JP2005054631A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2005054631A
JP2005054631A JP2003285123A JP2003285123A JP2005054631A JP 2005054631 A JP2005054631 A JP 2005054631A JP 2003285123 A JP2003285123 A JP 2003285123A JP 2003285123 A JP2003285123 A JP 2003285123A JP 2005054631 A JP2005054631 A JP 2005054631A
Authority
JP
Japan
Prior art keywords
filter
forced regeneration
regeneration
forced
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003285123A
Other languages
Japanese (ja)
Other versions
JP4008866B2 (en
Inventor
Akira Kawakami
彰 川上
Takayuki Adachi
隆幸 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2003285123A priority Critical patent/JP4008866B2/en
Publication of JP2005054631A publication Critical patent/JP2005054631A/en
Application granted granted Critical
Publication of JP4008866B2 publication Critical patent/JP4008866B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device for detecting the abnormality of a PM exhaust amount resulting from an engine. <P>SOLUTION: A regeneration frequent time when a regeneration interval to determine a forcible regeneration timing for a DPF 25 in accordance therewith is shorter than a threshold value is determined, a continuous regeneration frequency where the regeneration frequent time continuously occurs is counted, the abnormality of the PM exhaust amount resulting from the engine 10 is determined when the counted continuous regeneration frequency exceeds a threshold value. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、ディーゼルエンジンの排気中に含まれるPM(Particulate Matter:粒子状物質)を除去処理するための排気浄化装置に関する。   The present invention relates to an exhaust emission control device for removing PM (Particulate Matter) contained in exhaust gas of a diesel engine.

近年、ディーゼルエンジンの排気中に含まれるPMの有望な低減手段のひとつとして、排気浄化装置(CR−DPF)の開発が注目される(特許文献1〜特許文献7、参照)。排気浄化装置は、エンジンの排気中に含まれるPMをフィルタに捕集しつつ、その捕集PMを触媒作用により連続的に燃焼除去するものである。このようなフィルタ装置においても、触媒には活性温度領域があり、これを下回るような排気温度での運転状態が長く継続すると、フィルタの連続再生が十分に行われず、PM堆積量が過剰になり、エンジン性能に悪影響を及ぼしかねない。また、フィルタにPM堆積量が過剰な状態で触媒の活性温度領域に入るような排気温度での運転状態へ移行すると、フィルタに過剰に堆積したPMが急激に燃焼する可能性があり、フィルタの溶損や亀裂を生じやすくなる。そのため、必要な時期に強制的な堆積PMの燃焼除去(フィルタの強制再生)が行われるのである。
特開2003−155915号 特開2003−155916号 特開2003−155919号 特開2003−129835号 特開2003−3833号 特開2003−83035号 特開2003−49633号
In recent years, development of an exhaust emission control device (CR-DPF) has attracted attention as one promising means for reducing PM contained in exhaust gas from a diesel engine (see Patent Documents 1 to 7). The exhaust purification device collects PM contained in the exhaust of the engine in a filter and continuously burns and removes the collected PM by catalytic action. Even in such a filter device, the catalyst has an active temperature region, and if the operation state at an exhaust temperature lower than this is continued for a long time, the filter is not sufficiently continuously regenerated and the amount of accumulated PM becomes excessive. May adversely affect engine performance. In addition, when shifting to an operation state at an exhaust temperature that enters the activation temperature range of the catalyst when the amount of PM accumulated on the filter is excessive, there is a possibility that the PM accumulated excessively on the filter may burn rapidly, It tends to cause melting and cracking. Therefore, forced removal of deposited PM (forced regeneration of the filter) is performed at a necessary time.
JP 2003-155915 A JP 2003-155916 A JP 2003-155919 A JP 2003-129835 A JP 2003-3833 JP 2003-83035 A JP 2003-49633 A

しかし、これらは、エンジンから排出されるPMがフィルタに堆積する量を検知する制御を行うが、PMを排出するエンジンの管理はできておらず、エンジンの異常や劣化等に起因してPMが大量に発生することに対処できないという問題点があった。   However, these perform control to detect the amount of PM accumulated in the filter from the engine, but management of the engine that exhausts PM is not performed, and PM is not generated due to engine abnormality or deterioration. There was a problem that it was not possible to cope with a large number of occurrences.

本発明は上記の問題点に鑑みてなされたものであり、エンジンに起因したPM排出量の異常を検知する排気浄化装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an exhaust emission control device that detects an abnormality in PM emission due to an engine.

第1の発明は、エンジンの排気中に含まれるPMをフィルタに捕集し、捕集されたPMを触媒作用により燃焼させる排気浄化装置に適用する。   The first invention is applied to an exhaust emission control device that collects PM contained in engine exhaust gas in a filter and burns the collected PM by catalytic action.

そして、フィルタ上流の排気圧力またはフィルタ前後の差圧が設定値を越えたときにフィルタの強制再生時期を判定する第一判定手段と、この第一判定手段と異なる方法に基づいてフィルタの強制再生時期を判定する第二判定手段と、フィルタの強制再生時期が判定される再生間隔時間が閾値より短くなる再生頻繁時を判定する再生間隔時間判定手段と、この再生頻繁時が連続して生じる連続再生回数をカウントするカウント手段と、カウントされた連続再生回数が閾値を越えた場合にPM排出量の異常と判定するエンジン異常判定手段とを備えたことを特徴とするものとした。   The first determination means for determining the forced regeneration timing of the filter when the exhaust pressure upstream of the filter or the differential pressure before and after the filter exceeds the set value, and the forced regeneration of the filter based on a method different from the first determination means Second determination means for determining the timing, reproduction interval time determination means for determining the regeneration frequent time when the regeneration interval time for determining the forced regeneration time of the filter is shorter than the threshold, and the continuous regeneration time continuously It is characterized by comprising counting means for counting the number of regenerations and engine abnormality determining means for judging that the PM emission amount is abnormal when the counted number of continuous regenerations exceeds a threshold value.

第2の発明は、第1の発明において、第二判定手段はフィルタのPM堆積量が所定値以上のときに強制再生時期を判定する構成としたことを特徴とする。   The second invention is characterized in that, in the first invention, the second judging means judges the forced regeneration time when the PM accumulation amount of the filter is not less than a predetermined value.

第3の発明は、第1の発明において、第二判定手段はフィルタの強制的な昇温制御の解除から計測される運転時間または運転距離が強制再生用に設定のインターバルに達するとその間にフィルタの強制的な昇温制御の履歴がないときに強制再生時期を判定する構成としたことを特徴とする。   According to a third aspect, in the first aspect, the second determination means performs the filter operation when the operation time or the operation distance measured from the forced release of the temperature rise control reaches the set interval for forced regeneration. The forced regeneration timing is determined when there is no history of forced temperature increase control.

第4の発明は、第1の発明において、第二判定手段は運転時間または運転距離またはフィルタの強制的な昇温制御の回数がPM堆積量を定期的に初期化する0リセット強制再生用に設定のインターバルに達すると強制再生時期を判定する構成としたことを特徴とする。   In a fourth aspect based on the first aspect, the second determination means is for 0 reset forced regeneration in which the operation time or the operation distance or the number of times of forced temperature increase control of the filter initializes the PM accumulation amount periodically. A feature is that the forced regeneration time is determined when the set interval is reached.

第1の発明によると、エンジンの異常や劣化等に起因してPMが大量に発生するような場合、フィルタ前後の差圧が上昇して強制再生開始の判定が行われ、この再生間隔時間が通常の間隔(例えば50時間)より短くなるため、この再生頻繁時が連続して生じる連続再生回数をカウントし、カウントした連続再生回数が閾値を越えた場合にエンジンに起因したPM排出量の異常と的確に判定できる。この判定結果を知らせることにより、エンジンの点検、修理を行うことが促され、エンジンの燃費等が悪化したまま放置されることを防止できる。   According to the first invention, when a large amount of PM is generated due to engine abnormality or deterioration, the differential pressure before and after the filter is increased, and the forced regeneration start is determined. Since it becomes shorter than the normal interval (for example, 50 hours), the number of continuous regenerations that occur continuously during this frequent regeneration is counted, and when the counted number of continuous regenerations exceeds the threshold, the PM emission abnormality caused by the engine is abnormal Can be judged accurately. By notifying the determination result, it is urged to inspect and repair the engine, and it is possible to prevent the engine from being left while the fuel consumption of the engine is deteriorated.

第2の発明においては、強制再生時期の判定にPM堆積量に基づく判定方法とフィルタ上流の排気圧力またはフィルタ前後の差圧に基づく判定方法とが併用され、これらのチェックが働くため、フィルタのPM堆積量が過剰に至るのを未然に回避しえる確率を高められる。   In the second aspect of the invention, the determination method based on the PM accumulation amount and the determination method based on the exhaust pressure upstream of the filter or the differential pressure before and after the filter are used in combination for determining the forced regeneration timing. It is possible to increase the probability of avoiding an excessive amount of PM deposition.

PM堆積量に基づく判定方法では、再生間隔時間が通常の間隔(例えば50時間)以上になるため、連続判定回数がクリアされ、この場合をエンジンに起因したPM排出量の異常と誤って判定することを回避できる。   In the determination method based on the PM accumulation amount, the regeneration interval time becomes equal to or longer than a normal interval (for example, 50 hours), so the continuous determination number is cleared, and this case is erroneously determined as an abnormality in the PM emission amount caused by the engine. You can avoid that.

第3の発明においては、強制再生時期の判定にフィルタ上流の排気圧力またはフィルタ前後の差圧に基づく判定方法と強制再生用のインターバルに基づく判定方法とが併用され、これらのチェックが働くため、フィルタのPM堆積量が過剰に至るのを未然に回避しえる確率を高められる。   In the third invention, the determination method based on the exhaust pressure upstream of the filter or the differential pressure before and after the filter and the determination method based on the interval for forced regeneration are used in combination to determine the forced regeneration timing, and these checks work. It is possible to increase the probability that the PM accumulation amount of the filter can be avoided in advance.

強制再生用のインターバルに基づく判定方法では、再生間隔時間が通常の間隔(例えば50時間)以上になるため、連続判定回数がクリアされ、この場合をエンジンに起因したPM排出量の異常と誤って判定することを回避できる。   In the determination method based on the interval for forced regeneration, since the regeneration interval time is longer than a normal interval (for example, 50 hours), the number of continuous determinations is cleared, and this case is mistaken for an abnormality in PM emission due to the engine. Judgment can be avoided.

第4の発明においては、強制再生時期の判定にフィルタ上流の排気圧力またはフィルタ前後の差圧に基づく判定方法と0リセット強制再生用のインターバルに基づく判定方法とが併用され、これらのチェックが働くため、フィルタのPM堆積量が過剰に至るのを未然に回避しえる確率を高められる。   In the fourth aspect of the invention, the determination method based on the exhaust pressure upstream of the filter or the differential pressure before and after the filter and the determination method based on the zero reset forced regeneration interval are used in combination to determine the forced regeneration timing. Therefore, it is possible to increase the probability of avoiding an excessive amount of PM accumulated on the filter.

0リセット強制再生用のインターバルに基づく判定方法では、再生間隔時間が通常の間隔(例えば50時間)以上になるため、連続判定回数がクリアされ、この場合をエンジンに起因したPM排出量の異常と誤って判定することを回避できる。   In the determination method based on the interval for 0 reset forced regeneration, the regeneration interval time is equal to or greater than a normal interval (for example, 50 hours), so the number of continuous determinations is cleared, and this case is regarded as abnormal PM emission due to the engine. Incorrect determination can be avoided.

以下、本発明の実施の形態を添付図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1において、10はディーゼルエンジンであり、コモンレール式燃料噴射装置(図示せず)を備える。エンジン10の吸気通路11にターボ過給機12のコンプレッサ12a、インタクーラ13、吸気絞り弁14が介装される。エンジン10の排気通路15にターボ過給機12のタービン12b、排気絞り弁16、排気浄化装置(CR−DPF)17、が介装される。コモンレール式燃料噴射装置は、コモンレールに燃料を蓄圧する高圧ポンプと、コモンレールに各気筒の噴射ノズルを接続する燃料供給管と、を備える。燃料噴射装置および後述の予熱手段を制御するのがコントロールユニット20であり、通常の制御マップのほか、強制再生用の昇温制御マップが格納される。21はEGR(排気還流)装置のEGRバルブ、22はターボ過給機12のタービン12bを迂回するターボバイパスの開閉バルブである。   In FIG. 1, reference numeral 10 denotes a diesel engine, which includes a common rail fuel injection device (not shown). A compressor 12a, an intercooler 13 and an intake throttle valve 14 of a turbocharger 12 are interposed in the intake passage 11 of the engine 10. A turbine 12 b of the turbocharger 12, an exhaust throttle valve 16, and an exhaust purification device (CR-DPF) 17 are interposed in the exhaust passage 15 of the engine 10. The common rail fuel injection device includes a high-pressure pump that accumulates fuel in the common rail, and a fuel supply pipe that connects the injection nozzle of each cylinder to the common rail. The control unit 20 controls the fuel injection device and the preheating means described later, and stores a temperature increase control map for forced regeneration in addition to a normal control map. Reference numeral 21 denotes an EGR valve of an EGR (exhaust gas recirculation) device, and reference numeral 22 denotes a turbo bypass opening / closing valve that bypasses the turbine 12 b of the turbocharger 12.

CR−DPF17は、DPF25と酸化触媒26とから構成される。DPF25は、ハニカム構造体に形成され、その格子状に区画される流路(セル)の入口と出口が交互に目封じされる。つまり、入口の目封じされる流路と出口の目封じされる流路とが交互に隣接され、これらを区画する多孔質の隔壁が排気の通過を許容するようになっている。この例においては、隔壁に捕集されるPMの燃焼可能な着火温度を低めに設定するため、触媒(アルミナ等)付きフィルタが採用される。酸化触媒26は、触媒を担持するハニカム構造体に形成され、ハニカム構造体の格子状に区画される流路を通過する排気に含まれる主にHC(炭化水素)を酸化処理するものであり、その反応熱により触媒温度が上昇して堆積PMの燃焼を促進するのである。   The CR-DPF 17 includes a DPF 25 and an oxidation catalyst 26. The DPF 25 is formed in a honeycomb structure, and the inlets and outlets of flow paths (cells) partitioned in a lattice shape are alternately plugged. That is, the flow path sealed at the inlet and the flow path sealed at the outlet are alternately adjacent to each other, and the porous partition walls that partition these allow passage of the exhaust gas. In this example, a filter with a catalyst (alumina or the like) is employed in order to set the combustible ignition temperature of PM collected in the partition walls to a low value. The oxidation catalyst 26 is formed in the honeycomb structure carrying the catalyst, and mainly oxidizes HC (hydrocarbon) contained in the exhaust gas that passes through the flow path partitioned in a lattice shape of the honeycomb structure. The heat of reaction raises the catalyst temperature and promotes the combustion of the deposited PM.

コントロールユニット20の制御に必要な検出手段として、エンジン回転数Neを検出する回転センサ(クランク角センサを兼ねる)およびエンジン負荷qを検出する負荷センサのほか、CR−DPF17の入口圧力と出口圧力との差圧を検出する差圧センサ30、DPF25の入口温度を検出する温度センサ31aとDPF25の出口温度を検出する温度センサ31b、吸気流量を検出するエアフローセンサ32、等が設けられる。   As detection means necessary for control of the control unit 20, in addition to a rotation sensor (also serving as a crank angle sensor) for detecting the engine speed Ne and a load sensor for detecting the engine load q, the inlet pressure and outlet pressure of the CR-DPF 17 There are provided a differential pressure sensor 30 for detecting the differential pressure, a temperature sensor 31a for detecting the inlet temperature of the DPF 25, a temperature sensor 31b for detecting the outlet temperature of the DPF 25, an air flow sensor 32 for detecting the intake flow rate, and the like.

コントロールユニット20は、エンジン回転数Neとエンジン負荷qとから通常の制御マップに基づいて噴射ノズルへの燃料噴射信号(噴射量の指令および噴射時期の指令)を決定する。DPF25の強制再生が必要な時期を判定すると、通常の制御マップから強制再生用の昇温マップに切り替わり、CR−DPF17の雰囲気温度が所定値(例えば、230℃)を下回るときは、触媒の予熱手段を駆動するほか、必要があれば昇温マップに基づいて燃料のメイン噴射に続いて燃焼可能なタイミングでアフタ噴射を行うような燃料噴射信号を決定する一方、CR−DPFの雰囲気温度が所定値以上のときは、昇温マップに基づいてメイン噴射から大幅に遅れるタイミングでポスト噴射を行うような燃料噴射信号を決定するのである。   The control unit 20 determines a fuel injection signal (injection amount command and injection timing command) to the injection nozzle based on the normal control map from the engine speed Ne and the engine load q. When the time when the forced regeneration of the DPF 25 is necessary is determined, the normal control map is switched to the temperature increase map for forced regeneration. When the atmospheric temperature of the CR-DPF 17 falls below a predetermined value (for example, 230 ° C.), the catalyst preheating is performed. In addition to driving the means, if necessary, a fuel injection signal for performing after injection at a combustible timing following the main injection of fuel is determined based on the temperature increase map, while the atmospheric temperature of the CR-DPF is predetermined. When the value is equal to or greater than the value, a fuel injection signal for performing post injection at a timing significantly delayed from the main injection is determined based on the temperature increase map.

触媒の予熱手段については、EGRバルブ21、吸気絞り弁14または排気絞り弁16、ターボバイパスの開閉バルブ22、がエンジン10の排気温度を積極的に高める制御に利用される。ターボ過給機12が可変ノズル式の場合、ターボバイパスの開閉バルブ22の代わりに可変ノズルを触媒の予熱手段として制御することも考えられる。   As for the catalyst preheating means, the EGR valve 21, the intake throttle valve 14 or the exhaust throttle valve 16, and the turbo bypass open / close valve 22 are used for control to positively increase the exhaust temperature of the engine 10. When the turbocharger 12 is of a variable nozzle type, it is conceivable to control the variable nozzle as a catalyst preheating means instead of the turbo bypass opening / closing valve 22.

DPF25の強制再生が必要な時期の判定については、DPF25のPM堆積量(推定量)が所定値以上のときに強制再生時期を判定する第二判定手段(図2のS2)と、DPF25前後の差圧(またはCR−DPF17の入口圧力)が所定値以上のときに強制再生時期を判定する第一判定手段(図2のS4)と、PM堆積量に基づく強制再生の完了から計測される運転時間(または運転距離)が強制再生用に設定のインターバルに達するとその間に強制再生の履歴がないときに強制再生時期を判定する第二判定手段(図2のS6)と、運転時間(または運転距離または強制再生の回数)がPM堆積量を定期的に初期化する0リセット強制再生用のインターバルに達すると強制再生を判定する第二判定手段(図2のS8)と、が設定される。   Regarding the determination of the time when the forced regeneration of the DPF 25 is required, the second determination means (S2 in FIG. 2) for determining the forced regeneration time when the PM accumulation amount (estimated amount) of the DPF 25 is equal to or greater than a predetermined value, First determination means (S4 in FIG. 2) for determining the forced regeneration timing when the differential pressure (or the inlet pressure of the CR-DPF 17) is equal to or higher than a predetermined value, and the operation measured from the completion of the forced regeneration based on the PM accumulation amount When the time (or driving distance) reaches an interval set for forced regeneration, second determination means (S6 in FIG. 2) for determining the forced regeneration timing when there is no forced regeneration history, and the operation time (or operation) The second determination means (S8 in FIG. 2) for determining forced regeneration when the distance or the number of forced regenerations reaches an interval for 0 reset forced regeneration that periodically initializes the PM accumulation amount.

DPF25の強制再生時期は、このような複数の異なる方法に基づいて判定され、これら何れかの判定を受けると、そのときの判定方法に対応する強制再生モード(図4参照)としてPM堆積量に応じた強制再生温度および強制再生時間を設定する手段(図2のS9)が設定される。   The forced regeneration timing of the DPF 25 is determined based on such a plurality of different methods, and when any one of these determinations is received, the forced regeneration mode (see FIG. 4) corresponding to the determination method at that time is used as the PM accumulation amount. A means (S9 in FIG. 2) for setting the corresponding forced regeneration temperature and forced regeneration time is set.

DPF25前後の差圧(またはCR−DPF17の入口圧力)から強制再生時期を判定する手段においては、強制再生時期の判定基準となる所定値としてレベル1とこれより高いレベル2が設定され、これらレベル1、レベル2に基づく強制再生時期の判定毎に異なる強制再生モードとしてPM堆積量に応じた強制再生時間および強制再生温度が設定されるのである。   In the means for determining the forced regeneration timing from the differential pressure before and after the DPF 25 (or the inlet pressure of the CR-DPF 17), a level 1 and a level 2 higher than this are set as a predetermined value as a criterion for the forced regeneration timing. 1. The forced regeneration time and the forced regeneration temperature corresponding to the PM accumulation amount are set as different forced regeneration modes for each forced regeneration time determination based on Level 1 and Level 2.

PM堆積量の算出(図2のS1)については、吸気流量(エアフローセンサ32の検出信号)と燃料流量(エンジン負荷qの検出信号)とから空気過剰率を求め、空気過剰率からスモーク濃度を求め、スモーク濃度と吸気流量とから単位時間あたりのPM排出量を求める。その一方、DPFのPM燃焼特性マップに基づいて、触媒の酸化作用により堆積PMの燃焼が開始される排気条件において、単位時間あたりのPM燃焼量を求める。具体的には、触媒による酸化反応の効率に影響を与える空間速度を求め、DPF25の触媒温度(DPF25の出口温度またはDPF25の入り口温度と出口温度との平均値)と空間速度とからPM燃焼速度を求め、単位時間あたりのPM燃焼量に変換する。そして、PM排出量からPM燃焼量を引く減算値を順次に積算することにより、DPFのPM堆積量を求めるのである。減算値は、負になる可能性があるので、負の減算値=0に修正する処理が設定される。   Regarding the calculation of the PM accumulation amount (S1 in FIG. 2), the excess air ratio is obtained from the intake flow rate (detection signal of the air flow sensor 32) and the fuel flow rate (detection signal of the engine load q), and the smoke concentration is calculated from the excess air ratio. The PM emission amount per unit time is obtained from the smoke concentration and the intake flow rate. On the other hand, based on the PM combustion characteristic map of the DPF, the PM combustion amount per unit time is obtained under the exhaust condition where the combustion of the deposited PM is started by the oxidation of the catalyst. Specifically, the space velocity that affects the efficiency of the oxidation reaction by the catalyst is obtained, and the PM combustion rate is calculated from the catalyst temperature of the DPF 25 (the outlet temperature of the DPF 25 or the average value of the inlet temperature and the outlet temperature of the DPF 25) and the space velocity. Is converted into a PM combustion amount per unit time. Then, the PM accumulation amount of the DPF is obtained by sequentially integrating the subtraction value obtained by subtracting the PM combustion amount from the PM emission amount. Since the subtraction value may be negative, processing for correcting the negative subtraction value = 0 is set.

図2、図3は、コントロールユニット20の制御内容を説明するフローチャートであり、S1においては、DPF25のPM堆積量を算出する。S2においては、PM堆積量の算出値(推定量)が所定値以上かどうかを判定する。S3においては、DPF25前後の差圧を読み込む。S4においては、差圧がレベル1またはレベル2を超過かどうかを判定する。S5においては、運転時間(または運転距離)の計測値を読み込む。S6においては、運転時間(または運転距離)の計測値が強制再生用のインターバルに達したかどうかを判定する。S7においては、運転時間(または運転距離または強制再生回数)の計測値を読み込む。S8においては、運転時間(または運転距離または強制再生回数)の計測値が0リセット強制再生用のインターバルに達したかどうかを判定する。   2 and 3 are flowcharts for explaining the control contents of the control unit 20. In S1, the PM accumulation amount of the DPF 25 is calculated. In S2, it is determined whether the calculated value (estimated amount) of the PM accumulation amount is equal to or greater than a predetermined value. In S3, the differential pressure before and after the DPF 25 is read. In S4, it is determined whether or not the differential pressure exceeds level 1 or level 2. In S5, the measured value of driving time (or driving distance) is read. In S6, it is determined whether or not the measured value of the driving time (or driving distance) has reached the forced regeneration interval. In S7, a measured value of driving time (or driving distance or forced regeneration count) is read. In S8, it is determined whether or not the measured value of the driving time (or the driving distance or the number of forced regenerations) has reached the zero reset forced regeneration interval.

S2の判定がnoかつS4の判定がnoかつS6の判定がnoかつS8の判定がnoのときは、S1へ戻る。S2の判定がyesまたはS4の判定がyesまたはS6の判定がyesまたはS8の判定がyesのときは、S9へ進む。S9においては、強制再生時期の判定(yes)がS2の判定〜S84の判定の何れかに拠るのかに応じて強制再生モードを選定する(図4参照)。S6の判定に拠る場合、強制再生用のインターバルに対応する強制再生モードにより、強制再生温度Treg4および強制再生時間T4をPM堆積量に応じて設定する。S8の判定に拠る場合、0リセット強制再生用のインターバルに対応する強制再生モードにより、強制再生温度Treg5および強制再生時間T5をPM堆積量に応じて設定する。   If the determination of S2 is no, the determination of S4 is no, the determination of S6 is no, and the determination of S8 is no, the process returns to S1. When the determination of S2 is yes or the determination of S4 is yes or the determination of S6 is yes or the determination of S8 is yes, the process proceeds to S9. In S9, the forced regeneration mode is selected according to whether the forced regeneration timing determination (yes) depends on any of the determinations in S2 to S84 (see FIG. 4). When based on the determination of S6, the forced regeneration temperature Treg4 and the forced regeneration time T4 are set according to the PM accumulation amount in the forced regeneration mode corresponding to the forced regeneration interval. When based on the determination of S8, the forced regeneration temperature Treg5 and the forced regeneration time T5 are set according to the PM accumulation amount in the forced regeneration mode corresponding to the zero reset forced regeneration interval.

S10においては、選定の強制再生モードに基づいて強制再生を実行する。触媒の酸化反応に十分な排気温度の運転状態のときは、DPF25の出口温度を監視しながら、昇温マップに基づいてメイン噴射から大幅に遅れるタイミングでポスト噴射を行うように燃料噴射装置を制御する。触媒の酸化反応に必要な排気温度を下回る運転状態のときは、CR−DPF17の雰囲気温度を監視しながら、触媒の予熱手段を制御するほか、必要があれば昇温マップに基づいてメイン噴射に続いて燃焼可能なタイミングでアフタ噴射を行うように燃料噴射装置を制御する。アフタ噴射においては、燃料の発熱量のうちの動力に使用されない熱量が増えて排気温度が上昇するため、DPF25の触媒も堆積PMの酸化処理に必要な温度へ高められるのである。触媒温度が酸化処理に必要な温度に至ると昇温マップを切り替えてポスト噴射により、排気中に添加される未燃燃料が触媒上で酸化反応され、その反応熱により触媒温度を上昇させるため、堆積PMの燃焼処理が促進される。   In S10, forced regeneration is executed based on the selected forced regeneration mode. When the exhaust gas temperature is sufficient for the oxidation reaction of the catalyst, the fuel injection device is controlled so that the post injection is performed at a timing substantially delayed from the main injection based on the temperature rise map while monitoring the outlet temperature of the DPF 25 To do. When operating below the exhaust temperature required for the oxidation reaction of the catalyst, the catalyst preheating means is controlled while monitoring the atmospheric temperature of the CR-DPF 17, and if necessary, the main injection is performed based on the temperature increase map. Subsequently, the fuel injection device is controlled to perform after injection at a combustible timing. In the after-injection, the amount of heat not used for power in the calorific value of the fuel increases and the exhaust gas temperature rises, so that the catalyst of the DPF 25 is also raised to the temperature necessary for the oxidation treatment of the deposited PM. When the catalyst temperature reaches the temperature required for the oxidation treatment, the unburned fuel added to the exhaust is oxidized on the catalyst by post-injection by switching the temperature increase map, and the catalyst heat is raised by the reaction heat. The combustion process of the deposited PM is promoted.

S11においては、DPF25の出口温度が強制再生温度に達するかどうか、を判定する。S11の判定がyesになると、S12へ進む一方、S11の判定がnoのときは、yesになるまで判定を繰り返す。S12においては、DPF25の出口温度が強制再生温度以上の継続時間が強制再生時間に達したかどうかを判定する。S12の判定がyesになると、S13へ進む一方、S12の判定がnoのときは、yesになるまで判定を繰り返す。S13においては、強制再生モードをリセットする。S14においては、強制再生の昇温制御を解除すると共に通常の燃料噴射へ復帰するのである。   In S11, it is determined whether or not the outlet temperature of the DPF 25 reaches the forced regeneration temperature. If the determination in S11 is yes, the process proceeds to S12, while if the determination in S11 is no, the determination is repeated until yes. In S12, it is determined whether or not the duration time at which the outlet temperature of the DPF 25 is equal to or higher than the forced regeneration temperature has reached the forced regeneration time. If the determination in S12 is yes, the process proceeds to S13. If the determination in S12 is no, the determination is repeated until yes. In S13, the forced regeneration mode is reset. In S14, the temperature increase control for forced regeneration is canceled and the routine returns to normal fuel injection.

なお、差圧センサ30、温度センサ31a、温度センサ31b、エアフローセンサ32等を含むCR−DPF17のシステムの異常は別のルーチンで処理され、このシステムの異常があると判定された場合は図示しない異常ランプを点灯し、これを知らせるようになっている。   The system abnormality of the CR-DPF 17 including the differential pressure sensor 30, the temperature sensor 31a, the temperature sensor 31b, the air flow sensor 32, etc. is processed in another routine, and it is not shown when it is determined that there is an abnormality in this system. An abnormal lamp is lit to inform you of this.

そして、本発明は、エンジン10に起因したPM排出量の異常を検知するために、DPF25の強制再生時期が判定される再生間隔時間が閾値より短くなる再生頻繁時を判定する再生間隔時間判定手段と、この再生頻繁時が連続して生じる連続再生回数をカウントするカウント手段と、カウントされた連続再生回数が閾値を越えた場合にエンジン10に起因したPM排出量の異常と判定するエンジン異常判定手段とを備える。なお、再生間隔時間が閾値以上となったことが判定された場合は、連続再生回数はクリアされる。   In the present invention, in order to detect an abnormality in the PM emission amount caused by the engine 10, a regeneration interval time determining means for determining a regeneration frequent time in which the regeneration interval time for determining the forced regeneration timing of the DPF 25 is shorter than a threshold value. And a counting means for counting the number of times of continuous regeneration that occurs frequently during regeneration, and an engine abnormality determination for determining that the PM emission amount is abnormal due to the engine 10 when the counted number of continuous regeneration exceeds a threshold value. Means. If it is determined that the playback interval time is equal to or greater than the threshold value, the continuous playback count is cleared.

図5のフローチャートはエンジン10に起因したPM排出量の異常を検知するルーチンを示しており、コントロールユニット20において一定周期毎に実行される。   The flowchart of FIG. 5 shows a routine for detecting an abnormality in the PM emission amount caused by the engine 10 and is executed in the control unit 20 at regular intervals.

これについて説明すると、まずステップ1において、DPF25の強制再生開始の判定があるかどうかを判定する。   This will be described. First, in step 1, it is determined whether or not there is a determination of the forced regeneration start of the DPF 25.

この強制再生開始の判定があった場合、ステップ2に進んで、DPF25の強制再生時期が判定される再生間隔時間を計測し、この再生間隔時間が閾値(例えば50時間)より短くなる再生頻繁時かどうかを判定する。なお、このステップ2において行われる処理が再生間隔時間判定手段に相当する。   When the forced regeneration start is determined, the process proceeds to step 2 to measure the regeneration interval time at which the forced regeneration timing of the DPF 25 is determined, and the regeneration frequent time when the regeneration interval time becomes shorter than a threshold (for example, 50 hours). Determine whether or not. The process performed in step 2 corresponds to a reproduction interval time determination unit.

ステップ2において再生頻繁時と判定された場合、ステップ3に進んで、この再生頻繁時が連続して生じる連続再生回数をカウントする。なお、このステップ2において行われる処理がカウント手段に相当する。   If it is determined in step 2 that the reproduction is frequent, the process proceeds to step 3 to count the number of continuous reproductions in which the frequent reproduction occurs continuously. Note that the processing performed in step 2 corresponds to counting means.

一方、ステップ2において再生間隔時間が閾値以上となると判定された場合は、連続再生回数をクリアする。   On the other hand, if it is determined in step 2 that the playback interval time is equal to or greater than the threshold, the number of continuous playbacks is cleared.

続いてステップ4に進んで、カウントした連続再生回数が閾値(例えば3回)を越えたかどうかを判定する。なお、このステップ4において行われる処理がエンジン異常判定手段に相当する。   Subsequently, the process proceeds to step 4 to determine whether or not the counted number of continuous reproductions exceeds a threshold value (for example, 3 times). The process performed in step 4 corresponds to engine abnormality determination means.

ここで連続再生回数が閾値以下の場合、ステップ6に進んで、前述した強制再生モードに基づいて強制再生を実行する。   Here, when the number of times of continuous reproduction is equal to or less than the threshold value, the process proceeds to step 6 to execute forced regeneration based on the above-described forced regeneration mode.

一方、連続再生回数が閾値を超えた場合、エンジン10に起因したPM排出量の異常が生じたものとして、ステップ5に進んで、異常ランプを点灯する。これにより、エンジン10の点検、修理を行うことが促され、エンジン10の燃費等が悪化したまま放置されることを防止できる。   On the other hand, if the number of continuous regenerations exceeds the threshold value, it is determined that an abnormality in the PM emission amount caused by the engine 10 has occurred, and the process proceeds to step 5 to turn on the abnormal lamp. This prompts the engine 10 to be inspected and repaired, and can prevent the engine 10 from being left with the fuel economy and the like deteriorated.

以上のように、エンジンの異常や劣化等に起因してPMが大量に発生するような場合、DPF25前後の差圧が上昇して強制再生開始の判定が行われ、この再生間隔時間が通常の間隔(例えば50時間)より短くなるため、この再生頻繁時が連続して生じる連続再生回数をカウントし、カウントした連続再生回数が閾値を越えた場合にエンジン10に起因したPM排出量の異常と的確に判定できる。   As described above, when a large amount of PM is generated due to an abnormality or deterioration of the engine, the differential pressure before and after the DPF 25 is increased and the forced regeneration start is determined, and this regeneration interval time is normal. Since it becomes shorter than the interval (for example, 50 hours), the number of continuous regenerations that occur continuously during this regeneration frequency is counted, and when the counted number of continuous regenerations exceeds a threshold value, an abnormality in PM emission caused by the engine 10 is detected. Can be judged accurately.

これに対して、次の条件を満たしてDPF25の強制再生開始の判定が行われた場合には、再生間隔時間が通常の間隔(例えば50時間)以上になるため、連続判定回数がクリアされる。
・DPF25のPM堆積量(推定量)が所定値以上となって強制再生に到る場合。
・PM堆積量に基づく強制再生の完了から計測される運転時間(または運転距離)が強制再生用に設定のインターバルに達するとその間に強制再生の履歴がないときに強制再生に到る場合。
・運転時間(または運転距離または強制再生の回数)がPM堆積量を定期的に初期化する0リセット強制再生用のインターバルに達して強制再生に到る場合。
これにより、これらの場合をエンジン10に起因したPM排出量の異常と誤って判定することを回避できる。
On the other hand, when the following conditions are satisfied and the forced regeneration start determination of the DPF 25 is performed, the regeneration interval time becomes equal to or longer than a normal interval (for example, 50 hours), and thus the continuous determination count is cleared. .
-When the amount of accumulated PM (estimated amount) in the DPF 25 exceeds a predetermined value and forced regeneration is reached.
-When the operation time (or operation distance) measured from the completion of forced regeneration based on the PM accumulation amount reaches an interval set for forced regeneration, forced regeneration is reached when there is no history of forced regeneration.
-When the operation time (or operation distance or the number of forced regenerations) reaches the zero reset forced regeneration interval that periodically initializes the PM accumulation amount and reaches forced regeneration.
Thereby, it can be avoided that these cases are erroneously determined as abnormal PM emission due to the engine 10.

本発明は上記の実施の形態に限定されずに、その技術的な思想の範囲内において種々の変更がなしうることは明白である。   The present invention is not limited to the above-described embodiment, and it is obvious that various modifications can be made within the scope of the technical idea.

本発明は、ディーゼルエンジンに備えられる排気浄化装置に利用できる。   The present invention can be used for an exhaust purification device provided in a diesel engine.

システムの構成を説明する概要図である。It is a schematic diagram explaining the structure of a system. コントロールユニットの制御内容を説明するフローチャートである。It is a flowchart explaining the control content of a control unit. コントロールユニットの制御内容を説明するフローチャートである。It is a flowchart explaining the control content of a control unit. コントロールユニットの制御内容に係る強制再生モード設定例である。It is an example of forced regeneration mode setting which concerns on the control content of a control unit. コントロールユニットの制御内容を説明するフローチャートである。It is a flowchart explaining the control content of a control unit.

符号の説明Explanation of symbols

10 ディーゼルエンジン
11 吸気通路
12 ターボ過給機
14 吸気絞り弁
15 排気通路
16 排気絞り弁
17 CR−DPF(排気浄化装置)
20 コントロールユニット
21 EGRバルブ
22 ターボバイパスの開閉バルブ
25 DPF(フィルタ)
26 酸化触媒
30 差圧センサ
31a,31b 温度センサ
32 エアフローセンサ
DESCRIPTION OF SYMBOLS 10 Diesel engine 11 Intake passage 12 Turbo supercharger 14 Intake throttle valve 15 Exhaust passage 16 Exhaust throttle valve 17 CR-DPF (Exhaust gas purification device)
20 Control unit 21 EGR valve 22 Open / close valve for turbo bypass 25 DPF (filter)
26 Oxidation catalyst 30 Differential pressure sensor 31a, 31b Temperature sensor 32 Air flow sensor

Claims (4)

エンジンの排気中に含まれるPMをフィルタに捕集し、捕集されたPMを触媒作用により燃焼させる排気浄化装置において、
フィルタ上流の排気圧力またはフィルタ前後の差圧が設定値を越えたときにフィルタの強制再生時期を判定する第一判定手段と、この第一判定手段と異なる方法に基づいてフィルタの強制再生時期を判定する第二判定手段と、フィルタの強制再生時期が判定される再生間隔時間が閾値より短くなる再生頻繁時を判定する再生間隔時間判定手段と、この再生頻繁時が連続して生じる連続再生回数をカウントするカウント手段と、カウントされた連続再生回数が閾値を越えた場合にPM排出量の異常と判定するエンジン異常判定手段とを備えたことを特徴とする排気浄化装置。
In an exhaust purification device that collects PM contained in the exhaust of an engine in a filter and burns the collected PM by a catalytic action,
The first determination means for determining the forced regeneration timing of the filter when the exhaust pressure upstream of the filter or the differential pressure before and after the filter exceeds the set value, and the forced regeneration timing of the filter based on a method different from the first determination means. Second determination means for determining, reproduction interval time determining means for determining a regeneration frequent time when the regeneration interval time for determining the forced regeneration timing of the filter is shorter than a threshold, and the number of times of continuous regeneration in which this frequent regeneration time occurs continuously An exhaust emission control device comprising: a counting means for counting the amount of exhaust gas; and an engine abnormality determining means for determining that the PM emission amount is abnormal when the counted number of continuous regenerations exceeds a threshold value.
前記第二判定手段は前記フィルタのPM堆積量が所定値以上のときに強制再生時期を判定する構成としたことを特徴とする請求項1に記載の排気浄化装置。   2. The exhaust emission control device according to claim 1, wherein the second determination unit is configured to determine a forced regeneration timing when a PM accumulation amount of the filter is equal to or greater than a predetermined value. 前記第二判定手段は前記フィルタの強制的な昇温制御の解除から計測される運転時間または運転距離が強制再生用に設定のインターバルに達するとその間にフィルタの強制的な昇温制御の履歴がないときに強制再生時期を判定する構成としたことを特徴とする請求項1に記載の排気浄化装置。   When the operation time or operation distance measured from the cancellation of the forced temperature rise control of the filter reaches an interval set for forced regeneration, the second determination means has a history of forced temperature rise control of the filter during that time. 2. The exhaust emission control device according to claim 1, wherein the forced regeneration timing is determined when there is not. 前記第二判定手段は運転時間または運転距離または前記フィルタの強制的な昇温制御の回数がPM堆積量を定期的に初期化する0リセット強制再生用に設定のインターバルに達すると強制再生時期を判定する構成としたことを特徴とする請求項1に記載の排気浄化装置。   The second determination means sets the forced regeneration timing when the operation time or the operation distance or the number of times of forced temperature increase control of the filter reaches an interval set for 0 reset forced regeneration that initializes the PM accumulation amount periodically. The exhaust emission control device according to claim 1, wherein the exhaust gas purification device is configured to determine.
JP2003285123A 2003-08-01 2003-08-01 Exhaust purification equipment Expired - Fee Related JP4008866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003285123A JP4008866B2 (en) 2003-08-01 2003-08-01 Exhaust purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003285123A JP4008866B2 (en) 2003-08-01 2003-08-01 Exhaust purification equipment

Publications (2)

Publication Number Publication Date
JP2005054631A true JP2005054631A (en) 2005-03-03
JP4008866B2 JP4008866B2 (en) 2007-11-14

Family

ID=34364862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003285123A Expired - Fee Related JP4008866B2 (en) 2003-08-01 2003-08-01 Exhaust purification equipment

Country Status (1)

Country Link
JP (1) JP4008866B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156241A (en) * 2008-12-26 2010-07-15 Toyota Motor Corp Abnormality determination device for internal combustion engine
WO2010097893A1 (en) * 2009-02-24 2010-09-02 トヨタ自動車株式会社 Abnormality diagnosis system and abnormality diagnosis method of filter regeneration system
JP2011241741A (en) * 2010-05-17 2011-12-01 Isuzu Motors Ltd Dpf system
KR101163785B1 (en) 2005-12-06 2012-07-09 기아자동차주식회사 A method for detection soot mass in a catalyzed particulate filter system of diesel vehicle
US20120311994A1 (en) * 2011-06-07 2012-12-13 GM Global Technology Operations LLC Particulate filter monitoring methods and systems
JP2014156866A (en) * 2014-04-23 2014-08-28 Yanmar Co Ltd Diesel engine
WO2015178176A1 (en) * 2014-05-21 2015-11-26 いすゞ自動車株式会社 Management system
JP2019190348A (en) * 2018-04-24 2019-10-31 株式会社クボタ Exhaust treatment device of diesel engine
CN115324695A (en) * 2022-06-29 2022-11-11 湖南道依茨动力有限公司 Particle catcher frequent regeneration detection method, engine system and engineering equipment

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101163785B1 (en) 2005-12-06 2012-07-09 기아자동차주식회사 A method for detection soot mass in a catalyzed particulate filter system of diesel vehicle
JP2010156241A (en) * 2008-12-26 2010-07-15 Toyota Motor Corp Abnormality determination device for internal combustion engine
WO2010097893A1 (en) * 2009-02-24 2010-09-02 トヨタ自動車株式会社 Abnormality diagnosis system and abnormality diagnosis method of filter regeneration system
US20110314792A1 (en) * 2009-02-24 2011-12-29 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis system and method for diagnosing abnormality in filter regeneration system
JP4924758B2 (en) * 2009-02-24 2012-04-25 トヨタ自動車株式会社 Abnormality diagnosis system and abnormality diagnosis method for filter regeneration system
US8359827B2 (en) 2009-02-24 2013-01-29 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis system and method for diagnosing abnormality in filter regeneration system
JP2011241741A (en) * 2010-05-17 2011-12-01 Isuzu Motors Ltd Dpf system
DE102012209553B4 (en) 2011-06-07 2023-08-10 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Regeneration monitoring system and exhaust system for monitoring particulate filters
US20120311994A1 (en) * 2011-06-07 2012-12-13 GM Global Technology Operations LLC Particulate filter monitoring methods and systems
US9080494B2 (en) * 2011-06-07 2015-07-14 GM Global Technology Operations LLC Particulate filter monitoring methods and systems
JP2014156866A (en) * 2014-04-23 2014-08-28 Yanmar Co Ltd Diesel engine
WO2015178176A1 (en) * 2014-05-21 2015-11-26 いすゞ自動車株式会社 Management system
JP2019190348A (en) * 2018-04-24 2019-10-31 株式会社クボタ Exhaust treatment device of diesel engine
CN110397491A (en) * 2018-04-24 2019-11-01 株式会社久保田 The exhaust gas treatment device of diesel engine
JP2022000581A (en) * 2018-04-24 2022-01-04 株式会社クボタ Exhaust treatment device of diesel engine
CN110397491B (en) * 2018-04-24 2022-06-24 株式会社久保田 Exhaust gas treatment device for diesel engine
CN114856758A (en) * 2018-04-24 2022-08-05 株式会社久保田 Exhaust gas treatment device for diesel engine
JP7181359B2 (en) 2018-04-24 2022-11-30 株式会社クボタ Diesel engine exhaust treatment device
CN115324695A (en) * 2022-06-29 2022-11-11 湖南道依茨动力有限公司 Particle catcher frequent regeneration detection method, engine system and engineering equipment

Also Published As

Publication number Publication date
JP4008866B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
JP4007085B2 (en) Exhaust gas purification device for internal combustion engine
JP4506539B2 (en) Exhaust gas purification device for internal combustion engine
JP2008274835A (en) Deterioration diagnosis device for oxidation catalyst
JP2007205240A (en) Control method for exhaust emission control system and exhaust emission control system
JP4363289B2 (en) Exhaust gas purification device for internal combustion engine
JP2009138704A (en) Exhaust emission aftertreatment device
JP2005299418A (en) Exhaust emission control system and method for controlling the same
JP2004316428A (en) Method and program for predicting soot deposition quantity on exhaust gas emission filter
KR20110014075A (en) Exhaust-gas processing device for a diesel engine
JP4008866B2 (en) Exhaust purification equipment
JP4305402B2 (en) Exhaust gas purification device for internal combustion engine
JP4320586B2 (en) Exhaust gas purification device for internal combustion engine
JP4150308B2 (en) Exhaust purification device
JP2007211788A (en) Exhaust emission control device for internal combustion engine
JP4986667B2 (en) Exhaust purification device
JP4008867B2 (en) Exhaust purification equipment
JP4424159B2 (en) Exhaust gas purification device for internal combustion engine
JP4185882B2 (en) Exhaust purification device
JP2005307746A (en) Exhaust emission control device
JP4070687B2 (en) Exhaust purification device
JP4070681B2 (en) Exhaust purification device
JP6056267B2 (en) Engine exhaust purification system
JP4235509B2 (en) Exhaust purification equipment
JP2005307878A (en) Exhaust emission control device
JP2005307744A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees