JP2016194386A - Heat source control system - Google Patents

Heat source control system Download PDF

Info

Publication number
JP2016194386A
JP2016194386A JP2015074217A JP2015074217A JP2016194386A JP 2016194386 A JP2016194386 A JP 2016194386A JP 2015074217 A JP2015074217 A JP 2015074217A JP 2015074217 A JP2015074217 A JP 2015074217A JP 2016194386 A JP2016194386 A JP 2016194386A
Authority
JP
Japan
Prior art keywords
load
flow rate
heat source
header
cold water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015074217A
Other languages
Japanese (ja)
Other versions
JP6434848B2 (en
Inventor
田代 博一
Hiroichi Tashiro
博一 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2015074217A priority Critical patent/JP6434848B2/en
Publication of JP2016194386A publication Critical patent/JP2016194386A/en
Application granted granted Critical
Publication of JP6434848B2 publication Critical patent/JP6434848B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/54Free-cooling systems

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To simplify a secondary load state by processing "water amount" and "heat amount" different in physical unit as percentages being handled under the same index.SOLUTION: A total value of a load flow rate measurement value of a secondary-side cooling water system and an assumed value of a bypass flow rate, is divided by a total value of a designed flow rate of a heat source to calculate a cold water load flow rate ratio displayed by percentage, a load heat amount measurement value of the secondary-side cold water system is divided by a total value of a designed heat amount of the heat source to calculate a cold water load heat amount ratio displayed by percentage, a larger value of the cold water load flow rate ratio and the cold water load heat amount ratio is applied as a cold water load factor, and at least one of control of the number of heat sources and control of the flow rate of the heat source is implemented on the basis of the cold water load factor.SELECTED DRAWING: Figure 1

Description

本発明は、冷媒に水やブラインを用いる空調などの冷凍機や冷温水発生機を熱源とする熱源設備における、熱源台数の制御及び冷温水ポンプの変流量制御を可能とする熱源制御システムに関する。   The present invention relates to a heat source control system that enables control of the number of heat sources and variable flow rate control of a cold / hot water pump in a heat source facility that uses a refrigerator or a cold / hot water generator that uses water or brine as a refrigerant as a heat source.

空調設備の熱源の配管方式として、冷水又は温水が密閉された配管内をポンプによって循環する密閉配管方式が知られている。密閉配管方式は、熱源設備をヘッダにより冷凍機側と負荷側とを一次側と二次側として分け、空調機などの負荷側(二次側)を受け持つ2次ポンプの有無により、1次ポンプ方式と2次ポンプ方式とがある。1次ポンプ方式は、1次ポンプのみで冷水又は温水を熱源機器から空調機まで、密閉配管すべてを循環させる配管方式である。2次ポンプ方式は、1次ポンプと2次ポンプとを設け、1次ポンプは冷水又は温水を熱源機器周りに循環する、詳しく言うと熱源機械室に在る往ヘッダ及び還ヘッダまでの配管抵抗と、冷凍機など熱源機器などの水圧損分との合計を揚程として受け持つものであって、2次ポンプは空調機など2次側に冷水又は温水を循環するだけの冷水コイルや制御弁などの水圧損分を受け持つ。2次ポンプ方式は、1次ポンプ方式と異なり、密閉配管系の揚程を2種類のポンプで分け合うものである。
以下の説明では、冷水を冷熱媒、熱源を冷凍機とする場合を説明する。
1次ポンプ方式は、図8に示すように、冷凍機(熱源機)101と、往ヘッダ103と、還ヘッダ105と、空調機(AHU)107とを備えている。
そして、冷凍機(熱源機)101と往ヘッダ103との間を1次側冷水往管路111で接続し、冷凍機(熱源機)101と還ヘッダ105との間を冷水ポンプ(1次ポンプ)115を設けた1次側冷水還管路113で接続して熱源の1次側を構成している。
As a piping system for a heat source of an air conditioning facility, a sealed piping system in which cold water or hot water is circulated by a pump in a sealed pipe is known. In the sealed piping system, the heat source equipment is divided into a primary side and a secondary side by the header on the refrigerator side and the load side, and the primary pump depends on the presence or absence of the secondary pump responsible for the load side (secondary side) such as an air conditioner. There is a method and a secondary pump method. The primary pump system is a piping system that circulates all of the sealed piping from the heat source device to the air conditioner by using only the primary pump. In the secondary pump system, a primary pump and a secondary pump are provided, and the primary pump circulates cold water or hot water around the heat source equipment. And the sum of the water pressure loss of heat source equipment such as refrigerators, etc. The secondary pump is a chilled water coil or control valve that only circulates cold water or hot water to the secondary side such as an air conditioner. Responsible for water pressure loss. Unlike the primary pump system, the secondary pump system shares the head of the sealed piping system with two types of pumps.
In the following description, a case where cold water is used as a cooling medium and a heat source is used as a refrigerator will be described.
As shown in FIG. 8, the primary pump system includes a refrigerator (heat source unit) 101, a forward header 103, a return header 105, and an air conditioner (AHU) 107.
The refrigerator (heat source machine) 101 and the forward header 103 are connected by the primary side cold water forward pipeline 111, and the refrigerator (heat source machine) 101 and the return header 105 are connected by the cold water pump (primary pump). ) 115 is connected by the primary side cold water return pipe 113 to constitute the primary side of the heat source.

また、空調機(AHU)107と往ヘッダ103との間を2次冷水往水路121で接続し、空調機(AHU)107と還ヘッダ105との間を2次冷水還水路119で接続している。通常は、空調機(AHU)107は複数台設置され、各空調機(AHU)107の後段には二方弁109が設置されており、これらによって熱源の2次側を構成している。
また、往ヘッダ103と還ヘッダ105との間には、ヘッダ間バイパス弁125を備えたヘッダ間バイパス路123を設けてヘッダ差圧制御を行っている。熱源の冷凍機の通過最低流量を確保しながら、負荷側に掛かる差圧を一定にして空調機の温度制御を安定させることができる。また、還ヘッダ105には、膨張タンク127を設けて密閉配管内を大気圧以上に保ってポンプ吸い込み側キャビテーション防止とともに冷水の温度による体積変化を吸収している。ヘッダ間バイパス弁125は、往ヘッダ103および還ヘッダ105間の差圧を一定とするように制御される。バイパス弁125の制御により1次流量≧2次流量が補償され、還ヘッダ105の高温の還冷水がヘッダ間バイパス路123を介して往ヘッダ103に逆流することはない。
Also, the air conditioner (AHU) 107 and the forward header 103 are connected by a secondary chilled water outgoing passage 121, and the air conditioner (AHU) 107 and the return header 105 are connected by a secondary chilled water return water passage 119. Yes. Usually, a plurality of air conditioners (AHU) 107 are installed, and a two-way valve 109 is installed at the rear stage of each air conditioner (AHU) 107, and these constitute the secondary side of the heat source.
Further, an inter-header bypass passage 123 including an inter-header bypass valve 125 is provided between the forward header 103 and the return header 105 to perform header differential pressure control. The temperature control of the air conditioner can be stabilized by making the differential pressure applied to the load side constant while ensuring the minimum flow rate of the heat source refrigerator. Further, the return header 105 is provided with an expansion tank 127 to keep the inside of the sealed pipe at atmospheric pressure or higher to prevent pump suction side cavitation and absorb volume change due to the temperature of the cold water. The inter-header bypass valve 125 is controlled so that the differential pressure between the forward header 103 and the return header 105 is constant. By controlling the bypass valve 125, the primary flow rate ≧ secondary flow rate is compensated, and the high-temperature return cold water in the return header 105 does not flow back to the forward header 103 via the inter-header bypass path 123.

密閉配管方式には、密閉されている装置配管内保有水量の水温変化に伴う体積変動を吸収するため、図8に示すように、一般に配管の最上部より上部の位置に膨張タンク127を設けている。膨張タンクには、開放式膨張タンクと密閉式膨張タンクとがある。
このように、1次ポンプ方式は、図8に示すように、1次ポンプ115のみで冷水を冷凍機(熱源)101から空調機(AHU)107まで循環させる配管方式である。
1次ポンプ方式では、ヘッダ間バイパス路123を流れる冷水量があり1次流量が2次流量よりも大きくなり、また、2次側負荷熱量によって熱源運転台数の制御を行うと負荷側で温度差がつかない場合に運転台数不足が生じて運転中の熱源機が過負荷運転となる。そのため、1次ポンプ方式では、2次冷水負荷流量によって、冷凍機(熱源機)101の運転台数と1次冷水流量とを決定する。
In order to absorb the volume fluctuation accompanying the water temperature change of the amount of water held in the sealed apparatus pipe, the closed pipe system is generally provided with an expansion tank 127 at a position above the uppermost part of the pipe as shown in FIG. Yes. The expansion tank includes an open expansion tank and a closed expansion tank.
As described above, the primary pump system is a piping system in which cold water is circulated from the refrigerator (heat source) 101 to the air conditioner (AHU) 107 only by the primary pump 115 as shown in FIG.
In the primary pump system, there is an amount of cold water flowing through the header bypass passage 123, the primary flow rate becomes larger than the secondary flow rate, and if the number of heat source operating units is controlled by the secondary side load heat amount, the temperature difference on the load side If not, the number of operating units will be insufficient, and the operating heat source unit will be overloaded. Therefore, in the primary pump system, the number of operating refrigerators (heat source units) 101 and the primary chilled water flow rate are determined by the secondary chilled water load flow rate.

一方、2次ポンプ方式は、図9に示すように、冷凍機(熱源機)101と、往ヘッダ103と、還ヘッダ105と、空調機(AHU)107とを備える。
2次ポンプ方式は、図9に示すように、冷水を冷凍機(熱源機)101まわりに循環させるために1次ポンプ115を使用し、空調機107など負荷側に冷水を循環させるために2次ポンプ131を使用する配管方式である。
具体的には、往ヘッダ103の空調機(AHU)107側に第2の冷水往ヘッダ129を設け、往ヘッダ103と第2の冷水往ヘッダ129との間に複数台の冷水ポンプ(2次ポンプ)131及び2次ポンプ出入口バイパス管に吐出圧制御弁133を設けている。また、ヘッダ間バイパス路123には、バイパス弁が設けられていない。
2次ポンプ方式では、2次ポンプ131の吐出側の第2の冷水往ヘッダ129からの圧力を、第2の冷水往ヘッダに備える圧力発信器からの圧力信号を圧力指示調節計で演算した出力にて2次ポンプの回転数制御による送水圧力の一定制御をしたり、それに2次側流量を計測して計測負荷流量値により必要圧力を演算して推定末端圧制御として送水圧力の可変制御を行ったり、複数の負荷のうちの末端負荷における末端差圧を末端に設置した差圧発信器からの差圧信号に基づいて送水圧力の可変制御を行ったりするのである。
On the other hand, as shown in FIG. 9, the secondary pump system includes a refrigerator (heat source unit) 101, a forward header 103, a return header 105, and an air conditioner (AHU) 107.
As shown in FIG. 9, the secondary pump system uses the primary pump 115 to circulate cold water around the refrigerator (heat source machine) 101, and 2 to circulate cold water to the load side such as the air conditioner 107. This is a piping system using the next pump 131.
Specifically, a second cold water forward header 129 is provided on the air header (AHU) 107 side of the forward header 103, and a plurality of cold water pumps (secondary) are provided between the forward header 103 and the second cold water forward header 129. The discharge pressure control valve 133 is provided in the pump 131 and the secondary pump inlet / outlet bypass pipe. Moreover, the bypass path 123 between headers is not provided with a bypass valve.
In the secondary pump system, the pressure from the second chilled water header 129 on the discharge side of the secondary pump 131 and the pressure signal from the pressure transmitter provided in the second chilled water header are calculated by the pressure indicating controller. To control the water supply pressure constant by controlling the rotation speed of the secondary pump, or to measure the secondary flow rate and calculate the required pressure from the measured load flow rate value, and to perform variable control of the water supply pressure as the estimated terminal pressure control Or the variable control of the water supply pressure is performed based on the differential pressure signal from the differential pressure transmitter installed at the end of the plurality of loads.

2次ポンプ方式の場合、1次流量と2次流量は一致せず、負荷に見合う流量は2次ポンプの変流量制御で供給し、熱源機の役割は2次側熱量に見合う冷熱量を供給することとなるので、2次冷水負荷熱量で熱源機の台数制御を行っている。
2次ポンプ方式の場合、必ずしも1次流量≧2次流量とはならないため、1次ポンプ方式とは異なる。2次ポンプ方式の場合、2次冷水往温度と2次冷水還温度との差(以下、2次側冷水ΔTと称する)が設計値(ΔT=5℃)よりも小さい場合に、2次流量>1次流量となり、還ヘッダ105の高温水が往ヘッダ103へヘッダ間バイパス路123を介して逆流してしまい、2次冷水往温度が、例えば、冷凍機101の冷水出口温度の7℃から、8℃や9℃へ上昇する場合が生じる。
In the case of the secondary pump system, the primary flow rate and the secondary flow rate do not match, the flow rate suitable for the load is supplied by the variable flow rate control of the secondary pump, and the role of the heat source unit supplies the cold heat amount suitable for the secondary side heat amount Therefore, the number of heat source units is controlled by the secondary cold water load heat quantity.
In the case of the secondary pump method, the primary flow rate is not necessarily equal to or greater than the secondary flow rate, and therefore, different from the primary pump method. In the case of the secondary pump system, when the difference between the secondary chilled water going temperature and the secondary chilled water return temperature (hereinafter referred to as secondary chilled water ΔT) is smaller than the design value (ΔT = 5 ° C.), the secondary flow rate > The primary flow rate, and the high-temperature water in the return header 105 flows back to the forward header 103 via the inter-header bypass passage 123, and the secondary cold water forward temperature is, for example, from the chilled water outlet temperature of 7 ° C. In some cases, the temperature rises to 8 ° C or 9 ° C.

このように、2次冷水往温度が上昇すると、熱交換器としての冷水コイルの設計は、冷水供給温度は冷凍機出口温度で行うことが通例であり、冷水の供給温度が上昇することで空調対象空気温度との温度差が小さくなり、空調機(AHU)107における冷房能力が低下することがある。
そして、空調機(AHU)107を設置する箇所がオフィスであれば高温や高湿によるクレームが発生し、空調機(AHU)107を設置する箇所が工場であれば生産品の品質低下をきたすおそれがある。
このような問題点を解決するために、従来では、2次冷水往温度の温度補償のため、2次送水往温度が高温になると待機中の熱源機をONとして1次側の冷水循環量を増加させてヘッダ間バイパスでの逆流を防止する機能を追加する対策が講じられている。
As described above, when the secondary chilled water temperature rises, the design of the chilled water coil as a heat exchanger is usually performed at the chiller outlet temperature as the chilled water supply temperature. The temperature difference with the target air temperature is reduced, and the cooling capacity of the air conditioner (AHU) 107 may be reduced.
If the location where the air conditioner (AHU) 107 is installed is an office, a complaint due to high temperature or high humidity may occur, and if the location where the air conditioner (AHU) 107 is installed is a factory, the quality of the product may be degraded. There is.
In order to solve such problems, conventionally, for temperature compensation of the secondary chilled water temperature, when the secondary water temperature becomes high, the standby heat source unit is turned on and the chilled water circulation amount on the primary side is reduced. Measures have been taken to add a function to prevent the reverse flow in the bypass between headers.

特許第3306612号公報Japanese Patent No. 3306612 特許第4513545号公報Japanese Patent No. 4351545

しかしながら、このような従来の対策では、制御ロジック(制御方法の切替、制御方法移行条件など)が複雑になること、温度による強制ON/OFFが外乱となること、2次側冷水ΔTが変動すると、2次送水温度が安定化しないこと、往還ヘッダ間バイパス流量が増加すると、1次ポンプ消費電力が増大することなどの不具合があり、省エネルギー性及び快適性の面から好ましくないことが指摘されている。
そこで、1次ポンプ方式、2次ポンプ方式では、冷水熱源能力低下を想定し、2次冷水往温度上昇時には冷凍機(熱源機)101の運転台数を強制的に増段できるように構成されている(例えば、特許文献1参照)。
However, with such conventional measures, control logic (control method switching, control method transition conditions, etc.) becomes complicated, forced ON / OFF due to temperature becomes a disturbance, and secondary side chilled water ΔT varies. It has been pointed out that there are problems such as the secondary water supply temperature not stabilizing and the bypass flow rate between the return and return headers increasing the primary pump power consumption, which is undesirable from the viewpoint of energy saving and comfort. Yes.
Therefore, the primary pump system and the secondary pump system are configured so that the capacity of the chiller (heat source) 101 can be forcibly increased when the secondary chilled water feed temperature rises, assuming a decrease in the capacity of the chilled water heat source. (For example, refer to Patent Document 1).

しかし、2次ポンプ方式では、2次冷水温度差<設計温度差の場合、2次冷水流量>1次冷水流量となり、2次冷水往還温度が上昇するため、冷凍機(熱源機)101の運転台数を強制的に増段又は強制的に1次冷水の流量を増大させる機能が必要である。
また、2次ポンプ方式と1次ポンプ方式とで、制御方式を切り替える必要がある。
However, in the secondary pump system, the secondary chilled water temperature difference <the design temperature difference, the secondary chilled water flow rate> the primary chilled water flow rate, and the secondary chilled water return temperature rises. A function for forcibly increasing the number of units or forcibly increasing the flow rate of primary cold water is required.
Further, it is necessary to switch the control method between the secondary pump method and the primary pump method.

また、複数台の冷凍機を用いた冷熱供給システム及びこの冷熱供給システムに用いられる冷凍機の台数制御装置において、冷却負荷に通水される冷水流量と、冷却負荷の入口冷水温度及び出口冷水温度と冷水流量とから算出される負荷側交換熱量のそれぞれから予め定めた基準値に基づいて冷凍機の運転台数を決定し、これらの大きい方の台数を実際の運転台数として設定し、基準値は、冷却水温度を所定のタイミングで定格値より低い温度になっているか否かを検出して、冷却水温度が定格値以下のとき、冷却水温度が定格値から低い側への偏差に比例して増加させる方向に変更されることが開示されている(例えば、特許文献2参照)。   Further, in the cooling power supply system using a plurality of refrigerators and the number control device for the refrigerators used in the cooling power supply system, the cooling water flow rate to be passed through the cooling load, the inlet cooling water temperature and the outlet cooling water temperature of the cooling load. The number of refrigerators to be operated is determined based on a predetermined reference value from each of the load-side exchange heat calculated from the chilled water flow rate, and the larger number of these units is set as the actual operation number. Detecting whether the cooling water temperature is lower than the rated value at a predetermined timing, and when the cooling water temperature is lower than the rated value, the cooling water temperature is proportional to the deviation from the rated value to the lower side. It is disclosed that it is changed in the direction of increasing the number (for example, see Patent Document 2).

しかし、特許文献2では、「負荷冷水流量」と「冷水負荷熱量」とのそれぞれから予め定めた冷凍負荷基準値に基づいて運転台数を決定するのに、物理単位が異なる流量と熱量とのどちらか大きいほうの台数を設定して制御しているので、その指標のまとめ方が面倒である。   However, in Patent Document 2, in order to determine the number of units to be operated based on a predetermined refrigeration load reference value from each of “load chilled water flow rate” and “chilled water load calorie”, whichever flow rate and calorie have different physical units? Since the larger number is set and controlled, it is troublesome to summarize the indicators.

本発明は斯かる従来の問題点を解決するために為されたもので、その目的は、物理単位が異なる「水量」と「熱量」とを同じ指標に扱える百分率として処理することによって2次負荷状態を単純化することを可能とした熱源制御システムを提供することにある。   The present invention has been made to solve such a conventional problem, and its purpose is to treat secondary load by treating “water quantity” and “heat quantity” having different physical units as percentages that can be handled by the same index. The object is to provide a heat source control system capable of simplifying the state.

本発明に係る熱源制御システムの一例は、熱源と、前記熱源の冷水出口側に1次側冷水往管路を介して接続する第1往ヘッダと、1次冷水ポンプを途中に備える1次側冷水還管路を介して、前記熱源の冷水入口側に接続する還ヘッダと、前記第1往ヘッダと前記還ヘッダとの間に接続されるヘッダ間バイパス路と、前記第1往ヘッダに2次冷水ポンプを介して接続する第2往ヘッダと、空調機を備え、前記第2往ヘッダと前記還ヘッダとの間に接続される2次側冷水往管路及び2次側冷水還管路と、前記熱源及び前記1次冷水ポンプに接続される制御装置と、前記2次冷水ポンプの吐出圧制御を行う吐出圧制御弁と、を備え、前記制御装置は、前記2次側冷水往管路又は2次側冷水還管路のいずれかに設置される負荷側流量計の負荷流量計測値と前記ヘッダ間バイパス路を流れる流量の想定値との合計値を、前記熱源の設計流量の合計値で除して百分率表示した冷水負荷流量比率を算出し、前記2次側冷水往管路と2次側冷水還管路とにそれぞれ設置される負荷出口温度センサ及び負荷入口温度センサの計測値の差と前記負荷側流量計の負荷流量計測値を乗じて算出される負荷熱量計測値を、前記熱源の設計熱量の合計値で除して百分率表示した冷水負荷熱量比率を算出し、前記冷水負荷流量比率と前記冷水負荷熱量比率との何れか大きい値を冷水負荷率とし、前記冷水負荷率に基づいて、前記熱源の台数制御および前記1次冷水ポンプ流量制御による前記熱源の流量制御の少なくとも一方を行う。   An example of a heat source control system according to the present invention includes a heat source, a primary side provided with a primary cold water pump on the way, a first forward header connected to the cold water outlet side of the heat source via a primary cold water forward line. A return header connected to the chilled water inlet side of the heat source via a chilled water return pipe, a header bypass path connected between the first forward header and the return header, and 2 to the first forward header. A secondary forward chilled water return conduit and a secondary chilled water return conduit connected between the second forward header and the return header, comprising a second forward header connected via a secondary chilled water pump and an air conditioner And a control device connected to the heat source and the primary chilled water pump, and a discharge pressure control valve for controlling the discharge pressure of the secondary chilled water pump, the control device comprising the secondary chilled water outgoing pipe Load flow measurement of a load-side flow meter installed in either the road or the secondary chilled water return pipe And the estimated value of the flow rate flowing through the header bypass passage is divided by the total value of the design flow rate of the heat source to calculate a percentage chilled water load flow rate ratio, Load calorific value measurement value calculated by multiplying the difference between the measurement values of the load outlet temperature sensor and the load inlet temperature sensor respectively installed in the secondary side chilled water return pipe and the load flow rate measurement value of the load side flow meter, Calculate the chilled water load calorie ratio expressed as a percentage by dividing by the total value of the design heat quantity of the heat source, the larger one of the chilled water load flow rate ratio and the chilled water load calorie ratio as the chilled water load factor, and the chilled water load factor Based on the above, at least one of the number control of the heat sources and the flow control of the heat sources by the primary chilled water pump flow rate control is performed.

本発明に係る熱源制御システムの他の例は、熱源と、前記熱源の冷水出口側に1次側冷水往管路を介して接続する往ヘッダと、1次冷水ポンプを途中に備える1次側冷水還管路を介して、前記熱源の冷水入口側に接続する還ヘッダと、前記往ヘッダと前記還ヘッダとの間に接続されるヘッダ間バイパス路と、空調機を備え、前記往ヘッダと前記還ヘッダとの間に接続される2次側冷水往管路及び2次側冷水還管路と、前記熱源及び前記1次冷水ポンプに接続される制御装置と、前記熱源、前記1次側冷水往管路、前記1次側冷水還管路、前記空調機、2次側冷水往管路及び2次側冷水還管路の圧力損失分の揚程を有する前記1次冷水ポンプと、を備え、前記制御装置は、前記2次側冷水往管路又は2次側冷水還管路のいずれかに設置される負荷側流量計の負荷流量計測値と前記ヘッダ間バイパス路を流れる流量の想定値との合計値を、前記熱源の設計流量の合計値で除して百分率表示した冷水負荷流量比率を算出し、前記2次側冷水往管路と2次側冷水還管路とにそれぞれ設置される負荷出口温度センサ及び負荷入口温度センサの計測値の差と前記負荷側流量計の負荷流量計測値を乗じて算出される負荷熱量計測値を、前記熱源の設計熱量の合計値で除して百分率表示した冷水負荷熱量比率を算出し、前記冷水負荷流量比率と前記冷水負荷熱量比率との何れか大きい値を冷水負荷率とし、前記冷水負荷率に基づいて、前記熱源の台数制御および前記1次冷水ポンプ流量制御による前記熱源の流量制御の少なくとも一方を行う。   Another example of the heat source control system according to the present invention includes a heat source, a forward header connected to a chilled water outlet side of the heat source via a primary chilled water forward line, and a primary chilled water pump provided in the middle. A return header connected to the cold water inlet side of the heat source via a cold water return pipe, a header bypass path connected between the forward header and the return header, an air conditioner, and the forward header; The secondary side cold water forward pipe and the secondary side cold water return pipe connected between the return header, the control device connected to the heat source and the primary cold water pump, the heat source, and the primary side The primary chilled water pump having a lift for the pressure loss of the chilled water outbound conduit, the primary side chilled water return conduit, the air conditioner, the secondary chilled water outbound conduit, and the secondary chilled water return conduit; The control device is installed in either the secondary chilled water outbound pipeline or the secondary chilled water return pipeline. Calculate the chilled water load flow rate ratio by dividing the total value of the load flow measurement value of the side flow meter and the estimated value of the flow rate flowing through the header bypass path by the total value of the design flow rate of the heat source, Calculated by multiplying the difference between the measured values of the load outlet temperature sensor and the load inlet temperature sensor installed in the secondary side chilled water outgoing line and the secondary side chilled water return line, respectively, and the load flow rate measured value of the load side flow meter The chilled water load calorie ratio is calculated by dividing the measured load calorific value by the total value of the design heat quantity of the heat source, and the larger one of the chilled water load flow rate ratio and the chilled water load calorie ratio is calculated. Based on the chilled water load factor, at least one of the heat source flow rate control and the primary chilled water pump flow rate control is performed based on the chilled water load factor.

本発明に係る熱源制御システムのさらに他の例は、熱源と、前記熱源の温水出口側に1次側温水往管路を介して接続する第1往ヘッダと、1次温水ポンプを途中に備える1次側温水還管路を介して、前記熱源の温水入口側に接続する還ヘッダと、前記第1往ヘッダと前記還ヘッダとの間に接続されるヘッダ間バイパス路と、前記第1往ヘッダに2次温水ポンプを介して接続する第2往ヘッダと、空調機を備え、前記第2往ヘッダと前記還ヘッダとの間に接続される2次側温水往管路及び2次側温水還管路と、前記熱源及び前記1次温水ポンプに接続される制御装置と、前記2次温水ポンプの吐出圧制御を行う吐出圧制御弁と、を備え、前記制御装置は、前記2次側温水往管路又は2次側温水還管路のいずれかに設置される負荷側流量計の負荷流量計測値と前記ヘッダ間バイパス路を流れる流量の想定値との合計値を、前記熱源の設計流量の合計値で除して百分率表示した温水負荷流量比率を算出し、前記2次側温水往管路と2次側温水還管路とにそれぞれ設置される負荷出口温度センサ及び負荷入口温度センサの計測値の差と前記負荷側流量計の負荷流量計測値を乗じて算出される負荷熱量計測値を、前記熱源の設計熱量の合計値で除して百分率表示した温水負荷熱量比率を算出し、前記温水負荷流量比率と前記温水負荷熱量比率との何れか大きい値を温水負荷率とし、前記温水負荷率に基づいて、前記熱源の台数制御および前記1次温水ポンプ流量制御による前記熱源の流量制御の少なくとも一方を行う。   Still another example of the heat source control system according to the present invention includes a heat source, a first forward header connected to the warm water outlet side of the heat source via a primary-side warm water outbound conduit, and a primary warm water pump. A return header connected to the hot water inlet side of the heat source via a primary hot water return pipe, a header bypass path connected between the first forward header and the return header, and the first forward A secondary forward header connected to the header via a secondary warm water pump, an air conditioner, and a secondary warm water forward conduit and secondary warm water connected between the second forward header and the return header A return pipe, a control device connected to the heat source and the primary hot water pump, and a discharge pressure control valve for controlling the discharge pressure of the secondary hot water pump, the control device comprising the secondary side Load-side flow meter load installed in either the hot water outbound pipe or the secondary hot water return pipe The total value of the measured amount of flow and the estimated value of the flow rate flowing through the header bypass passage is divided by the total value of the design flow rate of the heat source to calculate the percentage of the hot water load flow rate, and the secondary side hot water flow rate is calculated. Load calorimetry calculated by multiplying the difference between the measured values of the load outlet temperature sensor and the load inlet temperature sensor respectively installed in the pipeline and the secondary hot water return pipeline and the load flow rate measurement value of the load side flow meter The value is divided by the total value of the design heat quantity of the heat source to calculate the hot water load heat quantity ratio expressed as a percentage, and the larger one of the hot water load flow rate ratio and the hot water load heat quantity ratio is set as the hot water load ratio, Based on the hot water load factor, at least one of the number control of the heat sources and the heat source flow rate control by the primary hot water pump flow rate control are performed.

本発明に係る熱源制御システムのさらに他の例は、熱源と、前記熱源の温水出口側に1次側温水往管路を介して接続する往ヘッダと、1次温水ポンプを途中に備える1次側温水還管路を介して、前記熱源の温水入口側に接続する還ヘッダと、前記往ヘッダと前記還ヘッダとの間に接続されるヘッダ間バイパス路と、空調機を備え、前記往ヘッダと前記還ヘッダとの間に接続される2次側温水往管路及び2次側温水還管路と、前記熱源及び前記1次温水ポンプに接続される制御装置と、前記熱源、前記1次側温水往管路、前記1次側温水還管路、前記空調機、2次側温水往管路及び2次側温水還管路の圧力損失分の揚程を有する前記1次温水ポンプと、を備え、前記制御装置は、前記2次側温水往管路又は2次側温水還管路のいずれかに設置される負荷側流量計の負荷流量計測値と前記ヘッダ間バイパス路を流れる流量の想定値との合計値を、前記熱源の設計流量の合計値で除して百分率表示した温水負荷流量比率を算出し、前記2次側温水往管路と2次側温水還管路とにそれぞれ設置される負荷出口温度センサ及び負荷入口温度センサの計測値の差と前記負荷側流量計の負荷流量計測値を乗じて算出される負荷熱量計測値を、前記熱源の設計熱量の合計値で除して百分率表示した温水負荷熱量比率を算出し、前記温水負荷流量比率と前記温水負荷熱量比率との何れか大きい値を温水負荷率とし、前記温水負荷率に基づいて、前記熱源の台数制御および前記1次温水ポンプ流量制御による前記熱源の流量制御の少なくとも一方を行う。   Still another example of the heat source control system according to the present invention is a primary that includes a heat source, a forward header connected to the hot water outlet side of the heat source via a primary-side hot water outgoing line, and a primary hot water pump. A return header connected to the hot water inlet side of the heat source via a side hot water return pipe, an inter-header bypass path connected between the forward header and the return header, and an air conditioner, the forward header And a secondary side hot water outgoing line and a secondary side hot water return line connected between the return header, a control device connected to the heat source and the primary hot water pump, the heat source, the primary A primary hot water pump having a head for a pressure loss of a side hot water outgoing pipe, the primary side hot water return pipe, the air conditioner, a secondary side hot water outgoing pipe, and a secondary side hot water return pipe; And the control device is installed in either the secondary-side hot water outbound conduit or the secondary-side warm water return conduit. Calculate the hot water load flow rate ratio by dividing the total value of the load flow rate measurement value of the load side flow meter and the estimated value of the flow rate flowing through the header bypass path by the total value of the design flow rate of the heat source. The difference between the measured values of the load outlet temperature sensor and the load inlet temperature sensor respectively installed in the secondary side hot water outgoing line and the secondary side hot water return line is multiplied by the load flow rate measured value of the load side flow meter. The hot water load calorie ratio is calculated by dividing the measured value of load calorie calculated by the total value of the design heat quantity of the heat source, and the larger one of the hot water load flow rate ratio and the hot water load calorie ratio is calculated. And at least one of the heat source flow rate control by the number control of the heat sources and the primary hot water pump flow rate control is performed based on the hot water load factor.

本発明によれば、熱量と流量という異なる物理量を百分率という同じ単位とすることで、2次負荷状態の単純化を図ることができる。
本発明によれば、2次負荷状態を百分率表示することで、1次ポンプ方式でも2次ポンプ方式でも対応可能である。
本発明によれば、一つの制御パラメータで、熱源台数制御と1次冷水変流量制御とを同時に実現することができる。
According to the present invention, the secondary load state can be simplified by setting different physical quantities of heat and flow to the same unit of percentage.
According to the present invention, by displaying the secondary load state as a percentage, it is possible to cope with either the primary pump system or the secondary pump system.
According to the present invention, it is possible to simultaneously realize the heat source number control and the primary chilled water variable flow rate control with one control parameter.

本発明によれば、一般的な制御方式に比べて、外乱が少なく、省エネルギー性、快適性が向上する。
本発明によれば、往還ヘッダ間バイパス流量が減少することで、1次ポンプ消費電力の削減にも貢献することができる。
本発明によれば、制御ロジックが単純であるため、コントローラの開発費や保守費が安価となる。
According to the present invention, there are few disturbances compared to a general control method, and energy saving and comfort are improved.
ADVANTAGE OF THE INVENTION According to this invention, it can also contribute to the reduction of primary pump power consumption by reducing the bypass flow volume between return headers.
According to the present invention, since the control logic is simple, the development cost and maintenance cost of the controller are low.

本発明の第1実施形態を示す説明図である。It is explanatory drawing which shows 1st Embodiment of this invention. 本発明の第1実施形態の制御フローを示す図である。It is a figure which shows the control flow of 1st Embodiment of this invention. 本発明の第1実施形態による熱源台数制御の設定を示す図である。It is a figure which shows the setting of the heat source number control by 1st Embodiment of this invention. 本発明の第1実施形態の適用例を示す図である。It is a figure which shows the example of application of 1st Embodiment of this invention. 本発明の第1実施形態の適用例を示す図である。It is a figure which shows the example of application of 1st Embodiment of this invention. 本発明の第1実施形態の適用例を示す図である。It is a figure which shows the example of application of 1st Embodiment of this invention. 本発明の第2実施形態を示す説明図である。It is explanatory drawing which shows 2nd Embodiment of this invention. 従来の1次ポンプ方式を示す図である。It is a figure which shows the conventional primary pump system. 従来の2次ポンプ方式を示す図である。It is a figure which shows the conventional secondary pump system.

以下、本発明の実施形態を図面に基づいて説明する。
図1は、本発明の第1実施形態を示す。
本実施形態は、本発明に係る熱源制御システムを2次ポンプ方式に適用した例を示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a first embodiment of the present invention.
The present embodiment shows an example in which the heat source control system according to the present invention is applied to a secondary pump system.

熱源制御システムは、4つの冷凍機(熱源機R1)11a,冷凍機(熱源機R2)11b,冷凍機(熱源機R3)11c,冷凍機(熱源機R4)11dと、往ヘッダ27と、還ヘッダ29と、2つの空調機(AHU)49a,49bとを備える。
4つの冷凍機(熱源機R1)11a,冷凍機(熱源機R2)11b,冷凍機(熱源機R3)11c,冷凍機(熱源機R4)11dには、熱源制御システムのコントローラであるPLC(Programmable Logic Controller)から熱源発停指令及び冷水出口温度SP(Set Point:設定値)が入力される。また、4つの冷凍機(熱源機R1)11a,冷凍機(熱源機R2)11b,冷凍機(熱源機R3)11c,冷凍機(熱源機R4)11dからは、熱源運転状態、熱源故障状態及び軽負荷運転状態がPLCへ出力される。
The heat source control system includes four refrigerators (heat source machine R1) 11a, refrigerator (heat source machine R2) 11b, refrigerator (heat source machine R3) 11c, refrigerator (heat source machine R4) 11d, forward header 27, return A header 29 and two air conditioners (AHU) 49a and 49b are provided.
The four refrigerators (heat source machine R1) 11a, the refrigerator (heat source machine R2) 11b, the refrigerator (heat source machine R3) 11c, and the refrigerator (heat source machine R4) 11d include a PLC (Programmable) that is a controller of the heat source control system. A heat source start / stop command and a chilled water outlet temperature SP (Set Point) are input from the Logic Controller. The four refrigerators (heat source machine R1) 11a, the refrigerator (heat source machine R2) 11b, the refrigerator (heat source machine R3) 11c, and the refrigerator (heat source machine R4) 11d have a heat source operation state, a heat source failure state, and The light load operation state is output to the PLC.

4つの冷凍機(熱源機R1)11a,冷凍機(熱源機R2)11b,冷凍機(熱源機R3)11c,冷凍機(熱源機R4)11dと往ヘッダ27との間は、4つの1次側冷水往管路13a,13b,13c,13dでそれぞれ接続されている。1次側冷水往管路13a,13b,13c,13dには、冷凍機出口冷水温度センサ15a,15b,15c,15dが設けられている。冷凍機出口冷水温度センサ15a,15b,15c,15dの温度PV(Process Value:計測値)は、PLCへ出力される。   Between the four refrigerators (heat source machine R1) 11a, the refrigerator (heat source machine R2) 11b, the refrigerator (heat source machine R3) 11c, the refrigerator (heat source machine R4) 11d and the forward header 27 are four primary. The side cold water outgoing pipes 13a, 13b, 13c, and 13d are connected to each other. Refrigerator outlet cold water temperature sensors 15a, 15b, 15c, and 15d are provided in the primary side cold water outgoing pipes 13a, 13b, 13c, and 13d. The temperature PV (Process Value: measured value) of the refrigerator outlet cold water temperature sensors 15a, 15b, 15c, and 15d is output to the PLC.

4つの冷凍機(熱源機R1)11a,冷凍機(熱源機R2)11b,冷凍機(熱源機R3)11c,冷凍機(熱源機R4)11dと還ヘッダ29との間は、4つの1次側冷水還管路17a,17b,17c,17dでそれぞれ接続されている。4つの1次側冷水還管路17a,17b,17c,17dは、還ヘッダ29から4つの冷凍機(熱源機)11a,11b,11c,11dに向かって、熱源機流量計19a,19b,19c,19dと、冷水ポンプ(1次ポンプ)21a,21b,21c,21dと、冷凍機入口冷水温度センサ23a,23b,23c,23dがそれぞれ設けられている。冷凍機入口冷水温度センサ温度センサ23a,23b,23c,23dの計測値は、PLCへ出力される。   Between the four refrigerators (heat source machine R1) 11a, the refrigerator (heat source machine R2) 11b, the refrigerator (heat source machine R3) 11c, the refrigerator (heat source machine R4) 11d and the return header 29 are four primary. The side cold water return pipes 17a, 17b, 17c, and 17d are connected to each other. The four primary chilled water return pipes 17a, 17b, 17c, and 17d are directed from the return header 29 to the four refrigerators (heat source machines) 11a, 11b, 11c, and 11d, and the heat source flow meters 19a, 19b, and 19c. , 19d, cold water pumps (primary pumps) 21a, 21b, 21c, 21d, and refrigerator inlet cold water temperature sensors 23a, 23b, 23c, 23d, respectively. The measured values of the refrigerator inlet cold water temperature sensor temperature sensors 23a, 23b, 23c, and 23d are output to the PLC.

熱源機流量計19a,19b,19c,19dの流量PVは、流量制御用の流量指示調節計(FIC:Flow Indicating Controller)25a,25b,25c,25dへ出力される。流量指示調節計25a,25b,25c,25dは、PLCから流量SPを受け、流量PVが流量SPとなるように、冷水ポンプ(1次ポンプ)21a,21b,21c,21dの回転数をそれぞれのINVを制御して可変する。
往ヘッダ27と還ヘッダ29とは、ヘッダ間バイパス路31を介して接続されている。
The flow rate PV of the heat source device flow meters 19a, 19b, 19c, and 19d is output to a flow indication controller (FIC: Flow Indicating Controller) 25a, 25b, 25c, and 25d. The flow rate indicating controllers 25a, 25b, 25c, and 25d receive the flow rate SP from the PLC, and adjust the rotational speeds of the cold water pumps (primary pumps) 21a, 21b, 21c, and 21d so that the flow rate PV becomes the flow rate SP. INV is controlled and varied.
The forward header 27 and the return header 29 are connected via an inter-header bypass path 31.

このように、本実施形態では、4つの冷凍機(熱源機R1)11a,冷凍機(熱源機R2)11b,冷凍機(熱源機R3)11c,冷凍機(熱源機R4)11dと、4つの1次側冷水往管路13a,13b,13c,13dと、往ヘッダ27と、還ヘッダ29と、4つの1次側冷水還管路17a,17b,17c,17dとによって熱源の1次側が構成されている。   Thus, in this embodiment, four refrigerators (heat source machine R1) 11a, refrigerator (heat source machine R2) 11b, refrigerator (heat source machine R3) 11c, refrigerator (heat source machine R4) 11d, The primary side of the heat source is constituted by the primary side cold water outgoing lines 13a, 13b, 13c, 13d, the forward header 27, the return header 29, and the four primary side cold water return pipes 17a, 17b, 17c, 17d. Has been.

一方、往ヘッダ27には、第2の往ヘッダ83が複数の2次冷水ポンプ85a、85b及び2次側冷水往水路の一部を介して接続されている。2次冷水ポンプ85a、85bは、往ヘッダ27と第2の往ヘッダ83との間に並列に接続されている。また、往ヘッダ27と第2の往ヘッダ83との間には吐出圧制御弁89を設けた2次ポンプ出入口バイパス管路87が接続されている。
第2の往ヘッダ83と還ヘッダ29との間には、第2の往ヘッダ83と空調機(49a,49b)とを接続する2次側冷水往水路39と、空調機(49a,49b)と還ヘッダ29とを接続する2次側冷水還水路41とが設けられており、図1では2系統だが実際は多数系統があって熱源の2次側を構成している。2次側冷水往水路39は、1系統冷水管43a及び2系統冷水管43bの2つの管路に分岐し、1系統冷水管43a及び2系統冷水管43bは2次側冷水還水路41に合流する。
On the other hand, the second forward header 83 is connected to the forward header 27 via a plurality of secondary chilled water pumps 85a and 85b and a part of the secondary chilled water outgoing passage. The secondary chilled water pumps 85 a and 85 b are connected in parallel between the forward header 27 and the second forward header 83. Further, a secondary pump inlet / outlet bypass pipe 87 provided with a discharge pressure control valve 89 is connected between the forward header 27 and the second forward header 83.
Between the second forward header 83 and the return header 29, a secondary chilled water outlet 39 connecting the second forward header 83 and the air conditioner (49a, 49b), and an air conditioner (49a, 49b). And a secondary side cold water return channel 41 for connecting the return header 29 to the return header 29. Although there are two systems in FIG. 1, there are actually a number of systems that constitute the secondary side of the heat source. The secondary side chilled water outgoing channel 39 branches into two lines, the first line chilled water pipe 43a and the second line chilled water pipe 43b, and the first line chilled water pipe 43a and the second line chilled water pipe 43b join the secondary side chilled water return channel 41. To do.

1系統冷水管43a及び2系統冷水管43bには、負荷入口温度センサ45a,45bと、二方弁47a,47bと、空調機(AHU1)49a,空調機(AHU2)49bと、負荷出口温度センサ51a,51bと、負荷側流量計53a,53bとがそれぞれ設けられている。負荷入口温度センサ45a,45b及び負荷出口温度センサ51a,51bの計測値は、PLCへ出力される。   The 1-system cold water pipe 43a and the 2-system cold water pipe 43b include load inlet temperature sensors 45a and 45b, two-way valves 47a and 47b, an air conditioner (AHU1) 49a, an air conditioner (AHU2) 49b, and a load outlet temperature sensor. 51a and 51b and load-side flow meters 53a and 53b are provided, respectively. The measured values of the load inlet temperature sensors 45a and 45b and the load outlet temperature sensors 51a and 51b are output to the PLC.

2次側冷水還水路41には、フリークーリング熱交換器57を介してフリークーリング冷却塔59と熱的に接続するフリークーリング分岐冷水管路55が分岐点と合流点の2点で接続されている。フリークーリング分岐冷水管路55は、フリークーリング熱交換器57に向かって2次側冷水還水路41との分岐点からフリークーリング流量計61とフリークーリング冷水ポンプ63とフリークーリング熱交換器入口温度センサ65とを備えている。フリークーリング流量計61にて計測されたフリークーリング流量PVは流量制御用のフリク流量指示調節計(FIC)67へ出力され、フリク流量指示調節計67からPLCへフリークーリング流量PVが出力される。また、フリク流量指示調節計67には、PLCからフリークーリング流量SPが入力される。フリク流量指示調節計67は、フリークーリング流量PVがフリークーリング流量SPになるように、フリークーリング冷水ポンプインバータINVを制御してフリークーリング冷水ポンプ63の回転数を制御している。フリークーリング熱交換器57の下流側のフリークーリング分岐冷水管路55には、フリークーリング熱交換器出口温度センサ69が設けられている。フリークーリング熱交換器入口温度センサ65及びフリークーリング熱交換器出口温度センサ69の計測値は、PLCへ出力される。   A free cooling branch chilled water pipe 55 that is thermally connected to the free cooling cooling tower 59 via a free cooling heat exchanger 57 is connected to the secondary side cold water return water path 41 at two points, a branch point and a junction. Yes. The free cooling branch chilled water pipe 55 is connected to the free cooling flow meter 61, the free cooling chilled water pump 63, and the free cooling heat exchanger inlet temperature sensor from the branch point with the secondary side chilled water return channel 41 toward the free cooling heat exchanger 57. 65. The free cooling flow rate PV measured by the free cooling flow meter 61 is output to the flow control flow rate indicating controller (FIC) 67, and the free cooling flow rate PV is output from the flick flow rate indicating controller 67 to the PLC. Further, the free cooling flow rate SP is input from the PLC to the flicker flow rate indicating controller 67. The flick flow rate indicating controller 67 controls the number of rotations of the free cooling chilled water pump 63 by controlling the free cooling chilled water pump inverter INV so that the free cooling flow rate PV becomes the free cooling flow rate SP. A free cooling heat exchanger outlet temperature sensor 69 is provided in the free cooling branch chilled water pipeline 55 on the downstream side of the free cooling heat exchanger 57. The measured values of the free cooling heat exchanger inlet temperature sensor 65 and the free cooling heat exchanger outlet temperature sensor 69 are output to the PLC.

フリークーリング熱交換器57とフリークーリング冷却塔59とを接続するフリク循環水路71には、フリークーリング冷却塔出口温度センサ73とフリク冷却水ポンプ75とが設けられている。フリク冷却水ポンプ75は、インバータINVを備え、フリク冷却水ポンプ75の回転数はフリークーリング熱交換器出口温度センサ69の計測値に基づく温度制御用の指示調節計77の出力によってインバータINVを制御することで調整される。
フリークーリング冷却塔59は、インバータINVを備えた冷却塔ファン81によって冷却される。冷却塔ファン81の回転数は、フリークーリング冷却塔出口温度センサ73の計測値に基づく温度制御用の指示調節計79の出力によってインバータINVを制御することで調整される。
本実施形態では、フリークーリング熱交換器57を介して熱的に接続されるフリク循環水路71とフリークーリング分岐冷水管路55とで、還水フリークーリングを構成している。
A free-cooling cooling tower outlet temperature sensor 73 and a free-cooling water pump 75 are provided in the free-fluid circulation water passage 71 that connects the free-cooling heat exchanger 57 and the free-cooling cooling tower 59. The flick cooling water pump 75 includes an inverter INV, and the rotation speed of the flick cooling water pump 75 controls the inverter INV by the output of the instruction controller 77 for temperature control based on the measurement value of the free cooling heat exchanger outlet temperature sensor 69. It is adjusted by doing.
The free cooling cooling tower 59 is cooled by a cooling tower fan 81 provided with an inverter INV. The number of revolutions of the cooling tower fan 81 is adjusted by controlling the inverter INV by the output of the temperature control instruction controller 79 based on the measured value of the free cooling cooling tower outlet temperature sensor 73.
In the present embodiment, the return water free cooling is configured by the freque circulation water channel 71 and the free cooling branch chilled water pipe 55 that are thermally connected via the free cooling heat exchanger 57.

本実施形態において、PLCは、1系統冷水管43a及び2系統冷水管43bで構成される2次側冷水系統の負荷流量計測値PVとヘッダ間バイパス路31の流量の想定値との合計値を、4つの冷凍機(熱源機R1)11a,冷凍機(熱源機R2)11b,冷凍機(熱源機R3)11c,冷凍機(熱源機R4)11dの設計流量の合計値で除して百分率表示とする冷水負荷流量比率を算出する。また、PLCは、1系統冷水管43a及び2系統冷水管43bで構成される2次側冷水系統の負荷熱量計測値を、4つの冷凍機(熱源機R1)11a,冷凍機(熱源機R2)11b,冷凍機(熱源機R3)11c,冷凍機(熱源機R4)11dの設計熱量の合計値で除して百分率表示とする冷水負荷熱量比率を算出する。また、PLCは、冷水負荷流量比率と冷水負荷熱量比率との何れか大きい値を、2次冷水負荷率とし、この2次冷水負荷率に基づいて、熱源の台数制御又は1次冷水の変流量制御を行うように構成されている。   In this embodiment, the PLC calculates the total value of the load flow rate measurement value PV of the secondary side chilled water system constituted by the 1-system chilled water pipe 43a and the 2-system chilled water pipe 43b and the estimated value of the flow rate of the inter-header bypass path 31. Dividing by the total value of the design flow rate of four refrigerators (heat source machine R1) 11a, refrigerator (heat source machine R2) 11b, refrigerator (heat source machine R3) 11c, refrigerator (heat source machine R4) 11d, and displaying percentage Calculate the cold water load flow rate ratio. In addition, the PLC calculates the load calorific value of the secondary chilled water system composed of the 1-system chilled water pipe 43a and the 2-system chilled water pipe 43b, the four refrigerators (heat source machine R1) 11a, and the refrigerator (heat source machine R2). 11b, the cold water load calorie | heat amount ratio which is divided by the total value of the design calorie | heat amount of the refrigerator (heat source machine R3) 11c, and the refrigerator (heat source machine R4) 11d is displayed as a percentage display. The PLC uses the larger value of the chilled water load flow rate ratio and the chilled water load heat rate ratio as the secondary chilled water load factor, and based on this secondary chilled water load factor, controls the number of heat sources or changes the primary chilled water flow rate. It is configured to perform control.

次に、図2に示す冷水負荷率の制御フローに基づいて、本実施形態における冷水負荷率の計算方法を説明する。
1)冷水負荷流量比率の計算(ステップS1〜S4)について説明する。
先ず、PLCは、冷水熱源として、増減段対象となる全熱源、即ち、4つの冷凍機(熱源機R1)11a,冷凍機(熱源機R2)11b,冷凍機(熱源機R3)11c,冷凍機(熱源機R4)11dの設計流量(m/h)の合計値を求める。従って、フリークーリング、温水熱源、増減段対象ではない熱源は除外される。
冷水流量最大値(m/h)=冷水熱源の設計流量の合計値(ステップS1)
Next, a method for calculating the cold water load factor in this embodiment will be described based on the control flow of the cold water load factor shown in FIG.
1) The calculation of the cold water load flow rate ratio (steps S1 to S4) will be described.
First, as a cold water heat source, the PLC is a total heat source to be increased or decreased, that is, four refrigerators (heat source machine R1) 11a, refrigerator (heat source machine R2) 11b, refrigerator (heat source machine R3) 11c, refrigerator. (Heat source machine R4) The total value of the design flow rate (m 3 / h) of 11d is obtained. Therefore, free cooling, hot water heat sources, and heat sources that are not subject to increase or decrease are excluded.
Maximum value of chilled water flow rate (m 3 / h) = total value of design flow rate of chilled water heat source (step S1)

次に、PLCは、負荷流量計測値(m/h)と冷水バイパス流量想定値(m/h)より、冷水負荷流量を次式にて計算する。
以下の説明では、1系統冷水管43aの負荷流量を1系統負荷流量とし、2系統冷水管43bの負荷流量を2系統負荷流量として説明する。
2次冷水ポンプ85a及び85bが停止しているとき、2系統負荷流量PV=0(m/h)とする。2次冷水ポンプ85a及び85bのうち、1台でも運転しているときに、PLCは、次の計算を行う。
冷水負荷流量PV(m/h)=1系統負荷流量PV+2系統負荷流量PV(ステップS2)
Next, the PLC calculates the chilled water load flow rate by the following equation from the load flow rate measurement value (m 3 / h) and the chilled water bypass flow rate estimated value (m 3 / h).
In the following description, the load flow rate of the 1-system cold water pipe 43a will be described as 1-system load flow rate, and the load flow rate of the 2-system cold water pipe 43b will be described as 2-system load flow rate.
When the secondary chilled water pumps 85a and 85b are stopped, the two-system load flow rate PV = 0 (m 3 / h). When one of the secondary chilled water pumps 85a and 85b is operating, the PLC performs the following calculation.
Cold water load flow rate PV (m 3 / h) = 1 system load flow rate PV + 2 system load flow rate PV (step S2)

次に、PLCは、熱源全体の冷水流量の目標値である冷水要求流量SPを、バイパス流量想定値を加味して、次式で求める。
冷水要求流量SP(m/h)=冷水負荷流量PV+バイパス流量想定値(ステップS3)
ここで、バイパス流量想定値は、例えば、0m/h以上でベース熱源の冷水流量設計値の10%以下程度の値である。バイパス流量想定値をゼロとすると省エネ性能が最もよくなるが、バイパス管の逆流による2次冷水往温度の上昇のリスクがある。通常、バイパス流量想定値は、熱源機1台の設計流量の10%程度とする。
次に、PLCは、冷水負荷流量比率(%)を次式で算出する。
冷水負荷流量比率(%)=100×冷水要求流量SP÷冷水流量最大値(ステップS4)
Next, the PLC obtains the chilled water required flow rate SP, which is the target value of the chilled water flow rate of the entire heat source, by taking the bypass flow rate assumed value into consideration, using the following equation.
Chilled water required flow rate SP (m 3 / h) = Chilled water load flow rate PV + Bypass flow rate assumption value (step S3)
Here, the bypass flow rate assumption value is a value of about 10% or less of the chilled water flow rate design value of the base heat source at, for example, 0 m 3 / h or more. When the bypass flow rate assumption value is zero, the energy saving performance is the best, but there is a risk that the secondary chilled water temperature will rise due to the backflow of the bypass pipe. Usually, the estimated bypass flow rate is about 10% of the design flow rate of one heat source unit.
Next, the PLC calculates the cold water load flow rate ratio (%) by the following equation.
Chilled water load flow rate ratio (%) = 100 × chilled water required flow rate SP ÷ chilled water flow rate maximum value (step S4)

2)冷水負荷熱量比率の計算(ステップS5〜S8)について説明する。
先ず、PLCは、冷水熱源として、増減段対象となる全熱源、即ち、4つの冷凍機(熱源機R1)11a,冷凍機(熱源機R2)11b,冷凍機(熱源機R3)11c,冷凍機(熱源機R4)11dの設計熱量(m/h)の合計値を求める。
冷水熱量最大値=冷水熱源の設計熱量の合計値(ステップS5)
次に、PLCは、1系統負荷流量PV(m/h、53aの計測流量値)≧0及び1系統冷水△T(℃、51aと47aとの各計測値の温度差)≧0とし、1系統負荷熱量(kW)を次式にて計算する。
以下の説明では、1系統冷水管43aの負荷熱量を1系統負荷熱量とし、2系統冷水管43bの負荷熱量を2系統負荷熱量として説明する。
2) The calculation of the cold water load heat ratio (steps S5 to S8) will be described.
First, as a cold water heat source, the PLC is a total heat source to be increased or decreased, that is, four refrigerators (heat source machine R1) 11a, refrigerator (heat source machine R2) 11b, refrigerator (heat source machine R3) 11c, refrigerator. (Heat source machine R4) The total value of the design heat quantity (m 3 / h) of 11d is obtained.
Maximum value of chilled water heat amount = total value of design heat amount of chilled water heat source (step S5)
Next, the PLC has 1 system load flow PV (measured flow value of m 3 / h, 53a) ≧ 0 and 1 system cold water ΔT (° C., temperature difference between measured values of 51a and 47a) ≧ 0, One system load calorie | heat amount (kW) is calculated by following Formula.
In the following description, the load heat quantity of the 1-system cold water pipe 43a will be described as 1-system load heat quantity, and the load heat quantity of the 2-system cold water pipe 43b will be described as 2-system load heat quantity.

1系統負荷熱量(kW)=1.163×1系統負荷流量PV×1系統冷水ΔT(51aと47aとの温度差)
ここで、1.163(kW)は、次式により求められる。
1(m/h)×1(kcal/kg・℃)×4.1868(kJ/kcal)×1000(kg/m)÷3600(s/h)=1.163(kW)
2系統負荷流量PV(m/h、53bの計測流量値)≧0及び冷水△T(℃)≧0とし、2系統負荷熱量(kW)を次式にて計算する。
1 system load calorie (kW) = 1.163 × 1 system load flow PV × 1 system chilled water ΔT (temperature difference between 51a and 47a)
Here, 1.163 (kW) is obtained by the following equation.
1 (m 3 / h) × 1 (kcal / kg · ° C.) × 4.1868 (kJ / kcal) × 1000 (kg / m 3 ) ÷ 3600 (s / h) = 1.163 (kW)
Two-system load flow rate PV (measured flow rate value of m 3 / h, 53b) ≧ 0 and cold water ΔT (° C.) ≧ 0, and the two-system load heat amount (kW) is calculated by the following equation.

2系統負荷熱量(kW)=1.163×2系統負荷流量PV×2系統冷水△T(51bと47bとの温度差)
フリークーリング(フリクとも称する)冷水流量PV(m/h、61の計測流量値)≧0及び冷水△T(℃、65と69との各計測値の温度差)≧0とし、フリク冷水熱量(kW)を次式にて計算する。
フリク冷水ポンプ運転状態=0(停止)のとき、フリク冷水熱量PV=0(kW)とする。
フリク冷水熱量(kW)=1.163×フリク冷水流量PV×冷水ΔT(65と69との温度差)
PLCは、冷水負荷熱量を次式で算出する。なお、冷水要求熱量SP≧0とする。
冷水負荷熱量PV(kW)=1系統負荷熱量PV+2系統負荷熱量PV(ステップS6)
2 system load heat quantity (kW) = 1.163 × 2 system load flow PV × 2 system cold water ΔT (temperature difference between 51b and 47b)
Free cooling (also called flick) chilled water flow rate PV (m 3 / h, measured flow value of 61) ≧ 0 and chilled water ΔT (temperature difference between measured values of ° C., 65 and 69) ≧ 0, and flick chilled water heat quantity (KW) is calculated by the following equation.
When the operation state of the flicker chilled water pump = 0 (stopped), the amount of heat generated by the flicker chilled water PV = 0 (kW).
Heat quantity of chilled cold water (kW) = 1.163 x Flique chilled water flow rate PV x chilled water ΔT (temperature difference between 65 and 69)
The PLC calculates the cold water load calorie by the following equation. Note that the cold water required heat amount SP ≧ 0.
Cold water load heat PV (kW) = 1 system heat load PV + 2 system load heat PV (step S6)

また、PLCは、冷水要求熱量を次式で算出する。
例えば、実施形態において、フリークーリングによる予冷を行う場合には、負荷熱量からフリークーリングによる熱量を減算すればよい。
冷水要求熱量SP(kW)=負荷熱量PV−フリク生成熱量(ステップS7)
ここで、還水フリク方式は、冷凍機(Rl〜R4)に対して、予冷熱源となるので、中間期僅かでも冷水還水温度よりも外気湿球温度が低くなれば原理的に利用可能であり、自然冷熱利用による冷凍機運転動力の低減に繋がる。
冷水熱源として運転可能な熱源(フリク除外)の設計冷水熱量(kW)の合計値を求める。
次に、PLCは、冷水負荷熱量比率=100×冷水要求熱量SP/冷水熱量最大値を計算する(ステップS8)。
冷水負荷熱量PV=0(kW)のとき、冷水負荷熱量比率=0(%)とする。
Moreover, PLC calculates cold-water request | requirement calorie | heat amount with following Formula.
For example, in the embodiment, when pre-cooling by free cooling is performed, the heat amount by free cooling may be subtracted from the load heat amount.
Chilled water required heat amount SP (kW) = load heat amount PV-frik generation heat amount (step S7)
Here, the return water flick system is a pre-cooling heat source for the refrigerators (R1 to R4), and therefore can be used in principle if the outside air wet bulb temperature is lower than the cold water return water temperature even in the middle period. Yes, leading to a reduction in the operating power of the refrigerator due to the use of natural cold.
The total value of the design cold water heat quantity (kW) of the heat source (excluding flick) that can be operated as the cold water heat source is obtained.
Next, the PLC calculates the chilled water load heat quantity ratio = 100 × the chilled water required heat quantity SP / the chilled water heat quantity maximum value (step S8).
When the cold water load heat quantity PV = 0 (kW), the cold water load heat quantity ratio = 0 (%).

3)冷水負荷率の計算について説明する。
本実施形態では、PLCは、冷水流量比率と冷水負荷熱量比率との大きい値を、冷水負荷率とする。
冷水負荷率=MAX(冷水流量比率,冷水負荷熱量比率)(ステップS9)
なお、「MAX(A)」は、Aの最大値を返す関数を示す。
4)冷水負荷計算方法において、PLCは、熱量を考慮するか又は流量のみを考慮するかを判断する(ステップS10)。
熱量を考慮する場合には、PLCは、冷水負荷率=MAX(冷水流量比率,冷水負荷熱量比率)として処理する(ステップS11)。
1次ポンプ方式において1次冷水流量≧2次冷水流量とする場合のように流量のみを考慮する場合には、PLCは、冷水負荷率=冷水流量比率として処理する(ステップS12)。
そして、PLCは、ステップS11又はステップS12で求めた冷水負荷率に基づいて熱源台数制御(増減段制御)を行う(ステップS13)。
3) The calculation of the cold water load factor will be described.
In the present embodiment, the PLC sets a large value between the chilled water flow rate ratio and the chilled water load heat amount ratio as the chilled water load factor.
Chilled water load factor = MAX (Chilled water flow rate ratio, Chilled water load heat rate ratio) (Step S9)
“MAX (A)” indicates a function that returns the maximum value of A.
4) In the cold water load calculation method, the PLC determines whether to consider the amount of heat or only the flow rate (step S10).
When considering the amount of heat, the PLC processes as cold water load factor = MAX (chilled water flow rate ratio, cold water load heat amount ratio) (step S11).
When only the flow rate is considered as in the case of the primary chilled water flow rate ≧ secondary chilled water flow rate in the primary pump system, the PLC processes the chilled water load factor = the chilled water flow rate ratio (step S12).
And PLC performs heat source number control (increase / decrease stage control) based on the cold water load factor calculated | required by step S11 or step S12 (step S13).

次に、冷水負荷率の物理的な意味について考察する。
最適容量方式による冷水変流量制御のねらいは、各熱源が生成する熱量の比率を変えることにあるが、直接熱量を制御することはできない。そこで、2次側冷水ΔTは同じという前提で、冷水流量を変えることで、間接的に各熱源が生成する熱量の比率を変えている。このように、PLCが出力する物理量は、流量であることから、PLCに対する負荷とは、冷水負荷流量である。
Next, the physical meaning of the cold water load factor will be considered.
The aim of the cold water variable flow rate control by the optimum capacity method is to change the ratio of the amount of heat generated by each heat source, but the amount of heat cannot be directly controlled. Therefore, on the assumption that the secondary side cold water ΔT is the same, the ratio of the amount of heat generated by each heat source is indirectly changed by changing the flow rate of the cold water. Thus, since the physical quantity which PLC outputs is a flow volume, the load with respect to PLC is a cold water load flow volume.

そこで、冷水負荷流量計測値に、一定の往還バイパス流量確保するためのバイパス流量目標値をプラスし、冷水負荷流量比率を算出する。流量絶対値(m/h)ではなく流量比率(%)としたのは、後述する熱量と流量の大小の比較を可能とするためである。
この冷水負荷流量比率で、1次側の変流量制御を行うと、2次冷水△Tが設計条件(通常5℃)より大きい場合に、1次側冷水流量不足が発生する。この対策として、冷水負荷熱量を冷水負荷流量として換算(2次冷水△T=設計条件)したのが冷水負荷熱量比率(冷水負荷流量比率に相当する値)である。
Therefore, the chilled water load flow rate ratio is calculated by adding the bypass flow target value for securing a fixed return bypass flow rate to the chilled water load flow rate measurement value. The reason why the flow rate ratio (%) is used instead of the flow rate absolute value (m 3 / h) is to enable comparison between the amount of heat and the flow rate described later.
When the primary side variable flow rate control is performed at this chilled water load flow rate ratio, a shortage of the primary chilled water flow rate occurs when the secondary chilled water ΔT is larger than the design condition (usually 5 ° C.). As a countermeasure, the chilled water load calorific value is converted into the chilled water load flow rate (secondary chilled water ΔT = design condition) to obtain the chilled water load calorie ratio (value corresponding to the chilled water load flow rate ratio).

冷水負荷流量比率と冷水負荷熱量比率との大小を比較し、大きい方を冷水負荷率とする。『2次冷水△T=設計△T』又は『2次冷水△T<設計△T』であれば、『冷水負荷率=冷水負荷流量比率』となり、『2次冷水△T>設計△T』であれば、『冷水負荷率=冷水負荷熱量比率』となる。この冷水負荷率が、PLCの制御パラメータである。
以上をまとめると、冷水負荷率とは、2次側冷水ΔTの大小や往還バイパス流量の確保を考慮した上で、熱源が2次側へ送水する必要がある1次冷水流量の百分率表示と言える。
The magnitude of the chilled water load flow rate ratio and the chilled water load calorie ratio are compared, and the larger one is the chilled water load factor. If “secondary cold water ΔT = design ΔT” or “secondary cold water ΔT <design ΔT”, then “cold water load factor = cold water load flow rate ratio” and “secondary cold water ΔT> design ΔT”. Then, “Cooling water load factor = Cooling water load calorie ratio”. This cold water load factor is a control parameter of the PLC.
In summary, the chilled water load factor can be said to be a percentage display of the primary chilled water flow rate that the heat source needs to send to the secondary side in consideration of the size of the secondary chilled water ΔT and securing the return bypass flow rate. .

次に、熱源台数制御(増減段数制御)について説明する。
PLCは、優先順位が1番目(No.1)の冷凍機(熱源機R1)11aをベース源とし、冷熱源群の発停指令がONの時に常時ONとする。
熱源発停優先順位は、図3に基づいて、増段設定(Up1〜Up6)及び減段設定(Dn1〜Dn6)は事前に設定する。
例えば、1番目(No.1)の冷凍機(熱源機R1)11aが運転しているときに冷水負荷率が36%を超えると2番目(No.2)の冷凍機(熱源機R2)11bを増段(Up1)する設定とし、さらに2番目(No.2)の冷凍機(熱源機R2)11bも運転しているときに冷水負荷率が54%を超えると3番目(No.3)の冷凍機(熱源機R3)11cを増段(Up2)する設定としたりする。
逆に、3番目(No.3)の冷凍機(熱源機R3)11cが運転している際に冷水負荷率が49%を下回ると、3番目(No.3)の冷凍機(熱源機R3)11cを停止減段(Dn2)し、さらに2番目(No.2)の冷凍機(熱源機R1)11bが運転しているときに冷水負荷率が32%を下回ると、2番目(No.2)の冷凍機(熱源機R1)11bを停止減段(Dn1)する。
そして、PLCは、一定周期(10〜20分程度)で、冷水負荷率と増減段設定とを比較し、増段ポイント(Up1,2,3、Dn1,2,3)を計算し、運転する熱源機(No.1,2,3)を決定する。
必要に応じて、運転時間の平準化目的としたローテーションを行う。
Next, heat source number control (increase / decrease stage number control) will be described.
The PLC uses the first priority (No. 1) refrigerator (heat source machine R1) 11a as a base source, and is always turned on when the start / stop command of the cold heat source group is turned on.
Based on FIG. 3, the heat source start / stop priority is set in advance for the step increase setting (Up1 to Up6) and the step decrease setting (Dn1 to Dn6).
For example, when the cold water load factor exceeds 36% when the first (No. 1) refrigerator (heat source device R1) 11a is operating, the second (No. 2) refrigerator (heat source device R2) 11b. If the chilled water load factor exceeds 54% when the second (No. 2) refrigerator (heat source machine R2) 11b is also operating, the third (No. 3) Or setting the number of stages (Up2) of the refrigerator (heat source machine R3) 11c.
On the other hand, if the cold water load factor falls below 49% while the third (No. 3) refrigerator (heat source device R3) 11c is operating, the third (No. 3) refrigerator (heat source device R3) ) 11c is stopped and stepped down (Dn2), and when the second (No. 2) refrigerator (heat source machine R1) 11b is operating and the chilled water load factor falls below 32%, the second (No. The refrigerator (heat source machine R1) 11b of 2) is stopped and stepped down (Dn1).
The PLC compares the chilled water load factor with the increase / decrease setting at a constant cycle (about 10 to 20 minutes), calculates the increase point (Up1, 2, 3, Dn1, 2, 3), and operates. The heat source machine (No. 1, 2, 3) is determined.
If necessary, rotate for the purpose of leveling the operating time.

熱源運転台数が変化した場合、一定の効果待ち時間を設ける。
熱源が停止後一定時間は、PLCにて対象熱源の再起動を禁止とする。
熱源の故障を検知すると対象熱源に対してPLCは、停止指令を送信し、台数制御対象から除外する。
熱源機の能力変動等の補正を行うために、PLCは、往温度による増段補正を行う。ただし、軽負荷運転状態の熱源がある場合、往温度よる増段は行わない。
熱源機の能力変動等の補正を行うために、PLCは、還ヘッダ29内温度による減段補正を行う。
各熱源に対する発停指令と各熱源の運転状態が不一致の場合には、PLCは、停止指令を対象熱源に送信する。
熱源起動失敗時は、次順序の熱源を負荷に応じて代替運転とする。
When the number of operating heat sources changes, a certain waiting time is provided.
For a certain time after the heat source is stopped, the restart of the target heat source is prohibited by the PLC.
When the failure of the heat source is detected, the PLC transmits a stop command to the target heat source and excludes it from the number control target.
In order to correct the capacity fluctuation of the heat source machine, the PLC performs a step-up correction based on the going temperature. However, when there is a heat source in a light load operation state, the stage is not increased by the going temperature.
In order to correct the capacity variation of the heat source machine, the PLC performs a step reduction correction based on the temperature in the return header 29.
When the start / stop command for each heat source and the operation state of each heat source do not match, the PLC transmits a stop command to the target heat source.
When the heat source fails to start, the heat source in the next order is set as an alternative operation according to the load.

次に、図4〜図6に基づいて、2次負荷熱量が60%、2次負荷冷水ΔTの設計条件が10℃の場合について、2次側冷水ΔTの大小による具体的な制御方法について説明する。
熱源(R−1,R−2)の仕様は、2次側冷水ΔTの設計値=10℃、定格冷水熱量=700RT、冷水流量の設計値=211.5m/hとする。
Next, based on FIGS. 4 to 6, a specific control method according to the size of the secondary side cold water ΔT will be described when the secondary load heat quantity is 60% and the design condition of the secondary load cold water ΔT is 10 ° C. To do.
The specifications of the heat sources (R-1, R-2) are the design value of the secondary side cold water ΔT = 10 ° C., the rated cold water heat quantity = 700 RT, and the design value of the cold water flow rate = 211.5 m 3 / h.

2次側冷水ΔTの設計値=10℃の条件において、2次冷水熱量は、100%のとき1400RTであり、60%のとき840RTである。また、2次冷水流量は、2次冷水熱量が100%のとき423.0m/hであり、2次冷水熱量が100%のとき253.8m/hである。また、往ヘッダから還ヘッダへのバイパス流量の想定量は10.0m/hである。 Under the condition of the design value of the secondary side cold water ΔT = 10 ° C., the secondary cold water calorific value is 1400 RT when 100% and 840 RT when 60%. The secondary chilled water flow rate is 423.0 m 3 / h when the secondary chilled water calorie is 100%, and 253.8 m 3 / h when the secondary chilled water calorie is 100%. Further, the assumed amount of bypass flow from the forward header to the return header is 10.0 m 3 / h.

先ず、図4に基づいて、2次側冷水ΔTが100%の場合について説明する。図4の例における、1次冷水及び2次冷水の流量、1次側冷水ΔT及び2次側冷水ΔT、及び熱量は、表1に示す。

Figure 2016194386
2次側冷水ΔTが100%の場合には、2次側冷水ΔT=10.0℃(100%)、1次側冷水ΔT=10.0℃(100%)となる。また、2次流量比率は、2次側冷水ΔTが100%であるから、100%×60%=60%となり、2次熱量比率60%と一致する。
図4の例での1次流量の算出方法は下記の通りである。
負荷流量比率は、(253.8+10)/423=62.4%である。
負荷比率は、負荷流量比率と負荷熱量比率のいずれか大きい方の値をとる。すなわち、
負荷比率=MAX(負荷流量比率,負荷熱量比率)
=MAX(62.4%,60%)=62.4%である。
また、1次流量は、負荷比率と設計流量との積で求めることができる。すなわち、
1次流量=負荷比率×設計流量=62.4%×423=332.3m/hである。
また、図4の例でのバイパス流量は10.0m/hであり、想定値で見込んだバイパス流量に一致する。また、図4の例での2次冷水往温度は7℃であり、冷凍機の冷水出口温度と同じ温度となる。なお、バイパス流量の想定値を10m/hにすると、バイパス流量を0m/hとする場合と比べて、冷水ポンプの消費エネルギーが多少増加するものが、2次冷水温度が安定するため空調機の運用における快適性は向上する。 First, the case where the secondary side cold water ΔT is 100% will be described with reference to FIG. The flow rates of the primary and secondary chilled water, the primary chilled water ΔT and the secondary chilled water ΔT, and the amount of heat in the example of FIG.
Figure 2016194386
When the secondary side cold water ΔT is 100%, the secondary side cold water ΔT = 10.0 ° C. (100%), and the primary side cold water ΔT = 10.0 ° C. (100%). Further, since the secondary flow rate ΔT is 100%, the secondary flow rate ratio is 100% × 60% = 60%, which coincides with the secondary heat amount ratio 60%.
The calculation method of the primary flow rate in the example of FIG. 4 is as follows.
The load flow rate ratio is (253.8 + 10) /423=62.4%.
The load ratio takes a larger value of either the load flow rate ratio or the load heat amount ratio. That is,
Load ratio = MAX (load flow rate ratio, load heat ratio)
= MAX (62.4%, 60%) = 62.4%.
Further, the primary flow rate can be obtained by the product of the load ratio and the design flow rate. That is,
Primary flow rate = load ratio × design flow rate = 62.4% × 423 = 332.3 m 3 / h.
In addition, the bypass flow rate in the example of FIG. 4 is 10.0 m 3 / h, which matches the bypass flow rate estimated by the assumed value. Moreover, the secondary cold water going temperature in the example of FIG. 4 is 7 ° C., which is the same temperature as the cold water outlet temperature of the refrigerator. When the assumed value of the bypass flow rate is 10 m 3 / h, the energy consumption of the chilled water pump is slightly increased compared to the case where the bypass flow rate is 0 m 3 / h. Comfort in the operation of the machine is improved.

次に、図5に基づいて、2次側冷水ΔTが120%の場合について説明する。図5の例における、1次冷水及び2次冷水の流量、1次側冷水ΔT及び2次側冷水ΔT、及び熱量は、表2に示す。

Figure 2016194386
2次側冷水ΔTが120%の場合には、2次側冷水ΔT=12.0℃(120%)、1次側冷水ΔT=10.0℃(100%)となる。また、2次流量比率は、2次側冷水ΔTが100%の場合と比べて、211.5m/h÷423.0m/h×100=50%となり、2次熱量比率60%よりも小さくなる。
図5の例での1次流量の算出方法は下記の通りである。
負荷流量比率は、(211.5+10)/423=53.2%である。
負荷比率は、負荷流量比率と負荷熱量比率のいずれか大きい方の値をとる。すなわち、
負荷比率=MAX(53.2%,60%)=60.0%である。
また、1次流量は、負荷比率と設計流量との積で求めることができる。すなわち、
1次流量=負荷比率×設計流量=60.0%×423=253.8m/hである。
また、図5の例でのバイパス流量は、1次流量(253.8m/h)−2次流量(211.5m/h)=42.3m/hである。2次側冷水ΔTが大きいほど、往ヘッダから還ヘッダへのバイパス量も大きくなる。また、図5の例での2次冷水往温度は7℃であり、冷凍機の冷水出口温度と同じ温度となる。 Next, the case where the secondary side cold water ΔT is 120% will be described with reference to FIG. The flow rates of the primary and secondary chilled water, the primary chilled water ΔT and the secondary chilled water ΔT, and the amount of heat in the example of FIG.
Figure 2016194386
When the secondary cold water ΔT is 120%, the secondary cold water ΔT = 12.0 ° C. (120%) and the primary cold water ΔT = 10.0 ° C. (100%). The secondary flow rate ratio is 211.5 m 3 /h÷423.0 m 3 / h × 100 = 50% compared to the case where the secondary cold water ΔT is 100%, which is more than the secondary heat amount ratio 60%. Get smaller.
The calculation method of the primary flow rate in the example of FIG. 5 is as follows.
The load flow rate ratio is (211.5 + 10) /523=53.2%.
The load ratio takes a larger value of either the load flow rate ratio or the load heat amount ratio. That is,
Load ratio = MAX (53.2%, 60%) = 60.0%.
Further, the primary flow rate can be obtained by the product of the load ratio and the design flow rate. That is,
Primary flow rate = load ratio × design flow rate = 60.0% × 423 = 253.8 m 3 / h.
Further, the bypass flow rate in the example of FIG. 5 is the primary flow rate (253.8 m 3 / h) −secondary flow rate (211.5 m 3 /h)=42.3 m 3 / h. The larger the secondary chilled water ΔT, the greater the amount of bypass from the forward header to the return header. Moreover, the secondary cold water going temperature in the example of FIG. 5 is 7 ° C., which is the same temperature as the cold water outlet temperature of the refrigerator.

また、図6に基づいて、2次側冷水ΔTが80%の場合について説明する。図6の例における、1次冷水及び2次冷水の流量、1次側冷水ΔT及び2次側冷水ΔT、及び熱量は、表3に示す。

Figure 2016194386
2次側冷水ΔTが80%の場合には、2次側冷水ΔT=8.0℃(80%)、1次側冷水ΔT=10.0℃(100%)となる。また、2次流量比率は、2次側冷水ΔTが100%の場合に比べて、317.2m/h÷423.0m/h×100=75%となり、2次熱量比率60%よりも大となる。
図6の例での1次流量の算出方法は下記の通りである。
負荷流量比率は、(317.2+10)/423=77.3%である。
負荷比率は、負荷流量比率と負荷熱量比率のいずれか大きい方の値をとる。すなわち、
負荷比率=MAX(77.3%,60%)=77.3%である。
また、1次流量は、負荷比率と設計流量との積で求めることができる。すなわち、
1次流量=負荷比率×設計流量=77.3%×423=327.0m/hである。
また、図6の例でのバイパス流量は10.0m/hであり、想定値で見込んだバイパス流量に一致する。図6の条件においても、還ヘッダから往ヘッダへの逆流は生じない。また、図6の例での2次冷水往温度は7℃であり、冷凍機の冷水出口温度と同じ温度となる。 Moreover, based on FIG. 6, the case where secondary side cold water (DELTA) T is 80% is demonstrated. The flow rates of the primary and secondary chilled water, the primary chilled water ΔT and the secondary chilled water ΔT, and the amount of heat in the example of FIG.
Figure 2016194386
When the secondary side cold water ΔT is 80%, the secondary side cold water ΔT = 8.0 ° C. (80%), and the primary side cold water ΔT = 10.0 ° C. (100%). The secondary flow rate ratio is 317.2 m 3 /h÷423.0 m 3 / h × 100 = 75% compared to the case where the secondary cold water ΔT is 100%, which is more than the secondary heat amount ratio 60%. Become big.
The calculation method of the primary flow rate in the example of FIG. 6 is as follows.
The load flow rate ratio is (317.2 + 10) /423=77.3%.
The load ratio takes a larger value of either the load flow rate ratio or the load heat amount ratio. That is,
Load ratio = MAX (77.3%, 60%) = 77.3%.
Further, the primary flow rate can be obtained by the product of the load ratio and the design flow rate. That is,
Primary flow rate = load ratio × design flow rate = 77.3% × 423 = 327.0 m 3 / h.
In addition, the bypass flow rate in the example of FIG. 6 is 10.0 m 3 / h, which matches the bypass flow rate estimated by the assumed value. Even in the condition of FIG. 6, no reverse flow from the return header to the forward header occurs. Moreover, the secondary cold water going temperature in the example of FIG. 6 is 7 ° C., which is the same temperature as the cold water outlet temperature of the refrigerator.

以上のように、本実施形態では、2次冷水負荷熱量比率と2次冷水流量比率との何れかの大きい値を、2次冷水負荷率という新しい指標(制御パラメータ)として演算基準値とする。つまり、本実施形態での制御では、熱量と流量という次元の異なる物理量を百分率に換算して同じ次元で扱うことで、二次負荷状態の演算を単純化できる。本実施形態での制御では、2次冷水負荷率の指標に基づいて熱源台数制御と一次冷水の変流量制御とを同時に実現できる。
また、例えば、熱源台数制御のときに、流量に基づき熱源台数の増段を行い、熱量に基づき熱源台数を減段する補償制御を行う場合と比べて、本実施形態の方式によれば制御ロジックを単純化できる。よって、本実施形態の方式による場合、従来と比べて熱源制御システムのコントローラの開発および保守が容易となる。
As described above, in the present embodiment, a large value of either the secondary chilled water load calorie ratio or the secondary chilled water flow rate ratio is set as a calculation reference value as a new index (control parameter) called the secondary chilled water load ratio. That is, in the control in the present embodiment, the calculation of the secondary load state can be simplified by converting physical quantities having different dimensions of heat quantity and flow rate into percentages and treating them in the same dimension. In the control according to the present embodiment, the number control of the heat sources and the variable flow rate control of the primary chilled water can be realized simultaneously based on the index of the secondary chilled water load factor.
Further, for example, when controlling the number of heat sources, the control logic according to the method of the present embodiment is compared with the case of performing compensation control in which the number of heat sources is increased based on the flow rate and the number of heat sources is decreased based on the amount of heat. Can be simplified. Therefore, in the case of the method of the present embodiment, it becomes easier to develop and maintain the controller of the heat source control system as compared with the conventional case.

また、例えば、熱源台数制御のときに、流量に基づき熱源台数の増段を行い、熱量に基づき熱源台数を減段する補償制御を行う場合と比べて、本実施形態の方式によれば制御ロジックの単純化により熱源台数の切り替えも生じにくくなる。そのため、温度による強制ON/OFFでの外乱が少なく、かつ空調の省エネ性・快適性を向上させる制御が可能となる。
また、本実施形態によれば、二次負荷状態を百分率表示することで、1次ポンプ方式/2次ポンプ方式や2次冷水温度差の現場による違いに拘わらず、1次冷水流量>2次冷水流量を適正な流量で制御することができる。
また、本実施形態によれば、従来と比べて往ヘッダから還ヘッダへのバイパス流量も減少するため、1次ポンプの消費電力を削減することもできる。
Further, for example, when controlling the number of heat sources, the control logic according to the method of the present embodiment is compared with the case of performing compensation control in which the number of heat sources is increased based on the flow rate and the number of heat sources is decreased based on the amount of heat. As a result, the number of heat sources is not easily changed. Therefore, it is possible to perform control for reducing disturbance due to forced ON / OFF due to temperature and improving the energy saving and comfort of air conditioning.
In addition, according to the present embodiment, the secondary load state is displayed as a percentage, so that the primary chilled water flow rate> secondary regardless of the difference in the primary pump method / secondary pump method and the secondary chilled water temperature difference depending on the site. The cold water flow rate can be controlled at an appropriate flow rate.
Moreover, according to this embodiment, since the bypass flow rate from the forward header to the return header is also reduced as compared with the conventional case, the power consumption of the primary pump can be reduced.

図7は、本発明の第2実施形態を示す。
本実施形態では、本発明に係る熱源制御システムを1次ポンプ方式に適用した例を示す。
熱源制御システムは、4つの冷凍機(熱源機R1)11a,冷凍機(熱源機R2)11b,冷凍機(熱源機R3)11c,冷凍機(熱源機R4)11dと、往ヘッダ27と、還ヘッダ29と、2つの空調機(AHU)49a,49bとを備える。
FIG. 7 shows a second embodiment of the present invention.
In this embodiment, an example in which the heat source control system according to the present invention is applied to a primary pump system is shown.
The heat source control system includes four refrigerators (heat source machine R1) 11a, refrigerator (heat source machine R2) 11b, refrigerator (heat source machine R3) 11c, refrigerator (heat source machine R4) 11d, forward header 27, return A header 29 and two air conditioners (AHU) 49a and 49b are provided.

4つの冷凍機(熱源機R1)11a,冷凍機(熱源機R2)11b,冷凍機(熱源機R3)11c,冷凍機(熱源機R4)11dには、PLCから熱源発停指令及び冷水出口温度SPが入力される。また、4つの冷凍機(熱源機R1)11a,冷凍機(熱源機R2)11b,冷凍機(熱源機R3)11c,冷凍機(熱源機R4)11dからは、熱源運転状態、熱源故障状態及び軽負荷運転状態がPLCへ出力される。   The four refrigerators (heat source machine R1) 11a, refrigerator (heat source machine R2) 11b, refrigerator (heat source machine R3) 11c, refrigerator (heat source machine R4) 11d are supplied with a heat source start / stop command and a cold water outlet temperature from the PLC. SP is input. The four refrigerators (heat source machine R1) 11a, the refrigerator (heat source machine R2) 11b, the refrigerator (heat source machine R3) 11c, and the refrigerator (heat source machine R4) 11d have a heat source operation state, a heat source failure state, and The light load operation state is output to the PLC.

4つの冷凍機(熱源機R1)11a,冷凍機(熱源機R2)11b,冷凍機(熱源機R3)11c,冷凍機(熱源機R4)11dと往ヘッダ27との間は、4つの1次側冷水往管路13a,13b,13c,13dでそれぞれ接続されている。1次側冷水往管路13a,13b,13c,13dには、冷凍機出口冷水温度センサ15a,15b,15c,15dが設けられている。冷凍機出口冷水温度センサ15a,15b,15c,15dの温度PVは、PLCへ出力される。   Between the four refrigerators (heat source machine R1) 11a, the refrigerator (heat source machine R2) 11b, the refrigerator (heat source machine R3) 11c, the refrigerator (heat source machine R4) 11d and the forward header 27 are four primary. The side cold water outgoing pipes 13a, 13b, 13c, and 13d are connected to each other. Refrigerator outlet cold water temperature sensors 15a, 15b, 15c, and 15d are provided in the primary side cold water outgoing pipes 13a, 13b, 13c, and 13d. The temperature PV of the refrigerator outlet cold water temperature sensor 15a, 15b, 15c, 15d is output to the PLC.

4つの冷凍機(熱源機R1)11a,冷凍機(熱源機R2)11b,冷凍機(熱源機R3)11c,冷凍機(熱源機R4)11dと還ヘッダ29との間は、4つの1次側冷水還管路17a,17b,17c,17dでそれぞれ接続されている。4つの1次側冷水還管路17a,17b,17c,17dは、還ヘッダ29から4つの冷凍機(熱源機)11a,11b,11c,11dに向かって、熱源機流量計19a,19b,19c,19dと、冷水ポンプ(1次ポンプ)21a,21b,21c,21dと、冷凍機入口冷水温度センサ23a,23b,23c,23dとがそれぞれ設けられている。冷凍機入口冷水温度センサ23a,23b,23c,23dの計測値は、PLCへ出力される。   Between the four refrigerators (heat source machine R1) 11a, the refrigerator (heat source machine R2) 11b, the refrigerator (heat source machine R3) 11c, the refrigerator (heat source machine R4) 11d and the return header 29 are four primary. The side cold water return pipes 17a, 17b, 17c, and 17d are connected to each other. The four primary chilled water return pipes 17a, 17b, 17c, and 17d are directed from the return header 29 to the four refrigerators (heat source machines) 11a, 11b, 11c, and 11d, and the heat source flow meters 19a, 19b, and 19c. , 19d, cold water pumps (primary pumps) 21a, 21b, 21c, 21d, and refrigerator inlet cold water temperature sensors 23a, 23b, 23c, 23d, respectively. The measured values of the refrigerator inlet cold water temperature sensors 23a, 23b, 23c, and 23d are output to the PLC.

熱源機流量計19a,19b,19c,19dの流量PVは、流量制御用の流量指示調節計25a,25b,25c,25dに出力される。流量指示調節計25a,25b,25c,25dは、PLCから流量SPを受け、流量PVが流量SPとなるように、冷水ポンプ(1次ポンプ)21a,21b,21c,21dの回転数をそれぞれのINVを制御して可変する。
往ヘッダ27と還ヘッダ29とは、ヘッダ間差圧調整弁33を設けたヘッダ間バイパス路31を介して接続されている。ヘッダ間差圧調整弁33は、差圧制御用の指示調節計35によって開度が制御されている。差圧制御用の指示調節計35は、往ヘッダ27と還ヘッダ29との間の差圧を計測する差圧計37の計測による推定末端差圧PVに基づいてヘッダ間差圧調整弁33の開閉を制御する。差圧計37の計測による推定末端差圧PV及び差圧制御用の指示調節計35からの開度指示値は、PLCへ出力される。
The flow rate PV of the heat source flow meter 19a, 19b, 19c, 19d is output to the flow rate indicating controller 25a, 25b, 25c, 25d for flow rate control. The flow rate indicating controllers 25a, 25b, 25c, and 25d receive the flow rate SP from the PLC, and adjust the rotational speeds of the cold water pumps (primary pumps) 21a, 21b, 21c, and 21d so that the flow rate PV becomes the flow rate SP. INV is controlled and varied.
The forward header 27 and the return header 29 are connected via an inter-header bypass path 31 provided with an inter-header differential pressure regulating valve 33. The opening of the inter-header differential pressure adjusting valve 33 is controlled by a differential pressure control indicating controller 35. The indicator controller 35 for differential pressure control opens and closes the inter-header differential pressure adjustment valve 33 based on the estimated terminal differential pressure PV measured by the differential pressure gauge 37 that measures the differential pressure between the forward header 27 and the return header 29. To control. The estimated terminal differential pressure PV measured by the differential pressure gauge 37 and the opening degree instruction value from the differential pressure control instruction controller 35 are output to the PLC.

このように、本実施形態では、4つの冷凍機(熱源機R1)11a,冷凍機(熱源機R2)11b,冷凍機(熱源機R3)11c,冷凍機(熱源機R4)11dと、4つの1次側冷水往管路13a,13b,13c,13dと、往ヘッダ27と、還ヘッダ29と、4つの1次側冷水還管路17a,17b,17c,17dとなどによって熱源の1次側が構成されている。   Thus, in this embodiment, four refrigerators (heat source machine R1) 11a, refrigerator (heat source machine R2) 11b, refrigerator (heat source machine R3) 11c, refrigerator (heat source machine R4) 11d, The primary side of the heat source is connected by the primary side cold water outgoing lines 13a, 13b, 13c, 13d, the forward header 27, the return header 29, the four primary side cold water return pipes 17a, 17b, 17c, 17d, and the like. It is configured.

一方、往ヘッダ27と還ヘッダ29との間には、往ヘッダ27と空調機(49a,49b)とを接続する2次側冷水往水路39と、空調機(49a,49b)と還ヘッダ29とを接続する2次側冷水還水路41とが設けられており、熱源の2次側を構成している。2次側冷水往水路39は、2つの2次冷水系統43cの2つの管路に分岐し、2つの2次冷水系統43cは2次側冷水還水路41に合流する。
2つの2次冷水系統43cには、負荷入口温度センサ45a,45bと、二方弁47a,47bと、空調機(AHU1)49a,空調機(AHU2)49bと、負荷出口温度センサ51a,51bと、負荷側流量計53a,53bとがそれぞれ設けてられている。負荷入口温度センサ45a,45b及び負荷出口温度センサ51a,51bの計測値は、PLCへ出力される。
On the other hand, between the forward header 27 and the return header 29, the secondary side cold water water passage 39 connecting the forward header 27 and the air conditioners (49 a, 49 b), the air conditioner (49 a, 49 b), and the return header 29. And a secondary-side cold water return water channel 41 is provided, which constitutes the secondary side of the heat source. The secondary chilled water outlet 39 is branched into two pipes of the two secondary chilled water systems 43 c, and the two secondary chilled water systems 43 c merge into the secondary chilled water return channel 41.
The two secondary chilled water systems 43c include load inlet temperature sensors 45a and 45b, two-way valves 47a and 47b, an air conditioner (AHU1) 49a, an air conditioner (AHU2) 49b, and load outlet temperature sensors 51a and 51b. , Load side flow meters 53a and 53b are respectively provided. The measured values of the load inlet temperature sensors 45a and 45b and the load outlet temperature sensors 51a and 51b are output to the PLC.

2次側冷水還水路41には、フリークーリング熱交換器57を介してフリークーリング冷却塔59と熱的に接続するフリークーリング分岐冷水管路55が分岐点と合流点の2点で接続されている。フリークーリング分岐冷水管路55は、フリークーリング熱交換器57に向かって2次側冷水還水路41との分岐点からフリークーリング流量計61とフリークーリング冷水ポンプ63とフリークーリング熱交換器入口温度センサ65とを備えている。フリークーリング流量計61にて計測されたフリークーリング流量PVは流量制御用のフリク流量指示調節計(FIC)67へ出力され、フリク流量指示調節計67からPLCへフリークーリング流量PVが出力される。また、フリク流量指示調節計67には、PLCからフリークーリング流量SPが入力される。フリク流量指示調節計67は、フリークーリング流量PVがフリークーリング流量SPになるように、フリークーリング冷水ポンプインバータINVを制御してフリークーリング冷水ポンプ63の回転数を制御している。フリークーリング熱交換器57の下流側のフリークーリング分岐冷水管路55には、フリークーリング熱交換器出口温度センサ69が設けられている。フリークーリング熱交換器入口温度センサ65及びフリークーリング熱交換器出口温度センサ69の計測値は、PLCへ出力される。   A free cooling branch chilled water pipe 55 that is thermally connected to the free cooling cooling tower 59 via a free cooling heat exchanger 57 is connected to the secondary side cold water return water path 41 at two points, a branch point and a junction. Yes. The free cooling branch chilled water pipe 55 is connected to the free cooling flow meter 61, the free cooling chilled water pump 63, and the free cooling heat exchanger inlet temperature sensor from the branch point with the secondary side chilled water return channel 41 toward the free cooling heat exchanger 57. 65. The free cooling flow rate PV measured by the free cooling flow meter 61 is output to the flow control flow rate indicating controller (FIC) 67, and the free cooling flow rate PV is output from the flick flow rate indicating controller 67 to the PLC. Further, the free cooling flow rate SP is input from the PLC to the flicker flow rate indicating controller 67. The flick flow rate indicating controller 67 controls the number of rotations of the free cooling chilled water pump 63 by controlling the free cooling chilled water pump inverter INV so that the free cooling flow rate PV becomes the free cooling flow rate SP. A free cooling heat exchanger outlet temperature sensor 69 is provided in the free cooling branch chilled water pipeline 55 on the downstream side of the free cooling heat exchanger 57. The measured values of the free cooling heat exchanger inlet temperature sensor 65 and the free cooling heat exchanger outlet temperature sensor 69 are output to the PLC.

フリークーリング熱交換器57とフリークーリング冷却塔59とを接続するフリク循環水路71には、フリークーリング冷却塔出口温度センサ73とフリク冷却水ポンプ75とが設けられている。フリク冷却水ポンプ75は、インバータINVを備え、フリク冷却水ポンプ75の回転数はフリークーリング熱交換器出口温度センサ69の計測値に基づく温度制御用の指示調節計77の出力によってインバータINVを制御することで調整される。
フリークーリング冷却塔59は、インバータINVを備えた冷却塔ファン81によって冷却される。冷却塔ファン81の回転数は、フリークーリング冷却塔出口温度センサ73の計測値に基づく温度制御用の指示調節計79の出力によってインバータINVを制御することで調整される。
本実施形態でも、フリークーリング熱交換器57を介して熱的に接続されるフリク循環水路71とフリークーリング分岐冷水管路55とで、還水フリークーリングを構成している。
A free-cooling cooling tower outlet temperature sensor 73 and a free-cooling water pump 75 are provided in the free-fluid circulation water passage 71 that connects the free-cooling heat exchanger 57 and the free-cooling cooling tower 59. The flick cooling water pump 75 includes an inverter INV, and the rotation speed of the flick cooling water pump 75 controls the inverter INV by the output of the instruction controller 77 for temperature control based on the measurement value of the free cooling heat exchanger outlet temperature sensor 69. It is adjusted by doing.
The free cooling cooling tower 59 is cooled by a cooling tower fan 81 provided with an inverter INV. The number of revolutions of the cooling tower fan 81 is adjusted by controlling the inverter INV by the output of the temperature control instruction controller 79 based on the measured value of the free cooling cooling tower outlet temperature sensor 73.
Also in the present embodiment, the return water free cooling is configured by the flick circulation water channel 71 and the free cooling branch chilled water pipe 55 which are thermally connected via the free cooling heat exchanger 57.

本実施形態においても、PLCは、空調機49a、49bそれぞれに連絡され空調機入口側は2次側冷水往水路39の一部をなし空調機出口側は2次側冷水還水路41の一部をなす、1系統冷水管43a及び2系統冷水管43bで構成される2次側冷水系統の負荷流量計測値PVとヘッダ間バイパス路31の流量の想定値との合計値を、4つの冷凍機(熱源機R1)11a,冷凍機(熱源機R2)11b,冷凍機(熱源機R3)11c,冷凍機(熱源機R4)11dの設計流量の合計値で除して百分率表示とする冷水負荷流量比率を算出する。また、PLCは、1系統冷水管43a及び2系統冷水管43bで構成される2次側冷水系統の負荷熱量計測値を、4つの冷凍機(熱源機R1)11a,冷凍機(熱源機R2)11b,冷凍機(熱源機R3)11c,冷凍機(熱源機R4)11dの設計熱量の合計値で除して百分率表示とする冷水負荷熱量比率を算出する。また、PLCは、冷水負荷流量比率と冷水負荷熱量比率との何れか大きい値を、2次冷水負荷率とし、この2次冷水負荷率に基づいて、熱源の台数制御又は1次冷水の変流量制御を行うように構成されている。   Also in the present embodiment, the PLC is connected to each of the air conditioners 49a and 49b, and the air conditioner inlet side forms a part of the secondary side cold water supply channel 39 and the air conditioner outlet side forms a part of the secondary side cold water return channel 41. The total value of the load flow rate measurement PV of the secondary side chilled water system composed of the 1-system chilled water pipe 43a and the 2-system chilled water pipe 43b and the estimated value of the flow rate of the inter-header bypass path 31 is expressed as four refrigerators. (Heat source machine R1) 11a, chiller (heat source machine R2) 11b, refrigeration machine (heat source machine R3) 11c, chiller (heat source machine R4) 11d divided by the total value of the design flow rate and chilled water load flow rate as a percentage display Calculate the ratio. In addition, the PLC calculates the load calorific value of the secondary chilled water system composed of the 1-system chilled water pipe 43a and the 2-system chilled water pipe 43b, the four refrigerators (heat source machine R1) 11a, and the refrigerator (heat source machine R2). 11b, the cold water load calorie | heat amount ratio which is divided by the total value of the design calorie | heat amount of the refrigerator (heat source machine R3) 11c, and the refrigerator (heat source machine R4) 11d is displayed as a percentage display. The PLC uses the larger value of the chilled water load flow rate ratio and the chilled water load heat rate ratio as the secondary chilled water load factor, and based on this secondary chilled water load factor, controls the number of heat sources or changes the primary chilled water flow rate. It is configured to perform control.

第1実施形態で説明した熱源制御システムの制御は、1次ポンプ方式/2次ポンプ方式に拘わらず適用することができる。つまり、図7に示す第2実施形態の熱源制御システムの制御は、第1実施形態の図2−図6の説明と同様の方法によって行われる。したがって、本実施形態においても、第1実施形態と同様の作用効果を奏することができる。   The control of the heat source control system described in the first embodiment can be applied regardless of the primary pump system / secondary pump system. That is, the control of the heat source control system of the second embodiment shown in FIG. 7 is performed by the same method as that described in FIGS. 2 to 6 of the first embodiment. Therefore, also in this embodiment, there can exist the same effect as 1st Embodiment.

(実施形態の補足事項)
上記の第1実施形態および第2実施形態の説明では、簡単のため、冷水の循環による冷房運転の場合を説明した。しかし、本発明は、冷水を温水に置き換えて、温水の循環による暖房運転(冷房運転の逆動作)も当然行うことができる。この場合の制御は、第1実施形態の図2−図6の説明について、冷水を温水に置き換えて行えばよい。
なお、本実施形態では、フリークーリング冷却塔59を用いた還水フリークーリング方式を利用して冷水要求熱量SPを求める場合について説明したが、本発明はこれに限らず、フリークーリング冷却塔59を用いた還水フリークーリング方式を利用しない場合にも成立する。その場合には、図2に示す制御フローにおいて、冷水要求熱量SPは冷水負荷熱量PVにより求めればよい。
(Supplementary items of the embodiment)
In the above description of the first embodiment and the second embodiment, the case of the cooling operation by the circulation of the cold water has been described for the sake of simplicity. However, according to the present invention, the cold water is replaced with the hot water, and the heating operation by the circulation of the hot water (the reverse operation of the cooling operation) can be naturally performed. Control in this case may be performed by replacing cold water with hot water in the description of FIGS. 2 to 6 of the first embodiment.
In the present embodiment, the case where the cold water required heat amount SP is obtained using the return water free cooling method using the free cooling cooling tower 59 has been described. However, the present invention is not limited to this, and the free cooling cooling tower 59 is provided. It is also established when the return water free cooling method used is not used. In that case, in the control flow shown in FIG. 2, the chilled water required heat amount SP may be obtained from the chilled water load heat amount PV.

11a,11b,11c,11d 冷凍機(熱源機R1)
13a,13b,13c,13d 1次側冷水往管路
15a,15b,15c,15d 冷凍機出口冷水温度センサ
17a,17b,17c,17d 1次側冷水還管路
19a,19b,19c,19d,熱源機流量計
53a,53b,61 負荷側流量計、フリークーリング流量計
21a,21b,21c,21d 冷水ポンプ(1次ポンプ)
23a,23b,23c,23d,冷凍機入口冷水温度センサ
45a,45b, 負荷入口温度センサ
51a,51b, 負荷出口温度センサ
65,69 フリークーリング熱交換器入口(出口)温度センサ
25a,25b,25c,25d 流量指示調節計
27 往ヘッダ
29 還ヘッダ
31 ヘッダ間バイパス路
33,47a,47b,89 制御弁
35 差圧制御用の指示調節計
37 差圧計
39 2次側冷水往水路
41 2次側冷水還水路
43a 1系統冷水管
43b 2系統冷水管
47 冷水還水路
49a,49b 空調機
55 フリークーリング分岐冷水管路
57 フリークーリング熱交換器
59 フリークーリング冷却塔
63 フリークーリング冷水ポンプ
77,79 温度制御用の指示調節計
83 第2の往ヘッダ
85a 1次冷水ポンプ
85b 2次冷水ポンプ
87 管路
11a, 11b, 11c, 11d Refrigerator (heat source machine R1)
13a, 13b, 13c, 13d Primary chilled water outgoing pipes 15a, 15b, 15c, 15d Refrigerator outlet cold water temperature sensors 17a, 17b, 17c, 17d Primary chilled water return pipes 19a, 19b, 19c, 19d, heat source Flow meter 53a, 53b, 61 Load side flow meter, free cooling flow meter 21a, 21b, 21c, 21d Chilled water pump (primary pump)
23a, 23b, 23c, 23d, refrigerator inlet cold water temperature sensors 45a, 45b, load inlet temperature sensors 51a, 51b, load outlet temperature sensors 65, 69 free cooling heat exchanger inlet (outlet) temperature sensors 25a, 25b, 25c, 25d Flow rate indicating controller 27 Outgoing header 29 Return header 31 Inter-header bypass passage 33, 47a, 47b, 89 Control valve 35 Indicating controller 37 for differential pressure control Differential pressure meter 39 Secondary side cold water outgoing channel 41 Secondary side cold water return Water channel 43a 1 system cold water pipe 43b 2 system cold water pipe 47 Cold water return water channels 49a, 49b Air conditioner 55 Free cooling branch cold water pipe 57 Free cooling heat exchanger 59 Free cooling cooling tower 63 Free cooling cold water pumps 77, 79 For temperature control Indicator controller 83 Second forward header 85a Primary cold water pump 85b Secondary cold water pump Flop 87 pipe

Claims (4)

熱源と、
前記熱源の冷水出口側に1次側冷水往管路を介して接続する第1往ヘッダと、
1次冷水ポンプを途中に備える1次側冷水還管路を介して、前記熱源の冷水入口側に接続する還ヘッダと、
前記第1往ヘッダと前記還ヘッダとの間に接続されるヘッダ間バイパス路と、
前記第1往ヘッダに2次冷水ポンプを介して接続する第2往ヘッダと、
空調機を備え、前記第2往ヘッダと前記還ヘッダとの間に接続される2次側冷水往管路及び2次側冷水還管路と、
前記熱源及び前記1次冷水ポンプに接続される制御装置と、
前記2次冷水ポンプの吐出圧制御を行う吐出圧制御弁と、
を備え、
前記制御装置は、
前記2次側冷水往管路又は2次側冷水還管路のいずれかに設置される負荷側流量計の負荷流量計測値と前記ヘッダ間バイパスを流れる流量の想定値との合計値を、前記熱源の設計流量の合計値で除して百分率表示した冷水負荷流量比率を算出し、
前記2次側冷水往管路と2次側冷水還管路とにそれぞれ設置される負荷出口温度センサ及び負荷入口温度センサの計測値の差と前記負荷側流量計の負荷流量計測値を乗じて算出される負荷熱量計測値を、前記熱源の設計熱量の合計値で除して百分率表示した冷水負荷熱量比率を算出し、
前記冷水負荷流量比率と前記冷水負荷熱量比率との何れか大きい値を冷水負荷率とし、
前記冷水負荷率に基づいて、前記熱源の台数制御および前記1次冷水ポンプ流量制御による前記熱源の流量制御の少なくとも一方を行う
ことを特徴とする熱源制御システム。
A heat source,
A first outgoing header connected to the cold water outlet side of the heat source via a primary side cold water outgoing line;
A return header connected to the cold water inlet side of the heat source via a primary cold water return pipe provided with a primary cold water pump in the middle;
An inter-header bypass path connected between the first forward header and the return header;
A second forward header connected to the first forward header via a secondary chilled water pump;
A secondary chilled water outbound conduit and a secondary chilled water return conduit connected between the second outbound header and the return header, each having an air conditioner;
A controller connected to the heat source and the primary chilled water pump;
A discharge pressure control valve for controlling the discharge pressure of the secondary chilled water pump;
With
The controller is
The total value of the load flow rate measurement value of the load side flow meter installed in either the secondary side cold water outbound pipeline or the secondary side cold water return pipeline and the estimated value of the flow rate flowing through the header bypass path , Calculate the cold water load flow rate ratio expressed as a percentage by dividing by the total design flow rate of the heat source,
Multiplying the difference between the measured values of the load outlet temperature sensor and the load inlet temperature sensor installed in the secondary chilled water outgoing pipeline and the secondary chilled water return pipeline, respectively, and the load flow rate measured value of the load side flow meter Divide the calculated load calorie measurement value by the total value of the design heat quantity of the heat source to calculate the cold water load calorie ratio expressed as a percentage,
The larger value of the chilled water load flow rate ratio and the chilled water load calorie ratio is the chilled water load factor,
A heat source control system that performs at least one of the number control of the heat sources and the flow control of the heat sources by the primary chilled water pump flow rate control based on the cold water load factor.
熱源と、
前記熱源の冷水出口側に1次側冷水往管路を介して接続する往ヘッダと、
1次冷水ポンプを途中に備える1次側冷水還管路を介して、前記熱源の冷水入口側に接続する還ヘッダと、
前記往ヘッダと前記還ヘッダとの間に接続されるヘッダ間バイパス路と、
空調機を備え、前記往ヘッダと前記還ヘッダとの間に接続される2次側冷水往管路及び2次側冷水還管路と、
前記熱源及び前記1次冷水ポンプに接続される制御装置と、
前記熱源、前記1次側冷水往管路、前記1次側冷水還管路、前記空調機、2次側冷水往管路及び2次側冷水還管路の圧力損失分の揚程を有する前記1次冷水ポンプと、
を備え、
前記制御装置は、
前記2次側冷水往管路又は2次側冷水還管路のいずれかに設置される負荷側流量計の負荷流量計測値と前記ヘッダ間バイパスを流れる流量の想定値との合計値を、前記熱源の設計流量の合計値で除して百分率表示した冷水負荷流量比率を算出し、
前記2次側冷水往管路と2次側冷水還管路とにそれぞれ設置される負荷出口温度センサ及び負荷入口温度センサの計測値の差と前記負荷側流量計の負荷流量計測値を乗じて算出される負荷熱量計測値を、前記熱源の設計熱量の合計値で除して百分率表示した冷水負荷熱量比率を算出し、
前記冷水負荷流量比率と前記冷水負荷熱量比率との何れか大きい値を冷水負荷率とし、
前記冷水負荷率に基づいて、前記熱源の台数制御および前記1次冷水ポンプ流量制御による前記熱源の流量制御の少なくとも一方を行う
ことを特徴とする熱源制御システム。
A heat source,
A forward header connected to the cold water outlet side of the heat source via a primary cold water outgoing line;
A return header connected to the cold water inlet side of the heat source via a primary cold water return pipe provided with a primary cold water pump in the middle;
An inter-header bypass path connected between the forward header and the return header;
A secondary chilled water outgoing line and a secondary chilled water return pipe connected between the forward header and the return header, each having an air conditioner;
A controller connected to the heat source and the primary chilled water pump;
Said 1 which has the head for the pressure loss of said heat source, said primary side cold water outgoing line, said primary side cold water return line, said air conditioner, secondary side cold water outgoing line, and secondary side cold water return line The next cold water pump,
With
The controller is
The total value of the load flow rate measurement value of the load side flow meter installed in either the secondary side cold water outbound pipeline or the secondary side cold water return pipeline and the estimated value of the flow rate flowing through the header bypass path , Calculate the cold water load flow rate ratio expressed as a percentage by dividing by the total design flow rate of the heat source,
Multiplying the difference between the measured values of the load outlet temperature sensor and the load inlet temperature sensor installed in the secondary chilled water outgoing pipeline and the secondary chilled water return pipeline, respectively, and the load flow rate measured value of the load side flow meter Divide the calculated load calorie measurement value by the total value of the design heat quantity of the heat source to calculate the cold water load calorie ratio expressed as a percentage,
The larger value of the chilled water load flow rate ratio and the chilled water load calorie ratio is the chilled water load factor,
A heat source control system that performs at least one of the number control of the heat sources and the flow control of the heat sources by the primary chilled water pump flow rate control based on the cold water load factor.
熱源と、
前記熱源の温水出口側に1次側温水往管路を介して接続する第1往ヘッダと、
1次温水ポンプを途中に備える1次側温水還管路を介して、前記熱源の温水入口側に接続する還ヘッダと、
前記第1往ヘッダと前記還ヘッダとの間に接続されるヘッダ間バイパス路と、
前記第1往ヘッダに2次温水ポンプを介して接続する第2往ヘッダと、
空調機を備え、前記第2往ヘッダと前記還ヘッダとの間に接続される2次側温水往管路及び2次側温水還管路と、
前記熱源及び前記1次温水ポンプに接続される制御装置と、
前記2次温水ポンプの吐出圧制御を行う吐出圧制御弁と、
を備え、
前記制御装置は、
前記2次側温水往管路又は2次側温水還管路のいずれかに設置される負荷側流量計の負荷流量計測値と前記ヘッダ間バイパスを流れる流量の想定値との合計値を、前記熱源の設計流量の合計値で除して百分率表示した温水負荷流量比率を算出し、
前記2次側温水往管路と2次側温水還管路とにそれぞれ設置される負荷出口温度センサ及び負荷入口温度センサの計測値の差と前記負荷側流量計の負荷流量計測値を乗じて算出される負荷熱量計測値を、前記熱源の設計熱量の合計値で除して百分率表示した温水負荷熱量比率を算出し、
前記温水負荷流量比率と前記温水負荷熱量比率との何れか大きい値を温水負荷率とし、
前記温水負荷率に基づいて、前記熱源の台数制御および前記1次温水ポンプ流量制御による前記熱源の流量制御の少なくとも一方を行う
ことを特徴とする熱源制御システム。
A heat source,
A first outgoing header connected to the hot water outlet side of the heat source via a primary hot water outgoing line;
A return header connected to the hot water inlet side of the heat source via a primary hot water return pipe having a primary hot water pump in the middle;
An inter-header bypass path connected between the first forward header and the return header;
A second forward header connected to the first forward header via a secondary hot water pump;
A secondary-side hot water outgoing conduit and a secondary-side hot water return conduit connected between the second forward header and the return header, each having an air conditioner;
A controller connected to the heat source and the primary hot water pump;
A discharge pressure control valve for controlling the discharge pressure of the secondary hot water pump;
With
The controller is
The total value of the load flow rate measurement value of the load-side flow meter installed in either the secondary side warm water forward pipeline or the secondary side warm water return pipeline and the estimated value of the flow rate flowing through the inter-header bypass channel , Calculate the hot water load flow rate ratio expressed as a percentage by dividing by the total design flow rate of the heat source,
Multiplying the difference between the measured values of the load outlet temperature sensor and the load inlet temperature sensor respectively installed in the secondary side hot water outgoing line and the secondary side hot water return line and the load flow rate measured value of the load side flow meter The calculated load calorific value is divided by the total value of the design heat quantity of the heat source to calculate the hot water load calorie ratio displayed as a percentage,
The larger value of the warm water load flow rate ratio and the warm water load heat rate ratio is the warm water load factor,
Based on the hot water load factor, at least one of the number control of the heat sources and the flow control of the heat sources by the primary hot water pump flow rate control is performed.
熱源と、
前記熱源の温水出口側に1次側温水往管路を介して接続する往ヘッダと、
1次温水ポンプを途中に備える1次側温水還管路を介して、前記熱源の温水入口側に接続する還ヘッダと、
前記往ヘッダと前記還ヘッダとの間に接続されるヘッダ間バイパス路と、
空調機を備え、前記往ヘッダと前記還ヘッダとの間に接続される2次側温水往管路及び2次側温水還管路と、
前記熱源及び前記1次温水ポンプに接続される制御装置と、
前記熱源、前記1次側温水往管路、前記1次側温水還管路、前記空調機、2次側温水往管路及び2次側温水還管路の圧力損失分の揚程を有する前記1次温水ポンプと、
を備え、
前記制御装置は、
前記2次側温水往管路又は2次側温水還管路のいずれかに設置される負荷側流量計の負荷流量計測値と前記ヘッダ間バイパスを流れる流量の想定値との合計値を、前記熱源の設計流量の合計値で除して百分率表示した温水負荷流量比率を算出し、
前記2次側温水往管路と2次側温水還管路とにそれぞれ設置される負荷出口温度センサ及び負荷入口温度センサの計測値の差と前記負荷側流量計の負荷流量計測値を乗じて算出される負荷熱量計測値を、前記熱源の設計熱量の合計値で除して百分率表示した温水負荷熱量比率を算出し、
前記温水負荷流量比率と前記温水負荷熱量比率との何れか大きい値を温水負荷率とし、
前記温水負荷率に基づいて、前記熱源の台数制御および前記1次温水ポンプ流量制御による前記熱源の流量制御の少なくとも一方を行う
ことを特徴とする熱源制御システム。
A heat source,
A forward header connected to the hot water outlet side of the heat source via a primary-side hot water outgoing line;
A return header connected to the hot water inlet side of the heat source via a primary hot water return pipe having a primary hot water pump in the middle;
An inter-header bypass path connected between the forward header and the return header;
A secondary-side hot water outgoing conduit and a secondary-side hot water return conduit connected between the forward header and the return header, each having an air conditioner;
A controller connected to the heat source and the primary hot water pump;
Said 1 which has the head for the pressure loss of said heat source, said primary side warm water outbound pipeline, said primary side warm water return pipeline, said air conditioner, secondary side warm water outbound pipeline, and secondary side warm water return pipeline Next hot water pump,
With
The controller is
The total value of the load flow rate measurement value of the load-side flow meter installed in either the secondary side warm water forward pipeline or the secondary side warm water return pipeline and the estimated value of the flow rate flowing through the inter-header bypass channel , Calculate the hot water load flow rate ratio expressed as a percentage by dividing by the total design flow rate of the heat source,
Multiplying the difference between the measured values of the load outlet temperature sensor and the load inlet temperature sensor respectively installed in the secondary side hot water outgoing line and the secondary side hot water return line and the load flow rate measured value of the load side flow meter The calculated load calorific value is divided by the total value of the design heat quantity of the heat source to calculate the hot water load calorie ratio displayed as a percentage,
The larger value of the warm water load flow rate ratio and the warm water load heat rate ratio is the warm water load factor,
Based on the hot water load factor, at least one of the number control of the heat sources and the flow control of the heat sources by the primary hot water pump flow rate control is performed.
JP2015074217A 2015-03-31 2015-03-31 Heat source control system Active JP6434848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015074217A JP6434848B2 (en) 2015-03-31 2015-03-31 Heat source control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015074217A JP6434848B2 (en) 2015-03-31 2015-03-31 Heat source control system

Publications (2)

Publication Number Publication Date
JP2016194386A true JP2016194386A (en) 2016-11-17
JP6434848B2 JP6434848B2 (en) 2018-12-05

Family

ID=57322896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015074217A Active JP6434848B2 (en) 2015-03-31 2015-03-31 Heat source control system

Country Status (1)

Country Link
JP (1) JP6434848B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106931600A (en) * 2017-03-17 2017-07-07 深圳市云科设计咨询服务有限公司 A kind of method for determining building air-conditioning pump energy saving operating scheme
JP2020041766A (en) * 2018-09-12 2020-03-19 三菱重工サーマルシステムズ株式会社 Controller, heat source system, control method and program
US11384972B2 (en) 2018-08-17 2022-07-12 Mitsubishi Electric Corporation Free cooling system
US11506432B2 (en) 2018-08-17 2022-11-22 Mitsubishi Electric Corporation Cold water supply system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7455627B2 (en) * 2020-03-24 2024-03-26 東芝キヤリア株式会社 Heat Source System

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10213339A (en) * 1997-01-30 1998-08-11 Mitsubishi Electric Corp Air conditioner
JP2003294290A (en) * 2002-04-02 2003-10-15 Yamatake Corp Unit number control device of heat source and unit number control method
JP2006153324A (en) * 2004-11-26 2006-06-15 Yamatake Corp Operating unit number control method and device
JP2009036494A (en) * 2007-08-03 2009-02-19 Taikisha Ltd Heat source system
JP4513545B2 (en) * 2004-12-21 2010-07-28 株式会社日立製作所 Refrigeration unit control system and cooling supply system
JP2010255984A (en) * 2009-04-28 2010-11-11 Taikisha Ltd Method of operating heat source system and heat source system
JP2011021855A (en) * 2009-07-17 2011-02-03 Toyo Netsu Kogyo Kk Control method of refrigerator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10213339A (en) * 1997-01-30 1998-08-11 Mitsubishi Electric Corp Air conditioner
JP2003294290A (en) * 2002-04-02 2003-10-15 Yamatake Corp Unit number control device of heat source and unit number control method
JP2006153324A (en) * 2004-11-26 2006-06-15 Yamatake Corp Operating unit number control method and device
JP4513545B2 (en) * 2004-12-21 2010-07-28 株式会社日立製作所 Refrigeration unit control system and cooling supply system
JP2009036494A (en) * 2007-08-03 2009-02-19 Taikisha Ltd Heat source system
JP2010255984A (en) * 2009-04-28 2010-11-11 Taikisha Ltd Method of operating heat source system and heat source system
JP2011021855A (en) * 2009-07-17 2011-02-03 Toyo Netsu Kogyo Kk Control method of refrigerator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106931600A (en) * 2017-03-17 2017-07-07 深圳市云科设计咨询服务有限公司 A kind of method for determining building air-conditioning pump energy saving operating scheme
CN106931600B (en) * 2017-03-17 2019-06-21 深圳市云科设计咨询服务有限公司 A method of for determining building air-conditioning pump energy saving operating scheme
US11384972B2 (en) 2018-08-17 2022-07-12 Mitsubishi Electric Corporation Free cooling system
US11506432B2 (en) 2018-08-17 2022-11-22 Mitsubishi Electric Corporation Cold water supply system
JP2020041766A (en) * 2018-09-12 2020-03-19 三菱重工サーマルシステムズ株式会社 Controller, heat source system, control method and program

Also Published As

Publication number Publication date
JP6434848B2 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
US11493246B2 (en) Demand flow for air cooled chillers
JP6434848B2 (en) Heat source control system
JP6334230B2 (en) Refrigerator system
KR101508448B1 (en) Heat source system and number-of-machines control method for heat source system
JP5501179B2 (en) Medium temperature source system with free cooling
JP4602816B2 (en) Heat source pump control method and air conditioning heat source system
EP2837898B1 (en) Air-conditioning system
JP6644559B2 (en) Heat source control system, control method and control device
JP5274222B2 (en) Heat source control system for air conditioning equipment
EP3115707A1 (en) Heat source device
JP2002031376A (en) Air-conditioning system
JP2008045800A (en) Heat source unit operation control method and device
WO2012090579A1 (en) Heat source system and control method therefor
JP5840466B2 (en) Variable flow rate control device for heat source pump
US20130291575A1 (en) Cooling system and method for operating same
JP4600139B2 (en) Air conditioner and control method thereof
JP2011153809A (en) Heat source control system and heat source control method
JP5286479B2 (en) Cold water circulation system
JP5195696B2 (en) Cold water circulation system
JP5595975B2 (en) Air conditioning piping system
CN105020822A (en) Variable pressure difference control system applicable to air conditioner first-stage pump system
JP2018017478A (en) Air conditioning system and operation control method
JP5806555B2 (en) Heat source machine control device and heat source machine control method
JP3972342B2 (en) Control method and control apparatus for air conditioning system and air conditioning system
CN204830288U (en) Control system is pressed to variation suitable for air conditioner one -level pumping system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20170510

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181109

R150 Certificate of patent or registration of utility model

Ref document number: 6434848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150