JP4235509B2 - Exhaust purification equipment - Google Patents

Exhaust purification equipment Download PDF

Info

Publication number
JP4235509B2
JP4235509B2 JP2003285063A JP2003285063A JP4235509B2 JP 4235509 B2 JP4235509 B2 JP 4235509B2 JP 2003285063 A JP2003285063 A JP 2003285063A JP 2003285063 A JP2003285063 A JP 2003285063A JP 4235509 B2 JP4235509 B2 JP 4235509B2
Authority
JP
Japan
Prior art keywords
temperature
filter
abnormality
forced regeneration
dpf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003285063A
Other languages
Japanese (ja)
Other versions
JP2005054626A (en
Inventor
彰 川上
隆幸 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2003285063A priority Critical patent/JP4235509B2/en
Publication of JP2005054626A publication Critical patent/JP2005054626A/en
Application granted granted Critical
Publication of JP4235509B2 publication Critical patent/JP4235509B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

この発明は、ディーゼルエンジンの排気中に含まれる粒子状物質(PM)を除去処理するための排気浄化装置に関する。   The present invention relates to an exhaust purification device for removing particulate matter (PM) contained in exhaust gas of a diesel engine.

近年、ディーゼルエンジンの排気中に含まれるPMを低減する排気浄化装置のひとつとして、連続再生式フィルタ装置(CR−DPF)の開発が注目される。連続再生式フィルタ装置は、エンジンの排気中に含まれるPMをフィルタに捕集しつつ、その捕集PMを触媒作用により連続的に燃焼除去して、再生するものである。このようなフィルタ装置においても、触媒には活性温度領域があり、これを下回るような排気温度での運転状態が長く継続すると、フィルタの連続再生が十分に行われず、PM堆積量が過剰になり、エンジン性能に悪影響を及ぼしかねない。また、フィルタにPM堆積量が過剰な状態で触媒の活性温度領域に入るような排気温度での運転状態へ移行すると、フィルタの過剰に堆積するPMが急激に燃焼する可能性があり、フィルタの溶損や亀裂を生じやすくなる。そのため、PM堆積量やフィルタ前後差圧に応じて必要な時期に強制的な堆積PMの燃焼除去(フィルタの強制再生)が行われる。しかしながら堆積PMの燃焼温度を制御することは難しく、強制再生中の燃焼温度を検出し、検出した温度が所定温度を越えた場合にフィルタが溶損したと判定する技術がある(特許文献1参照)。
特開2003−155912号
In recent years, attention has been focused on the development of a continuous regeneration filter device (CR-DPF) as one of exhaust emission control devices for reducing PM contained in exhaust gas from a diesel engine. The continuous regeneration filter device collects PM contained in the exhaust of the engine in a filter, and continuously burns and removes the collected PM by a catalytic action for regeneration. Even in such a filter device, the catalyst has an active temperature region, and if the operation state at an exhaust temperature lower than this is continued for a long time, the filter is not sufficiently continuously regenerated and the amount of accumulated PM becomes excessive. May adversely affect engine performance. In addition, when shifting to an operation state at an exhaust temperature that enters the activation temperature region of the catalyst when the amount of PM accumulated on the filter is excessive, there is a possibility that PM accumulated excessively on the filter may burn suddenly. It tends to cause melting and cracking. Therefore, forced combustion removal of the deposited PM (forced regeneration of the filter) is performed at a necessary time according to the PM accumulation amount and the differential pressure across the filter. However, it is difficult to control the combustion temperature of the deposited PM, and there is a technique for detecting the combustion temperature during forced regeneration and determining that the filter has melted when the detected temperature exceeds a predetermined temperature (see Patent Document 1). ).
JP 2003-155912 A

従来技術においては、検出した燃焼温度から異常状態を推定して、対処しているのみであり、異常を生じた原因を特定することはできない。   In the prior art, the abnormal state is only estimated from the detected combustion temperature and dealt with, and the cause of the abnormality cannot be specified.

この発明は、強制再生制御に異常が発生していることを的確に検知し、異常の原因を特定し、フィルタ装置の性能の維持を図ることを目的とする。   An object of the present invention is to accurately detect that an abnormality has occurred in forced regeneration control, identify the cause of the abnormality, and maintain the performance of the filter device.

第1の発明は、エンジンの排気中に含まれるPMを捕集しつつ触媒作用により燃焼させる連続再生式フィルタを有する排気浄化装置において、前記フィルタの強制再生状態を判定する強制再生状態判定手段と、前記フィルタの温度を検出する温度検出手段と、前記フィルタの強制再生時に、前記フィルタの検出温度に応じてフィルタの加熱状態を制御する加熱制御手段と、前記フィルタが加熱状態にない場合において、前記フィルタの検出温度と所定温度とを比較し、前記フィルタの検出温度が所定温度を超えた回数をカウントするカウント手段と、カウント回数が所定回数を越えた場合に前記フィルタに異常が発生したと判定する異常発生判定手段と、を備える。 A first aspect of the present invention is an exhaust purification apparatus having a continuously regenerating filter that collects PM contained in engine exhaust and combusts by catalytic action, and a forced regeneration state determining means for determining a forced regeneration state of the filter. In the case where the temperature detecting means for detecting the temperature of the filter, the heating control means for controlling the heating state of the filter according to the detected temperature of the filter at the time of forced regeneration of the filter, and the filter is not in the heating state, The detection temperature of the filter is compared with a predetermined temperature, the counting means for counting the number of times that the detection temperature of the filter exceeds the predetermined temperature, and when the abnormality occurs in the filter when the number of counts exceeds the predetermined number of times Abnormality occurrence determination means for determining.

第2の発明は、第1の発明において、前記所定温度は、前記フィルタの異常状態に応じて設定される。   In a second aspect based on the first aspect, the predetermined temperature is set according to an abnormal state of the filter.

第3の発明は、第2の発明において、前記所定温度は、強制再生時の許容温度、酸化触媒の劣化温度及びフィルタの溶損温度の少なくとも一つに応じて設定する。   In a third aspect based on the second aspect, the predetermined temperature is set according to at least one of an allowable temperature during forced regeneration, a deterioration temperature of the oxidation catalyst, and a melting temperature of the filter.

第4の発明は、第1から3のうちいずれか一つの発明において、前記異常発生判定手段が前記フィルタの異常を判定した時に、前記フィルタの異常を外部に報知する異常報知手段を備える。 According to a fourth aspect of the present invention, in any one of the first to third aspects, when the abnormality occurrence determination unit determines that the filter is abnormal, the abnormality notification unit notifies the outside of the abnormality of the filter.

第5の発明は、第4の発明において、前記フィルタの異常状態に応じて報知方法が異なる。   According to a fifth invention, in the fourth invention, the notification method differs according to the abnormal state of the filter.

第1の発明においては、フィルタが加熱状態にない場合において、フィルタの検出温度が所定温度を越えた回数をカウントして、カウント数が所定回数を越えた場合に、フィルタ装置に異常が発生したと判断するため、フィルタ装置に異常を正確に判定できる。また、異常判定を強制再生中で、かつフィルタを加熱状態にないときに異常判定を行うため、異常の原因をエンジンの噴射系、または強制再生の制御ロジックに特定することができる。   In the first invention, when the filter is not heated, the number of times the detected temperature of the filter exceeds the predetermined temperature is counted, and when the count exceeds the predetermined number, an abnormality has occurred in the filter device. Therefore, it is possible to accurately determine abnormality in the filter device. In addition, since the abnormality determination is performed when the abnormality determination is in forced regeneration and the filter is not in a heated state, the cause of the abnormality can be specified in the engine injection system or the forced regeneration control logic.

第2と第3の発明は、フィルタの異常状態、つまり強制再生時の許容温度、酸化触媒の劣化温度及びフィルタの溶損温度に応じて所定温度を設定したため、フィルタの異常発生時にフィルタの異常状態を認識することができ、異常認識後の対処を速やかに行うことができる。   In the second and third inventions, since the predetermined temperature is set according to the abnormal state of the filter, that is, the allowable temperature at the time of forced regeneration, the deterioration temperature of the oxidation catalyst, and the melting temperature of the filter, The state can be recognized, and the countermeasure after the abnormality recognition can be promptly performed.

第4の発明は、異常発生時にフィルタの異常を運転者等に確実に報知することとしたので、異常発生後速やかに異常を運転者等が認識でき、異常による排ガスの悪化や燃費の悪化を抑制することができる。   According to the fourth aspect of the invention, the abnormality of the filter is surely notified to the driver or the like when the abnormality occurs, so that the driver or the like can recognize the abnormality immediately after the occurrence of the abnormality and the deterioration of the exhaust gas or the deterioration of the fuel consumption due to the abnormality can be recognized. Can be suppressed.

第5の発明は、フィルタの異常状態に応じて報知方法を異ならせたため、フィルタの異常発生時にフィルタの異常状態を認識することができ、異常認識後の対処を速やかに行うことができる。   In the fifth aspect of the invention, since the notification method is changed according to the abnormal state of the filter, the abnormal state of the filter can be recognized when the abnormality of the filter occurs, and the countermeasure after the abnormality recognition can be performed quickly.

以下、本発明の実施の形態を添付図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1において、10はディーゼルエンジンであり、コモンレール式燃料噴射装置(図示せず)を備える。エンジン10の吸気通路11にターボ過給機12のコンプレッサ12a、インタクーラ13、吸気絞り弁14が介装される。エンジン10の排気通路15にターボ過給機12のタービン12b、排気絞り弁16、連続再生式フィルタ装置(CR−DPF)17、が介装される。コモンレール式燃料噴射装置は、コモンレールに燃料を蓄圧する高圧ポンプと、コモンレールに各気筒の噴射ノズルを接続する燃料供給管と、を備える。燃料噴射装置および後述の予熱手段を制御するのがコントロールユニット20であり、通常の制御マップのほか、強制再生用の昇温制御マップが格納される。21はEGR(排気還流)装置のEGRバルブ、22はターボ過給機12のタービン12bを迂回するターボバイパスの開閉バルブである。   In FIG. 1, reference numeral 10 denotes a diesel engine, which includes a common rail fuel injection device (not shown). A compressor 12a, an intercooler 13 and an intake throttle valve 14 of a turbocharger 12 are interposed in the intake passage 11 of the engine 10. A turbine 12 b of the turbocharger 12, an exhaust throttle valve 16, and a continuous regeneration filter device (CR-DPF) 17 are interposed in the exhaust passage 15 of the engine 10. The common rail fuel injection device includes a high-pressure pump that accumulates fuel in the common rail, and a fuel supply pipe that connects the injection nozzle of each cylinder to the common rail. The control unit 20 controls the fuel injection device and the preheating means described later, and stores a temperature increase control map for forced regeneration in addition to a normal control map. Reference numeral 21 denotes an EGR valve of an EGR (exhaust gas recirculation) device, and reference numeral 22 denotes a turbo bypass opening / closing valve that bypasses the turbine 12 b of the turbocharger 12.

CR−DPF17は、ディーゼル微粒子除去装置(DPF)25と、その上流側に設置される酸化触媒26とから構成される。DPF25は、ハニカム構造体に形成され、その格子状に区画される流路(セル)の入口と出口が交互に目封じされる。つまり、入口の目封じされる流路と出口の目封じされる流路とが交互に隣接され、これらを区画する多孔質の隔壁が排気の通過を許容するようになっている。この例においては、隔壁に捕集されるPMの燃焼可能な着火温度を低めに設定するため、触媒(アルミナ等)付きフィルタが採用される。酸化触媒26は、触媒を担持するハニカム構造体に形成され、ハニカム構造体の格子状に区画される流路を通過する排気に含まれる主にHC(炭化水素)を酸化処理するものであり、その反応熱により触媒温度が上昇して堆積PMの燃焼を促進するのである。   The CR-DPF 17 includes a diesel particulate removing device (DPF) 25 and an oxidation catalyst 26 installed on the upstream side thereof. The DPF 25 is formed in a honeycomb structure, and the inlets and outlets of flow paths (cells) partitioned in a lattice shape are alternately plugged. That is, the flow path sealed at the inlet and the flow path sealed at the outlet are alternately adjacent to each other, and the porous partition walls that partition these allow passage of the exhaust gas. In this example, a filter with a catalyst (alumina or the like) is employed in order to set the combustible ignition temperature of PM collected in the partition walls to a low value. The oxidation catalyst 26 is formed in the honeycomb structure carrying the catalyst, and mainly oxidizes HC (hydrocarbon) contained in the exhaust gas that passes through the flow path partitioned in a lattice shape of the honeycomb structure. The heat of reaction raises the catalyst temperature and promotes the combustion of the deposited PM.

コントロールユニット20の制御に必要な検出手段として、エンジン回転数Neを検出する回転センサ(クランク角センサを兼ねる)およびエンジン負荷qを検出する負荷センサのほか、CR−DPF17の入口圧力と出口圧力との差圧を検出する差圧センサ30、DPF25の入口温度を検出する温度センサ31aとDPF25の出口温度を検出する温度センサ31b、吸気流量を検出するエアフローセンサ32、等が設けられる。   As detection means necessary for control of the control unit 20, in addition to a rotation sensor (also serving as a crank angle sensor) for detecting the engine speed Ne and a load sensor for detecting the engine load q, the inlet pressure and outlet pressure of the CR-DPF 17 There are provided a differential pressure sensor 30 for detecting the differential pressure, a temperature sensor 31a for detecting the inlet temperature of the DPF 25, a temperature sensor 31b for detecting the outlet temperature of the DPF 25, an air flow sensor 32 for detecting the intake flow rate, and the like.

コントロールユニット20は、エンジン回転数Neとエンジン負荷qとから通常の制御マップに基づいて噴射ノズルへの燃料噴射信号(噴射量の指令および噴射時期の指令)を決定する。DPF25の強制再生が必要な時期を判定すると、通常の制御マップから強制再生用の昇温マップに切り替わり、CR−DPF17の雰囲気温度が所定値(例えば、230℃)を下回るときは、触媒の予熱手段を駆動するほか、必要があれば燃料のメイン噴射に続いて燃焼可能なタイミングでアフタ噴射を行うような燃料噴射信号を決定する一方、CR−DPFの雰囲気温度が所定値以上のときは、メイン噴射から大幅に遅れるタイミングでポスト噴射を行うような燃料噴射信号を決定するのである。   The control unit 20 determines a fuel injection signal (injection amount command and injection timing command) to the injection nozzle based on the normal control map from the engine speed Ne and the engine load q. When the time when the forced regeneration of the DPF 25 is necessary is determined, the normal control map is switched to the temperature increase map for forced regeneration. When the atmospheric temperature of the CR-DPF 17 falls below a predetermined value (for example, 230 ° C.), the catalyst preheating is performed. In addition to driving the means, if necessary, a fuel injection signal for performing after injection at a combustible timing subsequent to the main injection of fuel is determined, while the CR-DPF ambient temperature is equal to or higher than a predetermined value, A fuel injection signal for performing post injection at a timing significantly delayed from the main injection is determined.

触媒の予熱手段として、EGRバルブ21、吸気絞り弁14または排気絞り弁16、ターボバイパスの開閉バルブ22としてを用い、これらをエンジン10の排気温度を積極的に高める制御を行い、触媒を加熱する。ターボ過給機12が可変ノズル式の場合、ターボバイパスの開閉バルブ22の代わりに可変ノズルを触媒の予熱手段として制御することも考えられる。   As the preheating means for the catalyst, the EGR valve 21, the intake throttle valve 14 or the exhaust throttle valve 16, and the turbo bypass opening / closing valve 22 are used to perform control to positively increase the exhaust temperature of the engine 10 to heat the catalyst. . When the turbocharger 12 is of a variable nozzle type, it is conceivable to control the variable nozzle as a catalyst preheating means instead of the turbo bypass opening / closing valve 22.

DPF25の強制再生が必要な時期の判定については、DPF25のPM堆積量(推定量)が所定値以上のときに強制再生時期を判定する手段(図2のS2)と、DPF25の前後差圧(またはCR−DPF17の入口圧力)が所定値以上のときに強制再生時期を判定する手段(図2のS4)と、PM堆積量に基づく強制再生の完了から計測される運転時間(または運転距離)が強制再生用に設定のインターバルに達するとその間に強制再生の履歴がないときに強制再生時期を判定する手段(図2のS6)と、運転時間(または運転距離または強制再生の回数)がPM堆積量を定期的に初期化する0リセット強制再生用のインターバルに達すると強制再生を判定する手段(図2のS8)と、が設定される。   Regarding the determination of the time when forced regeneration of the DPF 25 is necessary, means for determining the forced regeneration time (S2 in FIG. 2) when the PM accumulation amount (estimated amount) of the DPF 25 is equal to or larger than a predetermined value, and the differential pressure across the DPF 25 ( Alternatively, the means for determining the forced regeneration timing when the inlet pressure of the CR-DPF 17 is equal to or greater than a predetermined value (S4 in FIG. 2), and the operation time (or operation distance) measured from the completion of the forced regeneration based on the PM accumulation amount. Means that the forced regeneration timing is determined when there is no forced regeneration history during the interval set for forced regeneration (S6 in FIG. 2) and the operation time (or the driving distance or the number of forced regenerations) is PM Means (S8 in FIG. 2) for determining forced regeneration when the zero reset forced regeneration interval for periodically initializing the accumulation amount is reached is set.

DPF25の強制再生時期は、このような複数の異なる方法に基づいて判定され、これら何れかの判定を受けると、そのときの判定方法に対応する強制再生モード(図4参照)としてPM堆積量に応じた強制再生温度および強制再生時間を設定する手段(図2のS9)が設定される。   The forced regeneration timing of the DPF 25 is determined based on such a plurality of different methods, and when any one of these determinations is received, the forced regeneration mode (see FIG. 4) corresponding to the determination method at that time is used as the PM accumulation amount. A means (S9 in FIG. 2) for setting the corresponding forced regeneration temperature and forced regeneration time is set.

DPF25の前後差圧(またはCR−DPF17の入口圧力)から強制再生時期を判定する手段においては、強制再生時期の判定基準となる所定値としてレベル1とこれより高いレベル2が設定され、これらレベル1、レベル2に基づく強制再生時期の判定毎に異なる強制再生モードとしてPM堆積量に応じた強制再生時間および強制再生温度が設定されるのである。   In the means for determining the forced regeneration timing from the differential pressure before and after the DPF 25 (or the inlet pressure of the CR-DPF 17), a level 1 and a level 2 higher than this are set as predetermined values as a criterion for the forced regeneration timing. 1. The forced regeneration time and the forced regeneration temperature corresponding to the PM accumulation amount are set as different forced regeneration modes for each forced regeneration time determination based on Level 1 and Level 2.

PM堆積量の算出(図2のS1)は、吸気流量(エアフローセンサ32の検出信号)と燃料流量(エンジン負荷qの検出信号)とから空気過剰率を求め、空気過剰率からスモーク濃度を求め、スモーク濃度と吸気流量とから単位時間あたりのPM排出量を求める。その一方、DPFのPM燃焼特性マップに基づいて、触媒の酸化作用により堆積PMの燃焼が開始される排気条件において、単位時間あたりのPM燃焼量を求める。具体的には、触媒による酸化反応の効率に影響を与える空間速度を求め、DPF25の触媒温度(DPF25の出口温度またはDPF25の入口温度と出口温度との平均値)と空間速度とからPM燃焼速度を求め、単位時間あたりのPM燃焼量に変換する。そして、PM排出量からPM燃焼量を引く減算値を順次に積算することにより、DPFのPM堆積量を求めるのである。減算値は、負になる可能性があるので、負の減算値=0に修正する処理が設定される。   In the calculation of the PM accumulation amount (S1 in FIG. 2), the excess air ratio is obtained from the intake flow rate (detection signal of the air flow sensor 32) and the fuel flow rate (detection signal of the engine load q), and the smoke concentration is obtained from the excess air ratio. The PM emission amount per unit time is obtained from the smoke concentration and the intake air flow rate. On the other hand, based on the PM combustion characteristic map of the DPF, the PM combustion amount per unit time is obtained under the exhaust condition where the combustion of the deposited PM is started by the oxidizing action of the catalyst. Specifically, the space velocity that affects the efficiency of the oxidation reaction by the catalyst is obtained, and the PM combustion rate is calculated from the catalyst temperature of the DPF 25 (the outlet temperature of the DPF 25 or the average value of the inlet temperature and the outlet temperature of the DPF 25) and the space velocity. Is converted into a PM combustion amount per unit time. Then, the PM accumulation amount of the DPF is obtained by sequentially integrating the subtraction value obtained by subtracting the PM combustion amount from the PM emission amount. Since the subtraction value may be negative, processing for correcting the negative subtraction value = 0 is set.

図2は、コントロールユニット20の強制再生制御の制御内容を説明するフローチャートであり、S1においては、DPF25のPM堆積量を算出する。S2においては、PM堆積量の算出値(推定量)が所定値以上かどうかを判定する。S3においては、DPF25の前後差圧を読み込む。S4においては、前後差圧が所定圧を超過したかどうかを判定する。S5においては、運転時間(または運転距離)のカウント値を読み込む。S6においては、運転時間(または運転距離)のカウント値が強制再生用のインターバルに達したかどうかを判定する。S7においては、運転時間(または運転距離または強制再生回数)のカウント値を読み込む。S8においては、運転時間(または運転距離または強制再生回数)のカウント値が0リセット強制再生用のインターバルに達したかどうかを判定する。   FIG. 2 is a flowchart for explaining the control content of the forced regeneration control of the control unit 20, and in S1, the PM accumulation amount of the DPF 25 is calculated. In S2, it is determined whether the calculated value (estimated amount) of the PM accumulation amount is equal to or greater than a predetermined value. In S3, the differential pressure across the DPF 25 is read. In S4, it is determined whether the front-rear differential pressure has exceeded a predetermined pressure. In S5, the count value of driving time (or driving distance) is read. In S6, it is determined whether or not the count value of the driving time (or driving distance) has reached the forced regeneration interval. In S7, the count value of driving time (or driving distance or forced regeneration) is read. In S8, it is determined whether or not the count value of the driving time (or driving distance or the number of forced regenerations) has reached the zero reset forced regeneration interval.

S2の判定がnoかつS4の判定がnoかつS6の判定がnoかつS8の判定がnoのときは、S1へ戻る。S2の判定がyesまたはS4の判定がyesまたはS6の判定がyesまたはS8の判定がyesのときは、S9へ進む。S9においては、強制再生時期の判定(yes)がS2の判定〜S8の判定の何れかに拠るのかに応じて強制再生モードを選定する(図3参照)。   If the determination of S2 is no, the determination of S4 is no, the determination of S6 is no, and the determination of S8 is no, the process returns to S1. When the determination of S2 is yes or the determination of S4 is yes or the determination of S6 is yes or the determination of S8 is yes, the process proceeds to S9. In S9, the forced regeneration mode is selected depending on whether the forced regeneration timing determination (yes) depends on any of the determinations in S2 to S8 (see FIG. 3).

S10においては、選定の強制再生モードに基づいて強制再生を実行する。触媒の酸化反応に十分な排気温度の運転状態のときは、DPF25の出口温度を監視しながら、メイン噴射から大幅に遅れるタイミングでポスト噴射を行うように燃料噴射装置を制御する。触媒の酸化反応に必要な排気温度を下回る運転状態のときは、CR−DPF17の雰囲気温度を監視しながら、触媒の予熱手段を制御するほか、必要があればメイン噴射に続いて燃焼可能なタイミングでアフタ噴射を行うように燃料噴射装置を制御する。アフタ噴射においては、燃料の発熱量のうちの動力に使用されない熱量が増えて排気温度が上昇するため、DPF25の触媒も堆積PMの酸化処理に必要な温度へ高められるのである。触媒温度が酸化処理に必要な温度に至るとアフタ噴射からポスト噴射へ切り替わり、ポスト噴射により、排気中に添加される未燃燃料が触媒上で酸化反応され、その反応熱により触媒温度を上昇させるため、堆積PMの燃焼処理が促進される。   In S10, forced regeneration is executed based on the selected forced regeneration mode. When the exhaust gas temperature is sufficient for the oxidation reaction of the catalyst, the fuel injection device is controlled so as to perform post injection at a timing significantly delayed from the main injection while monitoring the outlet temperature of the DPF 25. In an operating state below the exhaust temperature required for the oxidation reaction of the catalyst, the catalyst preheating means is controlled while monitoring the atmospheric temperature of the CR-DPF 17, and if necessary, the timing at which combustion is possible following the main injection The fuel injection device is controlled to perform after-injection. In the after-injection, the amount of heat not used for power in the calorific value of the fuel increases and the exhaust gas temperature rises, so that the catalyst of the DPF 25 is also raised to the temperature necessary for the oxidation treatment of the deposited PM. When the catalyst temperature reaches the temperature required for the oxidation treatment, the post-injection is switched to the post-injection. By the post-injection, the unburned fuel added to the exhaust is oxidized on the catalyst, and the reaction heat increases the catalyst temperature. As a result, the combustion process of the deposited PM is promoted.

S11においては、DPFの出口温度が強制再生温度に達するかどうかを判定する。S11の判定がyesになると、S12へ進む一方、S11の判定がnoのときは、yesになるまで判定を繰り返す。S12においては、DPF25の出口温度が強制再生温度以上の継続時間が強制再生時間に達したかどうかを判定する。S12の判定がyesになると、S13へ進む一方、S12の判定がnoのときは、yesになるまで判定を繰り返す。S13においては、強制再生モードをリセットする。S14においては、強制再生の昇温制御を解除すると共に通常の燃料噴射へ復帰するのである。   In S11, it is determined whether or not the outlet temperature of the DPF reaches the forced regeneration temperature. If the determination in S11 is yes, the process proceeds to S12, while if the determination in S11 is no, the determination is repeated until yes. In S12, it is determined whether or not the duration time at which the outlet temperature of the DPF 25 is equal to or higher than the forced regeneration temperature has reached the forced regeneration time. If the determination in S12 is yes, the process proceeds to S13. If the determination in S12 is no, the determination is repeated until yes. In S13, the forced regeneration mode is reset. In S14, the temperature increase control for forced regeneration is canceled and the routine returns to normal fuel injection.

図4は、本発明の特徴的な制御である、強制再生中に実施されるCR−DPF17の異常高温判定の制御内容を説明するためのフローチャートである。この制御内容はコントロールユニット20によって制御され、CR−DPF17が強制再生状態にあるときに実施される。   FIG. 4 is a flowchart for explaining the control contents of the abnormally high temperature determination of the CR-DPF 17 performed during forced regeneration, which is characteristic control of the present invention. This control content is controlled by the control unit 20 and is performed when the CR-DPF 17 is in the forced regeneration state.

S20でCR−DPF17の状態が強制再生状態にあるかどうかを、例えば、強制再生モードの入っているかどうかにより判定し、yesの場合にはS21に進み、noの場合には制御を終える。S21では、DPF25の出口温度を検出する温度センサ31bの検出温度を読み込み、検出した温度が第1所定温度(例えば650℃)を超えるかどうかを判定する。ここで第1所定温度は強制再生モードの再生温度であり、このステップでDPF25を加熱すべきかどうかを判断する。この第1所定温度を越える場合にはS22に進み、DPF25の温度を低下させる温度制御を行う標準マップに基づいて温度制御を行い、S24に進む。一方、第1所定温度以下の場合にはS23に進み、DPF25を加熱する昇温マップに基づいてDPF25の温度制御を行う。   In S20, it is determined whether or not the CR-DPF 17 is in the forced regeneration state, for example, based on whether or not the forced regeneration mode is set. If yes, the process proceeds to S21, and if no, the control is terminated. In S21, the detected temperature of the temperature sensor 31b that detects the outlet temperature of the DPF 25 is read, and it is determined whether or not the detected temperature exceeds a first predetermined temperature (for example, 650 ° C.). Here, the first predetermined temperature is the regeneration temperature in the forced regeneration mode, and it is determined in this step whether or not the DPF 25 should be heated. If the temperature exceeds the first predetermined temperature, the process proceeds to S22, where temperature control is performed based on a standard map for performing temperature control for decreasing the temperature of the DPF 25, and the process proceeds to S24. On the other hand, if the temperature is equal to or lower than the first predetermined temperature, the process proceeds to S23, and the temperature control of the DPF 25 is performed based on the temperature increase map for heating the DPF 25.

S24では、S22で標準マップに基づいて温度制御されたDPF25の温度をセンサ31bから読み込み、DPF25の検出温度が第2所定温度を越えているかどうかを判定する。ここで第2所定温度は、強制再生温度の許容上限温度であり、DPF25が溶損しない温度、例えば、700℃に設定する。検出温度が第2所定温度を超えた場合にS25に進む。   In S24, the temperature of the DPF 25 whose temperature is controlled based on the standard map in S22 is read from the sensor 31b, and it is determined whether or not the detected temperature of the DPF 25 exceeds the second predetermined temperature. Here, the second predetermined temperature is an allowable upper limit temperature of the forced regeneration temperature, and is set to a temperature at which the DPF 25 does not melt, for example, 700 ° C. When the detected temperature exceeds the second predetermined temperature, the process proceeds to S25.

S25では、DPF25の検出温度が第2所定温度を超えた回数をカウントする(図5、図6参照)。図5は正常温度制御状態を示し、図6はDPF25の温度状態に異常が生じている状態である。そして続くS26でカウント数が第1所定回数を超えたかどうかを判定する。ここで、第1所定回数は例えば、3回に設定する。つまり標準マップに基づいてDPF25の温度を低下させる温度制御中であるにもかかわらず、DPF25の温度が第2所定温度を第1所定回数越える状態になっているということは、DPF25の温度制御に異常が生じていることであり、第1所定回数を越えていれば、S27でDPF25の異常を例えば、ランプの点灯やブザーの音により運転者に報知する。   In S25, the number of times that the detected temperature of the DPF 25 exceeds the second predetermined temperature is counted (see FIGS. 5 and 6). FIG. 5 shows a normal temperature control state, and FIG. 6 shows a state where an abnormality has occurred in the temperature state of the DPF 25. In subsequent S26, it is determined whether or not the count number exceeds the first predetermined number. Here, the first predetermined number of times is set to 3 times, for example. That is, the fact that the temperature of the DPF 25 exceeds the second predetermined temperature for the first predetermined number of times despite the temperature control for lowering the temperature of the DPF 25 based on the standard map means that the temperature control of the DPF 25 If an abnormality has occurred and the first predetermined number of times has been exceeded, the driver is notified of the abnormality of the DPF 25 by, for example, the lighting of a lamp or the sound of a buzzer in S27.

ここで、DPF25の温度制御がDPF25を低下させる温度制御であるにもかかわらず、DPF25の温度が上昇しているため、DPF25の温度制御に異常が生じる原因は、エンジン10への燃料量や燃料噴射時期の異常であるエンジンの噴射系の異常またはDPF25の強制再生制御ロジックの異常と特定することができ、異常原因の特定から問題解消までの時間を短縮することができる。これにより、CR−DPF17のシステムとしての浄化性能を維持することができ、DPF25の異常による排ガスの悪化や燃費の悪化を抑制することができる。   Here, although the temperature control of the DPF 25 is a temperature control for lowering the DPF 25, the temperature of the DPF 25 is rising, so the cause of the abnormality in the temperature control of the DPF 25 is the amount of fuel to the engine 10 and the fuel It can be identified as an abnormality in the injection system of the engine, which is an abnormality in the injection timing, or an abnormality in the forced regeneration control logic of the DPF 25, and the time from identification of the cause of the abnormality to resolution of the problem can be shortened. Thereby, the purification performance as a system of CR-DPF17 can be maintained, and the deterioration of exhaust gas and the deterioration of fuel consumption due to abnormality of DPF25 can be suppressed.

なお、S26で第2所定温度を越えた回数をカウントしたが、第2所定温度を超えた時間を計測し、所定時間を越えた時にDPF25に異常が生じていると判定してもよい。   Although the number of times the second predetermined temperature has been exceeded is counted in S26, the time exceeding the second predetermined temperature may be measured, and it may be determined that an abnormality has occurred in the DPF 25 when the predetermined time is exceeded.

図7は、第2の実施形態としての、強制再生中に実施されるCR−DPF17の異常高温判定の制御内容を説明するためのフローチャートである。この制御内容はコントロールユニット20によって制御され、CR−DPF17が強制再生状態にあるときに実施される。   FIG. 7 is a flowchart for explaining the control contents of the abnormal high temperature determination of the CR-DPF 17 performed during the forced regeneration as the second embodiment. This control content is controlled by the control unit 20 and is performed when the CR-DPF 17 is in the forced regeneration state.

図4に示した第1の実施形態の制御に対して、本実施形態は、CR−DPF17の異常温度がCR−DPF17に及ぼす影響を判断する制御とした点が異なる。   In contrast to the control of the first embodiment shown in FIG. 4, the present embodiment is different in that the control is made to determine the influence of the abnormal temperature of the CR-DPF 17 on the CR-DPF 17.

S20からS25までの制御内容は第1の実施形態と同様であり、S25に続くS30では、DPF25の温度が前述の第2所定温度を越える回数が第1所定回数(例えば、3回)未満かどうかを判定する。第1所定回数未満であれば、S31に進み、DPF25の温度が第3所定温度を越えるかどうかを判定する。第1所定回数以上であれば、S32に進み、ランプを点灯して異常を運転者等に通知する。   The control contents from S20 to S25 are the same as those in the first embodiment. In S30 following S25, is the number of times the temperature of the DPF 25 exceeds the second predetermined temperature described above less than the first predetermined number (for example, three times)? Determine if. If it is less than the first predetermined number of times, the process proceeds to S31 to determine whether or not the temperature of the DPF 25 exceeds the third predetermined temperature. If it is the first predetermined number of times or more, the process proceeds to S32, and the lamp is turned on to notify the driver or the like of the abnormality.

S31では、DPF25の入口温度を検出する温度センサ31aから酸化触媒26の温度を読み込み、酸化触媒26の温度を第3所定温度と比較する。ここで第3所定温度は、酸化触媒26の触媒が劣化する温度、例えば800℃に設定する。酸化触媒26の温度が第3所定温度を越えていればS33に進み、第3所定温度を越えた回数をカウントする。続くS34では、S33でカウントした回数が第2所定回数(例えば、2回)未満かどうかを判定し、第2所定回数未満であればS35に進み、第2所定回数以上であればS36に進み、ランプを点灯して異常を運転者等に通知する。なお、酸化触媒26の温度はセンサ31bの検出温度から推定してもよい。   In S31, the temperature of the oxidation catalyst 26 is read from the temperature sensor 31a that detects the inlet temperature of the DPF 25, and the temperature of the oxidation catalyst 26 is compared with a third predetermined temperature. Here, the third predetermined temperature is set to a temperature at which the catalyst of the oxidation catalyst 26 deteriorates, for example, 800 ° C. If the temperature of the oxidation catalyst 26 exceeds the third predetermined temperature, the process proceeds to S33, and the number of times the temperature exceeds the third predetermined temperature is counted. In subsequent S34, it is determined whether or not the number counted in S33 is less than a second predetermined number (for example, two times). If less than the second predetermined number, the process proceeds to S35, and if it is equal to or greater than the second predetermined number, the process proceeds to S36. The lamp is lit to notify the driver of the abnormality. Note that the temperature of the oxidation catalyst 26 may be estimated from the detected temperature of the sensor 31b.

S35では、DPF25の温度を第4所定温度と比較する。ここで第4所定温度は、DPF25が溶損する温度、例えば1000℃に設定する。DPF25の温度が第4所定温度を越えていればS37に進み、第4所定温度を越えた回数をカウントする。続くS38では、S37でカウントした回数が第3所定回数(例えば、2回)未満かどうかを判定し、第3所定回数未満であれば制御を繰り返し、第3所定回数以上であればS39に進み、ランプを点灯して異常を運転者等に通知する。   In S35, the temperature of the DPF 25 is compared with a fourth predetermined temperature. Here, the fourth predetermined temperature is set to a temperature at which the DPF 25 melts, for example, 1000 ° C. If the temperature of the DPF 25 exceeds the fourth predetermined temperature, the process proceeds to S37, and the number of times of exceeding the fourth predetermined temperature is counted. In S38, it is determined whether or not the number counted in S37 is less than a third predetermined number (for example, two times). If the number is less than the third predetermined number, the control is repeated. The lamp is lit to notify the driver of the abnormality.

なお、S32、S36、S39それぞれでランプを点灯するが、色を変えることで、異常の原因を特定することができる。また図8に、各所定温度の関係を示す。   The lamps are turned on in S32, S36, and S39, respectively, but the cause of the abnormality can be specified by changing the color. FIG. 8 shows the relationship between the predetermined temperatures.

このようにCR−DPF17の異常状態毎に閾値(所定温度)を設定して、DPF25または酸化触媒26の検出温度と比較することにより、CR−DPF17の異常状態をより正確に把握することができ、異常時の対応を効率よく進めることができる。   Thus, by setting a threshold value (predetermined temperature) for each abnormal state of CR-DPF 17 and comparing it with the detected temperature of DPF 25 or oxidation catalyst 26, the abnormal state of CR-DPF 17 can be grasped more accurately. , It is possible to efficiently deal with abnormalities.

排気浄化装置の異常を確実に判断できるため、低公害ディーゼル車両に有用である。   Since it is possible to reliably determine the abnormality of the exhaust gas purification device, it is useful for low-pollution diesel vehicles.

排気浄化装置の構成を説明する概要図である。It is a schematic diagram explaining the composition of an exhaust emission control device. コントロールユニットの制御内容を説明するフローチャートである。It is a flowchart explaining the control content of a control unit. 強制再生モードの一例を示す図である。It is a figure which shows an example of forced regeneration mode. 強制再生時の異常高温を検出する制御内容を説明するフローチャートである。It is a flowchart explaining the control content which detects the abnormally high temperature at the time of forced regeneration. 第1所定温度と第2所定温度の関係を示す図である。It is a figure which shows the relationship between 1st predetermined temperature and 2nd predetermined temperature. 異常高温時のカウントの概念図である。It is a conceptual diagram of the count at the time of abnormally high temperature. 強制再生時の異常高温を検出する制御内容を説明する他のフローチャートである。It is another flowchart explaining the control content which detects the abnormally high temperature at the time of forced regeneration. 各所定温度の関係を示す図である。It is a figure which shows the relationship of each predetermined temperature.

符号の説明Explanation of symbols

10 ディーゼルエンジン
11 吸気通路
12 ターボ過給機
14 吸気絞り弁
15 排気通路
16 排気絞り弁
17 CR−DPF
20 コントロールユニット
21 EGRバルブ
22 ターボバイパスの開閉バルブ
25 DPF
26 酸化触媒
30 差圧センサ
31a、31b 温度センサ
32 エアフローセンサ
10 Diesel Engine 11 Intake Passage 12 Turbocharger 14 Intake Throttle Valve 15 Exhaust Passage 16 Exhaust Throttle Valve 17 CR-DPF
20 Control unit 21 EGR valve 22 Turbo bypass opening / closing valve 25 DPF
26 Oxidation catalyst 30 Differential pressure sensor 31a, 31b Temperature sensor 32 Air flow sensor

Claims (5)

エンジンの排気中に含まれるPMを捕集しつつ触媒作用により燃焼させる連続再生式フィルタを有する排気浄化装置において、
前記フィルタの強制再生状態を判定する強制再生状態判定手段と、
前記フィルタの温度を検出する温度検出手段と、
前記フィルタの強制再生時に、前記フィルタの検出温度に応じてフィルタの加熱状態を制御する加熱制御手段と、
前記フィルタが加熱状態にない場合において、前記フィルタの検出温度と所定温度とを比較し、前記フィルタの検出温度が所定温度を超えた回数をカウントするカウント手段と、
カウント回数が所定回数を越えた場合に前記フィルタに異常が発生したと判定する異常発生判定手段と、
を備えたことを特徴とする排気浄化装置。
In an exhaust purification device having a continuously regenerating filter that collects PM contained in the exhaust of an engine and burns it by catalytic action,
Forced regeneration state determination means for determining the forced regeneration state of the filter;
Temperature detecting means for detecting the temperature of the filter;
Heating control means for controlling the heating state of the filter according to the detected temperature of the filter during forced regeneration of the filter;
When the filter is not in a heated state, the detection temperature of the filter is compared with a predetermined temperature, and the counting means for counting the number of times the detection temperature of the filter exceeds the predetermined temperature;
An abnormality occurrence determination means for determining that an abnormality has occurred in the filter when the number of counts exceeds a predetermined number;
An exhaust emission control device comprising:
前記所定温度は、前記フィルタの異常状態に応じて設定されることを特徴とする請求項1に記載の排気浄化装置。   The exhaust emission control device according to claim 1, wherein the predetermined temperature is set according to an abnormal state of the filter. 前記所定温度は、強制再生時の許容温度、酸化触媒の劣化温度及びフィルタの溶損温度の少なくとも一つに応じて設定したことを特徴とする請求項2に記載の排気浄化装置。   The exhaust emission control device according to claim 2, wherein the predetermined temperature is set according to at least one of an allowable temperature during forced regeneration, a deterioration temperature of the oxidation catalyst, and a melting temperature of the filter. 前記異常発生判定手段が前記フィルタの異常を判定した時に、前記フィルタの異常を外部に報知する異常報知手段を備えたことを特徴とする請求項1から3のいずれか一つに記載の排気浄化装置。 The exhaust gas purification according to any one of claims 1 to 3, further comprising abnormality notifying means for notifying the outside of the filter abnormality when the abnormality occurrence determining means determines an abnormality of the filter. apparatus. 前記異常報知手段は、前記フィルタの異常状態に応じて報知方法が異なることを特徴とする請求項4に記載の排気浄化装置。   The exhaust emission control device according to claim 4, wherein the abnormality notification unit has a different notification method according to an abnormal state of the filter.
JP2003285063A 2003-08-01 2003-08-01 Exhaust purification equipment Expired - Fee Related JP4235509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003285063A JP4235509B2 (en) 2003-08-01 2003-08-01 Exhaust purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003285063A JP4235509B2 (en) 2003-08-01 2003-08-01 Exhaust purification equipment

Publications (2)

Publication Number Publication Date
JP2005054626A JP2005054626A (en) 2005-03-03
JP4235509B2 true JP4235509B2 (en) 2009-03-11

Family

ID=34364814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003285063A Expired - Fee Related JP4235509B2 (en) 2003-08-01 2003-08-01 Exhaust purification equipment

Country Status (1)

Country Link
JP (1) JP4235509B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4636278B2 (en) * 2006-11-15 2011-02-23 三菱自動車工業株式会社 Exhaust gas purification device for internal combustion engine
JP6213118B2 (en) * 2013-10-04 2017-10-18 いすゞ自動車株式会社 Diagnostic equipment

Also Published As

Publication number Publication date
JP2005054626A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
EP1400663B1 (en) Regenerative control method for continuous regenerative diesel particulate filter device
JP3933172B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP4539554B2 (en) Exhaust gas purification device for internal combustion engine
JP4161931B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP2008274835A (en) Deterioration diagnosis device for oxidation catalyst
WO2007010701A1 (en) Method of controlling exhaust gas purification system, and exhaust gas purification system
WO2011155587A1 (en) Dpf system
JP4453718B2 (en) Exhaust gas purification device for internal combustion engine
JP4308702B2 (en) Exhaust purification equipment
JP4320586B2 (en) Exhaust gas purification device for internal combustion engine
JP4150308B2 (en) Exhaust purification device
JP4008866B2 (en) Exhaust purification equipment
JP4986667B2 (en) Exhaust purification device
JP4466158B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP2007154729A (en) Exhaust emission control device for internal combustion engine
JP4008867B2 (en) Exhaust purification equipment
JP4254664B2 (en) Exhaust gas purification device for internal combustion engine
JP4185882B2 (en) Exhaust purification device
JP4235509B2 (en) Exhaust purification equipment
JP2006132458A (en) Exhaust emission control device for internal combustion engine
JP2005307746A (en) Exhaust emission control device
KR101180948B1 (en) Exhaust gas post processing system and control method thereof
JP2008057333A (en) Filter regeneration control device of diesel engine
JP4070687B2 (en) Exhaust purification device
JP2005307878A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141219

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees