JP6848114B1 - Heat supply control system - Google Patents

Heat supply control system Download PDF

Info

Publication number
JP6848114B1
JP6848114B1 JP2020137604A JP2020137604A JP6848114B1 JP 6848114 B1 JP6848114 B1 JP 6848114B1 JP 2020137604 A JP2020137604 A JP 2020137604A JP 2020137604 A JP2020137604 A JP 2020137604A JP 6848114 B1 JP6848114 B1 JP 6848114B1
Authority
JP
Japan
Prior art keywords
differential pressure
control valve
heat
opening degree
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020137604A
Other languages
Japanese (ja)
Other versions
JP2022033612A (en
Inventor
貴志 大塚
貴志 大塚
嘉宣 羽深
嘉宣 羽深
優理 永瀬
優理 永瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2020137604A priority Critical patent/JP6848114B1/en
Application granted granted Critical
Publication of JP6848114B1 publication Critical patent/JP6848114B1/en
Publication of JP2022033612A publication Critical patent/JP2022033612A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

【課題】配管系内に熱エネルギーを受け入れる部位として間接受入部と直接受入部とが混在する場合において、搬送動力を適切に制御する。【解決手段】熱供給制御システム10は、ポンプ14(熱媒搬送手段)により熱媒が循環供給され、熱媒からの熱エネルギーを受け入れる部位として、熱交換器16A,16Bを介して熱エネルギーを受け入れる間接受入部22と、熱媒から直接に熱エネルギーを受け入れる直接受入部20とが混在する配管系12に熱供給を行うための熱供給制御システムであって、間接受入部22に設けられた温度調整弁40A,40Bから得られる温度調整弁開度情報、及び直接受入部20における熱媒の流路から得られる熱媒情報に基づき、ポンプ14を駆動させる制御部30を有する。【選択図】図1PROBLEM TO BE SOLVED: To appropriately control a transfer power when an indirect receiving part and a direct receiving part coexist as a part for receiving heat energy in a piping system. SOLUTION: In a heat supply control system 10, a heat medium is circulated and supplied by a pump 14 (heat medium transporting means), and heat energy is supplied via heat exchangers 16A and 16B as a portion for receiving heat energy from the heat medium. A heat supply control system for supplying heat to a piping system 12 in which an indirect receiving unit 22 that receives heat and a direct receiving unit 20 that directly receives heat energy from a heat medium coexist, and is provided in the indirect receiving unit 22. The control unit 30 for driving the pump 14 is provided based on the temperature control valve opening degree information obtained from the temperature control valves 40A and 40B and the heat medium information obtained from the heat medium flow path in the direct receiving unit 20. [Selection diagram] Fig. 1

Description

本発明は、熱エネルギーネットワークに用いられる熱供給制御システムに関する。 The present invention relates to a heat supply control system used in a thermal energy network.

熱源機により生成された冷温水を複数の熱交換器に送水し、熱交換器を介して冷温水の熱エネルギーを複数の熱利用機器に供給する送水制御システムが開示されている(特許文献1参照)。この文献には、熱交換器へ送水する通路の入口温度と出口温度の温度差と、目標温度差との差に基づいて流量調整弁の開度を調整し、開度が所定値に達している流量調整弁があるときには、ポンプの回転数を増加させる技術が開示されている。 A water supply control system is disclosed in which cold / hot water generated by a heat source machine is sent to a plurality of heat exchangers, and the thermal energy of the cold / hot water is supplied to a plurality of heat utilization devices via the heat exchangers (Patent Document 1). reference). In this document, the opening degree of the flow rate adjusting valve is adjusted based on the difference between the temperature difference between the inlet temperature and the outlet temperature of the passage for sending water to the heat exchanger and the target temperature difference, and the opening degree reaches a predetermined value. A technique for increasing the number of revolutions of a pump when there is a flow control valve is disclosed.

特開2011−242001号公報Japanese Unexamined Patent Publication No. 2011-242001

しかしながら、上記した従来例には、熱エネルギーを受け入れる部位として、熱交換器を介して熱エネルギーを受け入れる間接受入部のみが配管系内に設けられている場合が想定されており、間接受入部と、熱交換器を介さずに熱媒から直接に熱エネルギーを受け入れる直接受入部とが混在する場合が想定されていない。 However, in the above-mentioned conventional example, it is assumed that only the indirect receiving part that receives the heat energy via the heat exchanger is provided in the piping system as the part that receives the heat energy. It is not assumed that there will be a mixture of direct receiving parts that receive heat energy directly from the heat medium without going through a heat exchanger.

本発明は、配管系内に熱エネルギーを受け入れる部位として間接受入部と直接受入部とが混在する場合において、搬送動力を適切に制御することを目的とする。 An object of the present invention is to appropriately control the transport power when an indirect receiving part and a direct receiving part coexist as a part for receiving heat energy in the piping system.

第1の態様に係る熱供給制御システムは、熱媒搬送手段により熱媒が循環供給され、前記熱媒からの熱エネルギーを受け入れる部位として、熱交換器を介して熱エネルギーを受け入れる間接受入部と、前記熱媒から直接に熱エネルギーを受け入れる直接受入部とが混在する配管系に熱供給を行うための熱供給制御システムであって、前記間接受入部に設けられた温度調整弁から得られる温度調整弁開度情報、及び前記直接受入部における前記熱媒の流路から得られる熱媒情報に基づき、前記熱媒搬送手段を駆動させる制御部を有し、前記直接受入部での前記熱媒情報は、前記直接受入部に設けられた差圧調整弁から得られる差圧調整弁開度情報であり、前記制御部は、前記温度調整弁開度情報及び前記差圧調整弁開度情報に基づいて、前記温度調整弁の開度及び前記差圧調整弁の開度の双方が許容範囲内に収まるように前記熱媒搬送手段を駆動させるThe heat supply control system according to the first aspect includes an indirect receiving unit that receives heat energy via a heat exchanger as a portion where the heat medium is circulated and supplied by the heat medium transporting means and receives the heat energy from the heat medium. A heat supply control system for supplying heat to a piping system in which a direct receiving portion that directly receives heat energy from the heat medium is mixed, and a temperature obtained from a temperature control valve provided in the indirect receiving portion. adjusting valve opening information, and on the basis of the heating medium information obtained from the flow path of the heating medium in the direct receiving portion, have a control unit for driving the heat medium conveying device, the heating medium in the direct receiving portion The information is the differential pressure adjusting valve opening degree information obtained from the differential pressure adjusting valve provided in the direct receiving portion, and the controlling unit uses the temperature adjusting valve opening degree information and the differential pressure adjusting valve opening degree information. Based on this, the heat medium conveying means is driven so that both the opening degree of the temperature adjusting valve and the opening degree of the differential pressure adjusting valve are within the permissible range .

この熱供給制御システムでは、熱エネルギーを受け入れる部位として間接受入部と直接受入部とが混在する配管系において、間接受入部の温度調整弁から得られる温度調整弁開度情報、及び直接受入部における熱媒の流路から得られる熱媒情報に基づき、制御部が熱媒搬送手段を駆動させる。これにより、熱需要に対応しつつ搬送動力を適切に制御することができる。 In this heat supply control system, in a piping system in which an indirect receiving part and a direct receiving part coexist as a part for receiving heat energy, the temperature control valve opening degree information obtained from the temperature control valve of the indirect receiving part and the direct receiving part The control unit drives the heat medium transporting means based on the heat medium information obtained from the heat medium flow path. As a result, the transport power can be appropriately controlled while responding to the heat demand.

また、この熱供給制御システムでは、制御部が、温度調整弁開度情報及び差圧調整弁開度情報に基づいて、温度調整弁の開度及び差圧調整弁の開度の双方が許容範囲内に収まるように熱媒搬送手段を駆動させる。これにより、熱需要に対応しつつ搬送動力を適切に制御することができる。 Further, in this heat supply control system, the control unit has an allowable range of both the opening degree of the temperature adjusting valve and the opening degree of the differential pressure adjusting valve based on the temperature adjusting valve opening information and the differential pressure adjusting valve opening information. Drive the heat transfer means so that it fits inside. As a result, the transport power can be appropriately controlled while responding to the heat demand.

の態様は、第の態様に係る熱供給制御システムにおいて、前記温度調整弁の許容開度範囲の上閾値をImaxとし、下閾値をIminとすると共に、前記差圧調整弁の許容開度範囲の上閾値をDmaxとし、下閾値をDminとしたとき、前記温度調整弁開度情報が前記上閾値Imax以上の前記温度調整弁、又は前記差圧調整弁開度情報が前記下閾値Dmin以下の前記差圧調整弁がある場合に、前記制御部が前記熱媒搬送手段の出力を上げ、前記温度調整弁開度情報が前記下閾値Imin以下の前記温度調整弁、又は前記差圧調整弁開度情報が前記上閾値Dmax以上の前記差圧調整弁がある場合に、前記制御部が前記熱媒搬送手段の出力を下げる。 In the second aspect, in the heat supply control system according to the first aspect, the upper threshold value of the allowable opening range of the temperature control valve is Imax, the lower threshold value is Imin, and the differential pressure control valve is allowed to open. When the upper threshold value of the degree range is Dmax and the lower threshold value is Dmin, the temperature control valve opening information of the temperature control valve opening degree information is equal to or higher than the upper threshold value Imax, or the differential pressure control valve opening degree information is the lower threshold value Dmin. When there is the following differential pressure adjusting valve, the control unit raises the output of the heat medium conveying means, and the temperature adjusting valve opening degree information is the lower threshold value Imin or less, or the differential pressure adjusting. When there is the differential pressure adjusting valve whose valve opening information is equal to or higher than the upper threshold value Dmax, the control unit lowers the output of the heat medium conveying means.

この熱供給制御システムでは、温度調整弁開度情報が上閾値Imax以上の温度調整弁、又は差圧調整弁開度情報が下閾値Dmin以下の差圧調整弁がある場合に、制御部が熱媒搬送手段の出力を上げる。一方、温度調整弁開度情報が下閾値Imin以下の温度調整弁、又は差圧調整弁開度情報が上閾値Dmax以上の差圧調整弁がある場合に、制御部が熱媒搬送手段の出力を下げる。 In this heat supply control system, when there is a temperature control valve whose temperature control valve opening information is equal to or higher than the upper threshold Imax or a differential pressure control valve whose differential pressure control valve opening information is equal to or lower than the lower threshold Dmin, the control unit heats up. Increase the output of the medium transport means. On the other hand, when there is a temperature control valve whose temperature control valve opening information is the lower threshold value Imin or less, or a differential pressure control valve whose differential pressure control valve opening information is the upper threshold value Dmax or more, the control unit outputs the heat medium conveying means. Lower.

の態様は、第の態様に係る熱供給制御システムにおいて、前記温度調整弁の開度について、許容開度範囲内の前記上閾値Imaxに近い上範囲Iupを設定すると共に、前記差圧調整弁の開度について、許容開度範囲内の前記下閾値Dminに近い下範囲Ddwを設定したとき、前記温度調整弁開度情報が前記上範囲Iupにある前記温度調整弁、又は前記差圧調整弁開度情報が下範囲Ddwにある前記差圧調整弁が存在するように、前記制御部が前記熱媒搬送手段の出力を制御する。 In the third aspect, in the heat supply control system according to the second aspect, the opening degree of the temperature control valve is set to an upper range Iup close to the upper threshold value Imax within the allowable opening degree range, and the differential pressure is set. When the lower range Ddw close to the lower threshold value Dmin within the allowable opening range is set for the opening degree of the adjusting valve, the temperature adjusting valve opening degree information is in the upper range Iup, or the differential pressure. The control unit controls the output of the heat medium conveying means so that the differential pressure adjusting valve having the adjusting valve opening degree information in the lower range Ddw exists.

この熱供給制御システムでは、制御部が、温度調整弁開度情報が許容開度範囲内の上閾値Imaxに近い上範囲Iupにある温度調整弁、又は差圧調整弁開度情報が許容開度範囲内の下閾値Dminに近い下範囲Ddwにある差圧調整弁が存在するように、熱媒搬送手段の出力を制御する。これにより、温度調整弁開度情報の許容開度範囲内、又は差圧調整弁開度情報の許容開度範囲内において、搬送動力を低減することができる。なお、温度調整弁開度情報が上範囲Iupにあり、かつ差圧調整弁開度情報が下範囲Ddwにあってもよい。 In this heat supply control system, the control unit determines that the temperature control valve opening information is within the allowable opening range and the temperature control valve opening information is close to the upper threshold Imax and is in the upper range Iup, or the differential pressure control valve opening information is the allowable opening. The output of the heat medium conveying means is controlled so that the differential pressure adjusting valve in the lower range Ddw close to the lower threshold Dmin within the range exists. As a result, the transport power can be reduced within the allowable opening range of the temperature adjusting valve opening information or within the allowable opening range of the differential pressure adjusting valve opening information. The temperature control valve opening degree information may be in the upper range Iup, and the differential pressure control valve opening degree information may be in the lower range Ddw.

本発明によれば、配管系内に熱エネルギーを受け入れる部位として間接受入部と直接受入部とが混在する場合において、搬送動力を適切に制御することができる。 According to the present invention, when the indirect receiving part and the direct receiving part coexist as a part for receiving heat energy in the piping system, the transport power can be appropriately controlled.

本実施形態に係る熱供給制御システムの構成を示すブロック図である。It is a block diagram which shows the structure of the heat supply control system which concerns on this embodiment. 本実施形態に係る熱供給制御システムにおける制御の流れの一例を示すフロー図である。It is a flow chart which shows an example of the control flow in the heat supply control system which concerns on this embodiment. 温度調整弁の許容開度範囲、その範囲内の上閾値Imaxに近い上範囲Iup、差圧調整弁の許容開度範囲、その範囲内の下閾値Dminに近い下範囲Ddwを示す線図である。It is a diagram which shows the permissible opening range of a temperature control valve, the upper range Iup which is close to the upper threshold Imax within the range, the permissible opening range of a differential pressure control valve, and the lower range Ddw which is close to the lower threshold Dmin within that range. ..

以下、本発明を実施するための形態を図面に基づき説明する。各図面において同一の符号を用いて示される構成要素は、同一又は同様の構成要素であることを意味する。なお、以下に説明する実施形態において重複する説明及び符号については、省略する場合がある。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The components shown with the same reference numerals in each drawing mean that they are the same or similar components. In addition, duplicate description and reference numeral in the embodiment described below may be omitted.

(配管系)
図1において、配管系12には、熱媒搬送手段の一例としてのポンプ14により、配管18を通じて熱媒(図示せず)が循環供給される。配管系12には、例えば、熱媒を冷却する冷凍設備24と、冷却された熱媒を需要家31,32,33へ供給するためのポンプ14と、ポンプ14を駆動すると共にポンプ14の吐出量を変化させるためのインバータ28が設けられている。熱媒の温度は、冷凍設備24により例えば一定とされる。また、配管系12には、熱媒からの熱エネルギーを受け入れる部位として、熱交換器16A,16Bを介して熱エネルギーを受け入れる間接受入部22と、熱交換器を介さずに熱媒から直接に熱エネルギーを受け入れる直接受入部20とが混在している。
(Piping system)
In FIG. 1, a heat medium (not shown) is circulated and supplied to the piping system 12 through the piping 18 by a pump 14 as an example of the heat medium transporting means. The piping system 12 includes, for example, a refrigerating facility 24 for cooling the heat medium, a pump 14 for supplying the cooled heat medium to consumers 31, 32, and 33, a pump 14 for driving the pump 14, and a discharge of the pump 14. An inverter 28 for changing the amount is provided. The temperature of the heat medium is, for example, constant by the refrigerating equipment 24. Further, in the piping system 12, as a portion for receiving the heat energy from the heat medium, an indirect receiving portion 22 for receiving the heat energy via the heat exchangers 16A and 16B and a direct receiving portion 22 from the heat medium without passing through the heat exchanger. A direct receiving unit 20 that receives heat energy is mixed.

間接受入部22及び直接受入部20は、各々の需要家に設けられている。一例として、需要家31には直接受入部20が設けられ、需要家32には間接受入部22が設けられ、需要家33には直接受入部20及び間接受入部22が設けられている。直接受入部20が設けられていることを、直接受入方式が採用されていると言い換えることもできる。同様に、間接受入部22が設けられていることを、間接受入方式が採用されていると言い換えることもできる。直接受入部20及び間接受入部22については、公知の構造を適用することができる。 The indirect receiving unit 22 and the direct receiving unit 20 are provided for each consumer. As an example, the customer 31 is provided with a direct receiving unit 20, the customer 32 is provided with an indirect receiving unit 22, and the customer 33 is provided with a direct receiving unit 20 and an indirect receiving unit 22. The fact that the direct receiving unit 20 is provided can be rephrased as adopting the direct receiving method. Similarly, the fact that the indirect receiving unit 22 is provided can be rephrased as adopting the indirect receiving method. A known structure can be applied to the direct receiving unit 20 and the indirect receiving unit 22.

需要家31の直接受入部20では、配管18に空調負荷41が直接接続されており、配管18を通る熱媒の一部が空調負荷41に供給され、該空調負荷41を出入りするようになっている。つまり、空調負荷41も熱媒の循環路の一部となっている。また、需要家31の直接受入部20には、差圧調整弁46Aが設けられている。この差圧調整弁46Aは、配管18における空調負荷41の接続位置の上流側と下流側とをバイパス接続するように設けられている。需要家33の直接受入部20においても、同様に配管18に空調負荷43が直接接続されると共に、差圧調整弁46Bが設けられている。 In the direct receiving unit 20 of the consumer 31, the air conditioning load 41 is directly connected to the pipe 18, and a part of the heat medium passing through the pipe 18 is supplied to the air conditioning load 41 to enter and exit the air conditioning load 41. ing. That is, the air conditioning load 41 is also a part of the heat medium circulation path. Further, a differential pressure adjusting valve 46A is provided in the direct receiving portion 20 of the customer 31. The differential pressure adjusting valve 46A is provided so as to bypass connect the upstream side and the downstream side of the connection position of the air conditioning load 41 in the pipe 18. Similarly, in the direct receiving portion 20 of the customer 33, the air conditioning load 43 is directly connected to the pipe 18, and the differential pressure adjusting valve 46B is provided.

差圧調整弁46Aを例に挙げると、差圧調整弁46Aの入口は空調負荷41の接続位置の上流側に位置し、差圧調整弁46Aの出口は空調負荷41の接続位置の下流側に位置している。入口圧と出口圧との差圧が設定圧以上になったときに主弁が開かれ、差圧が設定圧まで引き下げられる。このとき、空調負荷41へ供給される熱媒の流量が減少する。逆に入口圧と出口圧との差圧が設定圧以下になると、主弁が絞られ、差圧が設定圧まで引き上げられる。このとき、空調負荷41へ供給される熱媒の流量が増加する。このように、差圧調整弁46Aは、入口圧と出口圧の差圧を一定に保持可能に構成されており、これによって空調負荷41へ供給される熱媒の流量を調整する。 Taking the differential pressure regulating valve 46A as an example, the inlet of the differential pressure regulating valve 46A is located on the upstream side of the connection position of the air conditioning load 41, and the outlet of the differential pressure regulating valve 46A is located on the downstream side of the connecting position of the air conditioning load 41. positioned. When the differential pressure between the inlet pressure and the outlet pressure exceeds the set pressure, the main valve is opened and the differential pressure is reduced to the set pressure. At this time, the flow rate of the heat medium supplied to the air conditioning load 41 decreases. Conversely, when the differential pressure between the inlet pressure and the outlet pressure falls below the set pressure, the main valve is throttled and the differential pressure is raised to the set pressure. At this time, the flow rate of the heat medium supplied to the air conditioning load 41 increases. As described above, the differential pressure adjusting valve 46A is configured to be able to keep the differential pressure between the inlet pressure and the outlet pressure constant, thereby adjusting the flow rate of the heat medium supplied to the air conditioning load 41.

需要家32の間接受入部22では、空調負荷42側の配管34に熱媒が循環するように構成され、配管18の熱媒と配管34の熱媒の間での熱エネルギーの移動が熱交換器16Aで行われるようになっている。つまり、配管18と配管34が互いに独立した循環系を構成し、配管18の熱媒が空調負荷42を通らないようになっている。また、需要家32の間接受入部22には、温度調整弁40Aが設けられている。この温度調整弁40Aは、配管18に設けられている。需要家33の間接受入部22においても、空調負荷44側の配管36に熱媒が循環するように構成され、配管18の熱媒と配管36の熱媒の間での熱エネルギーの移動が熱交換器16Bで行われるようになっている。需要家33の間接受入部22にも、温度調整弁40Bが設けられている。この温度調整弁40Bは、配管18に設けられている。温度調整弁40Aの開度を大きくすると、空調負荷42へ供給される熱媒の流量が増加する。同様に、温度調整弁40Bの開度を大きくすると、空調負荷44へ供給される熱媒の流量が増加する。 In the indirect receiving unit 22 of the consumer 32, the heat medium is configured to circulate in the pipe 34 on the air conditioning load 42 side, and the transfer of heat energy between the heat medium of the pipe 18 and the heat medium of the pipe 34 is heat exchange. It is designed to be performed in the vessel 16A. That is, the pipe 18 and the pipe 34 form a circulation system independent of each other so that the heat medium of the pipe 18 does not pass through the air conditioning load 42. Further, the indirect receiving portion 22 of the customer 32 is provided with a temperature control valve 40A. The temperature control valve 40A is provided in the pipe 18. The indirect receiving portion 22 of the consumer 33 is also configured so that the heat medium circulates in the pipe 36 on the air conditioning load 44 side, and the transfer of heat energy between the heat medium of the pipe 18 and the heat medium of the pipe 36 is heat. It is designed to be performed by the exchanger 16B. The temperature control valve 40B is also provided in the indirect receiving portion 22 of the customer 33. The temperature control valve 40B is provided in the pipe 18. Increasing the opening degree of the temperature control valve 40A increases the flow rate of the heat medium supplied to the air conditioning load 42. Similarly, when the opening degree of the temperature control valve 40B is increased, the flow rate of the heat medium supplied to the air conditioning load 44 increases.

なお、空調負荷41,42,43,44は、空調機等の熱利用機器である。 The air conditioning loads 41, 42, 43, and 44 are heat utilization devices such as air conditioners.

(熱供給制御システム)
本実施形態に係る熱供給制御システム10は、上記配管系12を通じて需要家31,32,33へ熱供給を行うためのシステムであり、制御部30を有している。制御部30は、間接受入部22に設けられた温度調整弁40A,40Bから得られる温度調整弁開度情報、及び直接受入部20における熱媒の流路から得られる熱媒情報に基づき、ポンプ14を駆動させる、例えば電子制御ユニットである。この制御部30は、ポンプ14の搬送動力の出力を決定し、インバータ28を介してポンプ14を駆動する。インバータ28を用いることにより、ポンプ14のモータの回転速度を変化させ、ポンプ14の吐出量を変化させることができるようになっている。
(Heat supply control system)
The heat supply control system 10 according to the present embodiment is a system for supplying heat to consumers 31, 32, 33 through the piping system 12, and has a control unit 30. The control unit 30 pumps based on the temperature control valve opening degree information obtained from the temperature control valves 40A and 40B provided in the indirect receiving unit 22 and the heat medium information obtained from the heat medium flow path in the direct receiving unit 20. It is, for example, an electronic control unit that drives 14. The control unit 30 determines the output of the transfer power of the pump 14 and drives the pump 14 via the inverter 28. By using the inverter 28, the rotation speed of the motor of the pump 14 can be changed, and the discharge amount of the pump 14 can be changed.

直接受入部20での熱媒情報は、例えば、直接受入部20に設けられた差圧調整弁46A,46Bから得られる差圧調整弁開度情報である。この場合、制御部30が、温度調整弁開度情報及び差圧調整弁開度情報に基づいて、温度調整弁40A,40Bの開度及び差圧調整弁46A,46Bの開度の双方が許容範囲内に収まるようにポンプ14を駆動させてもよい。 The heat medium information in the direct receiving unit 20 is, for example, differential pressure adjusting valve opening degree information obtained from the differential pressure adjusting valves 46A and 46B provided in the direct receiving unit 20. In this case, the control unit 30 allows both the opening degree of the temperature adjusting valves 40A and 40B and the opening degree of the differential pressure adjusting valves 46A and 46B based on the temperature adjusting valve opening information and the differential pressure adjusting valve opening information. The pump 14 may be driven so as to be within the range.

具体的な例を挙げると、図3において、温度調整弁40A,40B(図1)の許容開度範囲の上閾値をImaxとし、下閾値をIminとする(図3(A))と共に、差圧調整弁46A,46B(図1)の許容開度範囲の上閾値をDmaxとし、下閾値をDminとする(図3(B))。そして、温度調整弁開度情報が上閾値Imax以上の温度調整弁40A,40B、又は差圧調整弁開度情報が下閾値Dmin以下の差圧調整弁46A,46Bがある場合に、図1に示される制御部30がポンプ14の出力を上げるようにする。逆に、温度調整弁開度情報が下閾値Imin以下の温度調整弁40A,40B、又は差圧調整弁開度情報が上閾値Dmax以上の差圧調整弁46A,46Bがある場合に、制御部30がポンプ14の出力を下げるようにする。 To give a specific example, in FIG. 3, the upper threshold value of the allowable opening range of the temperature control valves 40A and 40B (FIG. 1) is Imax, the lower threshold value is Imin (FIG. 3 (A)), and the difference. The upper threshold value of the allowable opening range of the pressure regulating valves 46A and 46B (FIG. 1) is Dmax, and the lower threshold value is Dmin (FIG. 3B). When there are temperature control valves 40A and 40B whose temperature control valve opening information is equal to or higher than the upper threshold Imax, or differential pressure control valves 46A and 46B whose differential pressure adjustment valve opening information is equal to or lower than the lower threshold Dmin, FIG. The indicated control unit 30 increases the output of the pump 14. On the contrary, when there are temperature control valves 40A and 40B whose temperature control valve opening information is equal to or lower than the lower threshold value Imin, or differential pressure control valves 46A and 46B whose differential pressure control valve opening information is equal to or higher than the upper threshold value Dmax. 30 causes the output of the pump 14 to decrease.

図1において、例えば温度調整弁40Aからの温度調整弁開度情報が上閾値Imax以上である場合、空調負荷42が多くの熱エネルギーを必要としている。したがって、ポンプ14の出力を上げることで、熱エネルギーの供給を増加させることができるので、その分温度調整弁40Aの開度を小さくすることができる。なお、図3の○印は、各調整弁の開度を示している。 In FIG. 1, for example, when the temperature control valve opening degree information from the temperature control valve 40A is equal to or higher than the upper threshold value Imax, the air conditioning load 42 requires a large amount of heat energy. Therefore, by increasing the output of the pump 14, the supply of thermal energy can be increased, and the opening degree of the temperature control valve 40A can be reduced accordingly. The circles in FIG. 3 indicate the opening degree of each adjusting valve.

また、例えば差圧調整弁46Aからの差圧調整弁開度情報が下閾値Dmin以下である場合、差圧調整弁46Aの入口圧と出口圧の差圧が所定の圧力より小さくなっている。このとき、空調負荷41は多くの熱エネルギーを必要としている。したがって、ポンプ14の出力を上げることで、差圧を大きくし、差圧調整弁46Aの開度を大きくすることができる。 Further, for example, when the differential pressure adjusting valve opening degree information from the differential pressure adjusting valve 46A is equal to or less than the lower threshold value Dmin, the differential pressure between the inlet pressure and the outlet pressure of the differential pressure adjusting valve 46A is smaller than the predetermined pressure. At this time, the air conditioning load 41 requires a large amount of heat energy. Therefore, by increasing the output of the pump 14, the differential pressure can be increased and the opening degree of the differential pressure adjusting valve 46A can be increased.

次に、例えば温度調整弁40Aからの温度調整弁開度情報が上閾値Imin以下である場合、空調負荷42が必要とする熱エネルギーは少ない。したがって、ポンプ14の出力を下げることで、熱エネルギーの供給を低減させることができるので、その分温度調整弁40Aの開度を大きくすることができる。 Next, for example, when the temperature control valve opening degree information from the temperature control valve 40A is equal to or less than the upper threshold value Imin, the heat energy required by the air conditioning load 42 is small. Therefore, by lowering the output of the pump 14, the supply of thermal energy can be reduced, and the opening degree of the temperature control valve 40A can be increased accordingly.

また、例えば差圧調整弁46Aからの差圧調整弁開度情報が上閾値Dmax以上である場合、差圧調整弁46Aの入口圧と出口圧の差圧が所定の圧力より大きくなっている。このとき、空調負荷41が必要とする熱エネルギーは少ない。したがって、ポンプ14の出力を下げることで、差圧を小さくし、差圧調整弁46Aの開度を小さくすることができる。 Further, for example, when the differential pressure adjusting valve opening degree information from the differential pressure adjusting valve 46A is equal to or higher than the upper threshold value Dmax, the differential pressure between the inlet pressure and the outlet pressure of the differential pressure adjusting valve 46A is larger than the predetermined pressure. At this time, the heat energy required by the air conditioning load 41 is small. Therefore, by lowering the output of the pump 14, the differential pressure can be reduced and the opening degree of the differential pressure adjusting valve 46A can be reduced.

このようにすることで、温度調整弁40A,40Bの開度を、その許容開度範囲の上閾値Imaxと下閾値Iminの間に収めることが可能となり、かつ差圧調整弁46A,46Bの開度を、その許容開度範囲の上閾値Dmaxと下閾値Dminの間に収めることが可能となっている。 By doing so, the opening degree of the temperature adjusting valves 40A and 40B can be accommodated between the upper threshold value Imax and the lower threshold value Imin of the allowable opening degree range, and the differential pressure adjusting valves 46A and 46B are opened. The degree can be kept between the upper threshold value Dmax and the lower threshold value Dmin in the allowable opening range.

更に、省エネ性を高めるために精度を上げることを考慮し、一定範囲内でポンプ14の出力を制御し、温度調整弁40A,40Bの開度について、許容開度範囲内の上閾値Imaxに近い上範囲Iupを設定すると共に、差圧調整弁46A,46Bの開度について、許容開度範囲内の下閾値Dminに近い下範囲Ddwを設定して、ポンプ14の出力を制御してもよい。制御部30は、温度調整弁開度情報が上範囲Iupにある温度調整弁40A,40B、又は差圧調整弁開度情報が下範囲Ddwにある差圧調整弁46A,46Bが存在するように、ポンプ14の出力を制御する。なお、温度調整弁開度情報が上範囲Iupにあり、かつ差圧調整弁開度情報が下範囲Ddwにあってもよい。 Further, in consideration of improving accuracy in order to improve energy saving, the output of the pump 14 is controlled within a certain range, and the opening degree of the temperature control valves 40A and 40B is close to the upper threshold value Imax within the allowable opening degree range. The output of the pump 14 may be controlled by setting the upper range Iup and setting the lower range Ddw of the differential pressure adjusting valves 46A and 46B close to the lower threshold value Dmin within the allowable opening range. The control unit 30 has the temperature control valves 40A and 40B whose temperature control valve opening information is in the upper range Iup, or the differential pressure control valves 46A and 46B whose differential pressure control valve opening information is in the lower range Ddw. , Control the output of the pump 14. The temperature control valve opening degree information may be in the upper range Iup, and the differential pressure control valve opening degree information may be in the lower range Ddw.

(作用)
本実施形態は、上記のように構成されており、以下その作用について説明する。図1において、本実施形態に係る熱供給制御システム10は、熱エネルギーを受け入れる部位として間接受入部22と直接受入部20とが混在する配管系12において、間接受入部22の温度調整弁40A,40Bから得られる温度調整弁開度情報、及び直接受入部20における熱媒の流路から得られる熱媒情報に基づき、制御部30がポンプ14を駆動させる。具体的には、制御部30が、温度調整弁開度情報及び差圧調整弁開度情報に基づいて、温度調整弁40A,40Bの開度及び差圧調整弁46A,46Bの開度の双方が許容範囲内に収まるようにポンプ14を駆動させる。
(Action)
This embodiment is configured as described above, and its operation will be described below. In FIG. 1, the heat supply control system 10 according to the present embodiment has a temperature control valve 40A of the indirect receiving unit 22 in a piping system 12 in which an indirect receiving unit 22 and a direct receiving unit 20 coexist as a portion for receiving heat energy. The control unit 30 drives the pump 14 based on the temperature control valve opening degree information obtained from 40B and the heat medium information obtained from the heat medium flow path in the direct receiving unit 20. Specifically, the control unit 30 determines both the opening degree of the temperature adjusting valves 40A and 40B and the opening degree of the differential pressure adjusting valves 46A and 46B based on the temperature adjusting valve opening degree information and the differential pressure adjusting valve opening degree information. The pump 14 is driven so that the temperature is within the permissible range.

制御の流れの一例を図2のフロー図にしたがって説明すると、ステップS1において、各温度調整弁の開度情報、具体的には、温度調整弁開度情報及び差圧調整弁開度情報が収集される。収集されたデータを基に、制御部30(図1)が各種判定を行い、ポンプ14(図1)の出力を制御する。まず、ステップS2において、温度調整弁開度情報が上閾値Imax以上である温度調整弁40A,40Bがあるかどうかが判定される。この判定がYESの場合には、ステップS8においてポンプ14(図1)の出力が上げられる。ステップS2の判定がNOの場合にはステップS3へ進む。 Explaining an example of the control flow according to the flow chart of FIG. 2, in step S1, the opening degree information of each temperature adjusting valve, specifically, the temperature adjusting valve opening degree information and the differential pressure adjusting valve opening degree information are collected. Will be done. Based on the collected data, the control unit 30 (FIG. 1) makes various determinations and controls the output of the pump 14 (FIG. 1). First, in step S2, it is determined whether or not there are temperature control valves 40A and 40B whose temperature control valve opening degree information is equal to or higher than the upper threshold value Imax. If this determination is YES, the output of the pump 14 (FIG. 1) is increased in step S8. If the determination in step S2 is NO, the process proceeds to step S3.

ステップS3において、差圧調整弁開度情報が下閾値Dmin以下の差圧調整弁46A,46Bがあるかどうかが判定される。この判定がYESの場合には、ステップS8においてポンプ14(図1)の出力が上げられる。ステップS3の判定がNOの場合にはステップS4へ進む。 In step S3, it is determined whether or not there are differential pressure adjusting valves 46A and 46B whose differential pressure adjusting valve opening degree information is equal to or less than the lower threshold value Dmin. If this determination is YES, the output of the pump 14 (FIG. 1) is increased in step S8. If the determination in step S3 is NO, the process proceeds to step S4.

ステップS4において、温度調整弁開度情報が上閾値Imin以下の温度調整弁40A,40B(図1)があるかどうかが判定される。この判定がYESの場合には、ステップS9においてポンプ14(図1)の出力が下げられる。ステップS4の判定がNOの場合にはステップS5へ進む。 In step S4, it is determined whether or not there are temperature control valves 40A and 40B (FIG. 1) whose temperature control valve opening information is equal to or lower than the upper threshold value Imin. If this determination is YES, the output of the pump 14 (FIG. 1) is reduced in step S9. If the determination in step S4 is NO, the process proceeds to step S5.

ステップS5において、差圧調整弁開度情報が上閾値Dmax以上の差圧調整弁46A,46Bがあるかどうかが判定される。この判定がYESの場合には、ステップS9においてポンプ14(図1)の出力が下げられる。ステップS5の判定がNOの場合にはステップS6へ進む。 In step S5, it is determined whether or not there are differential pressure adjusting valves 46A and 46B whose differential pressure adjusting valve opening degree information is equal to or higher than the upper threshold value Dmax. If this determination is YES, the output of the pump 14 (FIG. 1) is reduced in step S9. If the determination in step S5 is NO, the process proceeds to step S6.

ステップS6において、温度調整弁開度情報が上範囲Iupにある温度調整弁40A,40B(図1)、又は差圧調整弁開度情報が下範囲Ddwにある差圧調整弁46A,46B(図1)があるかどうかが判定される。この判定がNOの場合には、ステップS9においてポンプ14(図1)の出力が下げられる。ステップS6の判定がYESの場合にはステップS7へ進む。 In step S6, the temperature control valves 40A and 40B (FIG. 1) whose temperature control valve opening information is in the upper range Iup, or the differential pressure control valves 46A and 46B (FIG. 1) whose differential pressure control valve opening information is in the lower range Ddw. It is determined whether or not there is 1). If this determination is NO, the output of the pump 14 (FIG. 1) is reduced in step S9. If the determination in step S6 is YES, the process proceeds to step S7.

ステップS7において、システム停止指示があるかどうかが判定される。この判定がYESの場合には、制御が終了する。この判定がNOの場合には、ステップS1に戻る。 In step S7, it is determined whether or not there is a system stop instruction. If this determination is YES, the control ends. If this determination is NO, the process returns to step S1.

本実施形態では、図3に示されるように、温度調整弁開度情報が上閾値Imax以上の温度調整弁40A,40B(図1)、又は差圧調整弁開度情報が下閾値Dmin以下の差圧調整弁46A,46B(図1)がある場合に、制御部30がポンプ14の出力を上げる。一方、温度調整弁開度情報が下閾値Imin以下の温度調整弁40A,40B、又は差圧調整弁開度情報が上閾値Dmax以上の差圧調整弁46A,46Bがある場合に、制御部30がポンプ14の出力を下げる。また、制御部30が、温度調整弁開度情報が許容開度範囲内の上閾値Imaxに近い上範囲Iupにある温度調整弁40A,40B、又は差圧調整弁開度情報が許容開度範囲内の下閾値Dminに近い下範囲Ddwにある差圧調整弁46A,46Bが存在するように、ポンプ14の出力を制御する。これにより、温度調整弁開度情報の許容開度範囲内、かつ差圧調整弁開度情報の許容開度範囲内において、搬送動力を低減することができる。 In the present embodiment, as shown in FIG. 3, the temperature control valves 40A and 40B (FIG. 1) whose temperature control valve opening information is equal to or higher than the upper threshold Imax, or the differential pressure control valve opening information is equal to or lower than the lower threshold Dmin. When there are differential pressure adjusting valves 46A and 46B (FIG. 1), the control unit 30 increases the output of the pump 14. On the other hand, when there are temperature control valves 40A and 40B whose temperature control valve opening information is equal to or lower than the lower threshold value Imin, or differential pressure control valves 46A and 46B whose differential pressure control valve opening information is equal to or higher than the upper threshold value Dmax, the control unit 30 Reduces the output of the pump 14. Further, the control unit 30 determines that the temperature control valve opening information is within the allowable opening range and the temperature control valves 40A and 40B in the upper range Iup close to the upper threshold Imax, or the differential pressure control valve opening information is within the allowable opening range. The output of the pump 14 is controlled so that the differential pressure regulating valves 46A and 46B in the lower range Ddw close to the lower threshold value Dmin are present. As a result, the transport power can be reduced within the allowable opening range of the temperature adjusting valve opening information and within the allowable opening range of the differential pressure adjusting valve opening information.

このように、本実施形態によれば、配管系12内に熱エネルギーを受け入れる部位として間接受入部22と直接受入部20とが混在する場合において、熱需要に対応しつつ搬送動力を適切に制御することができる。 As described above, according to the present embodiment, when the indirect receiving portion 22 and the direct receiving portion 20 coexist as a portion for receiving heat energy in the piping system 12, the transport power is appropriately controlled while responding to the heat demand. can do.

[他の実施形態]
以上、本発明の実施形態の一例について説明したが、本発明の実施形態は、上記に限定されるものでなく、上記以外にも、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。
[Other Embodiments]
Although an example of the embodiment of the present invention has been described above, the embodiment of the present invention is not limited to the above, and other than the above, various modifications can be made within a range not deviating from the gist thereof. Of course there is.

熱媒の流路から得られる熱媒情報として、差圧調整弁46A,46Bから得られる差圧調整弁開度情報を挙げたが、熱媒情報はこれに限られない。例えば、末端の空調負荷の前後差圧、差圧調整弁におけるバイパス流量、末端の空調負荷におけるバルブ開度情報等を熱媒情報として用いてもよい。 As the heat medium information obtained from the flow path of the heat medium, the differential pressure adjusting valve opening degree information obtained from the differential pressure adjusting valves 46A and 46B is mentioned, but the heat medium information is not limited to this. For example, the front-rear differential pressure of the terminal air conditioning load, the bypass flow rate of the differential pressure adjusting valve, the valve opening information of the terminal air conditioning load, and the like may be used as heat medium information.

10 熱供給システム
12 配管系
14 ポンプ(熱媒搬送手段)
16A 熱交換器
16B 熱交換器
20 直接受入部
22 間接受入部
30 制御部
40A 温度調整弁
40B 温度調整弁
46A 差圧調整弁
46B 差圧調整弁
10 Heat supply system 12 Piping system 14 Pump (heat medium transfer means)
16A Heat exchanger 16B Heat exchanger 20 Direct receiving part 22 Indirect receiving part 30 Control part 40A Temperature control valve 40B Temperature control valve 46A Differential pressure control valve 46B Differential pressure control valve

Claims (2)

熱媒搬送手段により熱媒が循環供給され、前記熱媒からの熱エネルギーを受け入れる部位として、熱交換器を介して熱エネルギーを受け入れる間接受入部と、前記熱媒から直接に熱エネルギーを受け入れる直接受入部とが混在する配管系に熱供給を行うための熱供給制御システムであって、
前記間接受入部に設けられた温度調整弁から得られる温度調整弁開度情報、及び前記直接受入部における前記熱媒の流路から得られる熱媒情報に基づき、前記熱媒搬送手段を駆動させる制御部を有し、
前記直接受入部での前記熱媒情報は、前記直接受入部に設けられた差圧調整弁から得られる差圧調整弁開度情報であり、
前記制御部は、前記温度調整弁開度情報及び前記差圧調整弁開度情報に基づいて、前記温度調整弁の開度及び前記差圧調整弁の開度の双方が許容範囲内に収まるように前記熱媒搬送手段を駆動させ
前記温度調整弁は、前記間接受入部での熱エネルギーの要求が増大すると開度が大きくなり、前記間接受入部での熱エネルギーの要求が減少すると開度が小さくなる弁であり、
前記差圧調整弁は、入口圧と出口圧との差圧が設定圧以上になったときに主弁が開かれ、差圧が設定圧まで引き下げられ、入口圧と出口圧との差圧が設定圧以下になると、前記主弁が絞られ、差圧が設定圧まで引き上げられて、入口圧と出口圧の差圧を一定に保持する弁であり、
前記温度調整弁の許容開度範囲の上閾値をImaxとし、下閾値をIminとすると共に、前記差圧調整弁の許容開度範囲の上閾値をDmaxとし、下閾値をDminとしたとき、
前記温度調整弁開度情報が前記上閾値Imax以上の前記温度調整弁、又は前記差圧調整弁開度情報が前記下閾値Dmin以下の前記差圧調整弁がある場合に、熱エネルギーが必要とされているので、前記制御部が前記熱媒搬送手段の出力を上げ、熱エネルギーの供給を増加させることで、前記温度調整弁については開度を小さくさせ、前記差圧調整弁については開度を大きくさせるようにし、
前記温度調整弁開度情報が前記下閾値Imin以下の前記温度調整弁、又は前記差圧調整弁開度情報が前記上閾値Dmax以上の前記差圧調整弁がある場合に、必要とされる熱エネルギーが少ないので、前記制御部が前記熱媒搬送手段の出力を下げ、熱エネルギーの供給を低減させることで、前記温度調整弁については開度を大きくさせ、前記差圧調整弁については開度を小さくさせるようにする熱供給制御システム。
The heat medium is circulated and supplied by the heat medium transporting means, and the indirect receiving part that receives the heat energy via the heat exchanger and the direct receiving part that directly receives the heat energy from the heat medium are the parts that receive the heat energy from the heat medium. It is a heat supply control system for supplying heat to the piping system where the receiving part coexists.
The heat medium transporting means is driven based on the temperature control valve opening degree information obtained from the temperature control valve provided in the indirect receiving part and the heat medium information obtained from the heat medium flow path in the direct receiving part. Has a control unit
The heat medium information in the direct receiving portion is information on the opening degree of the differential pressure adjusting valve obtained from the differential pressure adjusting valve provided in the direct receiving portion.
Based on the temperature control valve opening degree information and the differential pressure control valve opening degree information, the control unit ensures that both the temperature control valve opening degree and the differential pressure control valve opening degree are within the permissible range. the heat medium conveying means is driven in,
The temperature control valve is a valve in which the opening degree increases as the thermal energy requirement at the indirect receiving portion increases, and the opening degree decreases as the thermal energy requirement at the indirect receiving portion decreases.
In the differential pressure adjusting valve, the main valve is opened when the differential pressure between the inlet pressure and the outlet pressure becomes equal to or higher than the set pressure, the differential pressure is reduced to the set pressure, and the differential pressure between the inlet pressure and the outlet pressure is reduced. When the pressure drops below the set pressure, the main valve is throttled, the differential pressure is raised to the set pressure, and the differential pressure between the inlet pressure and the outlet pressure is kept constant.
When the upper threshold value of the allowable opening range of the temperature control valve is Imax and the lower threshold value is Imin, and the upper threshold value of the allowable opening range of the differential pressure control valve is Dmax and the lower threshold value is Dmin.
Thermal energy is required when there is the temperature control valve whose temperature control valve opening information is equal to or higher than the upper threshold Imax, or the differential pressure control valve whose differential pressure control valve opening information is equal to or lower than the lower threshold Dmin. Therefore, the control unit raises the output of the heat medium transporting means and increases the supply of heat energy to reduce the opening degree of the temperature adjusting valve and the opening degree of the differential pressure adjusting valve. Try to make it bigger
The heat required when there is the temperature control valve whose temperature control valve opening information is the lower threshold Imin or less, or the differential pressure control valve whose differential pressure control valve opening information is the upper threshold Dmax or more. Since the energy is small, the control unit lowers the output of the heat medium transporting means to reduce the supply of heat energy, thereby increasing the opening degree of the temperature adjusting valve and opening degree of the differential pressure adjusting valve. A heat supply control system that makes it smaller.
前記温度調整弁の開度について、許容開度範囲内の前記上閾値Imaxに近い上範囲Iupを設定すると共に、前記差圧調整弁の開度について、許容開度範囲内の前記下閾値Dminに近い下範囲Ddwを設定したとき、
前記温度調整弁開度情報が前記上範囲Iupにある前記温度調整弁、又は前記差圧調整弁開度情報が下範囲Ddwにある前記差圧調整弁が存在するように、前記制御部が前記熱媒搬送手段の出力を制御する請求項に記載の熱供給制御システム。
For the opening degree of the temperature adjusting valve, an upper threshold Iup close to the upper threshold value Imax within the allowable opening degree range is set, and for the opening degree of the differential pressure adjusting valve, the lower threshold value Dmin within the allowable opening degree range is set. When the near lower range Ddw is set,
The control unit has the control unit so that the temperature control valve whose temperature control valve opening information is in the upper range Iup or the differential pressure control valve whose differential pressure control valve opening information is in the lower range Ddw exists. The heat supply control system according to claim 1 , wherein the output of the heat medium conveying means is controlled.
JP2020137604A 2020-08-17 2020-08-17 Heat supply control system Active JP6848114B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020137604A JP6848114B1 (en) 2020-08-17 2020-08-17 Heat supply control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020137604A JP6848114B1 (en) 2020-08-17 2020-08-17 Heat supply control system

Publications (2)

Publication Number Publication Date
JP6848114B1 true JP6848114B1 (en) 2021-03-24
JP2022033612A JP2022033612A (en) 2022-03-02

Family

ID=74879283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020137604A Active JP6848114B1 (en) 2020-08-17 2020-08-17 Heat supply control system

Country Status (1)

Country Link
JP (1) JP6848114B1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2527643B2 (en) * 1990-10-29 1996-08-28 高砂熱学工業株式会社 A method of controlling the amount of water change in a water heat source air conditioning system
JPH07158935A (en) * 1993-12-07 1995-06-20 Matsushita Seiko Co Ltd Fan coil unit
JP4434821B2 (en) * 2004-04-12 2010-03-17 三洋電機株式会社 Air conditioner
JP2009030821A (en) * 2007-07-24 2009-02-12 Yamatake Corp Water supply control system and water supply control method
JP5537253B2 (en) * 2010-05-14 2014-07-02 東京瓦斯株式会社 Water supply control system and control method thereof

Also Published As

Publication number Publication date
JP2022033612A (en) 2022-03-02

Similar Documents

Publication Publication Date Title
JP5537253B2 (en) Water supply control system and control method thereof
JP2006038379A (en) Cold and hot water control method of cold and hot heat source machine
CN109094330B (en) Automobile air conditioner warm air system and control method
JP5869394B2 (en) Heat medium piping system
JP4327296B2 (en) Air conditioning system
JP6848114B1 (en) Heat supply control system
JP5595975B2 (en) Air conditioning piping system
JP4864587B2 (en) Heat medium piping system
CN101498493A (en) Control method for route and cross section flux of regulation air passing through heat exchanger
JP2005127586A (en) Primary pump type heat source variable flow rate control system and primary pump minimum flow rate securing method
CN109253515A (en) Chilled water constant temperature device and control method thereof
JP4694905B2 (en) Air conditioning system
CN208886990U (en) Chilled water constant temperature equipment
JP3745352B2 (en) Air conditioning system
JP2003130428A (en) Connection type cold/hot water device
US11353234B2 (en) Air conditioning system
JP6951085B2 (en) Air conditioning system
JP4369841B2 (en) Heat medium piping system
JP4101198B2 (en) Heat pump water heater / heater
CN110134152B (en) Flow control module and method for controlling flow in a liquid circulation system
CN110469925B (en) HVAC system and control method thereof
JP6116093B2 (en) Heat source system
JP2007132651A (en) Air conditioner
JP3699097B2 (en) Air conditioning system
JP4594146B2 (en) Optimum control method for variable air volume of air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200817

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200817

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210303

R150 Certificate of patent or registration of utility model

Ref document number: 6848114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250