、負荷機器12−1〜12−3からの負荷機器流量Q1〜Q3とバルブ差圧ΔPV1〜ΔPV3を取得し、記憶する(ステップS101)。そして、この取得したバルブ差圧ΔPV1〜ΔPV3より、その値が最も小さい最小差圧ΔPVminを抽出する(ステップS102)。   The control device 11 acquires and stores the load device flow rates Q1 to Q3 and the valve differential pressures ΔPV1 to ΔPV3 from the load devices 12-1 to 12-3 (step S101). Then, the minimum differential pressure ΔPVmin having the smallest value is extracted from the obtained valve differential pressures ΔPV1 to ΔPV3 (step S102).

次に、制御装置11は、この抽出した最小差圧ΔPVminを制御対象の差圧とみなし、この制御対象の差圧が予め定められている所定の値(この例では、0.3kg/cm2 )となるような送水圧の設定値PSspを決定する(ステップS103)。 Next, the control device 11 regards the extracted minimum differential pressure ΔPVmin as the differential pressure of the control target, and the differential pressure of the control target is a predetermined value (in this example, 0.3 kg / cm 2). ) Is determined (step S103).

そして、制御装置11は、この決定した送水圧の設定値PSspに基づいて、圧力センサ13からの送水圧の計測値PSpvが設定値PSspとなるように、2次ポンプ6−1〜6−3の回転数を調整する。この際、2次ポンプ6−1〜6−3の回転数を下限値にしても送水圧PSpvが設定値PSspに達しない場合には、バイパス弁8の開度を調整することによって、送水圧PSpvが設定値PSspとなるようにする(ステップS104)。   The control device 11 then sets the secondary pumps 6-1 to 6-3 so that the measured value PSpv of the water supply pressure from the pressure sensor 13 becomes the set value PSsp based on the determined set value PSsp of the water supply pressure. Adjust the rotation speed. At this time, if the water supply pressure PSpv does not reach the set value PSsp even if the rotation speed of the secondary pumps 6-1 to 6-3 is the lower limit value, the water supply pressure is adjusted by adjusting the opening of the bypass valve 8. PSpv is set to the set value PSsp (step S104).

ここで、例えば、末端の負荷機器12−1が低負荷で、他の負荷機器で12−2の負荷要求が大きく、この負荷機器12−2のバルブ差圧ΔPV2が最小差圧となった場合について考える。この場合、制御装置11は、負荷機器12−2のバルブ差圧ΔPV2を最小差圧ΔPVminとして抽出し、この最小差圧ΔPVminが0.3kg/cm2 となるように送水圧の設定値PSspを決定する。 Here, for example, when the load device 12-1 at the end has a low load, the load requirement of 12-2 is large in other load devices, and the valve differential pressure ΔPV2 of the load device 12-2 becomes the minimum differential pressure. think about. In this case, the control device 11 extracts the valve differential pressure ΔPV2 of the load device 12-2 as the minimum differential pressure ΔPVmin, and sets the set value PSsp of the water supply pressure so that the minimum differential pressure ΔPVmin becomes 0.3 kg / cm 2. decide.

したがって、末端の負荷機器12−1の低負荷時に、負荷機器12−2での負荷要求が大きくなったとしても、その負荷機器12−2における差圧が不足し、設計流量を保持することができないという問題は生じない。また、この負荷要求が大きくなった負荷機器12−2での差圧を確保しながら、末端の負荷機器12−1のバルブV1に加わる差圧は可能な限り小さくなる。   Therefore, even when the load requirement at the load device 12-2 becomes large at the low load of the load device 12-1, the differential pressure at the load device 12-2 is insufficient and the design flow rate can be maintained. The problem of not being possible does not occur. In addition, the differential pressure applied to the valve V1 of the terminal load device 12-1 is as small as possible while ensuring the differential pressure at the load device 12-2 where the load requirement is increased.

これにより、末端の負荷機器12−1の低負荷時に負荷要求が大きい他の負荷機器12−2の差圧が不足するという問題を生じさせることなく、低負荷時の2次ポンプ6の省エネルギーが図られる。   Thereby, the energy saving of the secondary pump 6 at the time of low load can be achieved without causing the problem that the differential pressure of the other load device 12-2 having a large load request at the time of low load of the load device 12-1 is insufficient. Figured.

図4に制御装置11の要部の機能ブロック図を示す。制御装置11は、バルブ差圧取得部11Aと、最小差圧抽出部11Bと、送水圧設定部11Cと、送水圧制御部11Dとを備えている。   FIG. 4 shows a functional block diagram of the main part of the control device 11. The control device 11 includes a valve differential pressure acquisition unit 11A, a minimum differential pressure extraction unit 11B, a water supply pressure setting unit 11C, and a water supply pressure control unit 11D.

バルブ差圧取得部11Aは、負荷機器12−1〜12−3からのバルブ差圧ΔPV1〜ΔPV3を取得する。最小差圧抽出部11Bは、バルブ差圧取得部11Aが取得したバルブ差圧ΔPV1〜ΔPV3より最小差圧ΔPVminを抽出する。   The valve differential pressure acquisition unit 11A acquires the valve differential pressures ΔPV1 to ΔPV3 from the load devices 12-1 to 12-3. The minimum differential pressure extraction unit 11B extracts the minimum differential pressure ΔPVmin from the valve differential pressures ΔPV1 to ΔPV3 acquired by the valve differential pressure acquisition unit 11A.

送水圧設定部11Cは、最小差圧抽出部11Bによって抽出された最小差圧ΔPVminが0.3kg/cm2 以上となるように送水圧の設定値PSspを決定する。 The water supply pressure setting unit 11C determines the water supply pressure set value PSsp so that the minimum differential pressure ΔPVmin extracted by the minimum differential pressure extraction unit 11B is 0.3 kg / cm 2 or more.

送水圧制御部11Dは、圧力センサ13からの送水圧の計測値PSpvが設定値PSspとなるように、2次ポンプ6−1〜6−3の回転数を調整したり、バイパス弁8の開度を調整する。 The water supply pressure control unit 11D adjusts the rotation speed of the secondary pumps 6-1 to 6-3 and opens the bypass valve 8 so that the measured value PSpv of the water supply pressure from the pressure sensor 13 becomes the set value PSsp. Adjust the degree.

このバルブ差圧取得部11A、最小差圧抽出部11B、送水圧設定部11C、送水圧制御部11DはCPU1−1の処理機能として実現される。   The valve differential pressure acquisition unit 11A, the minimum differential pressure extraction unit 11B, the water supply pressure setting unit 11C, and the water supply pressure control unit 11D are realized as processing functions of the CPU 1-1.

なお、上述した実施の形態では、負荷機器12に冷温水コイルが設けられている例で説明したが、冷水コイルおよび温水コイルの何れか一方のみが設けられた負荷機器であってもよい。すなわち、冷水だけを循環させるシステム、温水だけを循環させるシステムにおいても、同様にして適用することが可能である。また、冷水コイルと温水コイルとが別々に設けられていているシステムであってもよい。   In the above-described embodiment, the load device 12 is described as being provided with the cold / hot water coil. However, the load device may be provided with only one of the cold water coil and the hot water coil. That is, the present invention can be similarly applied to a system that circulates only cold water and a system that circulates only hot water. Moreover, the system by which the cold water coil and the hot water coil were provided separately may be sufficient.

また、上述した実施の形態では、説明を簡単とするために、熱源機を3台、負荷機器を3台とした例で説明したが、熱源機や負荷機器などの数量は、上述した数量に限定されるものではなく、適宜自由に設定することができる。   Further, in the above-described embodiment, for the sake of simplicity, the example has been described in which three heat source devices and three load devices are used. However, the number of heat source devices, load devices, and the like is the same as the number described above. It is not limited and can be set freely as appropriate.

本発明に係る送水圧制御システムの一実施の形態の構成を示す計装図である。It is an instrumentation figure which shows the structure of one Embodiment of the water supply pressure control system which concerns on this invention. この送水圧制御システムにおける負荷機器の内部構成の概略を示す図である。It is a figure which shows the outline of the internal structure of the load apparatus in this water supply pressure control system. この送水圧制御システムにおける制御装置が有する送水圧制御機能を説明するためのフローチャートである。It is a flowchart for demonstrating the water pressure control function which the control apparatus in this water pressure control system has. この送水圧制御システムにおける制御装置の要部の機能ブロック図である。It is a functional block diagram of the principal part of the control apparatus in this water supply pressure control system.

符号の説明Explanation of symbols

1(1−1〜1−3)…熱源機、2(2−1〜2−3)…1次ポンプ、3−1,3−2…往ヘッダ、4…還ヘッダ、5…バイパス管路、6(6−1〜6−3)…2次ポンプ、6−1a〜6−3a…インバータ、7…バイパス管路、8…バイパス弁、9…往水管路、10…還水管路、11…制御装置、12(12−1〜12−3)…負荷機器、12A…冷温水コイル、12B…ファン、L…冷温水の供給通路、V(V1〜V3)…バルブ、S1…計測手段、13…圧力センサ、11A…バルブ差圧取得部、11B…最小差圧抽出部、11C…送水圧設定部、11D…送水圧制御部。   DESCRIPTION OF SYMBOLS 1 (1-1 to 1-3) ... Heat source machine, 2 (2-1 to 2-3) ... Primary pump, 3-1, 3-2 ... Out header, 4 ... Return header, 5 ... Bypass line , 6 (6-1 to 6-3) ... secondary pump, 6-1a to 6-3a ... inverter, 7 ... bypass pipe, 8 ... bypass valve, 9 ... outgoing water pipe, 10 ... return water pipe, 11 ... Control device, 12 (12-1 to 12-3) ... Load equipment, 12A ... Cooled / hot water coil, 12B ... Fan, L ... Cooled / hot water supply passage, V (V1 to V3) ... Valve, S1 ... Measurement means, DESCRIPTION OF SYMBOLS 13 ... Pressure sensor, 11A ... Valve differential pressure acquisition part, 11B ... Minimum differential pressure extraction part, 11C ... Water supply pressure setting part, 11D ... Water supply pressure control part.

Claims (2)

冷温水を生成する熱源機と、この熱源機からの冷温水の往水管路と還水管路との間に設けられた複数の負荷機器と、これら負荷機器への前記熱源機からの冷温水の送水圧を制御する制御装置とを備えた送水圧制御システムにおいて、
前記負荷機器の各々は、
自己の負荷機器に流れる冷温水の流量を調整するバルブの入口側と出口側との間の差圧をバルブ差圧として計測する差圧計測手段を備え、
前記制御装置は、
前記各負荷機器の差圧計測手段によって計測されたバルブ差圧を取得するバルブ差圧取得手段と、
このバルブ差圧取得手段によって取得されたバルブ差圧より最小差圧を抽出する最小差圧抽出手段と、
この最小差圧抽出手段によって抽出された最小差圧が予め定められた所定の値以上となるように前記熱源機からの前記負荷機器への冷温水の送水圧を設定する送水圧設定手段とを備える
ことを特徴とする送水圧制御システム。
A heat source device that generates cold / hot water, a plurality of load devices provided between the outgoing and return water pipelines of the cold / hot water from the heat source device, and the cold / hot water from the heat source device to these load devices In a water pressure control system comprising a control device for controlling the water pressure,
Each of the load devices is
It is equipped with differential pressure measuring means that measures the differential pressure between the inlet side and the outlet side of the valve that adjusts the flow rate of cold / hot water flowing to its load equipment as the valve differential pressure,
The controller is
Valve differential pressure acquisition means for acquiring the valve differential pressure measured by the differential pressure measurement means of each load device;
Minimum differential pressure extraction means for extracting the minimum differential pressure from the valve differential pressure acquired by the valve differential pressure acquisition means;
Water supply pressure setting means for setting the water supply pressure of the cold / hot water from the heat source unit to the load device so that the minimum differential pressure extracted by the minimum differential pressure extraction means is not less than a predetermined value determined in advance. A water supply pressure control system characterized by comprising:
冷温水を生成する熱源機と、この熱源機からの冷温水の往水管路と還水管路との間に設けられた複数の負荷機器と、これら負荷機器への前記熱源機からの冷温水の送水圧を制御する制御装置とを備えたシステムに適用される送水圧制御方法において、
前記負荷機器毎にその負荷機器に流れる冷温水の流量を調整するバルブの入口側と出口側との間の差圧をバルブ差圧として計測する差圧計測ステップと、
この差圧計測ステップによって計測された前記各負荷機器のバルブ差圧を取得するバルブ差圧取得ステップと、
このバルブ差圧取得ステップによって取得されたバルブ差圧より最小差圧を抽出する最小差圧抽出ステップと、
この最小差圧抽出ステップによって抽出されたバルブ差圧より最小差圧を抽出し、この最小差圧が予め定められた所定の値以上となるように、前記熱源機からの前記負荷機器への冷温水の送水圧を設定する送水圧設定ステップと
を備えることを特徴とする送水圧制御方法。
A heat source device that generates cold / hot water, a plurality of load devices provided between the outgoing and return water pipelines of the cold / hot water from the heat source device, and the cold / hot water from the heat source device to these load devices In a water pressure control method applied to a system including a control device for controlling water pressure,
A differential pressure measuring step for measuring the differential pressure between the inlet side and the outlet side of the valve for adjusting the flow rate of the cold / hot water flowing through the load device for each load device;
A valve differential pressure acquisition step of acquiring the valve differential pressure of each load device measured by the differential pressure measurement step;
A minimum differential pressure extraction step for extracting the minimum differential pressure from the valve differential pressure acquired by the valve differential pressure acquisition step;
The minimum differential pressure is extracted from the valve differential pressure extracted in the minimum differential pressure extraction step, and the cooling temperature from the heat source device to the load device is set so that the minimum differential pressure is equal to or greater than a predetermined value. A water supply pressure control method comprising: a water supply pressure setting step for setting water supply pressure.
JP2008086468A 2008-03-28 2008-03-28 Water pressure control system and water pressure control method Active JP4984302B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008086468A JP4984302B2 (en) 2008-03-28 2008-03-28 Water pressure control system and water pressure control method
TW98103817A TW200940834A (en) 2008-03-28 2009-02-06 Watering pressure control system and watering pressure control method
CN2009101317183A CN101545661B (en) 2008-03-28 2009-03-27 Water delivery pressure control system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008086468A JP4984302B2 (en) 2008-03-28 2008-03-28 Water pressure control system and water pressure control method

Publications (2)

Publication Number Publication Date
JP2009236465A true JP2009236465A (en) 2009-10-15
JP4984302B2 JP4984302B2 (en) 2012-07-25

Family

ID=41192945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008086468A Active JP4984302B2 (en) 2008-03-28 2008-03-28 Water pressure control system and water pressure control method

Country Status (3)

Country Link
JP (1) JP4984302B2 (en)
CN (1) CN101545661B (en)
TW (1) TW200940834A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012189262A (en) * 2011-03-10 2012-10-04 Taikisha Ltd Heat source system
WO2018159703A1 (en) * 2017-03-02 2018-09-07 東芝キヤリア株式会社 Heat source water control method and heat source water control device
CN114582113A (en) * 2022-03-08 2022-06-03 山东工业职业学院 Device for automatically selecting wireless transmission frequency for intelligent water affairs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079638U (en) * 1983-11-09 1985-06-03 東洋熱工業株式会社 Air conditioning heat source control device
JPH05204466A (en) * 1991-07-05 1993-08-13 Takenaka Komuten Co Ltd Control method for flow rate control valve
JP2002106860A (en) * 2000-09-28 2002-04-10 Kajima Corp Double tube heat supply system for a plurality of heat sources, and its pressure control method
JP2005299980A (en) * 2004-04-08 2005-10-27 Yamatake Corp Water supply control device, and its method
JP2007271120A (en) * 2006-03-30 2007-10-18 Osaka Gas Co Ltd Heating medium conveyance system
JP2009121722A (en) * 2007-11-13 2009-06-04 Yamatake Corp Water supply pressure control system and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031376A (en) * 2000-07-19 2002-01-31 Aisin Seiki Co Ltd Air-conditioning system
CN2929552Y (en) * 2006-07-18 2007-08-01 熊伟安 Controller for central air conditioning system
CN100523635C (en) * 2007-02-14 2009-08-05 广州金关节能科技发展有限公司 Intelligent cluster control system of central air-conditioning

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079638U (en) * 1983-11-09 1985-06-03 東洋熱工業株式会社 Air conditioning heat source control device
JPH05204466A (en) * 1991-07-05 1993-08-13 Takenaka Komuten Co Ltd Control method for flow rate control valve
JP2002106860A (en) * 2000-09-28 2002-04-10 Kajima Corp Double tube heat supply system for a plurality of heat sources, and its pressure control method
JP2005299980A (en) * 2004-04-08 2005-10-27 Yamatake Corp Water supply control device, and its method
JP2007271120A (en) * 2006-03-30 2007-10-18 Osaka Gas Co Ltd Heating medium conveyance system
JP2009121722A (en) * 2007-11-13 2009-06-04 Yamatake Corp Water supply pressure control system and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012189262A (en) * 2011-03-10 2012-10-04 Taikisha Ltd Heat source system
WO2018159703A1 (en) * 2017-03-02 2018-09-07 東芝キヤリア株式会社 Heat source water control method and heat source water control device
JPWO2018159703A1 (en) * 2017-03-02 2019-11-14 東芝キヤリア株式会社 Heat source water control method and heat source water control apparatus
JP2021036197A (en) * 2017-03-02 2021-03-04 東芝キヤリア株式会社 Heat source water control method and heat source water control device
JP7004791B2 (en) 2017-03-02 2022-02-04 東芝キヤリア株式会社 Heat source water control method and heat source water control device
CN114582113A (en) * 2022-03-08 2022-06-03 山东工业职业学院 Device for automatically selecting wireless transmission frequency for intelligent water affairs

Also Published As

Publication number Publication date
TW200940834A (en) 2009-10-01
TWI368693B (en) 2012-07-21
CN101545661B (en) 2011-09-28
JP4984302B2 (en) 2012-07-25
CN101545661A (en) 2009-09-30

Similar Documents

Publication Publication Date Title
US10012396B2 (en) Combined space conditioning or heating and water heating system
EP2159495B1 (en) Heating system
WO2011108392A1 (en) Hot water heat pump and method for controlling same
JP2009031866A (en) Flow control valve and flow control method
US10132492B2 (en) System and method for drum level control in a drum of a heat recovery steam generator
JP6271316B2 (en) Heat source equipment
JP5537253B2 (en) Water supply control system and control method thereof
JP7351473B2 (en) Geothermal heat pump system and how to operate a geothermal heat pump system
WO2014075303A1 (en) Thermal equilibrium set and control method and control apparatus thereof
JP2008309428A (en) Flow rate control device of heat source system and flow rate control method of heat source system
KR20120117355A (en) Variable flow heating control system and heating control method using thereof
JP4984302B2 (en) Water pressure control system and water pressure control method
JP2004278884A (en) Control device
US20160353614A1 (en) Cooling apparatus, cooling method, and data processing system
US11221150B2 (en) System and method of controlling a mixing valve of a heating system
US10480826B2 (en) System and method of controlling a mixing valve of a heating system
JP2016194386A (en) Heat source control system
JP2006153324A (en) Operating unit number control method and device
JP5558202B2 (en) Water supply control system and control method thereof
JP5379650B2 (en) Primary pump type heat source variable flow rate control system and method
JP6685602B2 (en) Air conditioning system
JP2012132583A (en) Heat-pump type heating water heater
JP2009121722A (en) Water supply pressure control system and method
JP2009281666A (en) Control method for hot water heating apparatus
KR101161050B1 (en) System and method for controlling water feeding pressure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4984302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250