JP2005057153A - Evaluation method of soi wafer - Google Patents

Evaluation method of soi wafer Download PDF

Info

Publication number
JP2005057153A
JP2005057153A JP2003288418A JP2003288418A JP2005057153A JP 2005057153 A JP2005057153 A JP 2005057153A JP 2003288418 A JP2003288418 A JP 2003288418A JP 2003288418 A JP2003288418 A JP 2003288418A JP 2005057153 A JP2005057153 A JP 2005057153A
Authority
JP
Japan
Prior art keywords
soi wafer
oxide film
gate oxide
electrodes
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003288418A
Other languages
Japanese (ja)
Other versions
JP4525024B2 (en
Inventor
Takeshi Otsuki
剛 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2003288418A priority Critical patent/JP4525024B2/en
Publication of JP2005057153A publication Critical patent/JP2005057153A/en
Application granted granted Critical
Publication of JP4525024B2 publication Critical patent/JP4525024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the evaluation method of an SOI wafer which can evaluate quality of the SOI wafer readily in a short time. <P>SOLUTION: In the evaluation method for evaluating the SOI wafer wherein a silicon layer is formed on an insulating layer or an insulator, the silicon layer is first oxidized and a gate oxide film is formed. After at least three electrodes are formed on the gate oxide film, an electric stress is applied between adjacent two electrodes of the formed electrodes and a gate oxide film in a region below the two electrodes is subjected to dielectric breakdown. Then, an electric stress is applied to the rear of the SOI wafer from at least one of the adjacent two electrodes, and the insulating layer or the insulator of the SOI wafer is subjected to dielectric breakdown. Thereafter, an electric stress is applied to the rear of the SOI wafer from an electrode other than the adjacent two electrodes, and electric characteristic of the gate oxide film in the region below the electrode is measured, thus evaluating the SOI wafer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、絶縁層又は絶縁体上にシリコン層が形成された、いわゆるSOI(Silicon On Insulator)ウエーハを評価するための評価方法に関するものであり、特に、絶縁層又は絶縁体上に形成されたシリコン層の品質を評価する評価方法に関するものである。   The present invention relates to an evaluation method for evaluating a so-called SOI (Silicon On Insulator) wafer in which a silicon layer is formed on an insulating layer or an insulator, and in particular, formed on the insulating layer or the insulator. The present invention relates to an evaluation method for evaluating the quality of a silicon layer.

近年、システムの高速化・高集積化や携帯端末の発展に伴い、半導体デバイスには高速かつ低消費電力のものがより一層求められている。このような中で、SOIウエーハは、SOI構造を有さないバルクウエーハ用デバイスプロセスの既設の設備や工程等を大きく変更することなくデバイスの作製を行なうことができることから、デバイスの高速化・低消費電力化が容易に可能になるとして注目されている。   In recent years, with the increase in system speed and integration and the development of mobile terminals, semiconductor devices with higher speed and lower power consumption are further required. Under such circumstances, SOI wafers can be manufactured without greatly changing existing facilities and processes of a bulk wafer device process having no SOI structure. It is attracting attention as it enables power consumption to be easily achieved.

また、SOI構造が形成されてないシリコンウエーハ(バルクウエーハ)の品質を評価する方法として、GOI(Gate Oxide Integrity)法が非常に有効であり、一般的に広く用いられている。このGOI法による評価方法は、例えば図7に示すように、評価対象となるシリコンウエーハ11を酸化して酸化膜12(ゲート酸化膜)を形成し、この酸化膜12に金属電極13(または、多結晶シリコン電極)を形成してMOS(Metal Oxide Semiconductor)構造を作製する。   Further, as a method for evaluating the quality of a silicon wafer (bulk wafer) on which no SOI structure is formed, the GOI (Gate Oxide Integrity) method is very effective and generally used widely. In the evaluation method by the GOI method, for example, as shown in FIG. 7, the silicon wafer 11 to be evaluated is oxidized to form an oxide film 12 (gate oxide film), and a metal electrode 13 (or A polycrystalline silicon electrode) is formed, and a MOS (Metal Oxide Semiconductor) structure is manufactured.

続いて、このように作製したMOSキャパシタに対して、シリコンウエーハ11が蓄積側となるように金属電極13に電圧を印加して、金属電極13から酸化膜12に電気ストレスを加える。例えばシリコンウエーハ11がP型である場合は、金属電極13に負電圧を印加することによってシリコンウエーハ11が蓄積側となる。そして、金属電極13から酸化膜12に印加する電気ストレスを大きくしていき、ゲート酸化膜12の絶縁破壊挙動を測定することによってシリコンウエーハ11の品質を評価することができる。   Subsequently, a voltage is applied to the metal electrode 13 so that the silicon wafer 11 is on the accumulation side, and an electrical stress is applied from the metal electrode 13 to the oxide film 12 with respect to the MOS capacitor thus manufactured. For example, when the silicon wafer 11 is P-type, the silicon wafer 11 becomes the accumulation side by applying a negative voltage to the metal electrode 13. The quality of the silicon wafer 11 can be evaluated by increasing the electrical stress applied to the oxide film 12 from the metal electrode 13 and measuring the dielectric breakdown behavior of the gate oxide film 12.

例えば、シリコンウエーハにCOP(Crystal Originated Particles)のような結晶欠陥や不純物等が存在してなければ、上記の評価においてゲート酸化膜の絶縁破壊は酸化膜そのものがもつ真性破壊挙動を示す。しかし、シリコンウエーハに欠陥等が存在していると、欠陥の存在により本来の絶縁膜としての絶縁性が劣化するので、ゲート酸化膜の絶縁破壊挙動を測定した際に酸化膜破壊電界強度が低下してしまう。   For example, if crystal defects such as COP (Crystal Originated Particles) or impurities do not exist in the silicon wafer, the dielectric breakdown of the gate oxide film exhibits the intrinsic breakdown behavior of the oxide film itself in the above evaluation. However, if there is a defect in the silicon wafer, the insulation as the original insulating film deteriorates due to the presence of the defect, so the oxide film breakdown electric field strength decreases when measuring the dielectric breakdown behavior of the gate oxide film. Resulting in.

一方、上記GOI法によりSOIウエーハを評価する場合では、例えば図8に示すようにSOIウエーハ19には支持基板18とシリコン層16との間に絶縁体である埋め込み酸化膜17が存在しているために、ウエーハ裏面からの電気コンタクトを取ることができない。そのため、ウエーハ表面側に電気コンタクトを取るためのグラウンドを別途に形成しなければならない。したがって、SOIウエーハの評価を行なう際は、図8に示すように、シリコン層16の表面にゲート酸化膜12及びゲート電極13の他にウエーハ表面側で電気コンタクト可能にするための金属配線14及びこれらの金属配線同士を絶縁する分離酸化膜15を形成することが必要となる。このような構造を有するウエーハ評価用の素子は、例えば特許文献1や非特許文献1等で報告されている。   On the other hand, when the SOI wafer is evaluated by the GOI method, a buried oxide film 17 that is an insulator exists between the support substrate 18 and the silicon layer 16 in the SOI wafer 19 as shown in FIG. For this reason, electrical contact cannot be made from the back side of the wafer. Therefore, a ground for making electrical contact must be separately formed on the wafer surface side. Therefore, when evaluating the SOI wafer, as shown in FIG. 8, in addition to the gate oxide film 12 and the gate electrode 13, the metal wiring 14 for enabling electrical contact on the wafer surface side and the surface of the silicon layer 16. It is necessary to form an isolation oxide film 15 that insulates these metal wirings. A wafer evaluation element having such a structure has been reported in, for example, Patent Document 1 and Non-Patent Document 1.

しかしながら、このようなSOIウエーハの評価では、SOIウエーハのシリコン層表面に形成する素子の構造が、図7に示すバルクウエーハを評価する場合と比較して非常に複雑なものとなる。そのため、SOIウエーハを評価する場合には、図8のようなウエーハ評価用の素子を形成するための多くの複雑な工程が必要となり、評価に要する時間が非常に長くなるという問題があった。しかも、複雑な構造ゆえに、測定精度も低く、バラツキも大きいという問題も生じる。   However, in the evaluation of such an SOI wafer, the structure of the element formed on the surface of the silicon layer of the SOI wafer becomes very complicated as compared with the case of evaluating the bulk wafer shown in FIG. Therefore, when an SOI wafer is evaluated, many complicated steps for forming a wafer evaluation element as shown in FIG. 8 are required, and the time required for the evaluation becomes very long. Moreover, due to the complicated structure, there are problems that the measurement accuracy is low and the variation is large.

また、SOIウエーハの評価を行なうための設備に関しても、バルクウエーハの評価に必要な装置以外に、分離酸化膜を形成するためのCVD酸化膜用設備や金属配線技術等が必要とされるのでコスト面での負担が大きく、より簡便にSOIウエーハを評価できる評価方法の開発が望まれている。   In addition to equipment required for bulk wafer evaluation, equipment for performing evaluation of SOI wafers requires equipment for CVD oxide film and metal wiring technology for forming an isolation oxide film. Development of an evaluation method capable of evaluating SOI wafers more easily is desired.

特開2002−359362号公報JP 2002-359362 A IEEE Trans. On Electron Dev.,48(2),307(2001)IEEE Trans. On Electron Dev. , 48 (2), 307 (2001)

そこで、本発明は上記問題点に鑑みてなされたものであって、本発明の目的は、SOIウエーハの評価を行なう際にウエーハ表面に分離酸化膜や金属配線等を形成せずに、SOIウエーハの品質を簡便にかつ短時間で評価することのできるSOIウエーハの評価方法を提供することにある。   Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to form an SOI wafer without forming an isolation oxide film or a metal wiring on the wafer surface when evaluating the SOI wafer. An object of the present invention is to provide an SOI wafer evaluation method that can easily and quickly evaluate the quality of a wafer.

上記目的を達成するために、本発明によれば、絶縁層又は絶縁体上にシリコン層が形成されたSOIウエーハを評価する評価方法において、先ず前記シリコン層を酸化してゲート酸化膜を形成し、該ゲート酸化膜上に少なくとも3つの電極を形成した後、該形成した電極のうちの隣接する2つの電極間に電気ストレスを印加して該2つの電極の下の領域内にあるゲート酸化膜を絶縁破壊し、次に該隣接する2つの電極のうちの少なくとも1つから前記SOIウエーハの裏面に電気ストレスを印加して前記SOIウエーハの絶縁層又は絶縁体を絶縁破壊し、その後前記隣接する2つの電極以外の電極から前記SOIウエーハの裏面に電気ストレスを印加して該電極の下の領域内にあるゲート酸化膜の電気特性を測定することによって、SOIウエーハの評価を行なうことを特徴とするSOIウエーハの評価方法が提供される(請求項1)。   In order to achieve the above object, according to the present invention, in an evaluation method for evaluating an SOI wafer in which a silicon layer is formed on an insulating layer or an insulator, the silicon layer is first oxidized to form a gate oxide film. Forming at least three electrodes on the gate oxide film, and then applying an electrical stress between two adjacent electrodes of the formed electrodes to form a gate oxide film in a region under the two electrodes Then, an electrical stress is applied to the back surface of the SOI wafer from at least one of the two adjacent electrodes to break down the insulating layer or insulator of the SOI wafer, and then the adjacent By applying electrical stress to the back surface of the SOI wafer from an electrode other than the two electrodes and measuring the electrical characteristics of the gate oxide film in the region under the electrodes, the SOI wafer is measured. Evaluation method of an SOI wafer, characterized in that the evaluation of Doha is provided (claim 1).

このようにしてSOIウエーハの評価を行なうことによって、SOIウエーハの表面に形成するゲート酸化膜及び電極の構造を非常に簡単なものにすることができるので、従来のような分離酸化膜や金属配線を形成する工程を省略して評価工程を簡略化し、SOIウエーハの評価を簡便にかつ短時間で行なうことができる。また、簡単な構造で測定できるので、測定精度も向上する。   By evaluating the SOI wafer in this way, the structure of the gate oxide film and electrode formed on the surface of the SOI wafer can be made very simple. By omitting the step of forming the substrate, the evaluation step can be simplified, and the evaluation of the SOI wafer can be performed easily and in a short time. Moreover, since measurement can be performed with a simple structure, measurement accuracy is also improved.

この場合、前記SOIウエーハの絶縁層又は絶縁体を絶縁破壊する際に、該絶縁層又は絶縁体の電気特性を測定することが好ましい(請求項2)。
このようにSOIウエーハの絶縁層又は絶縁体を絶縁破壊する際に、該絶縁層又は絶縁体の電気特性を測定することによって、SOIウエーハの絶縁層又は絶縁体の品質も同時に評価することができるようになり、SOIウエーハの品質評価をより詳細に行なうことが可能となる。
In this case, it is preferable to measure the electrical characteristics of the insulating layer or insulator when the insulating layer or insulator of the SOI wafer is subjected to dielectric breakdown.
Thus, when the insulation layer or insulator of the SOI wafer is subjected to dielectric breakdown, the quality of the insulation layer or insulator of the SOI wafer can be evaluated at the same time by measuring the electrical characteristics of the insulation layer or insulator. As a result, the quality evaluation of the SOI wafer can be performed in more detail.

このとき、前記測定する電気特性として、酸化膜耐圧を測定することが好ましい(請求項3)。
例えば、上記のシリコン層に形成したゲート酸化膜の電気特性として酸化膜耐圧を測定することにより、SOIウエーハのGOI評価を行なうことができる。また、SOIウエーハの絶縁層又は絶縁体の酸化膜耐圧を測定することにより、それらの信頼性等を合わせて評価することもできる。
At this time, it is preferable to measure an oxide film breakdown voltage as the electrical characteristic to be measured.
For example, the GOI evaluation of an SOI wafer can be performed by measuring the oxide film breakdown voltage as the electrical characteristic of the gate oxide film formed on the silicon layer. Further, by measuring the oxide film breakdown voltage of the insulating layer or insulator of the SOI wafer, it is possible to evaluate the reliability and the like together.

本発明のSOIウエーハの評価方法によれば、SOIウエーハのシリコン層表面にゲート酸化膜及び電極を簡単な構造で形成してSOIウエーハの評価を行うことができるようになるので、SOIウエーハの評価工程が簡略化し、SOIウエーハの品質を簡便にかつ短時間で評価することができる。   According to the method for evaluating an SOI wafer of the present invention, the SOI wafer can be evaluated by forming a gate oxide film and an electrode with a simple structure on the surface of the silicon layer of the SOI wafer. The process is simplified, and the quality of the SOI wafer can be evaluated easily and in a short time.

以下、本発明について実施の形態を説明するが、本発明はこれらに限定されるものではない。
本発明者は、SOIウエーハのシリコン層表面に酸化膜及び電極を簡単な構造で形成してSOIウエーハの品質を評価できる方法について鋭意実験及び検討を重ねた。その結果、SOIウエーハのシリコン層表面にゲート酸化膜と少なくとも3つの電極とを形成すれば、その形成した電極のうちの隣接する2つの電極を利用して、先ずそれら2つの電極の下の領域内にあるゲート酸化膜、次にSOIウエーハの絶縁層(または絶縁体)を順番に絶縁破壊し、その後これらの隣接する2つの電極以外の電極からSOIウエーハの裏面に電気ストレスを印加することによって、その電極の下の領域内にあるゲート酸化膜の電気特性を測定してSOIウエーハの品質を評価することができることを見出して、本発明を完成させた。
Hereinafter, although an embodiment is described about the present invention, the present invention is not limited to these.
The present inventor has conducted intensive experiments and studies on a method for evaluating the quality of an SOI wafer by forming an oxide film and an electrode with a simple structure on the surface of the silicon layer of the SOI wafer. As a result, if a gate oxide film and at least three electrodes are formed on the surface of the silicon layer of the SOI wafer, two adjacent electrodes among the formed electrodes are used to first form a region under the two electrodes. By sequentially breaking down the gate oxide film and then the insulating layer (or insulator) of the SOI wafer, and then applying electrical stress from the electrodes other than the two adjacent electrodes to the back surface of the SOI wafer The present invention has been completed by finding that the quality of the SOI wafer can be evaluated by measuring the electrical characteristics of the gate oxide film in the region under the electrode.

ここで、本発明によるSOIウエーハの評価方法について、図面を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。図1に本発明のSOIウエーハの評価方法の一例を示すフロー図を示し、図2〜図5に本発明のSOIウエーハの評価方法を順番に概略的に説明する概略説明図を示す。   Here, the SOI wafer evaluation method according to the present invention will be described in detail with reference to the drawings, but the present invention is not limited to this. FIG. 1 is a flow chart showing an example of an SOI wafer evaluation method of the present invention, and FIGS. 2 to 5 are schematic explanatory views schematically explaining the SOI wafer evaluation method of the present invention in order.

(SOIウエーハの準備:図1A)
最初に、評価対象となるSOIウエーハを準備する。本発明で評価の対象となるSOIウエーハは、例えば図2に示したように支持基板8の上に絶縁層となる埋め込み酸化膜7とシリコン層6とが形成されたSOIウエーハ10や、絶縁基板等の絶縁体上にシリコン層が形成されたSOIウエーハ等であり、SOI構造を有しているものであれば特に限定されるものではない。
(Preparation of SOI wafer: Fig. 1A)
First, an SOI wafer to be evaluated is prepared. The SOI wafer to be evaluated in the present invention is, for example, an SOI wafer 10 in which a buried oxide film 7 serving as an insulating layer and a silicon layer 6 are formed on a support substrate 8 as shown in FIG. It is not particularly limited as long as it is an SOI wafer or the like in which a silicon layer is formed on an insulator such as, and has an SOI structure.

(ゲート酸化膜及び電極の形成:図1B)
次に、この評価対象となるSOIウエーハ10のシリコン層6を酸化してゲート酸化膜2を形成し、このゲート酸化膜2の上に少なくとも3つの電極1(ゲート電極ともいう)を形成する。このとき、ゲート酸化膜2及び電極1の形成方法は特に限定されず、例えばゲート酸化膜2は、SOIウエーハ10に熱酸化処理を施すことによって容易に形成することができる。
(Formation of gate oxide film and electrode: FIG. 1B)
Next, the silicon layer 6 of the SOI wafer 10 to be evaluated is oxidized to form a gate oxide film 2, and at least three electrodes 1 (also referred to as gate electrodes) are formed on the gate oxide film 2. At this time, the method for forming the gate oxide film 2 and the electrode 1 is not particularly limited. For example, the gate oxide film 2 can be easily formed by subjecting the SOI wafer 10 to thermal oxidation treatment.

また、ゲート酸化膜2上に電極1を形成する方法としては、例えばCVD(Chemical Vapor Deposition)法等により多結晶シリコン層を堆積した後、リン等の不純物を熱拡散法またはイオン注入法を用いて多結晶シリコン層中にドープして、抵抗率の低い多結晶シリコン層を形成する。尚、多結晶シリコン層の堆積時に、同時に不純物もドープするDoped Poly−Si法を用いて低抵抗率の多結晶シリコン層を形成することもできる。   Further, as a method of forming the electrode 1 on the gate oxide film 2, for example, after depositing a polycrystalline silicon layer by CVD (Chemical Vapor Deposition) or the like, impurities such as phosphorus are used by a thermal diffusion method or an ion implantation method. The polycrystalline silicon layer is doped to form a polycrystalline silicon layer having a low resistivity. Note that a low resistivity polycrystalline silicon layer can also be formed by using the Doped Poly-Si method in which impurities are simultaneously doped when the polycrystalline silicon layer is deposited.

その後、上記のように形成した多結晶シリコン層に、例えばレジスト塗布、露光、現像という一連のフォトリソグラフィ工程を施した後エッチングを行なうことによって、ゲート酸化膜2上に多結晶シリコンの電極1を形成することができる。このとき、ゲート酸化膜2上に少なくとも3つの電極1を形成すれば良く、その構造(パターン)は任意であるが、基板寄生抵抗等を考慮すると、例えば図2に示すように3つの電極を3重の構造で配置することが好ましい。尚、図2に示したように、電極1のうち内側に形成した電極から順番に電極1a、電極1b、電極1cとする。   Thereafter, the polycrystalline silicon layer formed as described above is subjected to a series of photolithography processes such as resist coating, exposure, and development, and then etched to form the polycrystalline silicon electrode 1 on the gate oxide film 2. Can be formed. At this time, it is sufficient to form at least three electrodes 1 on the gate oxide film 2 and the structure (pattern) is arbitrary. However, considering substrate parasitic resistance and the like, for example, three electrodes are formed as shown in FIG. It is preferable to arrange in a triple structure. In addition, as shown in FIG. 2, it is set as the electrode 1a, the electrode 1b, and the electrode 1c in order from the electrode formed inside among the electrodes 1. FIG.

(ゲート酸化膜の絶縁破壊:図1C)
上記のようにしてゲート酸化膜2上に少なくとも3つの電極1a〜1cを形成した後、これらの形成した電極のうちの隣接する2つの電極間に電気ストレスを印加して、これら2つの電極の下の領域内にあるゲート酸化膜を絶縁破壊する。例えば図3に示すように、3つの電極1a〜1cのうち最外周に位置する電極1cをグラウンドに接続しておき、中間部に位置する電極1bから電極1cに一定の電圧または電流を印加して電気ストレスを加えることにより、両電極の下の領域にあるゲート酸化膜を絶縁破壊して電流パスを形成することができる。
(Dielectric breakdown of gate oxide film: Fig. 1C)
After forming at least three electrodes 1a to 1c on the gate oxide film 2 as described above, an electrical stress is applied between two adjacent electrodes among these formed electrodes, and the two electrodes Break down the gate oxide in the underlying region. For example, as shown in FIG. 3, the electrode 1c located on the outermost periphery among the three electrodes 1a to 1c is connected to the ground, and a constant voltage or current is applied to the electrode 1c from the electrode 1b located in the middle part. By applying electrical stress, the gate oxide film in the region below both electrodes can be broken down to form a current path.

このとき、例えばシリコン層がP型であれば、電極1bから負電圧を印加すれば良い。また、ゲート酸化膜2は通常厚さが25nm程度の薄いものであるため、40V程度の電圧を印加することによって、電極1b、1cの下の領域内にあるゲート酸化膜を容易に絶縁破壊することができる。また、以下で説明するようにゲート酸化膜の電気特性を測定する際に中心部に位置する電極1aから電気ストレスを印加するために、上記のように最外周に位置する電極1cをグラウンドに接続した方が良い。   At this time, for example, if the silicon layer is P-type, a negative voltage may be applied from the electrode 1b. In addition, since the gate oxide film 2 is usually thin with a thickness of about 25 nm, by applying a voltage of about 40 V, the gate oxide film in the region under the electrodes 1b and 1c can be easily broken down. be able to. Further, as described below, the electrode 1c located on the outermost periphery is connected to the ground as described above in order to apply an electrical stress from the electrode 1a located in the center when measuring the electrical characteristics of the gate oxide film. Better to do.

(SOIウエーハの絶縁層の絶縁破壊:図1D)
次に、上記のゲート酸化膜の絶縁破壊に用いた隣接する2つの電極1b、1cのうちの少なくとも1つからSOIウエーハ10の裏面に電気ストレスを印加してSOIウエーハ10の埋め込み酸化膜7を絶縁破壊する。例えば図4に示すように、SOIウエーハ10の裏面をグラウンドに接続しておき、電極1bおよび電極1cから、上記で絶縁破壊したゲート酸化膜を通じて埋め込み酸化膜7に電気ストレスを印加することによって、埋め込み酸化膜7を絶縁破壊することができる。尚、電気ストレスの印加は、図4のように電極1b、1cの両方から行なわずに、電極1bまたは電極1cのいずれか一方から行なっても良い。このとき、例えばシリコン層がP型であれば、電極から負電圧を印加すれば良い。
(Dielectric breakdown of insulating layer of SOI wafer: Fig. 1D)
Next, an electrical stress is applied to the back surface of the SOI wafer 10 from at least one of the two adjacent electrodes 1b and 1c used for the dielectric breakdown of the gate oxide film, so that the buried oxide film 7 of the SOI wafer 10 is formed. Break down the insulation. For example, as shown in FIG. 4, the back surface of the SOI wafer 10 is connected to the ground, and an electrical stress is applied from the electrodes 1 b and 1 c to the buried oxide film 7 through the gate oxide film that has been dielectrically broken. The buried oxide film 7 can be broken down. The electrical stress may be applied from either the electrode 1b or the electrode 1c without being applied from both the electrodes 1b and 1c as shown in FIG. At this time, for example, if the silicon layer is P-type, a negative voltage may be applied from the electrode.

また、このように埋め込み酸化膜7を絶縁破壊する際に、テスタ等を用いて埋め込み酸化膜7の電気特性を測定することが好ましい。例えば、埋め込み酸化膜7を絶縁破壊する際に、埋め込み酸化膜の電流−電圧特性を測定して酸化膜耐圧を調べることによって、埋め込み酸化膜の信頼性を評価することが可能となり、SOIウエーハの品質をより詳細に評価することが可能となる。   Further, when the buried oxide film 7 is broken down in this way, it is preferable to measure the electrical characteristics of the buried oxide film 7 using a tester or the like. For example, when the buried oxide film 7 is broken down, the reliability of the buried oxide film can be evaluated by measuring the current-voltage characteristics of the buried oxide film and examining the oxide film breakdown voltage. The quality can be evaluated in more detail.

(ゲート酸化膜の電気特性の測定:図1E)
そして、上記のようにしてSOIウエーハ10の埋め込み酸化膜7を絶縁破壊した後、上記で用いた電極1b、1c以外の中心部に位置する電極1aからSOIウエーハの裏面に電気ストレスを印加して、この電極1aの下の領域内にあるゲート酸化膜の電気特性を測定する。
(Measurement of electrical characteristics of gate oxide film: Fig. 1E)
Then, after dielectric breakdown of the buried oxide film 7 of the SOI wafer 10 as described above, an electrical stress is applied to the back surface of the SOI wafer from the electrode 1a located at the center other than the electrodes 1b and 1c used above. Then, the electrical characteristics of the gate oxide film in the region under the electrode 1a are measured.

すなわち、前記の工程で埋め込み酸化膜7を絶縁破壊したことにより埋め込み酸化膜7に電流パスが確保されているので、例えば図5に示すように、SOIウエーハ10の裏面をグラウンドに接続しておき、プローバに接続したテスタ等を用いて電極1aから電気ストレスを印加することによって、電極1aの下の領域内にある絶縁破壊してないゲート酸化膜の酸化膜耐圧等の電気特性を容易に測定することができる。そして、このように測定したゲート酸化膜の絶縁破壊電界強度等からSOIウエーハの品質を詳細に評価することができる。このとき、例えばシリコン層がP型であれば、電極1aからシリコン層6の表面側が蓄積側となるように負電圧を印加することによって、ゲート酸化膜の酸化膜耐圧等を安定して測定することができる。   That is, since the buried oxide film 7 is dielectrically broken in the above-described process, a current path is secured in the buried oxide film 7. For example, as shown in FIG. 5, the back surface of the SOI wafer 10 is connected to the ground. By applying an electrical stress from the electrode 1a using a tester or the like connected to a prober, the electrical characteristics such as the oxide breakdown voltage of the gate oxide film in the region under the electrode 1a without breakdown are easily measured. can do. The quality of the SOI wafer can be evaluated in detail from the measured dielectric breakdown field strength of the gate oxide film. At this time, for example, if the silicon layer is P-type, by applying a negative voltage from the electrode 1a so that the surface side of the silicon layer 6 becomes the accumulation side, the oxide film breakdown voltage of the gate oxide film is stably measured. be able to.

以上のようにしてSOIウエーハの評価を行なうことによって、ウエーハの裏面と電気コンタクトを取ることができるようになるので、従来のようにSOIウエーハの表面に分離酸化膜や金属配線等を形成する必要がなく、SOIウエーハの評価工程を簡略化することができる。したがって、SOIウエーハにおけるシリコン層の品質、さらに埋め込み酸化膜の品質等を非常に簡便にかつ短時間で評価することができるとともに、測定精度も高い。   Since the evaluation of the SOI wafer as described above makes it possible to make electrical contact with the back surface of the wafer, it is necessary to form an isolation oxide film, a metal wiring, or the like on the surface of the SOI wafer as in the prior art. Therefore, the SOI wafer evaluation process can be simplified. Therefore, the quality of the silicon layer in the SOI wafer, the quality of the buried oxide film, etc. can be evaluated very simply and in a short time, and the measurement accuracy is high.

以下、実施例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
電気特性評価用試料として、直径200mm、導電型としてはボロンをドープしたP型のシリコンウエーハを用いて作製したSOIウエーハを準備した。このときのSOIウエーハにおけるシリコン層の厚さは145nmであり、埋め込み酸化膜の厚さは145nmであった。
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated more concretely, this invention is not limited to these.
An SOI wafer manufactured using a P-type silicon wafer having a diameter of 200 mm and a conductivity type doped with boron was prepared as an electrical property evaluation sample. At this time, the thickness of the silicon layer in the SOI wafer was 145 nm, and the thickness of the buried oxide film was 145 nm.

次に、このSOIウエーハに900℃の乾燥酸素雰囲気中でおよそ100分間の熱酸化処理を行って25nmのゲート酸化膜を形成し、このゲート酸化膜上にCVD法によりリンをドープした多結晶シリコンを堆積した。このとき、多結晶シリコンをおよそ300nmの厚さで堆積し、またそのシート抵抗値が25Ω/□程度となるようにした。   Next, this SOI wafer is thermally oxidized in a dry oxygen atmosphere at 900 ° C. for about 100 minutes to form a 25 nm gate oxide film, and phosphorus is doped on the gate oxide film by polycrystalline silicon. Deposited. At this time, polycrystalline silicon was deposited to a thickness of about 300 nm, and the sheet resistance value was about 25Ω / □.

続いて、この多結晶シリコン層にフォトリソグラフィを行なった後、フッ硝酸を用いてウエットエッチングを行ない、ゲート酸化膜上に3つの電極を図2に示すように3重の構造で形成した。その後、SOIウエーハの裏面に形成されている酸化膜を除去するために、SOIウエーハの表面側のゲート酸化膜および電極にレジストを塗布して保護し、ウエーハ裏面に希HF水溶液のウエットエッチングによる裏面処理を行った。   Subsequently, after photolithography was performed on the polycrystalline silicon layer, wet etching was performed using hydrofluoric acid, and three electrodes were formed on the gate oxide film in a triple structure as shown in FIG. Thereafter, in order to remove the oxide film formed on the back surface of the SOI wafer, a gate oxide film and an electrode on the surface side of the SOI wafer are coated and protected with a resist, and the back surface of the wafer back surface by wet etching with dilute HF aqueous solution Processed.

その後、フルオートプローバに接続したテスタを用いて、図3に示すように中間部に位置する電極1bから最外周に位置する電極1cに電流を印加して両電極の下の領域にあるゲート酸化膜を絶縁破壊した。このとき、テスタとしてプローバ及び配線にノイズ対策を施したものを使用した。また、電極1bから印加した電流密度は0.1A/cmであり、また電極1bの電極面積は4mmであった。 Thereafter, using a tester connected to a full auto prober, as shown in FIG. 3, a current is applied from the electrode 1b located at the intermediate portion to the electrode 1c located at the outermost periphery, so that the gate oxidation in the region below both electrodes is performed. The film was broken down. At this time, a prober and wiring with noise countermeasures were used as testers. The current density applied from the electrode 1b was 0.1 A / cm 2 , and the electrode area of the electrode 1b was 4 mm 2 .

次に、図4に示すように、電極1b及び電極1cからSOIウエーハの裏面に電圧を印加して埋め込み酸化膜7を絶縁破壊した。このときの電圧の印加条件は、電圧を0Vから0.1MV/cmのステップ電圧高さ(埋め込み酸化膜厚145nmの場合では、1.45Vに相当)でステップ状に徐々に上昇させるようにし、また電圧ステップ上昇後のステップ維持時間を200m秒に設定して電流のモニタリングを行った。この条件で電圧を最大150V程度まで印加し、およそ120V(8.2MV/cm)で埋め込み酸化膜がブレイクダウンしたことが確認できた。   Next, as shown in FIG. 4, a voltage was applied from the electrode 1b and the electrode 1c to the back surface of the SOI wafer to break down the buried oxide film 7. The voltage application condition at this time is such that the voltage is gradually increased stepwise at a step voltage height of 0 V to 0.1 MV / cm (corresponding to 1.45 V in the case of a buried oxide film thickness of 145 nm), Further, the current was monitored by setting the step maintenance time after the voltage step rise to 200 milliseconds. Under this condition, a voltage was applied up to about 150 V, and it was confirmed that the buried oxide film was broken down at about 120 V (8.2 MV / cm).

その後、図5に示すように、電極1aからSOIウエーハの裏面に電圧を印加して、電極1aの下の領域内にあるゲート酸化膜の電気特性を測定した。このときの電圧の印加条件は、電圧を0Vから0.25MV/cmのステップ電圧高さ(ゲート酸化膜厚25nmの場合では、0.625Vに相当)でステップ状に徐々に上昇させるようにし、また各ステップでの電圧ステップ上昇後のステップ維持時間を200m秒、アベレージング時間を20m秒に設定して電流のモニタリングを行った。その測定結果を図6に示す。   Thereafter, as shown in FIG. 5, a voltage was applied from the electrode 1a to the back surface of the SOI wafer, and the electrical characteristics of the gate oxide film in the region under the electrode 1a were measured. The voltage application condition at this time is such that the voltage is gradually increased stepwise at a step voltage height of 0 V to 0.25 MV / cm (corresponding to 0.625 V in the case of a gate oxide film thickness of 25 nm), Further, the current was monitored by setting the step maintaining time after the voltage step increase at each step to 200 ms and the averaging time to 20 ms. The measurement results are shown in FIG.

このように、本発明によれば、従来のような分離酸化膜や金属配線を形成せずにゲート酸化膜の絶縁破壊挙動を図6に示したように測定することができ、簡便かつ高精度でSOIウエーハの評価を行なうことができた。   As described above, according to the present invention, the dielectric breakdown behavior of the gate oxide film can be measured as shown in FIG. 6 without forming a conventional isolation oxide film or metal wiring, which is simple and highly accurate. We were able to evaluate SOI wafers.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は単なる例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above embodiment is merely an example, and the present invention has the same configuration as that of the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

例えば、上記では、支持基板とシリコン層との間に絶縁層となる埋め込み酸化膜が形成されているSOIウエーハを評価する場合を例に挙げて説明を行なっているが、本発明はこれに限定されず、前述のように、絶縁基板等の絶縁体上にシリコン層が形成されたSOIウエーハを評価する場合にも同様に適用することができる。   For example, in the above description, the case of evaluating an SOI wafer in which a buried oxide film serving as an insulating layer is formed between the support substrate and the silicon layer is described as an example. However, the present invention is not limited to this. However, as described above, the present invention can be similarly applied to the evaluation of an SOI wafer in which a silicon layer is formed on an insulator such as an insulating substrate.

本発明のSOIウエーハの評価方法の一例を示すフロー図である。It is a flowchart which shows an example of the evaluation method of the SOI wafer of this invention. 本発明のSOIウエーハの評価方法におけるゲート酸化膜及び電極の形成を概略的に説明する概略説明図である。It is a schematic explanatory drawing explaining roughly formation of the gate oxide film and electrode in the evaluation method of the SOI wafer of this invention. 本発明のSOIウエーハの評価方法におけるゲート酸化膜の絶縁破壊を概略的に説明する概略説明図である。It is a schematic explanatory drawing which illustrates roughly the dielectric breakdown of the gate oxide film in the SOI wafer evaluation method of this invention. 本発明のSOIウエーハの評価方法におけるSOIウエーハの絶縁層の絶縁破壊を概略的に説明する概略説明図である。It is a schematic explanatory drawing which illustrates roughly the dielectric breakdown of the insulating layer of SOI wafer in the evaluation method of SOI wafer of this invention. 本発明のSOIウエーハの評価方法におけるゲート酸化膜の電気特性の測定を概略的に説明する概略説明図である。FIG. 5 is a schematic explanatory diagram for schematically explaining measurement of electric characteristics of a gate oxide film in the SOI wafer evaluation method of the present invention. 実施例においてゲート酸化膜の絶縁破壊挙動を測定した結果を示す図である。It is a figure which shows the result of having measured the dielectric breakdown behavior of the gate oxide film in the Example. 従来のバルクウエーハの評価方法を概略的に示す概略説明図である。It is a schematic explanatory drawing which shows roughly the evaluation method of the conventional bulk wafer. 従来のSOIウエーハの評価方法を概略的に示す概略説明図である。It is a schematic explanatory drawing which shows roughly the evaluation method of the conventional SOI wafer.

符号の説明Explanation of symbols

1(1a,1b,1c)…電極、 2…ゲート酸化膜、
6…シリコン層、 7…埋め込み酸化膜、 8…支持基板、
10…SOIウエーハ、 11…シリコンウエーハ、
12…酸化膜(ゲート酸化膜)、
13…金属電極(ゲート電極)、 14…金属配線、
15…分離酸化膜、 16…シリコン層、
17…埋め込み酸化膜、 18…支持基板、 19…SOIウエーハ。
1 (1a, 1b, 1c) ... electrode, 2 ... gate oxide film,
6 ... silicon layer, 7 ... buried oxide film, 8 ... support substrate,
10 ... SOI wafer, 11 ... Silicon wafer,
12 ... oxide film (gate oxide film),
13 ... Metal electrode (gate electrode), 14 ... Metal wiring,
15 ... isolation oxide film, 16 ... silicon layer,
17 ... buried oxide film, 18 ... support substrate, 19 ... SOI wafer.

Claims (3)

絶縁層又は絶縁体上にシリコン層が形成されたSOIウエーハを評価する評価方法において、先ず前記シリコン層を酸化してゲート酸化膜を形成し、該ゲート酸化膜上に少なくとも3つの電極を形成した後、該形成した電極のうちの隣接する2つの電極間に電気ストレスを印加して該2つの電極の下の領域内にあるゲート酸化膜を絶縁破壊し、次に該隣接する2つの電極のうちの少なくとも1つから前記SOIウエーハの裏面に電気ストレスを印加して前記SOIウエーハの絶縁層又は絶縁体を絶縁破壊し、その後前記隣接する2つの電極以外の電極から前記SOIウエーハの裏面に電気ストレスを印加して該電極の下の領域内にあるゲート酸化膜の電気特性を測定することによって、SOIウエーハの評価を行なうことを特徴とするSOIウエーハの評価方法。   In an evaluation method for evaluating an SOI wafer in which a silicon layer is formed on an insulating layer or an insulator, the silicon layer is first oxidized to form a gate oxide film, and at least three electrodes are formed on the gate oxide film. Thereafter, an electrical stress is applied between two adjacent electrodes of the formed electrodes to break down the gate oxide film in the region under the two electrodes, and then the two adjacent electrodes An electrical stress is applied to the back surface of the SOI wafer from at least one of them to break down the insulating layer or insulator of the SOI wafer, and then an electric current is applied to the back surface of the SOI wafer from an electrode other than the two adjacent electrodes. An SOI wafer characterized in that an SOI wafer is evaluated by measuring electrical characteristics of a gate oxide film in a region under the electrode by applying stress. Evaluation method of Eha. 前記SOIウエーハの絶縁層又は絶縁体を絶縁破壊する際に、該絶縁層又は絶縁体の電気特性を測定することを特徴とする請求項1に記載のSOIウエーハの評価方法。   2. The method for evaluating an SOI wafer according to claim 1, wherein when the dielectric breakdown of the insulating layer or insulator of the SOI wafer is performed, electrical characteristics of the insulating layer or insulator are measured. 前記測定する電気特性として、酸化膜耐圧を測定することを特徴とする請求項1または請求項2に記載のSOIウエーハの評価方法。   3. The method for evaluating an SOI wafer according to claim 1, wherein an oxide film breakdown voltage is measured as the electrical characteristics to be measured.
JP2003288418A 2003-08-07 2003-08-07 Evaluation method of SOI wafer Expired - Fee Related JP4525024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003288418A JP4525024B2 (en) 2003-08-07 2003-08-07 Evaluation method of SOI wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003288418A JP4525024B2 (en) 2003-08-07 2003-08-07 Evaluation method of SOI wafer

Publications (2)

Publication Number Publication Date
JP2005057153A true JP2005057153A (en) 2005-03-03
JP4525024B2 JP4525024B2 (en) 2010-08-18

Family

ID=34367075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003288418A Expired - Fee Related JP4525024B2 (en) 2003-08-07 2003-08-07 Evaluation method of SOI wafer

Country Status (1)

Country Link
JP (1) JP4525024B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072373A1 (en) * 2006-12-11 2008-06-19 Shin-Etsu Handotai Co., Ltd. Semiconductor substrate evaluating method and semiconductor substrate evaluating element
JP2020113642A (en) * 2019-01-11 2020-07-27 株式会社Sumco Resistivity measurement method of high-resistance material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077336A (en) * 1999-09-01 2001-03-23 Sumitomo Metal Ind Ltd Substrate evaluation element and its manufacturing method
JP2001267384A (en) * 2000-03-15 2001-09-28 Mitsubishi Materials Silicon Corp Measurement method of pseudo-mosfet
JP2003133384A (en) * 2001-10-25 2003-05-09 Sumitomo Mitsubishi Silicon Corp Substrate evaluation element, manufacturing method therefor and evaluating method of soi substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077336A (en) * 1999-09-01 2001-03-23 Sumitomo Metal Ind Ltd Substrate evaluation element and its manufacturing method
JP2001267384A (en) * 2000-03-15 2001-09-28 Mitsubishi Materials Silicon Corp Measurement method of pseudo-mosfet
JP2003133384A (en) * 2001-10-25 2003-05-09 Sumitomo Mitsubishi Silicon Corp Substrate evaluation element, manufacturing method therefor and evaluating method of soi substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072373A1 (en) * 2006-12-11 2008-06-19 Shin-Etsu Handotai Co., Ltd. Semiconductor substrate evaluating method and semiconductor substrate evaluating element
JP2008147461A (en) * 2006-12-11 2008-06-26 Shin Etsu Handotai Co Ltd Method of evaluating semiconductor substrate, and element for evaluation of the semiconductor substrate
JP2020113642A (en) * 2019-01-11 2020-07-27 株式会社Sumco Resistivity measurement method of high-resistance material
JP7036043B2 (en) 2019-01-11 2022-03-15 株式会社Sumco How to measure resistivity of high resistance material

Also Published As

Publication number Publication date
JP4525024B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
WO2008047478A1 (en) Method for evaluating semiconductor wafer
WO2013187140A1 (en) Semiconductor substrate evaluating method, semiconductor substrate for evaluation, and semiconductor device
JP5434491B2 (en) Semiconductor substrate evaluation method and semiconductor device manufacturing method
JP4525024B2 (en) Evaluation method of SOI wafer
JP3846016B2 (en) Electronic shading damage measurement method
JP4848947B2 (en) Semiconductor substrate evaluation method and semiconductor substrate evaluation element
JP4576981B2 (en) Semiconductor substrate evaluation method and semiconductor substrate evaluation element
JP5857901B2 (en) Semiconductor substrate evaluation method
JP4570935B2 (en) Semiconductor substrate evaluation method and semiconductor substrate evaluation element
JP4506181B2 (en) Semiconductor wafer evaluation method
JP4742573B2 (en) Semiconductor substrate evaluation method and semiconductor substrate evaluation element
US8419892B2 (en) Plasma process detecting sensor
JP2002359362A (en) Element for estimating substrate, its manufacturing method, and estimation method of soi substrate
JP3876846B2 (en) Insulating film evaluation method
JP2004193542A (en) Single electron device, method of manufacturing the same, manufacturing method by simultaneously forming single electron device and mos transistor
JP2003100829A (en) Method for evaluating semiconductor wafer
JP2003100831A (en) Method for evaluating silicon wafer
JP2004119553A (en) Method for evaluating soi wafer
JP2001077336A (en) Substrate evaluation element and its manufacturing method
JP2005150208A (en) Evaluation method of soi wafer
JP3671894B2 (en) Substrate evaluation element, method for manufacturing the same, and method for evaluating SOI substrate
JP2007123648A (en) Wafer for evaluating ion implantation amount distribution
JP2004273970A (en) Method of evaluating semiconductor substrate
JP2000188314A (en) Method for evaluating dielectric breakdown characteristic of mis type semiconductor device
JP2008140994A (en) Method of evaluating semiconductor substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4525024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees