JP2010255984A - Method of operating heat source system and heat source system - Google Patents

Method of operating heat source system and heat source system Download PDF

Info

Publication number
JP2010255984A
JP2010255984A JP2009109505A JP2009109505A JP2010255984A JP 2010255984 A JP2010255984 A JP 2010255984A JP 2009109505 A JP2009109505 A JP 2009109505A JP 2009109505 A JP2009109505 A JP 2009109505A JP 2010255984 A JP2010255984 A JP 2010255984A
Authority
JP
Japan
Prior art keywords
flow rate
heat source
heat medium
heat
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009109505A
Other languages
Japanese (ja)
Other versions
JP5227247B2 (en
Inventor
Kanju Hashigami
勘十 橋上
Ryo Ota
涼 太田
Yasuhiro Yoshitome
靖弘 吉留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Original Assignee
Taikisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taikisha Ltd filed Critical Taikisha Ltd
Priority to JP2009109505A priority Critical patent/JP5227247B2/en
Publication of JP2010255984A publication Critical patent/JP2010255984A/en
Application granted granted Critical
Publication of JP5227247B2 publication Critical patent/JP5227247B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress occurrence of a state that an inlet heat medium temperature of a loading apparatus is largely fluctuated to a capacity reduction side of the loading apparatus in an increase processing for increasing the number of operation units in a heat source unit. <P>SOLUTION: In this heat source system having a heat source unit U constituted by connecting a primary pump 2 to a heat source machine 1 in series, and a secondary pump 8 disposed at a loading apparatus 3 side with respect to a bypass passage 12, and performing adjustment of the number of heat sources (control of number of heat sources) for changing the number of operation units of the heat source unit U according to the change of load heat quantity G in the loading apparatus 3, and further adjustment of a primary flow rate (primary flow rate control) for adjusting the primary flow rate Q1 according to the change of a secondary flow rate Q2, transient adjustment for increasing (transient control for increasing) is performed to increase an operational flow rate ratio α as a ratio of the primary flow rate Q1 to the secondary flow rate Q2 in the adjustment of primary flow rate in advance, in the increase processing to increase the number of operation units of the heat source unit U by adjusting the number of heat sources. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、空調設備などで用いる熱源システム運転方法及び熱源システムに関し、
詳しくは、熱媒を設定出口熱媒温度に冷却又は加熱する熱源機とその熱源機に熱媒を送給する一次ポンプとを直列接続した熱源ユニットを負荷機器に対する熱媒循環路に並列状態で複数介装し、これら熱源ユニットの並列群と前記負荷機器との間において前記熱媒循環路における負荷機器側への往路部分と負荷機器側からの還路部分とを接続するバイパス路を設けるとともに、前記熱媒循環路における前記バイパス路の接続点よりも負荷機器寄りの箇所に前記負荷機器に対して熱媒を送給する二次ポンプを介装した熱源システムにおいて、
前記負荷機器における負荷熱量の変化に応じて前記熱源ユニットの運転ユニット数を変更する熱源台数調整、及び、負荷機器側の熱媒流量である二次流量の変化に応じて運転一次ポンプの送出流量の調整により熱源ユニット側の熱媒流量である一次流量を調整する一次流量調整を行なう熱源システム運転方法に関する。
The present invention relates to a heat source system operation method and a heat source system used in an air conditioner or the like,
Specifically, a heat source unit in which a heat source unit that cools or heats the heat medium to a set outlet heat medium temperature and a primary pump that supplies the heat medium to the heat source unit are connected in series to the heat medium circuit for the load device in parallel. A plurality of intervening means are provided between the parallel group of these heat source units and the load device, and a bypass path is provided for connecting the forward path portion to the load device side and the return path portion from the load device side in the heat medium circulation path. In the heat source system including a secondary pump that supplies the heat medium to the load device at a location closer to the load device than the connection point of the bypass path in the heat medium circulation path,
Heat source number adjustment to change the number of operation units of the heat source unit according to the change in the load heat amount in the load device, and the delivery flow rate of the primary pump that operates according to the change in the secondary flow rate that is the heat medium flow rate on the load device side It is related with the heat-source system operating method which performs primary flow rate adjustment which adjusts the primary flow rate which is the heat-medium flow rate by the side of a heat source unit by adjustment.

また、それら熱源台数調整及び一次流量調整として、前記負荷機器における負荷熱量の変化に応じて前記熱源ユニットの運転ユニット数を変更する熱源台数制御、及び、負荷機器側の熱媒流量である二次流量の変化に応じて運転一次ポンプの送出流量の調整により熱源ユニット側の熱媒流量である一次流量を調整する一次流量制御を実行する制御手段を設けた熱源システムに関する。   In addition, as the heat source number adjustment and primary flow rate adjustment, the heat source number control for changing the number of operation units of the heat source unit according to the change in the load heat amount in the load device, and the secondary heat medium flow rate on the load device side The present invention relates to a heat source system provided with control means for executing primary flow rate control for adjusting a primary flow rate which is a heat medium flow rate on the heat source unit side by adjusting a delivery flow rate of an operating primary pump according to a change in flow rate.

従来、この種の熱源システム(及びその運転方法)については、熱源機の運転効率が異なる2以上の熱源機を運転する場合、一次流量制御として、熱源ユニット側の熱媒流量である一次流量(即ち、運転一次ポンプの合計送出流量)を負荷機器側の熱媒流量である二次流量(負荷流量とも言う)に等しい流量に調整するとともに、その一次流量を運転熱源機の運転効率に応じた配分比率で運転熱源機に配分するように運転一次ポンプの送出流量を調整する流量配分制御を実施するものが提案されている。(特許文献1参照、特に段落0020)   Conventionally, with regard to this type of heat source system (and its operating method), when operating two or more heat source units having different operating efficiencies of the heat source unit, as a primary flow rate control, a primary flow rate that is a heat medium flow rate on the heat source unit side ( That is, the total flow rate of the operating primary pump) is adjusted to a flow rate equal to the secondary flow rate (also referred to as load flow rate) that is the heat medium flow rate on the load equipment side, and the primary flow rate is set according to the operating efficiency of the operating heat source machine. There has been proposed one that performs flow rate distribution control that adjusts the delivery flow rate of the primary operating pump so that it is distributed to the operating heat source unit at a distribution ratio. (See Patent Document 1, especially paragraph 0020)

特開2007−292374号JP 2007-292374 A

しかし、上記の如く一次流量制御において一次流量を二次流量に等しい流量に調整するだけでは、負荷機器における負荷熱量の変化に応じて熱源ユニットの運転ユニット数を変更する熱源台数制御で熱源ユニットの運転ユニット数を増加させる増段処理(即ち、熱源機及び一次ポンプの運転台数を増加させる処理)を行なった際に、負荷機器に供給する熱媒の温度である負荷機器の入口熱媒温度が適正入口熱媒温度よりも負荷機器能力の低減側(即ち、熱源機で熱媒を冷却する冷熱熱源システムでは温度上昇側、また、熱源機で熱媒を加熱する温熱熱源システムでは温度低下側)へ大きく変動した状態になり、そのことで負荷機器の機能に支障を来たす問題があった。   However, just adjusting the primary flow rate to the flow rate equal to the secondary flow rate in the primary flow control as described above, the number of heat source unit operation units that change the number of operation units of the heat source unit in accordance with the change in the load heat amount in the load equipment. When the stage increasing process for increasing the number of operating units (that is, the process for increasing the number of operating heat source units and primary pumps) is performed, the inlet heat medium temperature of the load device, which is the temperature of the heat medium supplied to the load device, is Reduced load equipment capacity from the proper inlet heat medium temperature (ie, the temperature rise side for the cooling heat source system that cools the heat medium with the heat source unit, and the temperature decrease side for the heat source system that heats the heat medium with the heat source unit) As a result, there was a problem that the function of the load equipment was hindered.

なお、ここで言う適正入口熱媒温度とは負荷機器が処理対象を所要の目標状態に処理し得る負荷機器の入口熱媒温度であり、一次流量が二次流量と等しい流量に調整される一次流量制御の実行下では熱源機の設定出口熱媒温度と等しい温度である。   The proper inlet heat medium temperature referred to here is the inlet heat medium temperature of the load device at which the load device can process the object to be processed in the required target state, and the primary flow rate is adjusted to a flow rate equal to the secondary flow rate. Under the flow rate control, the temperature is equal to the set outlet heat medium temperature of the heat source machine.

増段処理を行った際に上記の如く負荷機器の入口熱媒温度が負荷機器能力の低減側に変動する原因については、熱源機は一般に、起動後、その出口熱媒温度が設定出口熱媒温度(即ち、所定の冷却温度ないし加熱温度)になるまでの立ち上がり時間としてかなりの長時間を要する。   As for the cause of the change in the inlet heat medium temperature of the load device to the reduced load device capacity as described above when the stage increasing process is performed, the heat source machine generally has its outlet heat medium temperature set to the set outlet heat medium after startup. A considerable time is required as a rise time until the temperature (that is, a predetermined cooling temperature or heating temperature) is reached.

このため、この種の熱源システムでは、熱源台数制御における増段処理で熱源ユニットの運転ユニット数を増加させたとき、その増段処理で新たに起動した熱源機の出口熱媒温度が設定出口熱媒温度になるまでの立ち上がり時間の間、既に運転状態にある熱源機から送出される設定出口熱媒温度の熱媒(例えば、適正に冷却された7℃の熱媒)と、新たに起動した熱源機から送出される未だ設定出口熱媒温度に立ち上がっていない熱媒(例えば、冷却不足の10℃〜12℃の熱媒)とが混合された状態で負荷機器に供給されることになり、これが原因で、負荷機器の入口熱媒温度が熱源能力不足側に変動する現象が生じる。   For this reason, in this type of heat source system, when the number of operating units of the heat source unit is increased by the stage increasing process in the control of the number of heat sources, the outlet heat medium temperature of the heat source machine newly started by the stage increasing process is set as the set outlet heat. During the rise time until the temperature reaches the medium temperature, a heat medium having a set outlet heat medium temperature (for example, a properly cooled heat medium at 7 ° C.) sent from the heat source machine that is already in operation is newly started. It will be supplied to the load device in a mixed state with a heating medium that has not yet risen to the set outlet heating medium temperature sent from the heat source machine (for example, a heating medium that is undercooled 10 ° C. to 12 ° C.), This causes a phenomenon in which the inlet heat medium temperature of the load device fluctuates to the side with insufficient heat source capability.

しかし、一次流量を二次流量と等しい流量に調整する一次流量制御の実行下では、この増段処理の際の熱媒温度変動は不可避な現象ではあるが、負荷機器が設計通りの運転状態にあれば、その変動幅も小さく、また、設計段階である程度見込まれてもいるため、それほど大きな問題とはならない。   However, under the execution of the primary flow control that adjusts the primary flow rate to the flow rate equal to the secondary flow rate, the temperature change of the heating medium during this stage-increasing process is an unavoidable phenomenon, but the load equipment remains in the operating state as designed. If so, the fluctuation range is small, and it is expected to some extent at the design stage, so it is not a big problem.

一方、この種の熱源システムでは、この増段処理の際の熱媒温度変動とは別に、熱源システムの運転状況によって負荷機器における入口熱媒と負荷機器で保有冷熱や保有温熱が消費された出口熱媒との温度差が設計値よりも大きくなることがあり、このように負荷機器の入出口熱媒温度差が過大な状態になっているとき、負荷機器側の熱媒流量である二次流量は負荷機器の入出口熱媒温度差が設計値となる設計二次流量よりも過小な状態にあり、また、それに伴い一次流量制御により二次流量と等しい流量に調整される一次流量も同じく過小な状態になっている。   On the other hand, in this type of heat source system, apart from the heat medium temperature fluctuation during this stage-increasing process, depending on the operating conditions of the heat source system, the inlet heat medium in the load device and the outlet where the stored cold heat or stored heat is consumed in the load device The temperature difference with the heat medium may be larger than the design value, and when the temperature difference between the inlet and outlet heat medium of the load equipment is excessive, the secondary heat medium flow rate on the load equipment side The flow rate is in a state that is smaller than the design secondary flow rate at which the temperature difference of the heat medium at the inlet and outlet of the load equipment becomes the design value, and the primary flow rate that is adjusted to the flow rate equal to the secondary flow rate by the primary flow rate control accordingly It is too small.

そして、このように負荷機器の入出口熱媒温度差が過大で二次流量及び一次流量がともに過小になっている状況で、増段処理が行なわれて前述の熱媒温度変動が発生すると、既に運転状態にある熱源機から送出される過小流量状態にある設定出口熱媒温度の熱媒に新たに起動した熱源機から送出される未だ設定出口熱媒温度に立ち上がっていない熱媒が相対的に大きい混合比率で混合される状態になるため、負荷機器が設計通りの運転状態にあって負荷機器の入出口熱媒温度差が設計値となっているときよりも、既に運転状態にある熱源機から送出される熱媒流量(即ち、増段処理の前の一次流量)が過小になっている分、増段処理を行った際の熱媒温度変動の変動幅が大きくなる。   And, in this situation where the temperature difference between the inlet and outlet heat medium of the load device is excessive and both the secondary flow rate and the primary flow rate are too small, the above-described heat medium temperature fluctuation occurs when the stage increasing process is performed. The heat medium that has not yet risen to the set outlet heat medium temperature that is sent from the newly started heat source machine to the heat medium of the set outlet heat medium temperature that is in the underflow state that is sent from the heat source machine that is already in operation is relatively The heat source is already in the operating state compared to when the load equipment is in the operating state as designed and the temperature difference of the heat medium at the inlet / outlet of the load equipment is at the design value. Since the flow rate of the heat medium sent from the machine (that is, the primary flow rate before the stage increasing process) is too small, the fluctuation range of the temperature change of the heating medium when the stage increasing process is performed increases.

即ち、このことが原因で、増段処理を行なった際に負荷機器の入口熱媒温度が適正入口熱媒温度よりも負荷機器能力の低減側へ大きく変動した状態になって負荷機器の機能に支障を来たす問題を生じていた。   That is, for this reason, when the stage increasing process is performed, the load heat medium temperature of the load device is greatly fluctuated from the proper inlet heat medium temperature to the load device capacity reduction side, and the load device functions. There was a problem that caused trouble.

また、負荷機器の入出口熱媒温度差は一般に負荷機器の負荷熱量が大きくて現時点の運転熱源ユニットでは負荷熱量を処理し難くなった状況(即ち、増段処理が迫った状況)で過大になり易いことも、この問題を一層顕著なものにしていた。   In addition, the temperature difference between the inlet and outlet heat medium of the load device is generally excessive in situations where the load heat amount of the load device is large and it is difficult to process the load heat amount at the current operating heat source unit (that is, the situation where the step-up process is approaching). This tendency to make this problem even more prominent.

この実情に鑑み、本発明の主たる課題は、合理的な流量制御形態を採用することで上記問題を効果的に解消する点にある。   In view of this situation, the main problem of the present invention is to effectively solve the above problem by adopting a rational flow rate control mode.

本発明の第1特徴構成は熱源システム運転方法に係り、その特徴は、
熱媒を設定出口熱媒温度に冷却又は加熱する熱源機とその熱源機に熱媒を送給する一次ポンプとを直列接続した熱源ユニットを負荷機器に対する熱媒循環路に並列状態で複数介装し、
これら熱源ユニットの並列群と前記負荷機器との間において前記熱媒循環路における負荷機器側への往路部分と負荷機器側からの還路部分とを接続するバイパス路を設けるとともに、
前記熱媒循環路における前記バイパス路の接続点よりも負荷機器寄りの箇所に前記負荷機器に対して熱媒を送給する二次ポンプを介装した熱源システムにおいて、
前記負荷機器における負荷熱量の変化に応じて前記熱源ユニットの運転ユニット数を変更する熱源台数調整、及び、負荷機器側の熱媒流量である二次流量の変化に応じて運転一次ポンプの送出流量の調整により熱源ユニット側の熱媒流量である一次流量を調整する一次流量調整を行なう熱源システム運転方法であって、
前記熱源台数調整で前記熱源ユニットの運転ユニット数を増加させる増段処理に際して、前記一次流量調整での前記二次流量に対する前記一次流量の比率である運転流量比率を予め増大させておく増段用過渡調整を行なう点にある。
A first characteristic configuration of the present invention relates to a heat source system operation method,
A plurality of heat source units, in which a heat source for cooling or heating the heat medium to the set outlet heat medium temperature and a primary pump for supplying the heat medium to the heat source machine are connected in series to the heat medium circulation path for the load equipment, are installed in parallel. And
Between the parallel group of these heat source units and the load device is provided with a bypass path connecting the forward path portion to the load device side and the return path portion from the load device side in the heat medium circulation path,
In the heat source system including a secondary pump that supplies the heat medium to the load device at a location closer to the load device than the connection point of the bypass path in the heat medium circulation path,
Heat source number adjustment to change the number of operation units of the heat source unit according to the change in the load heat amount in the load device, and the delivery flow rate of the primary pump that operates according to the change in the secondary flow rate that is the heat medium flow rate on the load device side A heat source system operation method for performing a primary flow rate adjustment for adjusting a primary flow rate that is a heat medium flow rate on the heat source unit side by adjusting
In the stage increasing process for increasing the number of operating units of the heat source unit by adjusting the number of heat sources, for increasing the stage, the operating flow rate ratio, which is the ratio of the primary flow rate to the secondary flow rate in the primary flow rate adjustment, is increased in advance. The point is that transient adjustment is performed.

つまり、この方法によれば、増段処理に際して増段用過渡調整により上記運転流量比率を予め増大させておくから、何らかの原因で負荷機器の入出口熱媒温度差が設計値よりも過大になって二次流量が過小になっている状況で増段処理が行われるとしても、既に運転状態にある熱源機から送出される熱媒流量(即ち、増段処理に際しての一次流量)が一次流量調整のために二次流量とともに過小な状態になることを上記運転流量比率の増大による一次流量の増大分をもって効果的に抑止することができる。   In other words, according to this method, since the operating flow rate ratio is increased in advance by the step-up transient adjustment during the step-up process, the temperature difference in the heat medium at the inlet / outlet of the load device becomes larger than the design value for some reason. Even if the stage increase process is performed when the secondary flow rate is too low, the flow rate of the heat medium sent from the heat source machine that is already in operation (that is, the primary flow rate during the stage increase process) is adjusted to the primary flow rate. For this reason, it is possible to effectively prevent the secondary flow rate from becoming too small with the increase in the primary flow rate due to the increase in the operation flow rate ratio.

従って、そのような状況で増段処理が行われて、既に運転状態にある熱源機から送出される設定出口熱媒温度の熱媒と新たに起動された熱源機から送出される未だ設定出口熱媒温度に立ち上がっていない熱媒とが混合状態で負荷機器に供給される状況になったとしても、その混合が原因で生じる負荷機器入口熱媒温度の負荷機器能力低減側への変動はその変動幅が効果的に縮減されたものになる。   Therefore, the stage increasing process is performed in such a situation, the set outlet heat medium temperature sent from the heat source machine already in operation and the set outlet heat sent from the newly activated heat source machine Even if the heat medium that has not risen to the medium temperature is supplied to the load equipment in a mixed state, the change to the load equipment capacity reduction side of the load equipment inlet heat medium temperature caused by the mixing is the fluctuation The width is effectively reduced.

即ち、このことにより、増段処理を行なった際に負荷機器の入口熱媒温度が適正入口熱媒温度よりも負荷機器能力の低減側へ大きく変動した状態になる先述の問題(つまり、一次流量の過小化と増段処理で新たに起動した熱源機の立ち上がり遅れとが重なって生じる問題)を効果的に抑止することができて、増段処理にかかわらず負荷機器の機能を安定的に維持することができる。   In other words, this causes the problem that the inlet heat medium temperature of the load device greatly fluctuates from the proper inlet heat medium temperature to the reduction side of the load device capacity when the stage increase process is performed (that is, the primary flow rate). Problem that overlaps with the rise delay of the heat source machine that has been newly started by the minimization of the stage and the stage increase process) can be effectively suppressed, and the function of the load equipment can be stably maintained regardless of the stage increase process. can do.

なお、増段用過渡調整により運転流量比率を増大させた状態において一次流量と二次流量との差分は、バイパス路において生じる差分流量のバイパス流により吸収される。   Note that the difference between the primary flow rate and the secondary flow rate in the state where the operating flow rate ratio is increased by the step-up transient adjustment is absorbed by the differential flow bypass flow generated in the bypass path.

因みに、増段処理を行なった際に負荷機器の入口熱媒温度が適正入口熱媒温度よりも負荷機器能力の低減側へ大きく変動した状態になるのを抑止するのに、一次流量を常に二次流量よりも十分に大きい流量に維持するようにした場合、バイパス路において上記差分流量のバイパス流が常時形成される分、運転一次ポンプの動力消費が嵩むが、上記構成によれば、増段処理の際のみ増段用過渡調整により運転流量比率を増大させて一次流量を増大させるから、通常時はそのような運転一次ポンプの浪費的な動力消費を回避しながら、増段処理を行なった際の負荷機器における入口熱媒温度の負荷機器能力低減側への大きな変動を効果的に抑止することができる。   In order to prevent the inlet heat medium temperature of the load equipment from fluctuating greatly from the proper inlet heat medium temperature to the side where the load equipment capacity is reduced when the stage increase process is performed, the primary flow rate is always kept at 2%. When the flow rate is maintained sufficiently higher than the secondary flow rate, the power consumption of the primary pump for operation increases because the bypass flow of the differential flow rate is always formed in the bypass passage. Since the primary flow rate is increased by increasing the operation flow rate ratio by the transient adjustment for step increase only during processing, the step increase processing is performed while avoiding wasteful power consumption of such a primary pump during normal operation. The large fluctuation of the inlet heat medium temperature in the load device at the time of the load device capacity reduction side can be effectively suppressed.

なお、上記方法の実施において通常時の一次流量調整では、一次流量を二次流量に等しい流量に調整する調整方式に限らず、一次流量を二次流量よりも所定比率だけ大きい流量に調整する調整方式や、一次流量を二次流量よりも所定比率だけ小さい流量に調整する方式(例えば、後述のバイパス利用一次流量制御)を採用してもよいが、好ましくは、一次流量を二次流量よりも僅かに大きい流量に調整する調整方式を採用するのが望ましい。   In the implementation of the above method, the primary flow rate adjustment during normal operation is not limited to an adjustment method that adjusts the primary flow rate to a flow rate equal to the secondary flow rate, but an adjustment that adjusts the primary flow rate to a flow rate that is larger than the secondary flow rate by a predetermined ratio. A method or a method of adjusting the primary flow rate to a flow rate that is smaller than the secondary flow rate by a predetermined ratio (for example, bypass-use primary flow rate control described later) may be adopted, but preferably, the primary flow rate is less than the secondary flow rate. It is desirable to employ an adjustment method for adjusting to a slightly larger flow rate.

即ち、通常時の一次流量調整で一次流量を二次流量よりも僅かに大きい流量に調整して、バイパス路において熱媒循環路における往路部分側から還路部分側に向かう僅かなバイパス流(正のバイパス流)が維持されるようにすれば、バイパス路において還路部分側から往路部分側に向かう逆向きのバイパス流(負のバイパス流)が偶発的に生じるのを抑止することができ、これにより、その逆向きのバイパス流が原因で負荷機器の入口熱媒温度が負荷機器能力の低減側に変動することも防止することができる。   That is, the primary flow rate is adjusted to a flow rate that is slightly larger than the secondary flow rate by adjusting the primary flow rate during normal operation, and a slight bypass flow (normal flow from the forward path side to the return path side in the heat medium circulation path in the bypass path). If the bypass flow is maintained, the reverse bypass flow (negative bypass flow) from the return path side to the forward path side in the bypass path can be prevented from occurring accidentally, As a result, it is possible to prevent the inlet heat medium temperature of the load device from fluctuating toward the reduced load device capacity due to the reverse bypass flow.

また、上記構成の実施において増段用過渡調整の開始時点については、負荷機器における負荷熱量が運転熱源ユニット全体としての能力調整範囲における上限寄りの所定閾能力まで増大したときに増段用過渡調整を開始するなど、熱源システムの特性や運転条件などに応じて適当な開始時点を適宜選択すればよい。   In addition, in the implementation of the above-described configuration, when the transient adjustment for the stage increase is started, the transient adjustment for the stage increase is performed when the load heat amount in the load device increases to a predetermined threshold capacity near the upper limit in the capacity adjustment range of the entire operation heat source unit. For example, an appropriate start point may be selected as appropriate in accordance with the characteristics of the heat source system, operating conditions, and the like.

増段用過渡調整により増大させる運転流量比率の比率幅(増大幅)も熱源システムの特性や運転条件などに応じて適宜決定すればよく、熱源システムの運転状況に応じて増大させる比率幅を変更するようにしてもよい。   The ratio (increase width) of the operating flow rate ratio to be increased by the transient adjustment for the stage increase may be determined as appropriate according to the characteristics of the heat source system and the operating conditions, and the ratio width to be increased according to the operating status of the heat source system is changed. You may make it do.

増段用過渡調整においては熱源システムの運転を極力安定的に保つため運転流量比率を漸次的に増大させるのが望ましく、負荷機器の負荷熱量の増大に応じて運転流量比率を漸次的に増大させるようにしてもよい。   It is desirable to gradually increase the operating flow rate ratio in order to keep the operation of the heat source system as stable as possible in the transient adjustment for increasing the stage, and gradually increase the operating flow rate ratio as the load heat amount of the load equipment increases. You may do it.

増段用過渡調整において運転流量比率を漸次的に増大させる場合、運転流量比率を連続的に増大させる調整方式あるいは多段階的に増大させる調整方式のいずれを採用してもよい。   When the operation flow rate ratio is gradually increased in the transient adjustment for increasing the stage, either an adjustment method for continuously increasing the operation flow rate ratio or an adjustment method for increasing the operation flow rate in multiple stages may be employed.

さらに、増段用過渡調整において運転流量比率を漸次的に増大させる場合、その増大速度(即ち、単位時間当たりの比率変化量)も、熱源システムの特性や運転条件などに応じて適当な速度を適宜選択すればよい。   Furthermore, when the operating flow rate ratio is gradually increased in the transient adjustment for stepping up, the increasing speed (that is, the amount of change in the ratio per unit time) is set to an appropriate speed according to the characteristics of the heat source system and the operating conditions. What is necessary is just to select suitably.

上記方法の実施において熱源台数調整、一次流量調整、増段用過渡調整の夫々は、種々の計測情報や熱源システム構成機器の特性情報などに基づき自動的に行なう実施形態、あるいは、システム管理者などが人為操作により行なう実施形態、あるいはまた、その一部のみを自動的に行い残部を人為操作により行なう実施形態のいずれを採用してもよい。   In the implementation of the above method, the heat source number adjustment, the primary flow rate adjustment, and the step-up transient adjustment are each automatically performed based on various measurement information and the characteristics information of the heat source system constituent devices, or the system administrator, etc. Either an embodiment that is manually operated, or an embodiment in which only a part thereof is automatically performed and the remaining portion is manually operated may be adopted.

本発明の第2特徴構成は熱源システムに係り、その特徴は、
熱媒を設定出口熱媒温度に冷却又は加熱する熱源機とその熱源機に熱媒を送給する一次ポンプとを直列接続した熱源ユニットを負荷機器に対する熱媒循環路に並列状態で複数介装し、
これら熱源ユニットの並列群と前記負荷機器との間において前記熱媒循環路における負荷機器側への往路部分と負荷機器側からの還路部分とを接続するバイパス路を設けるとともに、
前記熱媒循環路における前記バイパス路の接続点よりも負荷機器寄りの箇所に前記負荷機器に対して熱媒を送給する二次ポンプを介装し、
前記負荷機器における負荷熱量の変化に応じて前記熱源ユニットの運転ユニット数を変更する熱源台数制御、及び、負荷機器側の熱媒流量である二次流量の変化に応じて運転一次ポンプの送出流量の調整により熱源ユニット側の熱媒流量である一次流量を調整する一次流量制御を実行する制御手段を設けてある熱源システムであって、
前記制御手段は、前記熱源台数制御で前記熱源ユニットの運転ユニット数を増加させる増段処理に際して、前記一次流量制御での前記二次流量に対する前記一次流量の比率である運転流量比率を予め増大させておく増段用過渡制御を実行する構成にしてある点にある。
The second characteristic configuration of the present invention relates to a heat source system,
A plurality of heat source units, in which a heat source for cooling or heating the heat medium to the set outlet heat medium temperature and a primary pump for supplying the heat medium to the heat source machine are connected in series to the heat medium circulation path for the load equipment, are installed in parallel. And
Between the parallel group of these heat source units and the load device is provided with a bypass path connecting the forward path portion to the load device side and the return path portion from the load device side in the heat medium circulation path,
A secondary pump that feeds the heat medium to the load device at a location closer to the load device than the connection point of the bypass path in the heat medium circulation path is interposed,
Heat source number control for changing the number of operating units of the heat source unit according to the change in the load heat amount in the load device, and the delivery flow rate of the primary pump operated according to the change in the secondary flow rate that is the heat medium flow rate on the load device side A heat source system provided with control means for performing primary flow rate control for adjusting a primary flow rate that is a heat medium flow rate on the heat source unit side by adjusting
In the stage increasing process for increasing the number of operating units of the heat source unit by the heat source number control, the control means increases in advance an operating flow rate ratio that is a ratio of the primary flow rate to the secondary flow rate in the primary flow rate control. It is in the point which is set as the structure which performs the transient control for an additional stage to keep.

つまり、この構成では、前述した第1特徴構成の熱源システム運転方法において実施する負荷熱量の変化に応じた熱源台数調整、二次流量の変化に応じた一次流量調整、並びに、増段処理に際して一次流量調整での二次流量に対する一次流量の比率である運転流量比率を予め増大させておく増段用過渡調整の夫々を熱源台数制御、一次流量制御、並びに、増段用過渡制御として種々の計測情報や熱源システム構成機器の特性情報などに基づき制御手段に実行させる。   That is, in this configuration, in the heat source system operation method of the first characteristic configuration described above, the number of heat sources is adjusted according to the change in the amount of load heat, the primary flow rate is adjusted according to the change in the secondary flow rate, and the primary stage is used in the stage increasing process. In the flow adjustment, the transient adjustment for increasing the stage, which is the ratio of the primary flow to the secondary flow in advance, is measured in various ways as the heat source number control, the primary flow control, and the transient increase control. The control unit executes the information based on the information and the characteristic information of the heat source system constituent devices.

従って、増段処理を行なった際に負荷機器の入口熱媒温度が適正入口熱媒温度よりも負荷機器能力の低減側へ大きく変動した状態になるのを効果的に防止することができて、増段処理かかわらず負荷機器の機能を安定的に維持し得るという前述運転方法により得られる効果を人手を要さず自動的かつ確実に得ることができる。   Therefore, when the stage increasing process is performed, it is possible to effectively prevent the inlet heat medium temperature of the load device from being greatly changed to the reduced load device capacity side than the proper inlet heat medium temperature, The effect obtained by the above-described operation method that the function of the load device can be stably maintained regardless of the step-up process can be obtained automatically and reliably without requiring manual operation.

本発明の第3特徴構成は第2特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記制御手段は、運転熱源ユニットに対する前記一次流量の配分について、運転熱源ユニット全体としての運転状態が所定の最適運転状態になる最適流量配分比率を熱源システム構成機器の特性情報に基づく所定の選定手法により選定して、その最適流量配分比率に応じて運転一次ポンプの送出流量を調整する最適流量配分制御を前記一次流量制御とともに実行する構成にしてある点にある。
The third feature configuration of the present invention specifies an embodiment suitable for the implementation of the second feature configuration.
The control means, for the distribution of the primary flow rate to the operating heat source unit, a predetermined selection method based on the characteristic information of the heat source system component equipment, the optimal flow rate distribution ratio at which the operating state of the entire operating heat source unit becomes a predetermined optimal operating state And the optimum flow distribution control for adjusting the delivery flow rate of the operating primary pump according to the optimum flow distribution ratio is executed together with the primary flow control.

つまり、この構成によれば、所定の最適運転状態として例えば運転熱源ユニット全体としての熱源機消費エネルギが最小となる運転状態を選択した場合、最適流量配分制御により、運転熱源ユニットに対する一次流量の配分について運転熱源ユニット全体としての熱源機消費エネルギが最小となる最適流量配分比率が自動的に選定され、その最適流量配分比率で運転熱源ユニットに対して一次流量が配分される。   That is, according to this configuration, when an operation state in which the heat source unit consumption energy as the entire operation heat source unit is selected as the predetermined optimum operation state, for example, the distribution of the primary flow rate to the operation heat source unit is performed by the optimum flow rate distribution control. The optimum flow rate distribution ratio that minimizes the heat source unit consumption energy as the entire operation heat source unit is automatically selected, and the primary flow rate is distributed to the operation heat source unit at the optimum flow rate distribution ratio.

即ち、このことにより、運転熱源ユニット全体としての熱源機の消費エネルギを効果的かつ確実に低減することができて、熱源システム全体としての消費エネルギを効果的かつ確実に低減することができる。   That is, this makes it possible to effectively and reliably reduce the energy consumption of the heat source unit as the entire operation heat source unit, and to effectively and reliably reduce the energy consumption as the entire heat source system.

従って、所定の最適運転状態として所要の目的で種々の運転状態を選択することにより、運転熱源ユニットに対する一次流量配分比率の選定上で、熱源システムの運転を所要の目的に即して最適化することができ、この点で一層優れた熱源システムにすることができる。そして、特に複数の熱源ユニットにおける熱源機に能力や性能あるいは形式や構造の異なる異種のものが含まれる場合に極めて有用である。   Therefore, by selecting various operating states for the required purpose as the predetermined optimum operating state, the operation of the heat source system is optimized according to the required purpose in selecting the primary flow rate distribution ratio for the operating heat source unit. In this respect, the heat source system can be further improved. In particular, it is extremely useful when the heat source machines in the plurality of heat source units include different types of capacities, performances, types and structures.

なお、上記構成の実施において所定の最適運転状態としては、熱源機消費エネルギが最小となる運転状態に限らず、運転コストが最小となる運転状態や、換算二酸化炭素排出量が最小となる運転状態、あるいはまた、熱源機消費エネルギ、運転コスト、換算二酸化炭素排出量などの2以上の運転評価値の夫々に重み係数を乗じた値の和が最小となる運転状態など、種々の運転状態を最適運転状態として採用することができる。   In the implementation of the above configuration, the predetermined optimum operation state is not limited to the operation state in which the heat source unit energy consumption is minimized, the operation state in which the operation cost is minimized, and the operation state in which the converted carbon dioxide emission is minimized. Or, various operating conditions such as an operating condition in which the sum of values obtained by multiplying each of two or more operating evaluation values such as heat source unit energy consumption, operating cost, and equivalent carbon dioxide emissions by a weighting coefficient is minimized. It can be employed as an operating state.

また、上記構成の実施において採用する最適流量配分比率の選定手法についても、熱源システム構成機器の特性情報に基づく数式演算や運転シミュレートにより運転熱源ユニットに対する一次流量の最適流量配分比率を選定する手法、あるいはまた、熱源システム構成機器の機器特性に基づき予め作成したデータテーブルからの読み出しにより運転熱源ユニットに対する一次流量の最適流量配分比率を選定する手法など、種々の手法を採用することができる。   In addition, regarding the selection method of the optimum flow rate distribution ratio adopted in the implementation of the above configuration, a method for selecting the optimum flow rate distribution ratio of the primary flow rate for the operating heat source unit by mathematical calculation based on the characteristic information of the heat source system component equipment and operation simulation Alternatively, various methods such as a method of selecting an optimal flow rate distribution ratio of the primary flow rate for the operation heat source unit by reading from a data table created in advance based on the device characteristics of the heat source system constituent devices can be adopted.

そしてまた、上記構成の実施においては、運転熱源ユニットに対する一次流量の最適配分に加え、運転熱源ユニットの組み合わせについても、運転熱源ユニット全体としての運転状態が所定の最適運転状態となる最適組み合わせを熱源システム構成機器の特性情報に基づく所定の選定手法により選定して、その最適組み合わせで熱源ユニットを運転する熱源機最適組み合わせ制御を制御手段に実行させるのが好ましい。   In addition, in the implementation of the above configuration, in addition to the optimal distribution of the primary flow rate to the operation heat source unit, the combination of the operation heat source units is the optimum combination in which the operation state as the entire operation heat source unit becomes the predetermined optimum operation state. It is preferable to select by a predetermined selection method based on the characteristic information of the system component equipment, and to cause the control means to execute the heat source unit optimum combination control for operating the heat source unit with the optimum combination.

本発明の第4特徴構成は第3特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記制御手段は、前記増段用過渡制御の実行時にも前記最適流量配分制御を継続して実行する構成にしてある点にある。
The fourth feature configuration of the present invention specifies an embodiment suitable for the implementation of the third feature configuration.
The control means is configured such that the optimum flow rate distribution control is continuously executed even when the step-up transient control is executed.

つまり、増段処理で新たに起動する熱源ユニットの存在がある以上、限界はあるものの、上記の如く最適流量配分制御を増段用過渡制御の実行時も継続して実行することにより、運転熱源ユニットに対する一次流量配分の増段処理の前後における連続性を高めることができ、これにより、熱源システムの運転安定性を一層高めることができる。   In other words, as long as there is a heat source unit that is newly activated in the stage increasing process, there is a limit. However, as described above, the optimum flow rate distribution control is continuously executed even during the stage increasing transient control. The continuity before and after the stage increasing process of the primary flow rate distribution to the unit can be improved, and thereby the operational stability of the heat source system can be further improved.

また、この構成によれば、増段用過渡制御の実行期間中についても、消費エネルギや運転コストあるいは換算二酸化炭素排出量を効果的に低減するなどの面で熱源システムの運転を最適化することができ、そのことで消費エネルギの低減や運転コストの低減あるいは換算二酸化炭素排出量の低減などを一層効果的に達成することができる。   In addition, according to this configuration, the operation of the heat source system can be optimized in terms of effectively reducing energy consumption, operating cost, or equivalent carbon dioxide emissions even during the execution stage of the transient control for increasing the stage. As a result, it is possible to more effectively achieve reductions in energy consumption, operation costs, or reduced equivalent carbon dioxide emissions.

本発明の第5特徴構成は第2〜第4特徴構成のいずれかの実施に好適な実施形態を特定するものであり、その特徴は、
前記制御手段は、前記一次流量制御又は前記最適流量配分制御において運転熱源機夫々の負荷率のうち最も小さいものが設定閾負荷率まで増大したとき、前記増段用過渡制御を実行する構成にしてある点にある。
The fifth characteristic configuration of the present invention specifies an embodiment suitable for implementation of any one of the second to fourth characteristic configurations,
In the primary flow control or the optimal flow distribution control, the control means is configured to execute the step-up transient control when the smallest one of the load factors of the operation heat source units increases to a set threshold load factor. There is a point.

つまり、熱源機の最大出力に対する現状出力の比率である負荷率について、運転熱源機夫々の負荷率は一次流量が調整されることで変化し、また、最適流量配分制御により運転熱源ユニットに対する一次流量の配分比率が調整されることでも変化する。   In other words, for the load factor, which is the ratio of the current output to the maximum output of the heat source unit, the load factor of each operating heat source unit changes as the primary flow rate is adjusted, and the primary flow rate for the operating heat source unit by optimal flow rate distribution control It will also change as the distribution ratio is adjusted.

従って、上記の如く一次流量制御又は最適流量配分制御において、運転熱源機夫々の負荷率のうち最も小さいものが設定閾負荷率(例えば90%)まで増大したとき増段用過渡制御を実行するようにすれば、運転熱源機夫々の負荷率がほぼ100%となって増段処理に至る時点よりも前の適切な時点で確実に二次流量に対する一次流量の比率である運転流量比率を増段処理に備えて増大させることができ、これにより、第1特徴構成の熱源システム運転方法により得られる前述の効果を一層確実かつ効果的に得ることができる。   Therefore, in the primary flow rate control or the optimum flow rate distribution control as described above, when the smallest one of the load factors of the operating heat source devices increases to the set threshold load factor (for example, 90%), the step-up transient control is executed. Then, the operating flow rate ratio, which is the ratio of the primary flow rate to the secondary flow rate, is surely increased at an appropriate time before the time when the load factor of each of the operating heat source machines becomes almost 100% and the stage increasing process is reached. It can be increased in preparation for processing, and thereby the above-mentioned effect obtained by the heat source system operating method of the first characteristic configuration can be obtained more reliably and effectively.

本発明の第6特徴構成は第2〜第5特徴構成のいずれかの実施に好適な実施形態を特定するものであり、その特徴は、
前記制御手段は、前記増段用過渡制御において前記運転流量比率を増大させるのに、前記負荷熱量の増大に応じて前記運転流量比率を漸次的に増大させる構成にしてある点にある。
The sixth feature configuration of the present invention specifies an embodiment suitable for the implementation of any one of the second to fifth feature configurations.
In order to increase the operating flow rate ratio in the step-up transient control, the control means is configured to gradually increase the operating flow rate ratio according to an increase in the load heat amount.

つまり、増段用過渡制御において運転流量比率を急激に増大させた場合、熱源システムの運転が不安定になる虞があるが、上記の如く増段用過渡制御において運転流量比率を負荷機器における負荷熱量の増大に応じて漸次的に増大させるようにすれば、運転流量比率の急激な変化に原因する熱源システム運転の不安定化を回避することができ、熱源システムの運転安定性を高く維持することができる。   In other words, if the operating flow rate ratio is suddenly increased in the step-up transient control, there is a risk that the operation of the heat source system may become unstable. If the temperature is gradually increased in accordance with the increase in the amount of heat, it is possible to avoid instability of the operation of the heat source system due to a sudden change in the operation flow rate ratio, and to maintain high operation stability of the heat source system. be able to.

また、増段用過渡制御において運転流量比率を単に一定の増大速度で増大させる方式では、負荷熱量の増大が遅くて増段処理に至るまでの時間が長い場合に、増段用過渡制御による運転流量比率の増大で一次流量を増大させた増大完了状態が長く続くことになって、その分、運転一次ポンプの動力消費が嵩むが、上記の如く増段用過渡制御において運転流量比率を負荷機器における負荷熱量の増大に応じて増大させるようにすれば、そのような運転一次ポンプの浪費的な動力消費も効果的に抑止することができ、熱源システムの消費動力も一層効果的に低減することができる。   In addition, in the method of increasing the operation flow rate at a constant increase rate in the transient control for increasing the stage, if the increase in load heat is slow and the time until the increasing process is long, the operation by the transient control for increasing the stage is performed. Increased primary flow rate is increased by increasing the flow rate ratio, and the power consumption of the primary pump will increase accordingly. If it is made to increase in accordance with the increase in the amount of heat load, the wasteful power consumption of such an operating primary pump can be effectively suppressed, and the power consumption of the heat source system can be further effectively reduced. Can do.

そしてまた、増段用過渡制御において運転流量比率を単に一定の増大速度で増大させる方式では、逆に負荷熱量の増大が早くて増段処理に至るまでの時間が短い場合に、増段用過渡制御による運転流量比率の増大が間に合わず、負荷機器の入口熱媒温度が負荷機器能力の低減側へ大きく変動した状態になることを十分に抑止できなくなる虞もあるが、上記の如く増段用過渡制御において運転流量比率を負荷機器における負荷熱量の増大に応じて増大させれば、そのような虞も回避することができて、増段処理を行った際に負荷機器の入口熱媒温度が負荷機器能力の低減側へ大きく変動した状態になることを一層確実に抑止することができる。   In addition, in the transient control for increasing the stage, the method in which the operating flow rate ratio is simply increased at a constant increase rate, on the contrary, when the increase in the load heat amount is fast and the time until the increasing process is short, There is a risk that the increase in the operating flow rate ratio due to control may not be in time, and it may not be possible to sufficiently prevent the inlet heat medium temperature of the load equipment from fluctuating greatly toward the load equipment capacity reduction side. If the operating flow rate ratio is increased in response to an increase in the load heat amount in the load device in the transient control, such a possibility can be avoided, and the inlet heat medium temperature of the load device is increased when the stage increasing process is performed. It is possible to more reliably prevent the load device capacity from being greatly changed toward the reduction side.

なお、上記構成の実施において増段用過渡制御での単位負荷熱量の変化に対する運転流量比率の増大率(別言すれば、増段用過渡制御を開始する閾負荷熱量)は、熱源システムの運転安定性を維持できる範囲で熱源システムの特性や運転条件などに応じて適宜決定すればよい。   In addition, in the implementation of the above configuration, the rate of increase of the operation flow rate ratio relative to the change in the unit load calorie in the step-up transient control (in other words, the threshold load heat amount at which the step-up transient control is started) is determined by the operation of the heat source system. What is necessary is just to determine suitably according to the characteristic of a heat source system, an operating condition, etc. in the range which can maintain stability.

本発明の第7特徴構成は第2〜第6特徴構成のいずれかの実施に好適な実施形態を特定するものであり、その特徴は、
前記制御手段は、前記増段用過渡制御において前記運転流量比率を増大させるのに、前記負荷機器における入出口熱媒温度差が設計値より大きいほど前記運転流量比率の増大幅を大きくする構成にしてある点にある。
The seventh characteristic configuration of the present invention specifies an embodiment suitable for implementing any one of the second to sixth characteristic configurations,
The control means is configured to increase the operating flow rate ratio as the inlet / outlet heat medium temperature difference in the load device is larger than a design value in order to increase the operating flow rate ratio in the step-up transient control. It is in a certain point.

つまり、負荷機器の入出口熱媒温度差が設計値より大きいほど、換言すれば、負荷機器における入出口熱媒温度差の過大化が進んで二次流量及び一次流量の過小化が進んでいるほど、増段処理を行った際に生じる負荷機器入口熱媒温度の負荷機器能力低減側への変動はその変動幅が大きくなる。   In other words, the larger the inlet / outlet heat medium temperature difference of the load device is, the more specifically, the increase in the inlet / outlet heat medium temperature difference in the load device is progressing, and the secondary flow and the primary flow are becoming smaller. The fluctuation range of the load device inlet heat medium temperature generated when the stage increasing process is performed toward the load device capacity reduction side increases.

従って、上記の如く増段用過渡制御において負荷機器の入出口熱媒温度差が設計値より大きいほど前記運転流量比率の増大幅を大きくするようにすれば、その運転流量比率の増大による一次流量の増大幅を二次流量及び一次流量の過小化の度合に応じたものにして、それら二次流量及び一次流量の過小化の度合にかかわらず、増段処理を行なった際に生じる負荷機器入口熱媒温度の負荷機器能力低減側への変動を一層確実かつ効果的に抑止することができる。   Therefore, if the increase range of the operating flow rate ratio is increased as the inlet / outlet heat medium temperature difference of the load equipment is larger than the design value in the transient control for increasing the stage as described above, the primary flow rate due to the increase of the operating flow rate ratio is increased. The amount of increase in the flow rate depends on the degree of subtraction of the secondary flow and the primary flow, and regardless of the degree of minimization of the secondary flow and primary flow, the load equipment inlet that occurs when the stage increasing process is performed It is possible to more reliably and effectively suppress the fluctuation of the heat medium temperature toward the load equipment capacity reduction side.

なお、本発明の実施においては、負荷機器の入出口熱媒温度差が設計値以下の場合(即ち、二次流量及び一次流量が過小になっていない場合)には、上記運転流量比率の増大幅を零にするなどして、増段用過渡制御を不実施にするようにしてもよい。   In the implementation of the present invention, when the temperature difference between the inlet and outlet heating medium of the load equipment is not more than the design value (that is, when the secondary flow rate and the primary flow rate are not excessively small), the operation flow rate ratio is increased. The step-up transient control may be made non-executable, for example, by making the value substantially zero.

本発明の第8特徴構成は第2〜第7特徴構成のいずれかの実施に好適な実施形態を特定するものであり、その特徴は、
前記制御手段は、前記増段用過渡制御において前記運転流量比率を増大させるのに、前記負荷機器の入口熱媒温度が前記負荷機器の適正入口熱媒温度よりも負荷機器能力の低減側に逸脱しているとき、その逸脱がないときよりも前記運転流量比率の増大幅を大きくする構成にしてある点にある。
The eighth characteristic configuration of the present invention specifies an embodiment suitable for the implementation of any of the second to seventh characteristic configurations,
In order to increase the operating flow rate ratio in the step-up transient control, the control means is such that the inlet heat medium temperature of the load device deviates from the proper inlet heat medium temperature of the load device to the load device capacity reduction side. In this case, the operating flow rate ratio is increased more than when there is no deviation.

つまり、何らかの原因でバイパス路において熱媒循環路の還路部分側から往路部分側へ向かう逆向きバイパス流(負のバイパス流)が発生すると、その逆向きバイパス流の熱媒(即ち、負荷機器で保有冷熱や保有温熱を消費した熱媒)が負荷機器への供給熱媒に混入する状態になり、このため、負荷機器の入口熱媒温度が適正入口熱媒温度よりも負荷機器能力低減側に逸脱することがある。そして、このとき一次流量は二次流量とは関係なく実質的に過小な状態になっている。   That is, if for some reason a reverse bypass flow (negative bypass flow) from the return path portion side to the forward path portion side of the heating medium circulation path occurs in the bypass path, the reverse bypass flow heat medium (that is, the load device) In this state, the heat medium that consumed the stored cold heat and stored heat) is mixed into the supply heat medium to the load equipment, so the load heat medium temperature of the load equipment is lower than the proper inlet heat medium temperature. May deviate. At this time, the primary flow rate is substantially under the state regardless of the secondary flow rate.

従って、上記の如く負荷機器の入口熱媒温度が負荷機器の機能を良好に維持し得る適正入口熱媒温度よりも負荷機器能力低減側に逸脱しているとき増段用過渡制御による運転流量比率増大の増大幅を大きくして、その運転流量比率の増大による一次流量の増大幅をさらに大きくするようにすれば、上記の如き逆向きバイパス流の発生状態も効果的に解消することができて、負荷機器の入口熱媒温度が逆向きバイパス流の発生に原因して適正入口熱媒温度よりも負荷機器能力低減側に逸脱している状態を効果的に解消することができる。   Therefore, when the inlet heat medium temperature of the load device deviates from the proper inlet heat medium temperature at which the load device function can be maintained satisfactorily to the load device capacity reduction side as described above, the operation flow rate ratio by the transient control for the stage increase If the increase range of the increase is increased and the increase range of the primary flow rate due to the increase of the operating flow rate ratio is further increased, the occurrence of the reverse bypass flow as described above can be effectively eliminated. The state where the inlet heat medium temperature of the load device deviates from the proper inlet heat medium temperature to the load device capacity reduction side due to the occurrence of the reverse bypass flow can be effectively eliminated.

即ち、この構成によれば、増段処理を行なった際に負荷機器の入口熱媒温度が適正入口熱媒温度よりも負荷機器能力低減側へ大きく変動した状態になることを増段用過渡制御により防止するのみならず、負荷機器の入口熱媒温度が逆向きバイパス流の発生に原因して適正入口熱媒温度よりも負荷機器能力低減側に逸脱した状態になることも上記増段用過渡制御により効果的に解消することができ、これにより、負荷機器の入口熱媒温度を適正入口熱媒温度に維持する機能を一層高めることができて、負荷機器の機能を一層安定的に保つことができる。   In other words, according to this configuration, when the stage increasing process is performed, it is confirmed that the inlet heating medium temperature of the load equipment greatly fluctuates from the appropriate inlet heating medium temperature to the load equipment capacity reduction side. In addition to preventing the above, the temperature of the inlet heat medium of the load equipment may be in a state of deviating from the proper inlet heat medium temperature to the load equipment capacity reduction side due to the occurrence of the reverse bypass flow. It can be effectively eliminated by control, and this can further enhance the function of maintaining the inlet heat medium temperature of the load equipment at the appropriate inlet heat medium temperature, and keep the function of the load equipment more stable. Can do.

なお、上記構成の実施において負荷機器の入口熱媒温度が適正入口熱媒温度よりも負荷機器能力低減側に逸脱しているとき運転流量比率の増大幅を大きくするのに、その増大幅は熱源システムの特性や運転条件などに応じて適宜決定すればよい。   In the implementation of the above configuration, when the inlet heat medium temperature of the load device deviates from the proper inlet heat medium temperature to the load device capacity reduction side, the increase amount of the operating flow rate ratio is increased. What is necessary is just to determine suitably according to the characteristic of a system, an operating condition, etc.

また、運転流量比率の増大幅を負荷機器の入口熱媒温度と適正入口熱媒温度との偏差(換言すれば、適正入口熱媒温度からの逸脱度)に応じて変更するなどしてもよい。   In addition, the increase width of the operating flow rate ratio may be changed according to the deviation between the inlet heat medium temperature of the load device and the appropriate inlet heat medium temperature (in other words, the degree of deviation from the appropriate inlet heat medium temperature). .

本発明の第9特徴構成は第2〜第8特徴構成のいずれかの実施に好適な実施形態を特定するものであり、その特徴は、
前記制御手段は、前記増段処理を実行した後の所定保持期間の間、その増段処理で新たに起動した熱源ユニットの一次ポンプ送出流量を設定制限流量に固定して、前記一次流量が前記増段用過渡制御による増大一次流量から前記設定制限流量だけ増大した状態を保つ増段後保持制御を実行し、その所定保持期間が経過した後、前記増段後保持制御を解除して前記一次流量制御に復帰する構成にしてある点にある。
The ninth characteristic configuration of the present invention specifies an embodiment suitable for implementation of any one of the second to eighth characteristic configurations,
The control means fixes the primary pump delivery flow rate of the heat source unit newly activated in the stage increasing process to a set limit flow rate for a predetermined holding period after the stage increasing process is performed, and the primary flow rate is The post-stage holding control is executed to maintain the state in which the set primary flow rate is increased from the increased primary flow by the step-up transient control, and after the predetermined holding period, the post-stage holding control is canceled and the primary The configuration is such that the flow control is restored.

つまり、増段処理の後、その増段処理で新たに起動した熱源機の出口熱媒温度が立ち上がる以前に通常の一次流量制御に復帰して増段用過渡制御による運転流量比率の増大状態(即ち、一次流量の増大状態)を解除すると、増段用過渡制御を実施しない場合と同様に負荷機器の入口熱媒温度が負荷機器能力低減側に変動してしまう虞が高いことから、増段処理後における通常の一次流量制御への復帰は増段処理で新たに起動した熱源機の出口熱媒温度が十分に立ち上がった後にすべきである。   That is, after the stage increasing process, before the outlet heat medium temperature of the heat source machine newly started by the stage increasing process rises, the normal primary flow rate control is restored and the operating flow rate ratio is increased by the stage increasing transient control ( In other words, when the increase state of the primary flow rate is canceled, there is a high possibility that the inlet heat medium temperature of the load device will fluctuate to the load device capacity reduction side as in the case where the transient control for the step increase is not performed. The return to the normal primary flow rate control after the processing should be performed after the temperature of the outlet heat medium of the heat source apparatus newly started by the stage increasing process has sufficiently risen.

しかし、増段処理後において増段用過渡制御による運転比率の増大状態(一次流量の増大状態)を新たに起動した熱源機の出口熱媒温度が十分に立ち上がるまで保持するにしても、新たに起動した熱源機の出口熱媒温度が十分に立ち上がる以前に、運転熱源ユニットに対する増段処理後の一次流量配分(例えば、均等配分や運転効率に応じた配分など)で新たに起動した熱源機の処理熱媒流量が大きくなると、未だ温度的に立ち上がっていない熱媒の一次流量中における混合比率が大きくなり、そのことで負荷機器の入口熱媒温度が負荷機器能力の低減側に変動してしまう虞が残る。   However, even if the operation ratio increase state (primary flow rate increase state) by the step-up transient control after the step-up process is maintained until the outlet heat medium temperature of the newly activated heat source machine sufficiently rises, Before the outlet heat medium temperature of the activated heat source unit rises sufficiently, the primary flow rate distribution (for example, even distribution or distribution according to the operation efficiency) after the stage increasing process for the operating heat source unit When the processing heat medium flow rate increases, the mixing ratio in the primary flow rate of the heat medium that has not yet risen in temperature increases, which causes the inlet heat medium temperature of the load device to fluctuate toward the reduction side of the load device capacity. The fear remains.

これに対し、上記構成によれば、増段処理を実行した後の所定保持期間の間、増段後保持制御として増段用過渡制御による一次流量の増大状態を保つとともに、新たに起動した熱源ユニットの一次ポンプ送出流量(即ち、新たに起動した熱源機の処理熱媒流量)を設定制限流量に固定するから、所定保持期間として適当な期間を確保すれば、増段用過渡制御による一次流量の増大状態を尚早に解除することに原因する負荷機器入口熱媒温度の負荷機器能力低減側への変動を確実に防止するとともに、増段処理後の一次流量配分で新たに起動した熱源機の処理熱媒流量が大きくなることに原因する負荷機器入口熱媒温度の負荷機器能力低減側への変動も効果的に防止することができる。   On the other hand, according to the above configuration, during the predetermined holding period after the stage increasing process is performed, the primary flow rate increase state by the stage increasing transient control is maintained as the post stage increasing holding control, and the newly started heat source The unit's primary pump delivery flow rate (that is, the processing heat medium flow rate of the newly activated heat source machine) is fixed at the set limit flow rate, so if a suitable holding period is ensured, the primary flow rate by the transient control for increasing the stage It is possible to reliably prevent fluctuations in the load equipment inlet heating medium temperature to the load equipment capacity reduction side due to the early release of the increased state of the load equipment, and the newly started heat source machine with the primary flow rate distribution after the stage increase processing It is also possible to effectively prevent the load device inlet heat medium temperature from changing to the load device capacity reduction side due to an increase in the processing heat medium flow rate.

即ち、このことにより、増段処理の際に負荷機器の入口熱媒温度が適正入口熱媒温度よりも負荷機器能力の低減側に変動することを一層効果的かつ確実に抑止することができる。   That is, this makes it possible to more effectively and surely prevent the inlet heat medium temperature of the load device from changing to the lower side of the load device capacity than the appropriate inlet heat medium temperature during the stage increasing process.

なお、上記構成の実施において所定保持期間は、増段処理で新たに起動した熱源機の出口熱媒温度の計測値が設定出口熱媒温度になるまでの期間や、熱源機の起動後、その出口熱媒温度が設定出口熱媒温度に立ち上がる時間を見込んだ設定時間など、増段処理で新たに起動した熱源機が立ち上がるのに要する時間を概ね確保できる期間であれば、どのような決定形態で期間長を決定するものであってもよい。   In the implementation of the above configuration, the predetermined holding period is a period until the measured value of the outlet heat medium temperature of the heat source machine newly started in the stage increasing process reaches the set outlet heat medium temperature, or after the heat source machine is started. What type of decision is required as long as the time required to start up the heat source machine that has been newly started in the stage increasing process can be secured, such as the set time that allows the outlet heat medium temperature to rise to the set outlet heat medium temperature The period length may be determined by.

第1特徴構成の熱源システム運転方法の実施においては、上述第3〜第9特徴構成で制御手段に実行させる各制御をシステム管理者が人為的に行なうようにしてもよい。   In the implementation of the heat source system operating method of the first characteristic configuration, the system administrator may artificially perform each control to be executed by the control means in the above third to ninth characteristic configurations.

熱源システムの全体構成図Overall configuration diagram of heat source system 制御システムのブロック図Control system block diagram データテーブルの模式図Schematic diagram of data table 通常時の一次流量制御における運転流量比率αの決定方式を説明するグラフA graph explaining a method for determining the operation flow rate ratio α in the primary flow control during normal operation バイパス利用一次流量制御における運転流量比率βの調整方式を説明するグラフThe graph explaining the adjustment method of the operation flow rate ratio β in the bypass primary flow control 通常時の一次流量制御の実行状態を説明する概略システム図Schematic system diagram explaining the execution state of primary flow rate control during normal operation 増段用過渡制御の実行状態を説明する概略システム図Schematic system diagram explaining the state of execution of transient control for increasing stages バイパス利用一次流量制御の実行状態を説明する概略システム図Schematic system diagram explaining the execution state of bypass-use primary flow control

図1は空調設備などに用いる変流量式の熱源システムを示し、冷水や冷却ブラインなどの熱媒Cを設定出口熱媒温度tssに冷却する熱源機としての冷凍機1と、その冷凍機1に熱媒Cを送給する一次ポンプ2とを直列接続して熱源ユニットUを構成し、この熱源ユニットUの複数を負荷機器3群に対する熱媒循環路4に並列状態で介装してある。   FIG. 1 shows a variable flow rate heat source system used for air conditioning equipment and the like. A refrigerator 1 serving as a heat source for cooling a heat medium C such as cold water or cooling brine to a set outlet heat medium temperature tss, and the refrigerator 1 A heat source unit U is configured by connecting a primary pump 2 that feeds the heat medium C in series, and a plurality of the heat source units U are interposed in parallel in the heat medium circuit 4 for the load device 3 group.

一次ポンプ2にはインバータINVによるモータ回転数の調整により送出流量qsの調整が可能な可変ポンプを用いており、冷凍機1の制御部は、対応する一次ポンプ2の熱媒送出流量qsに応じて冷凍機1の冷却出力を調整することで冷凍機1の出口熱媒温度tsを設定出口熱媒温度tssに調整する。   The primary pump 2 uses a variable pump capable of adjusting the delivery flow rate qs by adjusting the motor rotation speed by the inverter INV, and the control unit of the refrigerator 1 responds to the heat medium delivery flow rate qs of the corresponding primary pump 2. By adjusting the cooling output of the refrigerator 1, the outlet heat medium temperature ts of the refrigerator 1 is adjusted to the set outlet heat medium temperature tss.

熱源ユニットUからの送出熱媒Cを負荷機器3群に送給する熱媒循環路4の往路部分4aには、各熱源ユニットUからの送出熱媒Cを集合させる一次ヘッダ5、及び、負荷機器3群に対して熱媒Cを送給する二次ヘッダ6を設けてあり、一次ヘッダ5と二次ヘッダ6とは複数の中継路7により接続し、これら中継路7には、一次ヘッダ5の受け入れ熱媒Cを二次ヘッダ6を通じて負荷機器3群に送給する二次ポンプ8を介装してある。   A primary header 5 for assembling the sending heat medium C from each heat source unit U, and a load on the forward path portion 4a of the heat medium circulation path 4 for feeding the sending heat medium C from the heat source unit U to the load device 3 group A secondary header 6 for supplying the heat medium C to the group of devices 3 is provided, and the primary header 5 and the secondary header 6 are connected by a plurality of relay paths 7. A secondary pump 8 for feeding 5 receiving heat mediums C to the load equipment 3 group through the secondary header 6 is interposed.

また、一次ヘッダ5と二次ヘッダ6とを接続する戻し路9を中継路7と並列に設け、この戻し路9には圧力調整弁10を介装してある。   Further, a return path 9 for connecting the primary header 5 and the secondary header 6 is provided in parallel with the relay path 7, and a pressure regulating valve 10 is interposed in the return path 9.

負荷機器3群で保有冷熱が消費されて温度上昇した熱媒C(各負荷機器3から送出されて集合した混合冷媒)を熱源ユニットUに戻す熱媒循環路4の還路部分4bには還りヘッダ11を設けてあり、この還りヘッダ11において各熱源ユニットUに戻す熱媒Cを分配する。   Returned to the return path portion 4b of the heat medium circulation path 4 for returning the heat medium C (mixed refrigerant sent out from each load apparatus 3 and gathered) whose temperature has risen as the stored cold heat is consumed in the load equipment 3 group to the heat source unit U. A header 11 is provided, and in the return header 11, the heat medium C returned to each heat source unit U is distributed.

一次ヘッダ5と還りヘッダ6とはバイパス路12で接続してあり、換言すれば、二次ポンプ8の介装箇所よりも熱源ユニットU寄りの箇所で熱媒循環路4の往路部分4aと還路部分4bとをバイパス路12により接続してある。   The primary header 5 and the return header 6 are connected by a bypass 12, in other words, the return path 4 a of the heat medium circulation path 4 is returned at a location closer to the heat source unit U than the location where the secondary pump 8 is interposed. The road portion 4b is connected by a bypass 12.

熱媒循環路4に並列状態で介装された負荷機器3は個別に流量調整弁3aを備えており、この流量調整弁3aにより各負荷機器3の負荷熱量gxに応じて各負荷機器3の熱媒流量qxが個別に調整される。   The load device 3 interposed in parallel with the heating medium circulation path 4 is individually provided with a flow rate adjustment valve 3a. The flow rate adjustment valve 3a allows each load device 3 to be controlled according to the load heat amount gx of each load device 3. The heat medium flow rate qx is individually adjusted.

即ち、熱媒循環路4はバイパス路12により接続した一次ヘッダ5と還りヘッダ6とを境として熱源ユニットU側である一次側と負荷機器3側である二次側とに区分されるが、熱媒循環路4における二次側部分の熱媒流量である二次流量Q2(即ち、負荷機器3群全体としての熱媒流量Σqx)は負荷機器3群全体としての負荷熱量Gx(=Σgx)に応
じて調整される。
That is, the heating medium circulation path 4 is divided into a primary side on the heat source unit U side and a secondary side on the load device 3 side with the primary header 5 and the return header 6 connected by the bypass path 12 as a boundary. The secondary flow rate Q2 (that is, the heat medium flow rate Σqx as the entire load device 3 group) is the load heat amount Gx (= Σgx) as the entire load device 3 group. Will be adjusted according to.

そして、熱源ユニットU側の熱媒流量である一次流量Q1(即ち、運転熱源ユニットUにおける一次ポンプ2の合計送出流量Σqs)と二次流量Q2とが等しい状態(Q1=Q
2)では、バイパス路12にバイパス流は生じずバイパス熱媒流量ΔQ=0となるが、一次流量Q1が二次流量Q2よりも大きい状態(Q1>Q2)では、その差分流量ΔQ(=Q1−Q2)で往路部分4a側から還路部分4b側に向かう正のバイパス流がバイパス路12に生じ、この正のバイパス流を形成するバイパス熱媒Cは負荷機器3群からの戻り熱媒Cと還りヘッダ11で混合して負荷機器3を通過することなく運転熱源ユニットUに戻される。
The primary flow rate Q1 (that is, the total delivery flow rate Σqs of the primary pump 2 in the operation heat source unit U) and the secondary flow rate Q2 are equal (Q1 = Q) as the heat medium flow rate on the heat source unit U side.
In 2), no bypass flow is generated in the bypass passage 12 and the bypass heat medium flow rate ΔQ = 0. However, in the state where the primary flow rate Q1 is larger than the secondary flow rate Q2 (Q1> Q2), the differential flow rate ΔQ (= Q1). -Q2), a positive bypass flow from the forward path portion 4a toward the return path portion 4b is generated in the bypass path 12, and the bypass heat medium C that forms this positive bypass flow is the return heat medium C from the load device 3 group. And mixed in the return header 11 and returned to the operating heat source unit U without passing through the load device 3.

また逆に、一次流量Q1が二次流量Q2よりも小さい状態(Q1<Q2)では、その差分流量ΔQ(=Q2−Q1)で還路部分4b側から往路部分4a側に向かう負のバイパス流(逆向きバイパス流)がバイパス路12に生じ、この負のバイパス流を形成するバイパス熱媒Cは運転熱源ユニットUからの送出熱媒Cと一次ヘッダ5で混合されて再び負荷機器3群に再び送給される。   Conversely, in a state where the primary flow rate Q1 is smaller than the secondary flow rate Q2 (Q1 <Q2), a negative bypass flow from the return path portion 4b side toward the forward path portion 4a side at the differential flow rate ΔQ (= Q2-Q1). (Reverse bypass flow) is generated in the bypass passage 12, and the bypass heat medium C that forms this negative bypass flow is mixed with the heat transfer medium C sent from the operating heat source unit U by the primary header 5 and again into the load equipment 3 group. Will be sent again.

二次ポンプ8については後述のシステム制御装置14が還路部分4bの流量計F2により計測される二次流量Q2の変化に応じて二次ポンプ8の運転台数を変更する二次ポンプ台数制御を実行するとともに、差圧センサS3により計測される一次ヘッダ5と二次ヘッダ6との熱媒圧力差Δpに応じ戻し路9における圧力調整弁10の開度を調整して負荷機器3群に送給する熱媒Cの圧力を適正送給圧力に調整する。   For the secondary pump 8, the system controller 14 (described later) performs secondary pump number control for changing the number of operating secondary pumps 8 in accordance with the change in the secondary flow rate Q2 measured by the flow meter F2 of the return passage 4b. And the opening degree of the pressure regulating valve 10 in the return path 9 is adjusted according to the heat medium pressure difference Δp between the primary header 5 and the secondary header 6 measured by the differential pressure sensor S3, and sent to the load equipment 3 group. The pressure of the heating medium C to be supplied is adjusted to an appropriate supply pressure.

図示は省略したが、この熱源システムは、上記の各構成機器の他、各熱源ユニットUの冷凍機1に供給する冷却水Wを冷却する冷却塔CTや、冷凍機1と冷却塔CTとの間で冷却水Wを循環させる冷却水ポンプなども備えている。   Although not shown, this heat source system includes a cooling tower CT for cooling the cooling water W supplied to the refrigerator 1 of each heat source unit U, and the refrigerator 1 and the cooling tower CT. A cooling water pump for circulating the cooling water W between them is also provided.

また、この熱源システムは制御システムとして、システム管理器13とシステム制御装置14とを備えており、これらシステム管理器13とシステム制御装置14は相互通信可能にしてある。   The heat source system includes a system manager 13 and a system controller 14 as a control system. The system manager 13 and the system controller 14 can communicate with each other.

システム管理器13はシステム各部における流量、圧力、温度等の計測情報や記憶手段に格納してある熱源システム構成機器の特性情報(熱源機特性やポンプ特性等の情報)などに基づき各時点における熱源システムの適正運転状態を逐次策定し、その策定結果をシステム制御装置14に送信する。   The system manager 13 is a heat source at each time point based on measurement information such as flow rate, pressure, temperature, etc. in each part of the system and characteristic information (information such as heat source machine characteristics and pump characteristics) of heat source system components stored in the storage means. The appropriate operating state of the system is sequentially determined, and the determination result is transmitted to the system control device 14.

これに対し、システム制御装置14はシステム管理器13から送信される適正運転状態の策定結果に応じて熱源システムにおける各機器の制御部に制御信号を送信し、これにより、熱源システムの運転状態を基本的にはシステム管理器13が策定した適正運転状態に即した運転状態にする。   On the other hand, the system control device 14 transmits a control signal to the control unit of each device in the heat source system according to the formulation result of the proper operation state transmitted from the system manager 13, thereby the operation state of the heat source system is changed. Basically, the operation state conforms to the appropriate operation state established by the system manager 13.

また、システム制御装置14は熱源システムに装備した種々のセンサから送られる計測情報や各機器の制御部から送られる機器状態情報を受信して、それらの受信情報を適正運転状態の策定等のための情報としてシステム管理器13に送信する。   Further, the system control device 14 receives measurement information sent from various sensors equipped in the heat source system and device status information sent from the control unit of each device, and uses the received information to formulate an appropriate operating state. Is transmitted to the system manager 13 as the above information.

センサ類としては、各熱源ユニットUにおける冷凍機1の入口熱媒温度tr及び出口熱媒温度tsを計測する温度センサS1,S2、各熱源ユニットUにおける一次ポンプ2の熱媒送出流量qsを計測する流量計F1,一次ヘッダ5と二次ヘッド6との熱媒圧力差Δpを検出する前記差圧センサS3、二次ヘッダ6における熱媒温度ti(即ち、負荷機器3の入口熱媒温度)を計測する温度センサS4、二次流量Q2(=Σqx)を計測する前
記流量計F2、負荷機器3群からの混合戻り熱媒Cの温度tomを計測する温度センサS5を装備してある。
As sensors, temperature sensors S1 and S2 that measure the inlet heat medium temperature tr and outlet heat medium temperature ts of the refrigerator 1 in each heat source unit U, and the heat medium delivery flow rate qs of the primary pump 2 in each heat source unit U are measured. The flow rate meter F1, the differential pressure sensor S3 for detecting the heat medium pressure difference Δp between the primary header 5 and the secondary head 6, and the heat medium temperature ti in the secondary header 6 (that is, the inlet heat medium temperature of the load device 3). The temperature sensor S4 for measuring the flow rate, the flow meter F2 for measuring the secondary flow rate Q2 (= Σqx), and the temperature sensor S5 for measuring the temperature tom of the mixed return heating medium C from the load device 3 group are provided.

また、図示は省略したが、外気温度や外気湿度などの外気状態を計測するセンサ、あるいはまた、冷凍機1の入口冷却水温度や出口冷却水温度を計測するセンサなども装備してある。   Although not shown, a sensor for measuring an outside air state such as an outside air temperature and an outside air humidity, or a sensor for measuring an inlet cooling water temperature and an outlet cooling water temperature of the refrigerator 1 are also provided.

システム管理器13及びシステム制御装置14は熱源システムを統括的に制御する制御手段として次の(イ)〜(チ)の制御処理を実行するものにしてある(図2参照)。   The system manager 13 and the system control device 14 execute the following control processes (a) to (h) as control means for comprehensively controlling the heat source system (see FIG. 2).

(イ)負荷機器3の適正入口熱媒温度(設定値)tisについて
システム管理器13は、負荷機器3の入口熱媒温度tiについて、計測情報や機器状態情報等に基づき把握する熱源システムの運転状況あるいはシステム管理者からの付与指令などに応じ適正入口熱媒温度(設定値)tisを決定する。
(A) About the proper inlet heat medium temperature (set value) tis of the load device 3 The system manager 13 operates the heat source system to grasp the inlet heat medium temperature ti of the load device 3 based on measurement information, device state information, and the like. The appropriate inlet heat medium temperature (set value) tis is determined according to the situation or an application command from the system administrator.

この適正入口熱媒温度tisは、その温度の熱媒Cを負荷機器3群に送給すれば流量調整弁3aによる熱媒流量qxの調整下で各負荷機器3の負荷熱量gx(換言すれば、負荷機器3群全体としての負荷熱量Gx)を十分に処理することができて各負荷機器3の機能を良好に維持し得る温度範囲のうちから決定する熱媒温度であり、本例では、その決定にあたり省エネルギ化の観点から、その温度範囲における上限寄りの熱媒温度(温熱熱源システムでは下限寄りの熱媒温度)を適正入口熱媒温度tisとする。   If the heating medium C at that temperature is supplied to the load device 3 group, the appropriate inlet heat medium temperature tis is adjusted to the load heat amount gx (in other words, the load device 3 under the adjustment of the heat medium flow rate qx by the flow rate adjusting valve 3a. The heat medium temperature determined from the temperature range in which the load heat amount Gx) as a whole of the load device 3 group can be sufficiently processed and the function of each load device 3 can be satisfactorily maintained. In the determination, from the viewpoint of energy saving, the heat medium temperature near the upper limit in the temperature range (the heat medium temperature near the lower limit in the heat source system) is set as the appropriate inlet heat medium temperature tis.

具体的には、この適正入口熱媒温度tisを決定するのに例えば次の如き手法を採用することができる。   Specifically, for example, the following method can be employed to determine the appropriate inlet heat medium temperature tis.

(手法例1)
熱源システム構成機器の特性情報に基づき予め作成しておくデータテーブルとして、熱負荷演算などにより予め求めた季節や曜日あるいは時刻ごとの適正入口熱媒温度tisを書き込んだデータテーブルを記憶手段に記憶させておき、このデータテーブルから該当日や該当時刻の適正入口熱媒温度tisを読み出す。
(Method Example 1)
As a data table prepared in advance based on the characteristic information of the heat source system component equipment, a data table in which the appropriate inlet heat medium temperature tis for each season, day of the week or time obtained in advance by heat load calculation is stored in the storage means. In addition, the appropriate inlet heat medium temperature tis on the day and time is read from the data table.

そして、この読み出した温度について現状における実際の負荷熱量Gxなど現在の実際の運転状況に応じた補正が必要か否かを外気状態などの計測情報や処理対象を所要の目標状態に処理する各負荷機器3の運転状態情報などに基づき判定し、補正が不要な場合には、データテーブルから読み出した温度をそのまま適正入口熱媒温度tisとして決定する。   And each load which processes measurement information, such as an outside air state, and a processing target into a required target state whether correction according to the present actual operation situation, such as actual load calorie Gx in the present, is required about this read temperature. When the determination is made based on the operation state information of the device 3 and correction is unnecessary, the temperature read from the data table is determined as it is as the appropriate inlet heat medium temperature tis.

また、補正が必要な場合には、読み出した温度を上記計測情報や運転状態情報などに基づき実状に即したものに補正し、その補正後の温度を適正入口熱媒温度tisとして決定する。   When correction is necessary, the read temperature is corrected to the actual temperature based on the measurement information and the operating state information, and the corrected temperature is determined as the appropriate inlet heat medium temperature tis.

なお、読み出した温度の補正が必要な場合としては、例えば負荷機器3としての空調機において、処理対象空気の除湿が不要になり処理対象空気の顕熱処理だけが必要になった場合や、処理対象空気の温度や湿度などの処理前の状態が変化した場合などを挙げることができる。   Note that the read temperature needs to be corrected, for example, in the air conditioner as the load device 3, when the dehumidification of the processing target air is unnecessary and only the sensible heat treatment of the processing target air is required, or the processing target The case where the state before processing, such as air temperature and humidity, changes can be mentioned.

(手法例2)
戻し路9における戻し熱媒流量qbを二次流量Q2に加えた演算最大流量(Q2+qb)の熱媒Cが負荷機器3群に送給されるとする仮想流量条件の下で、熱源システム構成機器の特性情報や種々の計測情報などに基づき、各負荷機器3が処理対象を処理するのに要する適正入口熱媒温度tisを決定する。
(Method Example 2)
Heat source system component equipment under a virtual flow rate condition in which the heat medium C of the maximum calculation flow rate (Q2 + qb) obtained by adding the return heat medium flow rate qb in the return path 9 to the secondary flow rate Q2 is supplied to the load device 3 group Based on the characteristic information and various measurement information, the appropriate inlet heat medium temperature tis required for each load device 3 to process the processing target is determined.

つまり、戻し路9における戻し熱媒流量qbは言わば余裕熱媒流量であることから、負荷機器3群全体としての熱媒流量である二次流量Q2のうち各負荷機器3の熱媒流量qxが占める流量占有比率r(qx)を求め、負荷機器3の夫々について戻し路9の熱媒流量qbにその負荷機器3の流量占有比率r(qx)を乗じた個別の余裕流量Δqx(=qb×r(qx))を求める。   That is, since the return heat medium flow rate qb in the return path 9 is a surplus heat medium flow rate, the heat medium flow rate qx of each load device 3 is the secondary flow rate Q2 that is the heat medium flow rate of the load device 3 group as a whole. The flow rate occupation ratio r (qx) occupied is calculated, and for each of the load devices 3, an individual marginal flow rate Δqx (= qb ×) obtained by multiplying the heating medium flow rate qb of the return path 9 by the flow rate occupation ratio r (qx) of the load device 3. r (qx)) is obtained.

そして、各負荷機器3の熱媒流量qxに個別余裕流量Δqxを加えた個別の演算最大熱媒流量qxm(=qx+Δqx)と各負荷機器3が処理する処理対象の処理前条件とを与条件として、各負荷機器3で処理対象を目標状態に処理するのに必要な入口熱媒温度を熱源システム構成機器の特性情報に基づく数式演算や運転シミュレート、あるいは、熱源システム構成機器の特性情報に基づき予め作成したデータテーブルからの読み出しなどにより求め、このように求めた入口熱媒温度を適正入口熱媒温度tisとして決定する。   Then, the individual calculation maximum heat medium flow rate qxm (= qx + Δqx) obtained by adding the individual margin flow rate Δqx to the heat medium flow rate qx of each load device 3 and the pre-processing condition of the processing target processed by each load device 3 are given as conditions. The inlet heat medium temperature required to process the processing target in each load device 3 in the target state is calculated based on mathematical calculation or operation simulation based on the characteristic information of the heat source system constituent equipment, or based on the characteristic information of the heat source system constituent equipment. The inlet heat medium temperature obtained in this way is determined by reading from a previously created data table or the like and determined as the appropriate inlet heat medium temperature tis.

なお、この方式でも、負荷機器3が空調機である場合、処理対象空気を目標状態に冷却処理するのに処理対象空気の除湿が必要か否かや、処理対象空気の温度や湿度などの処理前の状態の変化などにより適正入口熱媒温度tisが異なるものになる。   Even in this method, when the load device 3 is an air conditioner, it is necessary to dehumidify the processing target air to cool the processing target air to the target state, and processing such as the temperature and humidity of the processing target air is performed. The appropriate inlet heat medium temperature tis varies depending on the change in the previous state.

(手法例3)
過去の運転実績や各日の気象予測などに基づきシステム管理者が適正入口熱媒温度tisを決定してシステム管理器13に入力し、これに対し、システム管理器13は入力された温度を適正入口熱媒温度tisとして採用する。
(Method Example 3)
The system administrator determines an appropriate inlet heat medium temperature tis based on past operation results and weather forecasts for each day, and inputs the temperature to the system manager 13. On the other hand, the system manager 13 sets the input temperature appropriately. Adopted as the inlet heat medium temperature tis.

なお、この場合、システム管理器13は、前述と同様、適正入口熱媒温度として入力された温度について現状の実際の運転状況に応じた補正が必要か否かを外気状態などの計測情報や各負荷機器3の運転状態情報などに基づき判定し、補正が必要な場合には、入力された温度を実状に即したものに補正して、その補正後の温度を適正入口熱媒温度tisとして採用するようにするのが望ましい。   In this case, similarly to the above, the system manager 13 determines whether or not the temperature input as the appropriate inlet heat medium temperature needs to be corrected according to the current actual operation status, and the measurement information such as the outside air state and the like. Judgment is made based on the operating state information of the load device 3 and when correction is necessary, the input temperature is corrected to the actual condition and the corrected temperature is adopted as the appropriate inlet heat medium temperature tis. It is desirable to do so.

適正入口熱媒温度tisの決定には上記方式に限らず、その他にも種々の方式を採用できるが、各負荷機器3ごとに適正入口熱媒温度tisが異なる場合は、それらの中から最も低温のもの(温熱熱源システムでは最も高温のもの)を負荷機器3群全体としての適正入口熱媒温度tisとして採用する。   The determination of the appropriate inlet heat medium temperature tis is not limited to the above method, and various other methods can be adopted. However, when the appropriate inlet heat medium temperature tis differs for each load device 3, the lowest temperature among them is selected. (The highest temperature in the thermal heat source system) is adopted as the appropriate inlet heat medium temperature tis for the entire load equipment 3 group.

また、上記の如き種々の方式により求めた適正入口熱媒温度から所定温度(例えば0.5℃)を減じた温度を最終的な適正入口熱媒温度tisとして決定するようにして、安全率を見込むようにしてもよい。   In addition, the temperature obtained by subtracting a predetermined temperature (for example, 0.5 ° C.) from the appropriate inlet heat medium temperature obtained by the various methods as described above is determined as the final appropriate inlet heat medium temperature tis, and the safety factor is thus determined. You may make it look like.

(ロ)冷凍機1の設定出口熱媒温度(最適値)tssについて
システム管理器13は熱源システムの運転状況やシステム管理者からの付与指令などに応じ冷凍機1の設定出口熱媒温度(最適値)tssを選定する。そして、システム制御装置14はその選定に応じて各冷凍機1の設定出口熱媒温度tssを設定変更する。
(B) About the set outlet heat medium temperature (optimum value) tss of the refrigerator 1 The system manager 13 sets the set outlet heat medium temperature (optimum) in accordance with the operation status of the heat source system or a command given by the system administrator. Value) Select tss. And the system control apparatus 14 changes the setting outlet heat-medium temperature tss of each refrigerator 1 according to the selection.

この設定出口熱媒温度tssは前記の如くシステム管理器13が決定する負荷機器3の適正入口熱媒温度tis以下の温度範囲のうちから選定する熱媒温度であり、本例ではシステム管理器13は、冷凍機1の出口熱媒温度tsについて、適正入口熱媒温度tis以下の温度範囲の中から、運転熱源ユニットU全体としての運転状態が所定の最適運転状態になる最適出口熱媒温度を熱源システム構成機器の特性情報に基づく所定の選定手法により選定し、その最適出口熱媒温度を冷凍機1の設定出口熱媒温度tssとする。   The set outlet heat medium temperature tss is a heat medium temperature selected from the temperature range below the proper inlet heat medium temperature tis of the load device 3 determined by the system manager 13 as described above. In this example, the system manager 13 Is the optimum outlet heat medium temperature at which the operation state of the operation heat source unit U as a whole becomes a predetermined optimum operation state from the temperature range below the proper inlet heat medium temperature tis with respect to the outlet heat medium temperature ts of the refrigerator 1. It selects with the predetermined | prescribed selection method based on the characteristic information of a heat source system component apparatus, and makes the optimal exit heat medium temperature the setting exit heat medium temperature tss of the refrigerator 1.

具体的には、この最適出口熱媒温度(=tss)の選定手法として例えば次の如き手法を採用することができる。   Specifically, for example, the following method can be adopted as a method for selecting the optimum outlet heat medium temperature (= tss).

適正入口熱媒温度tis以下の温度範囲のうちで、運転熱源ユニットU全体としての運転状態について所定の運転評価値haが最良となる最適出口熱媒温度を熱源システム構成機器の特性情報に基づく数式演算や運転シミュレート、あるいは、熱源システム構成機器の特性情報に基づき予め作成したデータテーブルからの読み出しなどにより選定する。   A numerical formula based on the characteristic information of the heat source system component device, the optimum outlet heat medium temperature at which the predetermined operation evaluation value ha is the best for the operation state of the entire operation heat source unit U within the temperature range below the proper inlet heat medium temperature tis. The selection is made by calculation, operation simulation, or reading from a data table created in advance based on the characteristic information of the heat source system constituent devices.

このときの運転評価値haとしては、運転熱源ユニットU全体としての消費エネルギ、運転コスト、換算二酸化炭素排出量、あるいは、それらの2以上の運転評価値の夫々に重み係数を乗じた値の和値、あるいはまた、運転効率など、種々のものを採用することができる。   The operation evaluation value ha at this time is the sum of the energy consumption, the operation cost, the converted carbon dioxide emission amount of the entire operation heat source unit U, or the value obtained by multiplying each of the two or more operation evaluation values by a weighting factor. Various values such as value or operation efficiency can be adopted.

つまり、運転評価値haとして運転熱源ユニットU全体としての消費エネルギや運転コストを採用した場合、運転熱源ユニットU全体としての消費エネルギや運転コストが最小(最良)となる最適出口熱媒温度が選定され、また、運転評価値haとして運転熱源ユニットU全体としての運転効率を採用した場合、運転熱源ユニットU全体としての運転効率が最大(最良)となる最適出口熱媒温度が選定される。   That is, when the energy consumption and operation cost of the entire operation heat source unit U are adopted as the operation evaluation value ha, the optimum outlet heat medium temperature that minimizes (best) the energy consumption and operation cost as the entire operation heat source unit U is selected. When the operation efficiency of the entire operation heat source unit U is adopted as the operation evaluation value ha, the optimum outlet heat medium temperature at which the operation efficiency as the entire operation heat source unit U is maximized (best) is selected.

また、この最適出口熱媒温度(=tss)の選定にデータテーブルを用いる場合、図3に示す如く、負荷機器3群全体として負荷熱量Gxと外気湿球温度towと後述する運転熱源ユニットUの組み合わせK(本例では組み合わせ番号で表現)との3者を独立変数とし、かつ、異なる運転評価値ha1〜ha3の各々が最良となる運転評価値ごとの最適出口熱媒温度(tss)を従属変数とするデータテーブルDaを予め作成しておき、このデータテーブルDaを用いて各時点の熱源システム運転状況やシステム管理者の付与指令などに応じ、特定運転評価値についての最適出口熱媒温度を設定出口熱媒温度tssとして選定するようにしてもよい。   Further, when a data table is used to select the optimum outlet heat medium temperature (= tss), as shown in FIG. 3, the load heat amount Gx, the outdoor wet bulb temperature tow, and the operation heat source unit U described later are set as the entire load equipment 3 group. The combination K (represented by a combination number in this example) is an independent variable, and the optimum outlet heat medium temperature (tss) for each operation evaluation value at which each of the different operation evaluation values ha1 to ha3 is the best depends. A data table Da as a variable is created in advance, and the optimum outlet heat transfer medium temperature for the specific operation evaluation value is determined according to the heat source system operating status at each time point or a system administrator giving command using the data table Da. You may make it select as setting exit heat-medium temperature tss.

設定出口熱媒温度tssの選定には、その他、種々の手法を採用できるが、設定出口熱媒温度tssを連続的に変更することは設定出口熱媒温度tssの頻繁な設定変更を招いて熱源システム運転の不安定化を招く虞があることから、ここで選定する設定出口熱媒温度tssは所定温度間隔の段階的な温度にするのが望ましい。   Various other methods can be adopted for selection of the set outlet heat medium temperature tss. However, continuously changing the set outlet heat medium temperature tss causes frequent setting changes of the set outlet heat medium temperature tss. Since the system operation may be unstable, it is desirable that the set outlet heat medium temperature tss selected here is a stepwise temperature at a predetermined temperature interval.

また、システム管理器13による設定出口熱媒温度tssの選定に対して、システム制御装置14による設定出口熱媒温度tssの設定変更に制限を設けるなどしてもよい。   Further, for the selection of the set outlet heat medium temperature tss by the system manager 13, a restriction may be provided on the setting change of the set outlet heat medium temperature tss by the system controller 14.

(ハ)運転熱源ユニットUの最適組み合わせKについて
システム管理器13は、運転熱源ユニットUの組み合わせについて、運転熱源ユニットU全体としての運転状態が所定の最適運転状態となる最適組み合わせK(本例では組み合わせ番号で表現)を熱源システム構成機器の特性情報に基づく所定の選定手法により選定する。
(C) About the optimum combination K of the operating heat source unit U The system manager 13 sets the optimum combination K (in this example, the operating state of the operating heat source unit U as a whole becomes a predetermined optimum operating state for the combination of the operating heat source units U. (Represented by a combination number) is selected by a predetermined selection method based on the characteristic information of the heat source system components.

一方、システム制御装置14は、流量計F2により計測される二次流量Q2、及び、センサS4,S5により計測される負荷機器3の入口熱媒温度tiと負荷機器3群からの混合戻り熱媒Cの温度tomとに基づき負荷機器3群全体としての負荷熱量Gx(=Q2×(tom−ti))を演算し、この演算結果に基づき熱源機台数制御として、現状の運転熱源ユニットUでは負荷機器3群全体としての負荷熱量Gxを処理できない状況になったとき、増段処理として熱源ユニットUの運転ユニット数を増加させる。   On the other hand, the system control device 14 includes the secondary flow rate Q2 measured by the flow meter F2, the inlet heat medium temperature ti of the load device 3 measured by the sensors S4 and S5, and the mixed return heat medium from the load device 3 group. The load heat amount Gx (= Q2 × (tom-ti)) as a whole of the load device 3 group is calculated based on the temperature tom of C, and the current operation heat source unit U uses the load as the heat source unit number control based on the calculation result. When the load heat amount Gx as a whole of the group of devices 3 cannot be processed, the number of operation units of the heat source unit U is increased as the stage increasing process.

また、熱源ユニットUの運転ユニット数を現状の運転ユニット数から減少させても負荷機器3群全体としての負荷熱量Gxを処理できる状況になったとき、減段処理として熱源ユニットUの運転ユニット数を減少させる。   Further, when it becomes possible to process the load heat amount Gx of the entire load equipment 3 group even if the number of operating units of the heat source unit U is decreased from the current number of operating units, the number of operating units of the heat source unit U is reduced as a step-down process. Decrease.

そして、このように負荷熱量Gxの変化に応じ熱源ユニットUの運転ユニット数を変更する熱源台数制御の増減段処理において、システム制御装置14はシステム管理器13により選定されているその時の最適組み合わせKに従って熱源ユニットUの発停を行い、これにより、運転熱源ユニットUの組み合わせをシステム管理器13により選定された最適組み合わせKに即した組み合わせにする。   And in the increase / decrease stage process of the heat source number control which changes the number of operation units of the heat source unit U according to the change of the load heat quantity Gx in this way, the system controller 14 selects the optimum combination K at that time selected by the system manager 13. Thus, the heat source unit U is started and stopped, and thereby, the combination of the operation heat source units U is set to the optimum combination K selected by the system manager 13.

システム管理器13による上記最適組み合わせKの選定については例えば次の如き手法を採用することができる。   For the selection of the optimum combination K by the system manager 13, for example, the following method can be employed.

過去の運転実績や気象予測などに基づき負荷機器3群全体としての負荷熱量Gxの将来の推移を予測し、この予測負荷推移に基づき、運転熱源ユニットUのユニット数変更が次に必要になると予測される次回の増減段処理から、その後において運転熱源ユニットUのユニット数変更が再び必要になると予測される次々回の増減段処理に至るまでの期間を対象期間とする。   Predict the future transition of the load heat quantity Gx as a whole of the load equipment 3 group based on past operation results and weather forecasts, etc. Based on this predicted load transition, it is predicted that the number of units of the operating heat source unit U will need to be changed next The period from the next increase / decrease stage process to the subsequent increase / decrease stage process, which is predicted to require the change in the number of units of the operating heat source unit U, is set as the target period.

そして、この対象期間中において負荷機器3群全体としての負荷熱量Gx(予測)を処理し得る運転熱源ユニットUの組み合わせで、かつ、その対象期間中における運転熱源ユニットU全体としての運転状態について所定の運転評価値hbが最良となる最適組み合わせKを熱源システム構成機器の特性情報に基づく数式演算や運転シミュレート、あるいは、熱源システム構成機器の特性情報に基づき予め作成したデータテーブルからの読み出しなどにより選定する。   A predetermined combination of the operating heat source unit U that can process the load heat amount Gx (prediction) of the entire load device 3 group during the target period and the operating state of the entire operating heat source unit U during the target period. The optimal combination K with the best operation evaluation value hb is calculated by mathematical calculation or operation simulation based on the characteristic information of the heat source system constituent equipment, or by reading from a data table created in advance based on the characteristic information of the heat source system constituent equipment. Select.

このときの運転評価値hbとしては、前述と同様、運転熱源ユニットU全体としての上記対象期間中における消費エネルギや運転コストなど、種々のものを採用することができる。   As the operation evaluation value hb at this time, as described above, various values such as energy consumption and operation cost during the target period of the entire operation heat source unit U can be adopted.

(ニ)正の運転流量比率α(一次流量Q1の増大側補正係数)について
ここで言う正の運転流量比率αは、二次流量Q2(=Σqx)に対する一次流量Q1(
=Σqs)の増大側の比率であり、一次流量Q1と二次流量Q2との関係を示す式1(Q
1=α×Q2)においてα≧1の値を採る運転流量比率である。
(D) Positive operating flow rate ratio α (increased correction coefficient of primary flow rate Q1) The positive operating flow rate ratio α referred to here is the primary flow rate Q1 (secondary flow rate Q2 (= Σqx) with respect to the primary flow rate Q1 (
= Σqs) is a ratio on the increasing side, and Equation 1 (Q showing the relationship between the primary flow rate Q1 and the secondary flow rate Q2
1 = α × Q2) is an operating flow rate ratio that takes a value of α ≧ 1.

そして、システム管理器13はこの正の運転流量比率αを例えば次の如く決定する。   Then, the system manager 13 determines the positive operating flow rate ratio α as follows, for example.

運転冷凍機1の最大出力に対する現状出力の比率である負荷率Rについて、図4に示す如く運転冷凍機1夫々の負荷率Rのうち最小の負荷率Rminが設定閾負荷率Rs(例えば負荷率90%)まで増大すると、その後の最小負荷率Rminの増大(換言すれば、負荷機器3群全体としての負荷熱量Gxの増大)に応じて正の運転流量比率αを設定最小値αminから設定最大値αmaxへ向けて比例的に漸次増大させる。   Regarding the load factor R, which is the ratio of the current output to the maximum output of the operating refrigerator 1, as shown in FIG. 4, the minimum load factor Rmin among the load factors R of each operating refrigerator 1 is set threshold load factor Rs (for example, load factor) 90%), the positive operating flow rate ratio α is set from the set minimum value αmin to the maximum set according to the subsequent increase in the minimum load rate Rmin (in other words, the increase in the load heat amount Gx as the entire load device 3 group). The value is gradually increased proportionally toward the value αmax.

なお、この正の運転流量比率αについては、バイパス路12において通常時は正負いずれの向きのバイパス流も生じないように、又は、往路部分4a側から還路部分4b側へ向かう僅かな正のバイパス流が生じるように、その最小値αminを1.0又は1.0よりも若干大きい値にしておくのが望ましい。   As for this positive operating flow rate ratio α, a slight positive flow from the forward path portion 4a side to the return path portion 4b side is avoided so that no bypass flow in either positive or negative direction is normally generated in the bypass path 12. It is desirable to set the minimum value αmin to 1.0 or a value slightly larger than 1.0 so that a bypass flow occurs.

また、この正の運転流量比率αの最大値αmaxについては、同図4に示す如くαmaxとして固定値(例えば、2.0)を採用するのに代え、負荷機器3の入出口熱媒温度差Δtx(=to−ti)が設計値よりも大きいほど最大値αmaxを大きくする(換言すれば、正の運転流量比率αの増大幅を大きくする)ようにしたり、また、負荷機器3の入口熱媒温度tiが前述の適正入口熱媒温度tisよりも高温側に逸脱しているとき、その逸脱がない場合よりも最大値αmaxを大きくする(正の運転流量比率αの増大幅を大きくする)ようにしてもよい。   As for the maximum value αmax of the positive operating flow rate ratio α, instead of adopting a fixed value (for example, 2.0) as αmax as shown in FIG. As Δtx (= to-ti) is larger than the design value, the maximum value αmax is increased (in other words, the increase amount of the positive operating flow rate ratio α is increased), or the inlet heat of the load device 3 is increased. When the medium temperature ti deviates to a higher temperature side than the above-described proper inlet heat medium temperature tis, the maximum value αmax is increased as compared with the case where there is no deviation (the increase width of the positive operating flow rate ratio α is increased). You may do it.

(ホ)負の運転流量比率β(一次流量Q1の減少側補正係数)について
ここで言う負の運転流量比率βは、二次流量Q2(=Σqx)に対する一次流量Q1(
=Σqs)の減少側の比率であり、一次流量Q1と二次流量Q2との関係を示す式2(Q
1=β×Q2)においてβ<1の値を採る運転流量比率である。
(E) Negative operating flow rate ratio β (decreasing side correction coefficient of primary flow rate Q1) The negative operating flow rate ratio β referred to here is the primary flow rate Q1 (with respect to the secondary flow rate Q2 (= Σqx)).
= Σqs) is a ratio on the decreasing side, and Equation 2 (Q showing the relationship between the primary flow rate Q1 and the secondary flow rate Q2
1 = β × Q2) is an operation flow rate ratio that takes a value of β <1.

そして本例では、システム管理器13及びシステム制御装置14は、この負の運転流量比率βの調整として、後述するバイパス利用一次流量制御の初期工程で、先ず、運転冷凍機1の出口熱媒温度tsが設定出口熱媒温度tssに安定している状況下で運転一次ポンプ2の送出流量qsの調整により一次流量Q1(=Σqs)を漸次的に減少させて、この一次流量Q1の減少操作により負荷機器3の入口熱媒温度ti(計測値)が前述の如く決定された負荷機器3の適正入口熱媒温度tisになる状態に負の運転流量比率β(<1.0)を調整する(換言すれば、負の運転流量比率βの初期値を決定する)。   In this example, the system manager 13 and the system controller 14 adjust the negative operating flow rate ratio β in the initial stage of bypass-use primary flow control, which will be described later, first, the outlet heat medium temperature of the operating refrigerator 1 Under the condition where ts is stable at the set outlet heat medium temperature tss, the primary flow rate Q1 (= Σqs) is gradually decreased by adjusting the delivery flow rate qs of the operating primary pump 2, and the primary flow rate Q1 is decreased. The negative operating flow rate ratio β (<1.0) is adjusted so that the inlet heat medium temperature ti (measured value) of the load device 3 becomes the proper inlet heat medium temperature tis of the load device 3 determined as described above ( In other words, the initial value of the negative operating flow rate ratio β is determined).

また、その後、後述するバイパス利用一次流量制御において、図5に示す如く負荷機器3の入口熱媒温度ti(計測値)と適正入口熱媒温度tisとの偏差Δtiに応じて、その偏差Δtiの解消側に一次流量Q1を調整することで、負荷機器3の入口熱媒温度tiが適正入口熱媒温度tisとなる状態を維持するように負の運転流量比率β(<1.0)を調整する。   Thereafter, in the bypass-use primary flow control described later, the deviation Δti of the load device 3 is changed according to the deviation Δti between the inlet heat medium temperature ti (measured value) and the appropriate inlet heat medium temperature tis as shown in FIG. By adjusting the primary flow rate Q1 on the canceling side, the negative operating flow rate ratio β (<1.0) is adjusted so that the inlet heat medium temperature ti of the load device 3 is maintained at the proper inlet heat medium temperature tis. To do.

なお、このように負荷機器3の入口熱媒温度ti(計測値)と適正入口熱媒温度tisとの偏差Δtiに応じた一次流量Q1の調整により負の運転流量比率β(<1.0)を調整するのに代え、負の運転流量比率βを次の如く決定及び調整するようにしてもよい。   In this way, the negative operating flow rate ratio β (<1.0) is obtained by adjusting the primary flow rate Q1 according to the deviation Δti between the inlet heat medium temperature ti (measured value) of the load device 3 and the appropriate inlet heat medium temperature tis. Instead of adjusting the above, the negative operating flow rate ratio β may be determined and adjusted as follows.

バイパス路12において還路部分4b側から往路部分4a側へ流れる負のバイパス流を形成するバイパス熱媒Cと、運転熱源ユニットUから送出される設定出口熱媒温度tssの熱媒Cとの一次ヘッダ5での混合比率について、その混合により負荷機器3の入口熱媒温度tiが適正入口熱媒温度tisとなる混合比率m(m=(Q2−Q1)/Q1,Q2>Q1)を計測情報に基づき演算により求め、この混合比率mが現出される負の運転流量比率βを式3(m=(Q2−Q1)/Q1)と式2(Q1=β×Q2)との関係(β=1/m+1)に基づく演算により決定する。   The bypass heat medium C that forms a negative bypass flow that flows from the return path portion 4b side to the forward path portion 4a side in the bypass path 12, and the heat medium C that has a set outlet heat medium temperature tss that is sent from the operating heat source unit U. About the mixing ratio in the header 5, the mixing information m (m = (Q2-Q1) / Q1, Q2> Q1) in which the inlet heating medium temperature ti of the load device 3 becomes the appropriate inlet heating medium temperature tis by the mixing is measured information. The negative operating flow rate ratio β at which the mixing ratio m appears is obtained by calculation based on the relationship between the expression 3 (m = (Q2−Q1) / Q1) and the expression 2 (Q1 = β × Q2) (β = 1 / m + 1).

そして、この決定された負の運転流量比率βを目標比率として運転一次ポンプ2の送出流量qsの調整により一次流量Q1を調整することで、負荷機器3の入口熱媒温度tiが適正入口熱媒温度tisになる状態に負の運転流量比率βを調整する。   Then, by adjusting the primary flow rate Q1 by adjusting the delivery flow rate qs of the operation primary pump 2 using the determined negative operation flow rate ratio β as the target ratio, the inlet heat medium temperature ti of the load device 3 is adjusted to the appropriate inlet heat medium. The negative operating flow rate ratio β is adjusted so that the temperature becomes tis.

(ヘ)一次流量制御について
a.通常の一次流量制御
システム制御装置14は、二次流量Q2の変化に応じ一次流量Q1を調整する一次流量制御として、システム管理器13により決定された負荷機器4の適正入口熱媒温度tisとシステム管理器13による選定に従って設定変更した冷凍機1の設定出口熱媒温度tssとの関係について、それら両温度の差温Δts(=tis−tss)が設定閾差温Δtsx未満で、かつ、システム管理器13が決定する正の運転流量比率αが設定最小値αminにある状況では、図6に示す如く、Q1=α×Q2、α=αminの流量関係を維持するように、二次流量Q2(=Σqx)の変化に応じ一次流量Q1(=Σqs)を運転一
次ポンプ2の送出流量調整により調整する通常時の一次流量制御を実行する。
(F) Primary flow rate control a. Normal primary flow rate control The system controller 14 is configured as a primary flow rate control for adjusting the primary flow rate Q1 according to the change in the secondary flow rate Q2, and the appropriate inlet heat medium temperature tis of the load device 4 determined by the system manager 13 and the system. Regarding the relationship with the set outlet heat medium temperature tss of the refrigerator 1 whose setting has been changed according to the selection by the manager 13, the temperature difference Δts (= tis−tss) between these temperatures is less than the set threshold temperature difference Δtsx, and the system management In the situation where the positive operating flow rate ratio α determined by the vessel 13 is at the set minimum value αmin, as shown in FIG. 6, the secondary flow rate Q2 ((2) is maintained so as to maintain the flow rate relationship of Q1 = α × Q2 and α = αmin. = Primary flow rate control in which the primary flow rate Q1 (= Σqs) is adjusted by adjusting the delivery flow rate of the operating primary pump 2 in accordance with the change of = Σqx).

なお、設定閾差温Δtsxとしては熱源システムの運転条件等に応じて適当な温度差を設定すればよく、例えばΔtsx=0を採用してもよい。   As the set threshold temperature difference Δtsx, an appropriate temperature difference may be set according to the operating conditions of the heat source system, for example, Δtsx = 0 may be adopted.

b.増段用過渡制御
また、システム制御装置14は、上記差温Δts(=tis−tss)が設定閾差温Δtsx未満の状況で、運転冷凍機1における最小負荷率Rminが設定閾負荷率Rs以上となりシステム管理器13により決定される正の運転流量比率αが設定最小値αminから漸次的に増大(図3参照)すると、増段用過渡制御として図7に示す如く、正の運転流量比率αに従ってQ1=α×Q2、α>αmin≧1.0の流量関係を維持するように二次流量Q2(=Σqx)の変化に応じ一次流量Q1(Σqs)を調整し、これにより、通
常時の一次流量制御に比べ一次流量Q1を二次流量Q2に対して相対的に増大させる。
b. Further, the system control device 14 is configured such that the minimum load rate Rmin in the operating refrigerator 1 is equal to or greater than the set threshold load rate Rs in a situation where the temperature difference Δts (= tis−tss) is less than the set threshold temperature difference Δtsx. When the positive operating flow rate ratio α determined by the system manager 13 gradually increases from the set minimum value αmin (see FIG. 3), the positive operating flow rate ratio α as shown in FIG. The primary flow rate Q1 (Σqs) is adjusted according to the change in the secondary flow rate Q2 (= Σqx) so that the flow rate relationship of Q1 = α × Q2 and α> αmin ≧ 1.0 is maintained according to Compared with the primary flow control, the primary flow Q1 is increased relative to the secondary flow Q2.

即ち、この増段用過渡制御では、運転冷凍機1における最小負荷率Rminが100%負荷率まで上昇(換言すれば、運転冷凍機1夫々の負荷率が100%に上昇)して熱源台数制御により増段処理が行なわれるのに先立ち、上記の如く正の運転流量比率αを増大させて一次流量Q1を二次流量Q2に対して予め相対的に増大させておくことで、増段処理の際に新たに起動した冷凍機1の立ち上がり遅れに原因して負荷機器3の入口熱媒温度tiが適正入口熱媒温度tisよりも上昇側に大きく変動した状態になるのを防止する。   That is, in this step-up transient control, the minimum load factor Rmin in the operating refrigerator 1 is increased to 100% load factor (in other words, the load factor of each operating refrigerator 1 is increased to 100%), and the number of heat sources is controlled. Before the stage increasing process is performed, the positive flow rate ratio α is increased as described above to increase the primary flow rate Q1 relative to the secondary flow rate Q2 in advance. In this case, the inlet heat medium temperature ti of the load device 3 is prevented from changing greatly to the higher side than the proper inlet heat medium temperature tis due to the delay in the start-up of the newly started refrigerator 1.

c.バイパス利用一次流量制御
一方、システム制御装置14は、上記差温Δts(=tis−tss)が設定閾差温Δtsxより大きく、かつ、システム管理器13が決定する正の運転流量比率αが設定最小値αminにある状況では、図8に示す如く、運転熱源ユニットUから送出される設定出口熱媒温度tssの熱媒Cと、バイパス路12において往路部分4a側へ向かう負のバイパス流を形成するバイパス熱媒Cとの混合により、負荷機器3の入口熱媒温度tiが適正入口熱媒温度tisになる状態に、負の運転流量比率βを調整する流量比率調整を伴いながら、Q1=β×Q2、β<1.0の流量関係を維持するように二次流量Q2の変化に応じ一次流量Q1を調整するバイパス利用一次流量制御を実行する。
c. On the other hand, the system controller 14 is configured such that the temperature difference Δts (= tis−tss) is larger than the set threshold temperature difference Δtsx, and the positive operating flow rate ratio α determined by the system manager 13 is the minimum set. In the situation at the value αmin, as shown in FIG. 8, the heat medium C having the set outlet heat medium temperature tss sent from the operation heat source unit U and the negative bypass flow toward the forward path portion 4a side in the bypass path 12 are formed. Q1 = β × while adjusting the negative operating flow rate ratio β to the state where the inlet heat medium temperature ti of the load device 3 becomes the appropriate inlet heat medium temperature tis by mixing with the bypass heat medium C. Bypass primary flow control for adjusting the primary flow Q1 according to the change of the secondary flow Q2 so as to maintain the flow relationship of Q2, β <1.0 is executed.

即ち、このバイパス利用一次流量制御では、負荷機器3を通過した後の熱媒Cに残存する保有冷熱を有効利用して、運転熱源ユニットUから送出される設定出口熱媒温度tssの熱媒Cと、バイパス路12において負のバイパス流を形成するバイパス熱媒Cとの一次ヘッダ5での混合により、負荷機器3の入口熱媒温度tsを適正入口熱媒温度tisに調整する。   That is, in this bypass-use primary flow rate control, the retained cold heat remaining in the heat medium C after passing through the load device 3 is effectively used, and the heat medium C having the set outlet heat medium temperature tss sent from the operation heat source unit U. Then, the inlet heat medium temperature ts of the load device 3 is adjusted to the appropriate inlet heat medium temperature tis by mixing in the primary header 5 with the bypass heat medium C that forms a negative bypass flow in the bypass passage 12.

なお、バイパス利用一次流量制御では上述の如く負荷機器3の入口熱媒温度tiと適正入口熱媒温度tisとの偏差Δtiに応じ負の運転流量比率βを調整して一次流量Q1を調整する形態を採るが、これに加えて、システム制御装置14は上記差温Δts(=tis−tss)が設定閾差温Δtsxより大きい状況で、運転冷凍機1における最小負荷率Rminが設定閾負荷率Rs以上となりシステム管理器13により決定される正の運転流量比率αが設定最小値αminから漸次的に増大(図3参照)すると、バイパス利用一次流量制御における増段用過渡制御として、二次流量Q2に対する一次流量Q1の比率である運転流量比率(Q1/Q2)をバイパス利用一次流量制御による調整比率(即ち、上記負の運転流量比率β)よりも正の運転流量比率α(>αmin)の幅だけ予め増大させる制御を実行するものにしてもよい。   In the bypass primary flow rate control, as described above, the primary flow rate Q1 is adjusted by adjusting the negative operating flow rate ratio β according to the deviation Δti between the inlet heat medium temperature ti of the load device 3 and the appropriate inlet heat medium temperature tis. In addition to this, in the situation where the temperature difference Δts (= tis−tss) is larger than the set threshold temperature difference Δtsx, the system controller 14 sets the minimum load rate Rmin in the operating refrigerator 1 to the set threshold load rate Rs. When the positive operating flow rate ratio α determined by the system manager 13 gradually increases from the set minimum value αmin (see FIG. 3) as described above, the secondary flow rate Q2 is used as the transient control for increasing the stage in the bypass-use primary flow rate control. The operating flow rate ratio (Q1 / Q2) that is the ratio of the primary flow rate Q1 to the positive flow rate is more positive than the adjustment rate by the bypass primary flow rate control (that is, the negative operating flow rate ratio β). Flow ratio α may be those executing the width only control pre increase of (> .alpha.min).

つまり、このバイパス利用一次流量制御における増段用過渡制御により、バイパス利用一次流量制御の実行下において熱源台数制御による増段処理が行なわれる際にも、その増段処理に先立ち、負の運転流量比率βを実質的に増大させて一次流量Q1を二次流量Q2に対して予め相対的に増大させておき、これにより、バイパス利用一次流量制御の実行下においても増段処理の際に新たに起動した冷凍機1の立ち上がり遅れに原因して負荷機器3の入口熱媒温度tiが適正入口熱媒温度tisよりも上昇側に変動するのを確実に防止する。   In other words, even when the stage increasing process by the heat source number control is performed under the execution of the bypass using primary flow control by the stage increasing transient control in the bypass primary flow control, the negative operating flow rate is preceded by the stage increasing process. The primary flow rate Q1 is increased relatively in advance with respect to the secondary flow rate Q2 by substantially increasing the ratio β, so that a new step-up process is performed even when bypass primary flow control is performed. It is reliably prevented that the inlet heat medium temperature ti of the load device 3 fluctuates more than the proper inlet heat medium temperature tis due to the start-up delay of the started refrigerator 1.

(ト)一次流量Q1の最適流量配分制御について
システム管理器13は、運転熱源ユニットUに対する一次流量Q1の配分について、運転熱源ユニットU全体としての運転状態が所定の最適運転状態となる最適流量配分比率r(qs)を選定する。
(G) Optimal flow rate distribution control of the primary flow rate Q1 The system manager 13 distributes the primary flow rate Q1 to the operating heat source unit U. The optimal flow rate distribution in which the operating state of the operating heat source unit U as a whole becomes a predetermined optimal operating state. The ratio r (qs) is selected.

これに対し、システム制御装置14は上記一次流量制御(増段用過渡制御やバイパス利用一次流量制御を含む)とともに、運転一次ポンプ2の熱媒送出流量qsをシステム管理器13により選定された最適流量配分比率r(qs)に従って調整する最適流量配分制御を実行する。   On the other hand, the system controller 14 includes the above-described primary flow rate control (including step-up transient control and bypass-use primary flow rate control), and the optimum heat pump flow rate qs of the operating primary pump 2 selected by the system manager 13. Optimal flow rate distribution control adjusted according to the flow rate distribution ratio r (qs) is executed.

上記最適流量配分比率r(qs)の選定については、前述と同様、運転熱源ユニットU全体としての運転状態について所定の運転評価値hcが最良となる最適流量配分比率r(qs)を熱源システム構成機器の特性情報に基づく数式演算や運転シミュレートあるいは熱源システム構成機器の特性情報に基づき予め作成したデータテーブルからの読み出しなどにより選定する方式を採用することができる。   Regarding the selection of the optimum flow rate distribution ratio r (qs), as described above, the optimum flow rate distribution ratio r (qs) at which the predetermined operation evaluation value hc is the best for the operation state of the entire operation heat source unit U is set as the heat source system configuration. It is possible to adopt a method of selecting by mathematical calculation based on device characteristic information, operation simulation, or reading from a data table created in advance based on characteristic information of heat source system constituent devices.

なお、この最適流量配分制御において、いずれかの運転一次ポンプ2に対する配分流量qsがその一次ポンプ2の最大送出流量を越える場合には、その一次ポンプ2に対する配分流量qsをその一次ポンプ2の最大送出流量にした状態で他の運転一次ポンプ2に対する一次流量配分比率を再決定するのが望ましい。   In this optimum flow rate distribution control, when the flow rate qs distributed to any of the operating primary pumps 2 exceeds the maximum delivery flow rate of the primary pump 2, the flow rate qs distributed to the primary pump 2 is set to the maximum of the primary pump 2. It is desirable to re-determine the primary flow rate distribution ratio for the other operating primary pumps 2 in the state of the delivery flow rate.

また、この最適流量配分制御において、いずれかの運転一次ポンプ2に対する配分流量qsの変更幅が大きくて、その一次ポンプ2の送出流量qsの調整速度が適正範囲の上限よりも大きくなる場合には、その一次ポンプ2の送出流量qaの調整速度を適正範囲の上限速度に制限するのが望ましい。   Further, in this optimum flow rate distribution control, when the range of change of the distributed flow rate qs for any of the operating primary pumps 2 is large, and the adjustment speed of the delivery flow rate qs of the primary pump 2 is larger than the upper limit of the appropriate range. It is desirable to limit the adjustment speed of the delivery flow rate qa of the primary pump 2 to the upper limit speed within an appropriate range.

(チ)増段後保持制御について
システム制御装置14は、前述の如く増段用過渡制御により一次流量Q1を二次流量Q2に対し予め相対的に増大させた状態で熱源台数制御による増段処理を実行した後、その増段処理で新たに起動した冷凍機1についてセンサS2により計測される出口熱媒温度tsが設定出口熱媒温度tssに立ち上がるまでの期間を保持期間ΔTとして、この保持期間ΔTの間、前述の通常(又はバイパス利用)の一次流量制御及び最適流量配分制御に代え増段後保持制御として、増段処理で新たに起動した熱源ユニットUにおける一次ポンプ2の熱媒送出流量qsを小流量の設定制限流量qsminに固定し、増段処理後の一次流量Q1がその設定制限流量qsmin分だけ増段用過渡制御による増大一次流量から増大した状態を保つ。
(H) Post-stage holding control The system controller 14 increases the primary flow rate Q1 relative to the secondary flow volume Q2 in advance with the stage-increasing transient control as described above, and the stage-increasing process by controlling the number of heat sources. , The period until the outlet heat medium temperature ts measured by the sensor S2 rises to the set outlet heat medium temperature tss for the refrigerating machine 1 newly started in the stage increasing process is defined as the holding period ΔT. During ΔT, as the post-stage retention control instead of the normal (or bypass) primary flow control and optimum flow distribution control described above, the heat medium delivery flow rate of the primary pump 2 in the heat source unit U newly activated by the stage increase process qs is fixed to a small set flow limit qsmin, and the primary flow Q1 after the step-increasing process is increased from the increased primary flow by the step-up transient control by the set limit flow qsmin. Keep the state.

そして、システム制御装置14は、この保持期間ΔTが経過した後、増段後保持制御を解除して前述の一次流量制御及び最適流量配分制御に復帰する。   Then, after this holding period ΔT has elapsed, the system control device 14 releases the post-stage increase holding control and returns to the above-described primary flow rate control and optimum flow rate distribution control.

なお、この保持期間ΔTは、新たに起動した冷凍機1の出口熱媒温度tsの計測値が設定出口熱媒温度tssに立ち上がるまでの期間に限らず、新たに起動した冷凍機1の出口熱媒温度tsが設定出口熱媒温度tssに立ち上がるのに要する時間を見込んだ設定時間などにしてもよい。   This holding period ΔT is not limited to the period until the measured value of the outlet heat medium temperature ts of the newly started refrigerator 1 rises to the set outlet heat medium temperature tss, but the outlet heat of the newly started refrigerator 1 A set time that allows for the time required for the medium temperature ts to rise to the set outlet heat medium temperature tss may be set.

〔別実施形態〕
上述の実施形態では、負荷熱量Gxの変化に応じて熱源ユニットUの運転ユニット数を変更する熱源台数制御、二次流量Q2の変化に応じて一次流量Q1を調整する一次流量制御、運転熱源ユニットUに対する一次流量Q1の配分比率を最適流量配分比率r(qs)に調整する最適流量配分制御、増段処理に際して運転流量比率α(又はβ)を予め増大させておく増段用過渡制御、増段処理後に一次流量制御及び最適流量配分制御を不実施とする増段後保持制御の夫々を制御手段としてのシステム管理器13及びシステム制御装置14に実行させる熱源システムを例示したが、熱源システム運転方法として、これらの制御により行なう各調整の全部ないし一部をシステム管理者が人為的に行なうようにしてもよい。
[Another embodiment]
In the above-described embodiment, the heat source number control for changing the number of operating units of the heat source unit U according to the change in the load heat amount Gx, the primary flow rate control for adjusting the primary flow rate Q1 according to the change in the secondary flow rate Q2, and the operating heat source unit. Optimal flow rate distribution control for adjusting the distribution ratio of primary flow rate Q1 to U to optimal flow rate distribution ratio r (qs), step-up transient control for increasing operation flow rate ratio α (or β) in advance during step-up processing, increase The heat source system is illustrated as an example in which the system controller 13 and the system controller 14 as control means execute the post-stage increase holding control that does not perform the primary flow control and the optimal flow distribution control after the stage processing. As a method, the system administrator may artificially perform all or a part of each adjustment performed by these controls.

前述の実施形態では、負荷機器3の適正入口熱媒温度(設定値)tisと冷凍機1の設定出口熱媒温度(最適値)tssとの差温Δtsが設定閾差温Δtsx未満か否かで通常時の一次流量制御とバイパス利用一次流量制御とを区別して実行するように説明したが、本発明の実施にあたっては、バイパス利用の一次流量制御を省略して負荷機器3の適正入口熱媒温度tisを常に冷凍機1の設定出口熱媒温度tssに等しい温度又はほぼ等しい温度にした状態で一次流量制御を行なう制御方式、あるいはまた、冷凍機1の設定出口熱媒温度tssと負荷機器3の適正入口熱媒温度tisとが等しくなるときに負の運転流量比率βをβ≒1.0にすることをバイパス利用一次流量制御に含めた状態で、通常時の一次流量制御もバイパス利用一次流量制御の一部として実行する制御方式を採用してもよい。   In the above-described embodiment, whether or not the difference temperature Δts between the appropriate inlet heat medium temperature (set value) tis of the load device 3 and the set outlet heat medium temperature (optimum value) tss of the refrigerator 1 is less than the set threshold temperature difference Δtsx. In the above description, the primary flow control at normal time and the primary flow control using bypass are separately executed. However, in implementing the present invention, the primary flow control using bypass is omitted and the appropriate inlet heat medium of the load device 3 is omitted. A control method in which the primary flow rate control is performed in a state where the temperature tis is always equal to or substantially equal to the set outlet heat medium temperature tss of the refrigerator 1, or the set outlet heat medium temperature tss of the refrigerator 1 and the load device 3 The primary primary flow control during normal operation is also used in the primary bypass flow control in a state in which the negative operation flow rate ratio β is set to β≈1.0 when the appropriate inlet heat medium temperature tis becomes equal to 1.0. Flow The control method to be executed as part of the control may be adopted.

また、本発明は、熱源ユニットUを構成する熱源機に冷温水発生機やボイラなどを用いて、その熱源機により熱媒を加熱する温熱熱源システムにも適用できる。   The present invention can also be applied to a heat / heat source system that uses a cold / hot water generator, a boiler, or the like as the heat source constituting the heat source unit U, and heats the heat medium by the heat source.

その他、本発明の実施において、熱源システム各部の具体的な構成や各制御の具体的な実行方式は前述の実施形態で示したものに限らず、種々の改変が可能である。   In addition, in the implementation of the present invention, the specific configuration of each part of the heat source system and the specific execution method of each control are not limited to those shown in the above-described embodiment, and various modifications can be made.

本発明は空調設備で用いる熱源システムに限らず、種々の冷熱用途や温熱用途の熱源システムに適用することができる。   The present invention is not limited to a heat source system used in an air conditioner, and can be applied to various heat source systems for cold and hot applications.

C 熱媒
tss 設定出口熱媒温度
1 熱源機
2 一次ポンプ
U 熱源ユニット
3 負荷機器
4 熱媒循環路
4a 往路部分
4b 還路部分
12 バイパス路
8 二次ポンプ
Gx 負荷熱量
Q2 二次流量
Q1 一次流量
α,β 運転流量比率
13,14 制御手段
r(qs) 最適流量配分比率
qs 一次ポンプ送出流量
R 負荷率
Rmin 最小負荷率
Rs 設定閾負荷率
Δtx 負荷機器の入出口熱媒温度差
ti 負荷機器の入口熱媒温度
tis 負荷機器の適正入口熱媒温度
ΔT 保持期間
qsmin 設定制限流量
C Heat medium tss Set outlet heat medium temperature 1 Heat source machine 2 Primary pump U Heat source unit 3 Load device 4 Heat medium circulation path 4a Outward path part 4b Return path part 12 Bypass path 8 Secondary pump Gx Load heat quantity Q2 Secondary flow rate Q1 Primary flow rate α, β Operating flow rate ratio 13,14 Control means r (qs) Optimal flow rate distribution ratio qs Primary pump delivery flow rate R Load factor Rmin Minimum load factor Rs Set threshold load factor Δtx Load device inlet / outlet heat medium temperature difference ti Load device Inlet heat medium temperature tis Appropriate inlet heat medium temperature of load equipment ΔT Holding period qsmin Setting limit flow rate

Claims (9)

熱媒を設定出口熱媒温度に冷却又は加熱する熱源機とその熱源機に熱媒を送給する一次ポンプとを直列接続した熱源ユニットを負荷機器に対する熱媒循環路に並列状態で複数介装し、
これら熱源ユニットの並列群と前記負荷機器との間において前記熱媒循環路における負荷機器側への往路部分と負荷機器側からの還路部分とを接続するバイパス路を設けるとともに、
前記熱媒循環路における前記バイパス路の接続点よりも負荷機器寄りの箇所に前記負荷機器に対して熱媒を送給する二次ポンプを介装した熱源システムにおいて、
前記負荷機器における負荷熱量の変化に応じて前記熱源ユニットの運転ユニット数を変更する熱源台数調整、及び、負荷機器側の熱媒流量である二次流量の変化に応じて運転一次ポンプの送出流量の調整により熱源ユニット側の熱媒流量である一次流量を調整する一次流量調整を行なう熱源システム運転方法であって、
前記熱源台数調整で前記熱源ユニットの運転ユニット数を増加させる増段処理に際して、前記一次流量調整での前記二次流量に対する前記一次流量の比率である運転流量比率を予め増大させておく増段用過渡調整を行なう熱源システム運転方法。
A plurality of heat source units, in which a heat source for cooling or heating the heat medium to the set outlet heat medium temperature and a primary pump for supplying the heat medium to the heat source machine are connected in series to the heat medium circulation path for the load equipment, are installed in parallel. And
Between the parallel group of these heat source units and the load device is provided with a bypass path connecting the forward path portion to the load device side and the return path portion from the load device side in the heat medium circulation path,
In the heat source system including a secondary pump that supplies the heat medium to the load device at a location closer to the load device than the connection point of the bypass path in the heat medium circulation path,
Heat source number adjustment to change the number of operation units of the heat source unit according to the change in the load heat amount in the load device, and the delivery flow rate of the primary pump that operates according to the change in the secondary flow rate that is the heat medium flow rate on the load device side A heat source system operation method for performing a primary flow rate adjustment for adjusting a primary flow rate that is a heat medium flow rate on the heat source unit side by adjusting
In the stage increasing process for increasing the number of operating units of the heat source unit by adjusting the number of heat sources, for increasing the stage, the operating flow rate ratio, which is the ratio of the primary flow rate to the secondary flow rate in the primary flow rate adjustment, is increased in advance. Heat source system operation method for transient adjustment.
熱媒を設定出口熱媒温度に冷却又は加熱する熱源機とその熱源機に熱媒を送給する一次ポンプとを直列接続した熱源ユニットを負荷機器に対する熱媒循環路に並列状態で複数介装し、
これら熱源ユニットの並列群と前記負荷機器との間において前記熱媒循環路における負荷機器側への往路部分と負荷機器側からの還路部分とを接続するバイパス路を設けるとともに、
前記熱媒循環路における前記バイパス路の接続点よりも負荷機器寄りの箇所に前記負荷機器に対して熱媒を送給する二次ポンプを介装し、
前記負荷機器における負荷熱量の変化に応じて前記熱源ユニットの運転ユニット数を変更する熱源台数制御、及び、負荷機器側の熱媒流量である二次流量の変化に応じて運転一次ポンプの送出流量の調整により熱源ユニット側の熱媒流量である一次流量を調整する一次流量制御を実行する制御手段を設けてある熱源システムであって、
前記制御手段は、前記熱源台数制御で前記熱源ユニットの運転ユニット数を増加させる増段処理に際して、前記一次流量制御での前記二次流量に対する前記一次流量の比率である運転流量比率を予め増大させておく増段用過渡制御を実行する構成にしてある熱源システム。
A plurality of heat source units, in which a heat source for cooling or heating the heat medium to the set outlet heat medium temperature and a primary pump for supplying the heat medium to the heat source machine are connected in series to the heat medium circulation path for the load equipment, are installed in parallel. And
Between the parallel group of these heat source units and the load device is provided with a bypass path connecting the forward path portion to the load device side and the return path portion from the load device side in the heat medium circulation path,
A secondary pump that feeds the heat medium to the load device at a location closer to the load device than the connection point of the bypass path in the heat medium circulation path is interposed,
Heat source number control for changing the number of operating units of the heat source unit according to the change in the load heat amount in the load device, and the delivery flow rate of the primary pump operated according to the change in the secondary flow rate that is the heat medium flow rate on the load device side A heat source system provided with control means for performing primary flow rate control for adjusting a primary flow rate that is a heat medium flow rate on the heat source unit side by adjusting
In the stage increasing process for increasing the number of operating units of the heat source unit by the heat source number control, the control means increases in advance an operating flow rate ratio that is a ratio of the primary flow rate to the secondary flow rate in the primary flow rate control. A heat source system that is configured to execute transient control for increasing stages.
前記制御手段は、運転熱源ユニットに対する前記一次流量の配分について、運転熱源ユニット全体としての運転状態が所定の最適運転状態になる最適流量配分比率を熱源システム構成機器の特性情報に基づく所定の選定手法により選定して、その最適流量配分比率に応じて運転一次ポンプの送出流量を調整する最適流量配分制御を前記一次流量制御とともに実行する構成にしてある請求項2記載の熱源システム。   The control means, for the distribution of the primary flow rate to the operating heat source unit, a predetermined selection method based on the characteristic information of the heat source system component device, the optimal flow rate distribution ratio at which the operating state of the entire operating heat source unit becomes a predetermined optimal operating state The heat source system according to claim 2, wherein the optimum flow distribution control is performed together with the primary flow control so that the optimum flow distribution control for adjusting the delivery flow rate of the primary pump is selected according to the optimum flow distribution ratio. 前記制御手段は、前記増段用過渡制御の実行時にも前記最適流量配分制御を継続して実行する構成にしてある請求項3記載の熱源システム。   The heat source system according to claim 3, wherein the control unit is configured to continuously execute the optimum flow rate distribution control even when the step-up transient control is executed. 前記制御手段は、前記一次流量制御又は前記最適流量配分制御において運転熱源機夫々の負荷率のうち最も小さいものが設定閾負荷率まで増大したとき、前記増段用過渡制御を実行する構成にしてある請求項2〜4のいずれか1項に記載の熱源システム。   In the primary flow control or the optimal flow distribution control, the control means is configured to execute the step-up transient control when the smallest one of the load factors of the operation heat source units increases to a set threshold load factor. The heat source system according to any one of claims 2 to 4. 前記制御手段は、前記増段用過渡制御において前記運転流量比率を増大させるのに、前記負荷熱量の増大に応じて前記運転流量比率を漸次的に増大させる構成にしてある請求項2〜5のいずれか1項に記載の熱源システム。   The control means is configured to gradually increase the operating flow rate ratio in accordance with an increase in the load heat amount in order to increase the operating flow rate ratio in the step-up transient control. The heat source system according to any one of claims. 前記制御手段は、前記増段用過渡制御において前記運転流量比率を増大させるのに、前記負荷機器における入出口熱媒温度差が設計値より大きいほど前記運転流量比率の増大幅を大きくする構成にしてある請求項2〜6のいずれか1項に記載の熱源システム。   The control means is configured to increase the operating flow rate ratio as the inlet / outlet heat medium temperature difference in the load device is larger than a design value in order to increase the operating flow rate ratio in the step-up transient control. The heat source system according to any one of claims 2 to 6. 前記制御手段は、前記増段用過渡制御において前記運転流量比率を増大させるのに、前記負荷機器の入口熱媒温度が前記負荷機器の適正入口熱媒温度よりも負荷機器能力の低減側に逸脱しているとき、その逸脱がないときよりも前記運転流量比率の増大幅を大きくする構成にしてある請求項2〜7のいずれか1項に記載の熱源システム。   In order to increase the operating flow rate ratio in the step-up transient control, the control means is such that the inlet heat medium temperature of the load device deviates from the proper inlet heat medium temperature of the load device to the load device capacity reduction side. The heat source system according to any one of claims 2 to 7, wherein when the operation is performed, the operating flow rate ratio is increased more than when there is no deviation. 前記制御手段は、前記増段処理を実行した後の所定保持期間の間、その増段処理で新たに起動した熱源ユニットの一次ポンプ送出流量を設定制限流量に固定して、前記一次流量が前記増段用過渡制御による増大一次流量から前記設定制限流量だけ増大した状態を保つ増段後保持制御を実行し、その所定保持期間が経過した後、前記増段後保持制御を解除して前記一次流量制御に復帰する構成にしてある請求項2〜8のいずれか1項に記載の熱源システム。   The control means fixes the primary pump delivery flow rate of the heat source unit newly activated in the stage increasing process to a set limit flow rate for a predetermined holding period after the stage increasing process is performed, and the primary flow rate is The post-stage holding control is executed to maintain the state in which the set primary flow rate is increased from the increased primary flow by the step-up transient control. The heat source system according to any one of claims 2 to 8, wherein the heat source system is configured to return to flow control.
JP2009109505A 2009-04-28 2009-04-28 Heat source system operating method and heat source system Active JP5227247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009109505A JP5227247B2 (en) 2009-04-28 2009-04-28 Heat source system operating method and heat source system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009109505A JP5227247B2 (en) 2009-04-28 2009-04-28 Heat source system operating method and heat source system

Publications (2)

Publication Number Publication Date
JP2010255984A true JP2010255984A (en) 2010-11-11
JP5227247B2 JP5227247B2 (en) 2013-07-03

Family

ID=43317102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009109505A Active JP5227247B2 (en) 2009-04-28 2009-04-28 Heat source system operating method and heat source system

Country Status (1)

Country Link
JP (1) JP5227247B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108695A (en) * 2011-11-22 2013-06-06 Sanki Eng Co Ltd Variable flow rate control device of heat source pump
WO2014046208A1 (en) * 2012-09-21 2014-03-27 三菱重工業株式会社 Heat source system and control method therefor
CN104913464A (en) * 2014-03-12 2015-09-16 阿自倍尔株式会社 Thermal Source Instrument Controlling Device and Air-Conditioning System
CN105115113A (en) * 2015-09-22 2015-12-02 山东广成节能科技有限公司 Energy efficiency optimizing system of central air-conditioner room
JP2016194386A (en) * 2015-03-31 2016-11-17 三機工業株式会社 Heat source control system
KR20180035353A (en) * 2016-09-29 2018-04-06 윤재동 Cooling and heating management system with low flux refrigerator and low flux controlling of cool and heating fluid
KR101854549B1 (en) * 2013-12-03 2018-06-08 미츠비시 쥬코 서멀 시스템즈 가부시키가이샤 Device for controlling number of operating heat source devices, heat source system, control method, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6588800B2 (en) * 2015-10-27 2019-10-09 アズビル株式会社 Heat source operation support apparatus and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004278884A (en) * 2003-03-14 2004-10-07 Mitsubishi Jisho Sekkei Inc Control device
JP2006153324A (en) * 2004-11-26 2006-06-15 Yamatake Corp Operating unit number control method and device
JP2007292374A (en) * 2006-04-24 2007-11-08 Yamatake Corp Heat source variable flow control device and method
JP2008070067A (en) * 2006-09-15 2008-03-27 Yamatake Corp Device and method for determining number of operating refrigerators
JP2009036494A (en) * 2007-08-03 2009-02-19 Taikisha Ltd Heat source system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004278884A (en) * 2003-03-14 2004-10-07 Mitsubishi Jisho Sekkei Inc Control device
JP2006153324A (en) * 2004-11-26 2006-06-15 Yamatake Corp Operating unit number control method and device
JP2007292374A (en) * 2006-04-24 2007-11-08 Yamatake Corp Heat source variable flow control device and method
JP2008070067A (en) * 2006-09-15 2008-03-27 Yamatake Corp Device and method for determining number of operating refrigerators
JP2009036494A (en) * 2007-08-03 2009-02-19 Taikisha Ltd Heat source system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108695A (en) * 2011-11-22 2013-06-06 Sanki Eng Co Ltd Variable flow rate control device of heat source pump
WO2014046208A1 (en) * 2012-09-21 2014-03-27 三菱重工業株式会社 Heat source system and control method therefor
JP2014077621A (en) * 2012-09-21 2014-05-01 Mitsubishi Heavy Ind Ltd Heat source system and method of controlling the same
CN104641185A (en) * 2012-09-21 2015-05-20 三菱重工业株式会社 Heat source system and control method therefor
CN104641185B (en) * 2012-09-21 2017-09-01 三菱重工业株式会社 Heat source system and its control method
US11060741B2 (en) 2012-09-21 2021-07-13 Mitsubishi Heavy Industries Thermal Systems, Ltd. Heat source system and control method therefor
KR101854549B1 (en) * 2013-12-03 2018-06-08 미츠비시 쥬코 서멀 시스템즈 가부시키가이샤 Device for controlling number of operating heat source devices, heat source system, control method, and program
CN104913464A (en) * 2014-03-12 2015-09-16 阿自倍尔株式会社 Thermal Source Instrument Controlling Device and Air-Conditioning System
JP2015172456A (en) * 2014-03-12 2015-10-01 アズビル株式会社 Heat source apparatus control device and air conditioning system
JP2016194386A (en) * 2015-03-31 2016-11-17 三機工業株式会社 Heat source control system
CN105115113A (en) * 2015-09-22 2015-12-02 山东广成节能科技有限公司 Energy efficiency optimizing system of central air-conditioner room
KR101983667B1 (en) * 2016-09-29 2019-05-29 디앤이에스 주식회사 Cooling and heating energy saving type automatic control system with low flux refrigerator and low flux controlling of cool and heating fluid
KR20180035353A (en) * 2016-09-29 2018-04-06 윤재동 Cooling and heating management system with low flux refrigerator and low flux controlling of cool and heating fluid

Also Published As

Publication number Publication date
JP5227247B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5515166B2 (en) Heat source system
JP5227247B2 (en) Heat source system operating method and heat source system
JP5261170B2 (en) Thermal load processing system and heat source system
JP4594276B2 (en) Cold / hot water control method for cold / hot heat source machine and air conditioning system used therefor
EP2806223B1 (en) Air-conditioning system that adjusts temperature and humidity
US9562701B2 (en) Temperature control system and air conditioning system
JP4301238B2 (en) Cold water circulation system
US20160192543A1 (en) Air-conditioning apparatus
JP6644559B2 (en) Heat source control system, control method and control device
JP2011179755A (en) Cold-water circulating system
JP2015108461A (en) Number-of-active-heat-source-machines control device, heat source system, control method, and program
JP3652974B2 (en) Primary pump heat source variable flow rate system
JP4333818B2 (en) Cold water circulation system
JP2004278884A (en) Control device
JP3828485B2 (en) Control device
JP4249591B2 (en) Primary pump type heat source variable flow rate control system and primary pump minimum flow rate securing method
JP2009115452A (en) Cold water circulating system
JP5261153B2 (en) Heat source system
JP5492712B2 (en) Water supply temperature control apparatus and method
JP5062197B2 (en) Cold water circulation system
JP2009019842A (en) Water delivery control system and water delivery control method
CN111981642B (en) Energy regulation control method for heat pump air conditioning system module unit
JP2010175093A (en) Heat source equipment control system
JP2008180505A (en) Cold water circulating system
EP3258185B1 (en) Heat supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130315

R150 Certificate of patent or registration of utility model

Ref document number: 5227247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250