JP4424159B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4424159B2
JP4424159B2 JP2004323116A JP2004323116A JP4424159B2 JP 4424159 B2 JP4424159 B2 JP 4424159B2 JP 2004323116 A JP2004323116 A JP 2004323116A JP 2004323116 A JP2004323116 A JP 2004323116A JP 4424159 B2 JP4424159 B2 JP 4424159B2
Authority
JP
Japan
Prior art keywords
temperature
exhaust
regeneration
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004323116A
Other languages
Japanese (ja)
Other versions
JP2006132458A (en
Inventor
慎二 余語
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004323116A priority Critical patent/JP4424159B2/en
Priority to DE200510052990 priority patent/DE102005052990A1/en
Publication of JP2006132458A publication Critical patent/JP2006132458A/en
Application granted granted Critical
Publication of JP4424159B2 publication Critical patent/JP4424159B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/08Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、内燃機関の排出ガスに含まれるパティキュレートを捕集するパティキュレートフィルタを備える排ガス浄化装置に関する。   The present invention relates to an exhaust gas purifying apparatus including a particulate filter that collects particulates contained in exhaust gas of an internal combustion engine.

近年、ディーゼルエンジンから排出されるパティキュレート(粒子状物質、PM)の環境への影響が大きな問題となっている。この対策として、従来より、セラミック多孔質体からなるディーゼルパティキュレートフィルタ(以下DPFと称する)が知られ、これを排気管の途中に設置して、DPFの多孔質の隔壁にパティキュレートを捕集することが行なわれている。DPFは、捕集したパティキュレートを定期的に燃焼除去することで再生される。   In recent years, the environmental impact of particulates (particulate matter, PM) discharged from diesel engines has become a major problem. Conventionally, a diesel particulate filter (hereinafter referred to as DPF) made of a ceramic porous body is known as a countermeasure, and is installed in the middle of the exhaust pipe to collect the particulates in the porous partition wall of the DPF. To be done. The DPF is regenerated by periodically burning and removing the collected particulates.

DPFの再生は、一般に、運転状態を基に求められるPM排出量の積算値にて算出される、またはDPFの前後差圧を基に算出されるパティキュレート堆積量(以下PM堆積量と称する)が予め決められた所定量以上となった時に行われ、例えばポスト噴射を行って、DPFをパティキュレートが燃焼する温度以上に昇温させている。ただし、エンジンの運転条件によっては、排気温度がパティキュレートの自然燃焼が可能な高温となる場合があり、効率よくDPFの再生を行なうには、運転条件に応じて昇温手段を作動させることが望ましい。   The regeneration of the DPF is generally calculated based on the integrated value of the PM emission amount obtained based on the operating state, or the particulate accumulation amount calculated based on the differential pressure across the DPF (hereinafter referred to as PM accumulation amount). Is performed when the amount exceeds a predetermined amount, for example, post injection is performed to raise the DPF to a temperature higher than the temperature at which the particulates burn. However, depending on the operating conditions of the engine, the exhaust temperature may become a high temperature at which particulates can spontaneously burn, and in order to efficiently regenerate the DPF, the temperature raising means may be operated according to the operating conditions. desirable.

従来技術として、特許文献1には、PM堆積量が所定値に到達した場合に、エンジンの運転状態に応じて異なる昇温手段を選択してDPFを再生する方法が提案されている。エンジンの運転状態 (負荷状態)は、例えば、エンジン回転数と出力トルクによって複数の領域に区分することができ、各領域毎に異なる再生操作を行ない、または、自然燃焼が可能な領域では昇温操作を実施しないことで、燃料消費量の増大を抑制しながら、DPFの再生を行なうことを可能にしている。
特開2000−170521号公報
As a conventional technique, Patent Document 1 proposes a method of regenerating a DPF by selecting different temperature raising means according to the operating state of the engine when the PM accumulation amount reaches a predetermined value. The operating state (load state) of the engine can be divided into a plurality of regions depending on, for example, the engine speed and the output torque. Different regeneration operations are performed for each region, or the temperature rises in a region where natural combustion is possible. By not performing the operation, it is possible to regenerate the DPF while suppressing an increase in fuel consumption.
JP 2000-170521 A

ところで、特許文献1の方法では、再生が必要なPM堆積量を越えた時に低回転、低負荷領域であれば再生操作は行なわず、再生中に低回転、低負荷領域になった場合にも再生操作を中止する。これは、低回転、低負荷領域ではパティキュレート燃焼温度までDPFを昇温することが困難であるからで、燃費の向上を優先させる結果である。この状態で、アイドル運転あるいは渋滞走行などのエンジン低回転、低負荷運転が長時間にわたって行なわれると、DPF上に許容値を越える多量のパティキュレートが堆積することになり、再生時に過昇温となりやすい。   By the way, in the method of Patent Document 1, the regeneration operation is not performed in the low rotation and low load region when the amount of PM deposition that needs to be regenerated is exceeded. Stop playback operation. This is because it is difficult to raise the DPF up to the particulate combustion temperature in the low rotation and low load region, and is a result of giving priority to the improvement of fuel consumption. In this state, if engine low speed and low load operation such as idling or traffic congestion is performed for a long time, a large amount of particulates exceeding the allowable value will accumulate on the DPF, resulting in excessive temperature rise during regeneration. Cheap.

一方、DPF温度を上昇させる際に、吸気絞りを組み合わせることが検討されている。エンジン吸気通路に設けた吸気絞り弁の弁開度を絞って吸気量を少なくすると、エンジン燃焼状態が変化し、排気温度を上昇させることができ、エンジン低回転、低負荷運転領域においても、他の昇温手段と吸気絞りを組み合わせることで、DPF再生が可能となる。   On the other hand, it is considered to combine an intake throttle when raising the DPF temperature. If the intake air amount is reduced by reducing the valve opening of the intake throttle valve provided in the engine intake passage, the engine combustion state can be changed and the exhaust temperature can be raised. The DPF regeneration can be performed by combining the temperature raising means and the intake throttle.

しかしながら、吸気絞り弁に何らかの不具合が生じて、吸気絞り操作ができなくなった場合には、上記効果が得られない。通常、吸気絞り弁は通電OFF時に全開となるので、エンジン低回転、低負荷運転領域では、酸化触媒の活性化温度まで昇温できず、再生の実施が困難となるおそれがある。   However, the above effect cannot be obtained if the intake throttle valve cannot be operated due to some problem with the intake throttle valve. Normally, since the intake throttle valve is fully opened when the power is turned off, the temperature cannot be raised to the activation temperature of the oxidation catalyst in the low engine speed and low load operation region, and it may be difficult to perform regeneration.

特に、エンジン低回転、低負荷運転領域では、特許文献1と同様の問題が生じ、再生が実施できないために、PM堆積量が規定量を超えてしまう。このため、運転領域の変化により他の昇温手段による再生可能となった場合に、再生時のDPF温度が上がりすぎて、DPFが損傷したり触媒が劣化するおそれがあった。   In particular, in the engine low-speed and low-load operation region, the same problem as in Patent Document 1 occurs, and regeneration cannot be performed, so that the PM accumulation amount exceeds the specified amount. For this reason, when the regeneration by the temperature raising means becomes possible due to the change of the operation region, the DPF temperature at the time of regeneration is excessively increased, and the DPF may be damaged or the catalyst may be deteriorated.

本発明は、上記実情に鑑みてなされたものであり、その目的は、DPF上に許容量を越える多量のパティキュレートが堆積するのを防止し、再生時の過昇温によるDPFおよび触媒の劣化・破損を防止して、排気浄化装置の安全性・耐久性を向上させることにある。   The present invention has been made in view of the above circumstances, and its purpose is to prevent the accumulation of a large amount of particulates exceeding the allowable amount on the DPF, and the deterioration of the DPF and the catalyst due to excessive temperature rise during regeneration. -To prevent damage and improve the safety and durability of the exhaust purification system.

上記課題を解決するために、請求項1の内燃機関の排気浄化装置は、排気通路に設置されて排気中のパティキュレートを捕集するパティキュレートフィルタを昇温するための複数の昇温手段の1つとして、内燃機関の吸気通路に吸気絞り手段を有している。また、パティキュレートフィルタに堆積するパティキュレート量を検出して、該パティキュレート量が、パティキュレートフィルタの再生を開始する基準値に達したどうかを判定するPM堆積量判定手段と、内燃機関の運転状態が予め設定された複数の運転領域のいずれに対応するかを判定する運転領域判定手段の判定結果に基づいて、複数の昇温手段を操作する再生制御手段を備える。PM堆積量判定手段は、吸気絞り手段の異常が検出された時に、上記パティキュレートフィルタの再生を開始する上記基準値を、通常時の基準値M1から、より小さい基準値M2に設定変更する基準値変更手段を有している。 In order to solve the above problems, an exhaust emission control device for an internal combustion engine according to claim 1 is provided with a plurality of temperature raising means for raising the temperature of a particulate filter that is installed in an exhaust passage and collects particulates in exhaust gas. As one, intake throttle means is provided in the intake passage of the internal combustion engine. Further, by detecting the particulate amount deposited on the particulate filter, the particulate amount, the PM deposition amount determining means for determining whether reaches the reference value for starting regeneration of the particulate filter, the internal combustion engine Regeneration control means for operating the plurality of temperature raising means is provided based on the determination result of the operation area determination means for determining which of the plurality of operation areas is set in advance. The PM accumulation amount determination means is a reference for changing the reference value for starting regeneration of the particulate filter from the normal reference value M1 to a smaller reference value M2 when an abnormality of the intake throttle means is detected. It has value changing means.

PM堆積量判定手段は、通常時にはパティキュレート堆積量が基準値M1以上となった時に再生判定を行い、再生制御手段により運転状態に応じた昇温操作を行ってパティキュレートフィルタを再生する。吸気絞り手段の異常が検出されると、再生判定の基準となるパティキュレート量を基準値M2に切り替え、基準値M1より少ないパティキュレート量で再生判定がなされるようにする。   The PM accumulation amount determining means normally performs regeneration determination when the particulate accumulation amount becomes equal to or greater than the reference value M1, and the regeneration control means regenerates the particulate filter by performing a temperature raising operation according to the operation state. When an abnormality in the intake throttle means is detected, the particulate amount serving as a reference for regeneration determination is switched to the reference value M2, and the regeneration determination is performed with a particulate amount smaller than the reference value M1.

このように、パティキュレート堆積量が比較的少ない時点で早めに再生判定することで、吸気絞り手段を用いた再生が困難であっても、パティキュレート量が許容量を超えて堆積する前の猶予時間の設定ができる。この猶予時間の間に、パティキュレートフィルタの再生に適した運転条件へと変化する可能性を有することから、パティキュレート量が許容量を超えて堆積する前に、運転条件の変化により吸気絞り手段以外の昇温手段を用いた再生が実施可能となる確率を高め、安全にパティキュレートを燃焼除去できる確率を高められる。よって、過昇温によるパティキュレートフィルタの損傷や触媒の劣化が生じる確率を抑制し、排気浄化装置の安全性・耐久性を向上できる。   In this way, by determining regeneration early when the amount of particulate accumulation is relatively small, even if regeneration using the intake throttle means is difficult, it is possible to wait before the particulate amount exceeds the allowable amount. Time can be set. During this grace period, there is a possibility of changing to operating conditions suitable for regeneration of the particulate filter. It is possible to increase the probability that regeneration using a temperature raising means other than the above can be performed, and to increase the probability that the particulates can be safely removed by combustion. Therefore, the probability that the particulate filter is damaged or the catalyst is deteriorated due to excessive temperature rise can be suppressed, and the safety and durability of the exhaust emission control device can be improved.

請求項2の排気浄化装置において、再生制御手段は、運転領域判定手段により判定された運転領域に応じて、複数の昇温手段から予め選択された1つないしそれ以上の昇温手段を操作することにより、パティキュレートフィルタをパティキュレートの燃焼温度以上に昇温する。   3. The exhaust emission control device according to claim 2, wherein the regeneration control means operates one or more temperature raising means selected in advance from a plurality of temperature raising means according to the operation region determined by the operation region determining means. As a result, the temperature of the particulate filter is raised above the combustion temperature of the particulates.

具体的には、比較的排気温度が高く昇温しやすい運転領域では、燃費悪化の抑制を優先させた昇温手段を選択し、排気温度が低い運転領域では、複数の昇温手段を組み合わせて速やかに昇温させるなど、運転領域に応じた昇温操作を行うことで、効率よく再生制御を実施できる。   Specifically, in the operation range where the exhaust temperature is relatively high and easily raised, a temperature raising means that prioritizes suppression of fuel consumption deterioration is selected, and in the operation region where the exhaust temperature is low, a plurality of temperature raising means are combined. Regeneration control can be performed efficiently by performing a temperature raising operation according to the operation region, such as quickly raising the temperature.

請求項3の排気浄化装置において、吸気絞り手段の異常が検出された時に、運転領域判定手段において判定される運転領域が、吸気絞り手段による昇温操作を実施する運転領域である場合には、再生制御手段による上記吸気絞り手段を含むすべての昇温操作を停止する再生停止手段を設ける。 In the exhaust emission control device according to claim 3, when the operation region determined by the operation region determination unit when the abnormality of the intake throttle unit is detected is an operation region in which the temperature raising operation by the intake throttle unit is performed, Regeneration stop means for stopping all the temperature raising operations including the intake throttle means by the regeneration control means is provided.

吸気絞り手段の異常時には、吸気絞り手段を含む昇温操作を実施せず、他の昇温手段を採用する運転領域となるまで再生を停止することで、効果的な昇温操作を行い、不要な操作による燃費の悪化等を抑制することができる。   When the intake throttling means is abnormal, the temperature raising operation including the intake throttling means is not carried out, and the regeneration is stopped until the operating range in which other temperature raising means is adopted. It is possible to suppress the deterioration of fuel consumption due to simple operation.

請求項4の排気浄化装置において、パティキュレートフィルタが表面に触媒を担持した触媒付パティキュレートフィルタである場合、再生制御手段は、複数の運転領域のうち排気温度が触媒の活性温度以下となる運転領域では、上記吸気絞り手段の異常が検出されていない時に、吸気絞り手段と複数の昇温手段から選択される少なくとも1つとを組み合わせて、パティキュレートフィルタを触媒の活性温度以上に昇温する触媒昇温操作を実施した後、複数の昇温手段から選択される少なくとも1つを用いて、パティキュレートフィルタをパティキュレートの燃焼温度以上に昇温する再生操作を実施する。 5. The exhaust gas purifying apparatus according to claim 4, wherein when the particulate filter is a particulate filter with a catalyst having a catalyst supported on the surface, the regeneration control means operates in such a manner that the exhaust temperature is equal to or lower than the activation temperature of the catalyst in a plurality of operation regions. in the region, raised when an abnormality of the intake throttle means is not detected, an intake throttle means, a combination of at least one bets is selected from a plurality of Atsushi Nobori means, the particulate filter above the activation temperature of the catalyst After performing the catalyst temperature raising operation, the regeneration operation for raising the temperature of the particulate filter to the particulate combustion temperature or higher is performed using at least one selected from a plurality of temperature raising means.

触媒付パティキュレートフィルタの再生は、まず、触媒を昇温して活性化させる必要があり、触媒昇温とその後の再生操作のそれぞれに最適な昇温手段を選択することで、より効果的な再生制御が実現できる。特に、低回転低負荷の運転領域では、吸気絞り手段を他の昇温手段と組み合わせることで、触媒を活性温度以上に昇温することができ、従来困難であったパティキュレートフィルタの再生が可能となる。よって、長時間低回転低負荷運転が続いても、再生ができないためにパティキュレート堆積量が許容範囲を超えることがなく、安全性と信頼性を向上できる。   To regenerate a particulate filter with a catalyst, it is necessary to first activate the catalyst by raising the temperature. By selecting the most suitable temperature raising means for the catalyst temperature raising and the subsequent regeneration operation, it is more effective. Playback control can be realized. In particular, in the low-rotation and low-load operation region, the catalyst can be heated to an activation temperature or higher by combining the intake throttle means with other temperature raising means, and it is possible to regenerate the particulate filter, which was difficult in the past. It becomes. Therefore, even if the low-rotation and low-load operation continues for a long time, since the regeneration cannot be performed, the particulate accumulation amount does not exceed the allowable range, and safety and reliability can be improved.

請求項5の排気浄化装置は、パティキュレートフィルタ上流の排気通路に排気温度を検出する温度検出手段を設けており、運転領域判定手段は、温度検出手段によって検出される排気温度に基づいて運転領域の判定を行うものとする。   According to a fifth aspect of the present invention, there is provided an exhaust purification device comprising temperature detection means for detecting the exhaust temperature in the exhaust passage upstream of the particulate filter, and the operation region determination means is based on the exhaust temperature detected by the temperature detection means. Shall be determined.

具体的には、内燃機関の運転状態をよく反映するパティキュレートフィルタ上流の排気温度に基づいて運転状態を検出し、予め設定したどの運転領域に対応するかを容易に判定することができる。   Specifically, the operating state is detected based on the exhaust temperature upstream of the particulate filter that well reflects the operating state of the internal combustion engine, and it is possible to easily determine which operating region is set in advance.

請求項6の排気浄化装置において、再生制御手段は、運転領域判定手段により判定された運転領域が、排気温度がパティキュレートフィルタの燃焼温度以上である運転領域である時には、複数の昇温手段による昇温操作を実施しない。   7. The exhaust gas purification apparatus according to claim 6, wherein the regeneration control means uses a plurality of temperature raising means when the operation area determined by the operation area determination means is an operation area where the exhaust gas temperature is equal to or higher than the combustion temperature of the particulate filter. Do not perform the temperature raising operation.

パティキュレート量がパティキュレートフィルタの再生が必要と判定された時に、排気温度が高温であれば、昇温手段を操作せず、自然再生を行うことで不要な昇温操作による燃費の悪化等を防止できる。   When it is determined that the particulate filter needs to be regenerated, if the exhaust gas temperature is high, the temperature riser is not operated, and natural regeneration is used to reduce fuel consumption due to unnecessary temperature rise operations. Can be prevented.

請求項7の排気浄化装置は、複数の昇温手段として、少なくともタイミングリタードおよびポスト噴射を備える。   The exhaust emission control device of claim 7 includes at least timing retard and post injection as the plurality of temperature raising means.

具体的には、排気温度が500℃程度まで上昇する高速高負荷運転領域では、例えばタイミングリタードにより容易にパティキュレートの燃焼温度まで昇温可能である。排気温度が500℃より低い運転領域では、昇温効率を優先させて例えばポスト噴射を用いることで、速やかに再生を行うことができる。吸気絞り手段を含むこれら昇温手段を適宜組み合わせることで内燃機関の全運転領域において最適な再生制御が可能となる。   Specifically, in a high-speed and high-load operation region where the exhaust temperature rises to about 500 ° C., the temperature can be easily raised to the particulate combustion temperature by, for example, timing retard. In the operation region where the exhaust temperature is lower than 500 ° C., regeneration can be performed quickly by giving priority to the temperature raising efficiency and using, for example, post injection. By appropriately combining these temperature raising means including the intake throttle means, optimum regeneration control can be performed in the entire operation region of the internal combustion engine.

以下、本発明の第1の実施の形態を図面に基づいて説明する。図1は内燃機関の排気浄化装置の全体構成を示すもので、本実施形態では4気筒ディーゼルエンジン1への適用例としてある。エンジン1の各気筒にはそれぞれインジェクタ11が設けられ、コモンレール3内に蓄圧される燃料を燃焼室内に噴射するようになっている。燃料タンク4の燃料は、調量弁41を経てポンプ31で加圧され、コモンレール3に供給される。コモンレール3には圧力センサ5が設けられ、コモンレール3の圧力を検出してECU2に出力する。 DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a first embodiment of the invention will be described with reference to the drawings. FIG. 1 shows an overall configuration of an exhaust gas purification apparatus for an internal combustion engine. In this embodiment, the exhaust gas purifying apparatus is applied to a four-cylinder diesel engine 1. Each cylinder of the engine 1 is provided with an injector 11 so that fuel accumulated in the common rail 3 is injected into the combustion chamber. The fuel in the fuel tank 4 is pressurized by the pump 31 through the metering valve 41 and supplied to the common rail 3. The common rail 3 is provided with a pressure sensor 5 that detects the pressure of the common rail 3 and outputs it to the ECU 2.

エンジン1の排気通路12には、表面に酸化触媒を担持したディーゼルパティキュレートフィルタ(以下、酸化触媒付DPFと称する)6が設置されている。酸化触媒付DPF6は、例えば、コーディエライト等の耐熱性セラミックスをハニカム構造に成形して、ガス流路となる多数のセルを入口側または出口側が互い違いとなるように目封じしてなり、セル壁表面には、Pt等の酸化触媒が塗布されている。エンジン1から排出された排気ガスは、酸化触媒付DPF6の多孔性の隔壁を通過しながら下流へ流れ、その間にパティキュレートが捕集されて次第に堆積する。なお、本実施形態では触媒反応を利用して再生温度を低くし安定した燃焼を行うために酸化触媒を担持しているが、DPF前段に酸化触媒を有する構成とすることも可能である。   In the exhaust passage 12 of the engine 1, a diesel particulate filter (hereinafter referred to as an oxidation catalyst-attached DPF) 6 carrying an oxidation catalyst on its surface is installed. The oxidation catalyst-attached DPF 6 is formed, for example, by forming heat-resistant ceramics such as cordierite into a honeycomb structure, and sealing a number of cells serving as gas flow paths so that the inlet side or the outlet side are staggered. An oxidation catalyst such as Pt is applied to the wall surface. The exhaust gas discharged from the engine 1 flows downstream while passing through the porous partition wall of the oxidation catalyst-attached DPF 6, and particulates are collected and gradually accumulated therebetween. In the present embodiment, an oxidation catalyst is supported in order to lower the regeneration temperature by using a catalytic reaction and perform stable combustion. However, a configuration having an oxidation catalyst upstream of the DPF is also possible.

酸化触媒付DPF6の上流側および下流側の排気通路12には、温度センサ71、72がそれぞれ設置される。温度センサ71、72は、排気通路12を流通する排気温度を知るためのもので、酸化触媒付DPF6の入ガスまたは出ガス温度を検出して、ECU2に出力する。温度検出手段となる温度センサ71で検出される酸化触媒付DPF6の入ガス温度は、後述するエンジン1の運転状態の検出に用いられる。また、温度センサ72で検出される酸化触媒付DPF6の出ガス温度は、酸化触媒および酸化触媒付DPF6の温度の検出に用いられる。酸化触媒および酸化触媒付DPF6の温度(中心部の温度)を直接測定することは困難であり、通常、出ガス温度を酸化触媒付DPF6の温度と見なすことができるが、検出精度を高くするために、出ガス温度に反映されるまでの時間遅れを考慮して酸化触媒付DPF6の温度を推定することもできる。   Temperature sensors 71 and 72 are installed in the exhaust passage 12 on the upstream side and the downstream side of the DPF 6 with an oxidation catalyst, respectively. The temperature sensors 71 and 72 are for detecting the temperature of the exhaust gas flowing through the exhaust passage 12, and detect the temperature of the gas entering or exiting the DPF 6 with the oxidation catalyst and outputting it to the ECU 2. The input gas temperature of the oxidation catalyst-attached DPF 6 detected by the temperature sensor 71 serving as a temperature detecting means is used for detecting the operating state of the engine 1 described later. Further, the outgas temperature of the oxidation catalyst-attached DPF 6 detected by the temperature sensor 72 is used to detect the temperature of the oxidation catalyst and the oxidation catalyst-attached DPF 6. It is difficult to directly measure the temperature of the oxidation catalyst and the DPF 6 with an oxidation catalyst (the temperature at the center), and the outgas temperature can usually be regarded as the temperature of the DPF 6 with an oxidation catalyst, but in order to increase the detection accuracy. In addition, the temperature of the oxidation catalyst-attached DPF 6 can be estimated in consideration of a time delay until the output gas temperature is reflected.

また、排気通路12には、酸化触媒付DPF6に捕集されて堆積したパティキュレートの量(PM堆積量)を知るために、差圧センサ8が接続される。差圧センサ8の両端には、それぞれ酸化触媒付DPF6の上流側および下流側の排気通路12に連通する圧力導入通路81、82が接続されており、差圧センサ8は酸化触媒付DPF6の前後差圧に応じた信号をECU2に出力する。   In addition, a differential pressure sensor 8 is connected to the exhaust passage 12 in order to know the amount of particulates (PM accumulation amount) collected and accumulated in the DPF 6 with oxidation catalyst. Connected to both ends of the differential pressure sensor 8 are pressure introducing passages 81 and 82 communicating with the upstream and downstream exhaust passages 12 of the DPF 6 with an oxidation catalyst, respectively. A signal corresponding to the differential pressure is output to the ECU 2.

エンジン1の吸気通路13には、吸気絞り手段となる吸気絞り弁14が設置されている。吸気絞り弁14は公知の構成で、非通電時に全開するようになっている。吸気絞り弁14の弁開度は、ECU2からの指令によって変化させることができ、これに応じて吸気通路13の流路断面積が変化して吸入空気量を調整可能となっている。詳細を後述するように、本発明では吸気絞り弁14による吸気絞り操作を、酸化触媒付DPF6の昇温手段の1つとしている。昇温手段としては、吸気絞りの他、ポスト噴射またはタイミングリタード(燃料噴射時期遅角)等が挙げられ、これら昇温手段のうちいずれか1つを採用するか、または2つ以上の手段を組み合わせることができる。   An intake throttle valve 14 serving as an intake throttle means is installed in the intake passage 13 of the engine 1. The intake throttle valve 14 has a known configuration and is fully opened when not energized. The valve opening degree of the intake throttle valve 14 can be changed by a command from the ECU 2, and the flow passage cross-sectional area of the intake passage 13 is changed accordingly, and the intake air amount can be adjusted. As will be described in detail later, in the present invention, the intake throttle operation by the intake throttle valve 14 is one of the temperature raising means of the DPF 6 with an oxidation catalyst. As the temperature raising means, in addition to the intake throttle, post injection, timing retard (fuel injection timing delay) or the like can be mentioned. Either one of these temperature raising means is adopted, or two or more means are used. Can be combined.

ECU2には、さらに、図示しないアクセル開度センサや回転数センサ、燃料レベルセンサといった各種センサが接続されている。ECU2は、これらセンサからの検出信号を基に運転状態に応じた最適な燃料噴射量、噴射時期、噴射圧等を算出して、コモンレール3が所定の噴射圧となるように調量弁41を制御して、コモンレール3へ高圧燃料を圧送し、インジェクタ11を所定タイミングで駆動して、エンジン1への燃料噴射を制御する。   Further, various sensors such as an accelerator opening sensor, a rotation speed sensor, and a fuel level sensor (not shown) are connected to the ECU 2. The ECU 2 calculates the optimum fuel injection amount, injection timing, injection pressure, etc. according to the operating state based on the detection signals from these sensors, and controls the metering valve 41 so that the common rail 3 has a predetermined injection pressure. The high pressure fuel is pumped to the common rail 3 and the injector 11 is driven at a predetermined timing to control the fuel injection to the engine 1.

また、ECU2は、酸化触媒付DPF6の再生を制御し、PM堆積量が規定値に達したら堆積したパティキュレートを焼却除去するために、酸化触媒付DPF6の温度をパティキュレートが燃焼可能な温度まで上昇させる。このため、本実施形態におけるECU2は、差圧センサ8の検出結果を基に、酸化触媒付DPF6へのPM堆積量を算出し、PM堆積量の算出値が酸化触媒付DPF6の再生を開始する基準値に達したどうかを判定するとともに(PM堆積量判定手段)、排気温度等から知られるエンジン1の運転状態が予め設定された複数の運転領域のいずれに対応するかを判定する(運転領域判定手段)。そして、これらPM堆積量判定手段と運転領域判定手段の判定結果に基づいて、上述した複数の昇温手段を操作し、酸化触媒付DPF6を再生させる(再生制御手段)。   In addition, the ECU 2 controls the regeneration of the oxidation catalyst-attached DPF 6, and in order to incinerate and remove the accumulated particulates when the PM accumulation amount reaches a specified value, the temperature of the oxidation catalyst-attached DPF 6 reaches a temperature at which the particulates can burn. Raise. For this reason, the ECU 2 in the present embodiment calculates the PM accumulation amount on the oxidation catalyst-attached DPF 6 based on the detection result of the differential pressure sensor 8, and the calculated PM accumulation amount starts regeneration of the oxidation catalyst-attached DPF 6. It is determined whether or not the reference value has been reached (PM accumulation amount determination means), and it is determined to which of a plurality of preset operation regions the operation state of the engine 1 known from the exhaust temperature or the like corresponds (operation region) Determination means). Then, based on the determination results of the PM accumulation amount determination means and the operation region determination means, the plurality of temperature raising means described above are operated to regenerate the oxidation catalyst-attached DPF 6 (regeneration control means).

具体的には、PM堆積量が基準値に達したら、判定された運転領域を基に、その時点でのエンジン1の運転状態に対して最適となる昇温手段を選択して、酸化触媒付DPF6の昇温操作を行う。図2は、エンジン1の運転状態(ここでは、エンジン回転数とトルク)と排気温度の関係を示しており、エンジン回転数およびトルクの値が大きい領域ほど排気温度が高くなる一方、エンジン回転数およびトルクの値が小さい領域ほど排気温度が低くなっている。本実施形態では、エンジン1の運転領域を、排気温度が高い(例えば550℃以上)高速高負荷の領域Aから排気温度が低い(例えば250℃未満)低速低負荷の領域Eまでの5つの領域に区分するものとする。領域Aと領域Eの間は、排気温度に基づいて、領域B(例えば500℃以上)、領域C(例えば350℃以上)、領域D(例えば250℃以上)の3つの領域に区分されている。   Specifically, when the PM accumulation amount reaches the reference value, the temperature raising means that is optimal for the operation state of the engine 1 at that time is selected based on the determined operation region, and the oxidation catalyst is attached. The temperature raising operation of the DPF 6 is performed. FIG. 2 shows the relationship between the operating state of the engine 1 (in this case, the engine speed and torque) and the exhaust temperature, and the exhaust temperature becomes higher in the region where the engine speed and torque values are larger, while the engine speed. The exhaust temperature is lower in the region where the torque value is smaller. In this embodiment, the engine 1 is operated in five regions from a high-speed and high-load region A having a high exhaust temperature (for example, 550 ° C. or higher) to a low-speed and low-load region E having a low exhaust temperature (for example, less than 250 ° C.). Shall be divided into The region A and the region E are divided into three regions, a region B (for example, 500 ° C. or higher), a region C (for example, 350 ° C. or higher), and a region D (for example, 250 ° C. or higher) based on the exhaust temperature. .

次に、各領域において採用される昇温手段と昇温操作について説明する。
(1)領域Aでは、排気温度が550℃以上の高温となるので、酸化触媒付DPF6に堆積したパティキュレートが自然燃焼可能である。そこで、領域Aでは、昇温手段を操作せずに、DPF自然再生を行う。
(2)領域Bでは、昇温手段としてタイミングリタードを実施する。この領域では排気温度が500℃以上と比較的高いので、燃料噴射時期を遅らせるタイミングリタードにより、排気ガスを通常時より高温として、酸化触媒付DPF6温度を550℃以上に昇温することができる。これにより、燃費の増大を抑制しながら、パティキュレートを燃焼除去して酸化触媒付DPF6を再生できる。
(3)領域Cでは、昇温手段としてポスト噴射によるDPF再生を実施する。この領域では、排気温度が350℃以上と十分高くないため、インジェクタ11からメイン噴射を行った後に、少量の燃料を噴射するポスト噴射を行って排気中にHCを供給し、触媒燃焼させる。このHCの燃焼熱で酸化触媒付DPF6温度を550℃以上に昇温してパティキュレートを燃焼させ、酸化触媒付DPF6を再生できる。
(4)領域Dでは、昇温手段としてタイミングリタードによる酸化触媒の昇温操作を実施した後、ポスト噴射によるDPF再生操作を行う。この領域では、排気温度が250℃以上とやや低いため、酸化触媒が十分活性化しておらず、ポスト噴射のみによるDPF再生では燃費が悪化しやすい。そこで、まず、タイミングリタードを実施して酸化触媒が活性化する温度(例えば350℃)まで昇温させてから、ポスト噴射を行うことで酸化触媒付DPF6の温度を550℃以上に昇温、再生する。このように昇温操作を2行程に分けて行うことにより、供給されるHCを効率よく燃焼させ、燃費悪化を抑制することができる。
(5)領域Eでは、昇温手段としてタイミングリタードと吸気絞りによる触媒昇温を実施した後、ポスト噴射によるDPF再生を行う。この領域は、領域Dよりさらに排気温度が低く250℃に満たないために、従来は触媒の昇温が困難とされ、燃費を優先させてDPF再生を未実施としていた領域であるが、本実施形態では、昇温手段として吸気絞りを組み合わせることで排気への放熱を抑制して温度上昇しやすくする。これにより、酸化触媒の活性化温度(例えば350℃)以上に昇温可能となり、その後、ポスト噴射を行うことで、供給されるHCを効率よく燃焼させ、酸化触媒付DPF6の温度を550℃以上に昇温、再生することができる。
Next, the temperature raising means and the temperature raising operation employed in each region will be described.
(1) In the region A, the exhaust temperature becomes a high temperature of 550 ° C. or higher, so the particulates deposited on the oxidation catalyst-attached DPF 6 can spontaneously burn. Therefore, in region A, DPF natural regeneration is performed without operating the temperature raising means.
(2) In region B, timing retard is performed as a temperature raising means. In this region, since the exhaust temperature is relatively high at 500 ° C. or higher, the timing of retarding the fuel injection timing makes it possible to raise the temperature of the DPF 6 with oxidation catalyst to 550 ° C. or higher by setting the exhaust gas to a higher temperature than usual. As a result, while suppressing increase in fuel consumption, it is possible to regenerate the DPF 6 with oxidation catalyst by burning and removing the particulates.
(3) In region C, DPF regeneration by post injection is performed as a temperature raising means. In this region, since the exhaust temperature is not sufficiently high at 350 ° C. or more, after performing the main injection from the injector 11, post injection for injecting a small amount of fuel is performed, HC is supplied into the exhaust, and catalytic combustion is performed. The DPF 6 with an oxidation catalyst can be regenerated by increasing the temperature of the DPF 6 with an oxidation catalyst to 550 ° C. or higher with the combustion heat of HC and burning the particulates.
(4) In region D, after performing the temperature raising operation of the oxidation catalyst by timing retard as the temperature raising means, the DPF regeneration operation by post injection is performed. In this region, the exhaust temperature is somewhat low at 250 ° C. or higher, so that the oxidation catalyst is not sufficiently activated, and fuel efficiency tends to be deteriorated by DPF regeneration using only post injection. Therefore, first, the timing retard is performed to raise the temperature to the temperature at which the oxidation catalyst is activated (for example, 350 ° C.), and then the post-injection is performed to raise the temperature of the DPF 6 with the oxidation catalyst to 550 ° C. or higher and regenerate. To do. By performing the temperature raising operation in two strokes in this way, the supplied HC can be burned efficiently and fuel consumption deterioration can be suppressed.
(5) In region E, the catalyst temperature is raised by timing retard and intake air throttle as the temperature raising means, and then DPF regeneration by post injection is performed. This region is a region where the exhaust temperature is lower than that of region D and less than 250 ° C., so it has been difficult to raise the temperature of the catalyst in the past, and DPF regeneration has not been performed with priority on fuel efficiency. In the embodiment, by combining an intake throttle as a temperature raising means, heat dissipation to the exhaust is suppressed and the temperature is easily increased. As a result, the temperature can be raised to the activation temperature of the oxidation catalyst (for example, 350 ° C.) or higher, and then the post-injection is performed to efficiently burn the supplied HC, and the temperature of the oxidation catalyst-attached DPF 6 is set to 550 ° C. or higher. Can be heated and regenerated.

なお、各領域において選択される昇温手段は一例として示されるもので、これに限定されるものではない。例えば、本実施形態においては、領域Eにおいて酸化触媒の昇温のために吸気絞り操作を行う構成としているが、他の領域において吸気絞り操作を組み合わせることも可能である。また、本実施形態では運転領域を5つに区分しているが、領域数や各領域の境界値となる排気温度も、例えば、触媒の種類や触媒担持の有無その他の条件に応じて変更可能である。   The temperature raising means selected in each region is shown as an example and is not limited to this. For example, in the present embodiment, the intake throttle operation is performed to raise the temperature of the oxidation catalyst in the region E, but the intake throttle operation can be combined in other regions. In this embodiment, the operation region is divided into five regions, but the number of regions and the exhaust temperature that is the boundary value of each region can also be changed according to, for example, the type of catalyst, the presence or absence of catalyst loading, and other conditions. It is.

ここで、本発明の特徴部分であるPM堆積量判定手段について説明する。
昇温手段として吸気絞りを選択する運転領域(図2では領域E)では、吸気絞り弁14に不具合が生じて吸気絞り操作ができなくなった場合、再生制御が正常に実施できないことになる(領域Eでは触媒昇温が困難となる)。また、この領域Eの状態が長時間維持されると、許容値を越えてパティキュレートが堆積し、その後の運転状態の変化により一気に燃焼するおそれがある。そこで、本発明では、PM堆積量判定手段においてDPF再生が必要かどうかを判定するための基準値を複数設ける。すなわち、通常時にはDPF再生を開始するPM堆積量を基準値M1とし、吸気絞り弁14に何らかの異常が検出された時には、DPF再生を開始するPM堆積量を通常時の基準値M1より小さい基準値M2に設定変更して(基準値変更手段)、再生温度が酸化触媒付DPF6の基材および触媒の許容限界を越えた高温となることを回避する。基準値M2が小さいほど安全性は高まるが再生頻度が大きくなるので、安全性が確保できる範囲で基準値M2を大きく設定することが好ましい。具体的には、通常時の基準値M1に対する基準値M2の比率を1:0.8程度とすればよい。
Here, the PM deposition amount determination means, which is a characteristic part of the present invention, will be described.
In the operation region (region E in FIG. 2) where the intake throttle is selected as the temperature raising means, if the intake throttle valve 14 malfunctions and the intake throttle operation cannot be performed, the regeneration control cannot be performed normally (region). E makes it difficult to raise the temperature of the catalyst). Further, if the state of the region E is maintained for a long time, the particulates may be accumulated beyond the allowable value, and there is a risk of burning at once due to a change in the operating state thereafter. Therefore, in the present invention, a plurality of reference values for determining whether or not DPF regeneration is necessary in the PM accumulation amount determination means are provided. That is, the PM accumulation amount at which DPF regeneration is started at the normal time is set as the reference value M1, and when any abnormality is detected in the intake throttle valve 14, the PM accumulation amount at which DPF regeneration is started is a reference value smaller than the reference value M1 at the normal time. The setting is changed to M2 (reference value changing means) to avoid the regeneration temperature from exceeding the allowable limit of the base material and catalyst of the DPF 6 with oxidation catalyst. The smaller the reference value M2, the higher the safety, but the higher the reproduction frequency. Therefore, it is preferable to set the reference value M2 large within a range in which safety can be ensured. Specifically, the ratio of the reference value M2 to the normal reference value M1 may be about 1: 0.8.

再生制御手段は、PM堆積量が基準値M2に達してPM堆積量判定手段が再生判定すると、図2に基づいて運転領域を判定し、各領域毎に設定される昇温操作を行って酸化触媒付DPF6を再生する。ただし、運転領域判定手段の判定結果が昇温手段として吸気絞りを用いる領域Eとなった場合には、吸気絞り弁14の異常で触媒昇温が正常になされず再生が困難となるため、再生制御手段による昇温操作を停止する(再生停止手段)。この場合にも、再生判定されてから実際に過昇温のおそれのあるPM堆積量に達するまでには十分な猶予時間があり、領域E以外の運転領域となった時に速やかに他の昇温手段による再生制御が開始されるので、安全に酸化触媒付DPF6上に堆積したパティキュレートを燃焼させることができる。   When the PM deposition amount reaches the reference value M2 and the PM deposition amount determination unit performs regeneration determination, the regeneration control unit determines the operation region based on FIG. 2 and performs a temperature raising operation set for each region to oxidize the regeneration region. Regenerate the DPF 6 with catalyst. However, when the determination result of the operation region determining means is the region E where the intake throttle is used as the temperature raising means, the catalyst temperature rise is not normal due to the abnormality of the intake throttle valve 14, and regeneration is difficult. The temperature raising operation by the control means is stopped (regeneration stop means). Also in this case, there is a sufficient grace time until the PM accumulation amount that may actually overheat after reaching the regeneration determination, and when the operation region other than the region E is reached, another temperature increase Since the regeneration control by the means is started, the particulates deposited on the oxidation catalyst-attached DPF 6 can be safely burned.

次に、このECU2による酸化触媒付DPF6の再生のための制御ルーチンを、図3〜図10に示すフローチャートを用いて説明する。図3はDPF再生制御の基本操作を示すもので、本ルーチンはECU2において所定の周期で実行される。ステップ100はPM堆積量判定手段、ステップ200は運転領域判定手段、ステップ300は再生制御手段に対応し、これらの詳細は図4、図5、図6〜図10にそれぞれ示されている。図4のPM堆積量判定では、まず、ステップ101において吸気絞り弁14が正常かどうかを判定し、正常と判定された場合には、ステップ102へ進んで酸化触媒付DPF6へのPM堆積量を通常時の基準値M1と比較する。正常でないと判定された場合には、ステップ103へ進んで酸化触媒付DPF6へのPM堆積量を基準値M1より小さい基準値M2と比較する。   Next, a control routine for regeneration of the DPF 6 with the oxidation catalyst by the ECU 2 will be described with reference to flowcharts shown in FIGS. FIG. 3 shows the basic operation of the DPF regeneration control, and this routine is executed in the ECU 2 at a predetermined cycle. Step 100 corresponds to the PM accumulation amount determination means, step 200 corresponds to the operation region determination means, and step 300 corresponds to the regeneration control means, and these details are shown in FIGS. 4, 5, and 6 to 10, respectively. In the PM accumulation amount determination of FIG. 4, first, in step 101, it is determined whether or not the intake throttle valve 14 is normal. If it is determined normal, the routine proceeds to step 102 where the PM accumulation amount on the DPF 6 with oxidation catalyst is determined. It is compared with the reference value M1 at the normal time. If it is determined that it is not normal, the routine proceeds to step 103, where the PM deposition amount on the oxidation catalyst-attached DPF 6 is compared with a reference value M2 smaller than the reference value M1.

ステップ101の吸気絞り弁14の故障判定は別ルーチンで行われ、例えば、ECU2から吸気絞り弁14への制御信号と図示しない吸気量センサの検出信号とを比較して、そのずれが許容範囲を超えた時に故障と判定することができる。ステップ102、103の酸化触媒付DPF6に堆積しているPM堆積量は、差圧センサ8で検出される酸化触媒付DPF6前後の差圧を基に算出することができる。これは、所定量の排気が酸化触媒付DPF6を通過する時に生じる差圧が、酸化触媒付DPF6に堆積したパティキュレート量に相関があることを利用するもので、これらの関係は予め実験等により求められマップデータとしてECU2のメモリに記憶される。   The failure determination of the intake throttle valve 14 in step 101 is performed in another routine. For example, a control signal from the ECU 2 to the intake throttle valve 14 is compared with a detection signal of an intake air amount sensor (not shown), and the deviation is within an allowable range. When exceeded, it can be determined as a failure. The amount of PM deposited on the DPF 6 with an oxidation catalyst in Steps 102 and 103 can be calculated based on the differential pressure before and after the DPF 6 with an oxidation catalyst detected by the differential pressure sensor 8. This utilizes the fact that the differential pressure generated when a predetermined amount of exhaust gas passes through the oxidation catalyst-attached DPF 6 has a correlation with the amount of particulates deposited on the oxidation catalyst-attached DPF 6, and these relations are experimentally determined in advance. The obtained map data is stored in the memory of the ECU 2.

ステップ102、103において、PM堆積量が基準値M1または基準値M2以上と判定された場合には、図5により運転領域判定を行う。ステップ102、103が否定判定された場合には、まだ再生は必要ないと判断して本制御ルーチンを一旦終了する。   In steps 102 and 103, when it is determined that the PM accumulation amount is the reference value M1 or the reference value M2 or more, the operation region determination is performed according to FIG. If the determination in steps 102 and 103 is negative, it is determined that regeneration is not yet necessary, and the present control routine is temporarily terminated.

図5の運転領域判定では、排気温度からエンジン1の運転状態が予め設定された領域Aから領域Eのどの領域に相当するかを判定する。排気温度は、温度センサ71で検出される酸化触媒付DPF6の入ガス温度を用い、ステップ201では検出される排気温度がT1(ここでは550℃)以上かどうかを判定する。排気温度がT1(ここでは550℃)以上であれば、領域Aと判定する。その後、図6の再生制御処理へ進むが、排気温度が高い領域Aでは、上述した通りパティキュレートが自然燃焼可能であるので、特別な昇温操作は行わない。   In the operation region determination of FIG. 5, it is determined which region from the region A to the region E the operation state of the engine 1 corresponds to from the exhaust temperature. As the exhaust gas temperature, the inlet gas temperature of the DPF 6 with oxidation catalyst detected by the temperature sensor 71 is used. In step 201, it is determined whether the detected exhaust gas temperature is equal to or higher than T1 (here, 550 ° C.). If the exhaust temperature is equal to or higher than T1 (here, 550 ° C.), the region A is determined. Thereafter, the process proceeds to the regeneration control process of FIG. 6, but in the region A where the exhaust gas temperature is high, the particulates can be spontaneously combusted as described above, and thus no special temperature raising operation is performed.

ステップ201で排気温度がT1未満である場合には、ステップ202で排気温度がT2(ここでは500℃)以上かどうかを判定する。排気温度がT2以上であれば領域Bと判定し、図7の再生制御処理へ進む。図7のステップ301では、燃料噴射時期を遅延させるタイミングリタードを実施し、ステップ302で再生処理を終了するかどうかを判定する。この再生終了の判定は、例えば、予め決められた所定時間タイミングリタードを実施したかどうかで判定することができ、再生終了と判定されるまでステップ301、302を繰り返す。あるいは、温度センサ72で検出される酸化触媒付DPF6の出ガス温度から検出または推定される酸化触媒付DPF6温度が、所定温度(ここでは550℃)に達したかどうかにより再生終了と判定することもできる。   If the exhaust temperature is lower than T1 in step 201, it is determined in step 202 whether the exhaust temperature is equal to or higher than T2 (here, 500 ° C.). If the exhaust temperature is equal to or higher than T2, the region B is determined, and the process proceeds to the regeneration control process of FIG. In step 301 in FIG. 7, a timing retard that delays the fuel injection timing is performed, and in step 302, it is determined whether or not the regeneration process is to be ended. The determination of the end of reproduction can be made, for example, based on whether or not timing retard is performed for a predetermined time, and steps 301 and 302 are repeated until it is determined that the reproduction is completed. Alternatively, the regeneration is determined to be complete depending on whether or not the temperature of the DPF 6 with an oxidation catalyst detected or estimated from the temperature of the outgassing of the DPF 6 with an oxidation catalyst detected by the temperature sensor 72 has reached a predetermined temperature (here, 550 ° C.). You can also.

ステップ202で排気温度がT2未満である場合には、ステップ203へ進んで排気温度がT3(ここでは350℃)以上かどうかを判定する。排気温度がT3以上であれば領域Cと判定し、図8の再生制御処理へ進む。図8のステップ311では、ポスト噴射を実施し、ステップ312で再生処理を終了するかどうかを判定する。この再生終了の判定は、図7のステップ302と同様に行い、再生終了と判定されるまでステップ311、312を繰り返す。   If the exhaust temperature is lower than T2 in step 202, the routine proceeds to step 203, where it is determined whether the exhaust temperature is equal to or higher than T3 (here, 350 ° C.). If the exhaust gas temperature is equal to or higher than T3, it is determined as the region C, and the process proceeds to the regeneration control process of FIG. In step 311 of FIG. 8, post injection is performed, and in step 312, it is determined whether or not the regeneration process is to be ended. This reproduction end determination is performed in the same manner as in step 302 of FIG. 7, and steps 311 and 312 are repeated until it is determined that reproduction ends.

ステップ203で排気温度がT3未満である場合には、ステップ204へ進んで排気温度がT4(ここでは250℃)以上かどうかを判定する。排気温度がT4以上であれば領域Dと判定し、図9の再生制御処理へ進む。図9のステップ321では、タイミングリタードを実施し、ステップ322で酸化触媒付DPF6に担持される酸化触媒の温度が350℃以上となっているかどうかを判定する。触媒温度は、例えば、酸化触媒付DPF6下流の温度センサ72から検出または推定することができ、触媒温度が350℃以上と判定されるまでステップ321、322を繰り返す。ステップ322が肯定判定されたら、ステップ323でポスト噴射を実施し、ステップ324で再生処理を終了するかどうかを判定する。この再生終了の判定は、図7のステップ302と同様に行い、再生終了と判定されるまでステップ323、324を繰り返す。   When the exhaust temperature is lower than T3 in step 203, the routine proceeds to step 204, where it is determined whether or not the exhaust temperature is equal to or higher than T4 (here, 250 ° C.). If the exhaust temperature is equal to or higher than T4, it is determined as the region D, and the process proceeds to the regeneration control process of FIG. In step 321 of FIG. 9, timing retard is performed, and in step 322, it is determined whether or not the temperature of the oxidation catalyst supported on the DPF 6 with oxidation catalyst is 350 ° C. or higher. The catalyst temperature can be detected or estimated from, for example, the temperature sensor 72 downstream of the DPF 6 with oxidation catalyst, and steps 321 and 322 are repeated until the catalyst temperature is determined to be 350 ° C. or higher. If an affirmative determination is made in step 322, post injection is performed in step 323, and it is determined in step 324 whether or not the regeneration process is to be terminated. The determination of the end of reproduction is performed in the same manner as in step 302 of FIG. 7, and steps 323 and 324 are repeated until it is determined that the reproduction is completed.

ステップ204で排気温度がT4未満である場合には、ステップ205へ進む。ステップ205では、吸気絞り弁14が正常かどうかを判定し、正常でない場合には再生制御不可能と判断して、本制御ルーチンを一旦終了する。吸気絞り弁14が正常であれば領域Eと判定し、図10の再生制御処理へ進む。図10のステップ331では、タイミングリタードに加え、吸気絞り弁14の弁開度を絞って吸気量を少なくする吸気絞りを実施し、ステップ332で触媒温度が350℃以上となっているかどうかを判定する。触媒温度の判定は図9のステップ322と同様に行い、触媒温度が350℃以上と判定されるまでステップ331、332を繰り返す。ステップ332が肯定判定されたら、ステップ333でポスト噴射を実施し、ステップ334で再生処理を終了するかどうかを判定する。この再生終了の判定は、図7のステップ302と同様に行い、再生終了と判定されるまでステップ333、334を繰り返す。   If the exhaust temperature is lower than T4 in step 204, the process proceeds to step 205. In step 205, it is determined whether or not the intake throttle valve 14 is normal. If the intake throttle valve 14 is not normal, it is determined that regeneration control is impossible, and the present control routine is temporarily terminated. If the intake throttle valve 14 is normal, it is determined as the region E, and the process proceeds to the regeneration control process of FIG. In step 331 of FIG. 10, in addition to the timing retard, intake throttle is performed to reduce the intake amount by reducing the valve opening of the intake throttle valve 14, and in step 332, it is determined whether the catalyst temperature is 350 ° C. or higher. To do. The determination of the catalyst temperature is performed in the same manner as in step 322 in FIG. 9, and steps 331 and 332 are repeated until it is determined that the catalyst temperature is 350 ° C. or higher. If an affirmative determination is made in step 332, post injection is performed in step 333, and it is determined in step 334 whether or not the regeneration process is to be terminated. This reproduction end determination is performed in the same manner as step 302 in FIG. 7, and steps 333 and 334 are repeated until it is determined that reproduction ends.

以上のように、本発明では、吸気絞り弁14故障時に、DPF再生を判断するPM堆積量を通常時の基準値M1からより少ない基準値M2に切り替えるようにしたので、吸気絞りを用いる再生モードが正常に動作しない場合でも、PM堆積量が許容量を超える前に他の再生モードにより安全なDPF再生が可能で耐久性が向上する。また、再生時に運転領域に応じた適切な昇温手段を用いて昇温操作を行うことで、燃費の悪化を最小限に抑制することができ、安全性、信頼性に優れた排気浄化装置を実現できる。   As described above, in the present invention, when the intake throttle valve 14 fails, the PM accumulation amount for determining DPF regeneration is switched from the normal reference value M1 to the smaller reference value M2, so that the regeneration mode using the intake throttle is used. Even in the case where the system does not operate normally, the DPF can be safely regenerated by another regeneration mode before the PM accumulation amount exceeds the allowable amount, and the durability is improved. In addition, by performing a temperature raising operation using an appropriate temperature raising means according to the operation region during regeneration, it is possible to suppress deterioration in fuel consumption to a minimum, and to provide an exhaust purification device that is excellent in safety and reliability. realizable.

本発明の第1の実施形態における内燃機関の排気浄化装置の全体概略構成図である。1 is an overall schematic configuration diagram of an exhaust gas purification apparatus for an internal combustion engine according to a first embodiment of the present invention. エンジン回転数とトルクを両軸とした図において、排気温度によりエンジン運転領域を複数に区分した図である。FIG. 5 is a diagram in which an engine operating region is divided into a plurality of regions according to exhaust gas temperature in a diagram in which engine speed and torque are both axes. 本発明によるECUの作動を示すフローチャート図である。It is a flowchart figure which shows the action | operation of ECU by this invention. PM堆積量判定処理のフローチャート図である。It is a flowchart figure of PM deposition amount determination processing. 運転領域判定処理のフローチャート図である。It is a flowchart figure of a driving | running | working area | region determination process. エンジン運転領域Aにおける再生制御処理のフローチャート図である。FIG. 5 is a flowchart of regeneration control processing in an engine operation area A. エンジン運転領域Bにおける再生制御処理のフローチャート図である。6 is a flowchart of regeneration control processing in an engine operation region B. FIG. エンジン運転領域Cにおける再生制御処理のフローチャート図である。5 is a flowchart of regeneration control processing in an engine operation region C. FIG. エンジン運転領域Dにおける再生制御処理のフローチャート図である。5 is a flowchart of regeneration control processing in an engine operation region D. FIG. エンジン運転領域Eにおける再生制御処理のフローチャート図である。6 is a flowchart of regeneration control processing in an engine operation region E. FIG.

符号の説明Explanation of symbols

1 内燃機関
11 インジェクタ
12 排気通路
13 吸気通路
14 吸気絞り弁(吸気絞り手段)
2 ECU(PM堆積量判定手段、運転領域判定手段、再生停止手段、再生制御手段)
3 コモンレール
31 ポンプ
4 燃料タンク
41 調量弁
5 圧力センサ
6 酸化触媒付DPF(パティキュレートフィルタ)
71 温度センサ(温度検出手段)
72 温度センサ
8 差圧センサ
81、82 圧力導入路
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 11 Injector 12 Exhaust passage 13 Intake passage 14 Intake throttle valve (intake throttling means)
2 ECU (PM accumulation amount determination means, operation region determination means, regeneration stop means, regeneration control means)
3 Common rail 31 Pump 4 Fuel tank 41 Metering valve 5 Pressure sensor 6 DPF with oxidation catalyst (Particulate filter)
71 Temperature sensor (temperature detection means)
72 Temperature sensor 8 Differential pressure sensor 81, 82 Pressure introduction path

Claims (7)

内燃機関の排気通路に設置されて排気中のパティキュレートを捕集するパティキュレートフィルタと、
上記パティキュレートフィルタを昇温するための複数の昇温手段と、
上記パティキュレートフィルタに堆積するパティキュレート量を検出して、該パティキュレート量が、上記パティキュレートフィルタの再生を開始する基準値に達したどうかを判定するPM堆積量判定手段と、
内燃機関の運転状態が予め設定された複数の運転領域のいずれに対応するかを判定する運転領域判定手段と、
上記PM堆積量判定手段と上記運転領域判定手段の判定結果に基づいて、上記複数の昇温手段を操作する再生制御手段を備える内燃機関の排気浄化装置において、
上記複数の昇温手段の1つとして、内燃機関の吸気通路に吸気絞り手段を設けるとともに、
上記PM堆積量判定手段は、上記吸気絞り手段の異常が検出された時に、上記パティキュレートフィルタの再生を開始する上記基準値を通常時の基準値M1より小さい基準値M2に設定変更する基準値変更手段を有していることを特徴とする内燃機関の排気浄化装置。
A particulate filter installed in the exhaust passage of the internal combustion engine and collecting particulates in the exhaust;
A plurality of temperature raising means for raising the temperature of the particulate filter;
By detecting the particulate amount deposited on the particulate filter, the particulate amount, the PM deposition amount determining means for determining whether reaches the reference value for starting reproduction of the particulate filter,
Driving region determination means for determining which of a plurality of predetermined driving regions the operating state of the internal combustion engine corresponds to;
In an exhaust gas purification apparatus for an internal combustion engine comprising a regeneration control means for operating the plurality of temperature raising means based on the judgment results of the PM accumulation amount judgment means and the operation region judgment means,
As one of the plurality of temperature raising means, an intake throttle means is provided in the intake passage of the internal combustion engine,
The PM accumulation amount determining means is configured to change the reference value for starting regeneration of the particulate filter to a reference value M2 smaller than the normal reference value M1 when an abnormality of the intake throttle means is detected. An exhaust purification device for an internal combustion engine, characterized by comprising a changing means.
上記再生制御手段は、上記運転領域判定手段により判定された運転領域に応じて、上記複数の昇温手段から予め選択された1つないしそれ以上の昇温手段を操作することにより、上記パティキュレートフィルタをパティキュレートの燃焼温度以上に昇温する請求項1記載の内燃機関の排気浄化装置。   The regeneration control means operates the one or more temperature raising means selected in advance from the plurality of temperature raising means in accordance with the operation area determined by the operation area determination means, whereby the particulates The exhaust emission control device for an internal combustion engine according to claim 1, wherein the temperature of the filter is raised to a temperature equal to or higher than the combustion temperature of the particulates. 上記吸気絞り手段の異常が検出された時に、上記運転領域判定手段において判定される運転領域が、上記吸気絞り手段による昇温操作を実施する運転領域である場合には、上記再生制御手段による上記吸気絞り手段を含むすべての昇温操作を停止する再生停止手段を有する請求項1または2記載の内燃機関の排気浄化装置。 When the abnormality of the intake throttle means is detected, the operating region is determined in the operating region determining means, when it is operating range to carry out heating operation by the intake throttle means, said by the reproduction control means 3. An exhaust emission control device for an internal combustion engine according to claim 1 , further comprising a regeneration stop means for stopping all the temperature raising operations including the intake throttle means . 上記パティキュレートフィルタが表面に触媒を担持してなり、
上記再生制御手段は、上記複数の運転領域のうち排気温度が触媒の活性温度以下となる運転領域では、上記吸気絞り手段の異常が検出されていない時に、上記吸気絞り手段と上記複数の昇温手段から選択される少なくとも1つとを組み合わせて、上記パティキュレートフィルタを触媒の活性温度以上に昇温する触媒昇温操作を実施した後、上記複数の昇温手段から選択される少なくとも1つを用いて、上記パティキュレートフィルタをパティキュレートの燃焼温度以上に昇温する再生操作を実施する請求項1ないし3のいずれか記載の内燃機関の排気浄化装置。
The particulate filter has a catalyst supported on the surface,
The regeneration control means includes the intake throttle means and the plurality of risers when an abnormality of the intake throttle means is not detected in an operation area where the exhaust temperature is equal to or lower than the activation temperature of the catalyst among the plurality of operation areas. by combining at least one bets selected from raising means, after the particulate filter implemented catalyst Atsushi Nobori operation for raising the temperature above the activation temperature of the catalyst, at least one selected from the plurality of Atsushi Nobori means The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein a regeneration operation for raising the temperature of the particulate filter to a temperature equal to or higher than the combustion temperature of the particulates is performed using
上記パティキュレートフィルタ上流の排気通路に排気温度を検出する温度検出手段を設け、
上記運転領域判定手段は、上記温度検出手段によって検出される排気温度に基づいて運転領域の判定を行う請求項1ないし4のいずれか記載の内燃機関の排気浄化装置。
A temperature detecting means for detecting the exhaust temperature is provided in the exhaust passage upstream of the particulate filter;
The exhaust purification device for an internal combustion engine according to any one of claims 1 to 4, wherein the operating region determining means determines the operating region based on the exhaust temperature detected by the temperature detecting means.
上記再生制御手段は、上記運転領域判定手段により判定された運転領域が、排気温度がパティキュレートフィルタの燃焼温度以上である運転領域である時には、上記複数の昇温手段による昇温操作を実施しない請求項1ないし5のいずれか記載の内燃機関の排気浄化装置。   The regeneration control means does not perform the temperature raising operation by the plurality of temperature raising means when the operation area determined by the operation area determination means is an operation area where the exhaust gas temperature is equal to or higher than the combustion temperature of the particulate filter. The exhaust emission control device for an internal combustion engine according to any one of claims 1 to 5. 上記複数の昇温手段として、少なくともタイミングリタードおよびポスト噴射を備える請求項1ないし6のいずれか記載の内燃機関の排気浄化装置。   The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 6, comprising at least timing retard and post injection as the plurality of temperature raising means.
JP2004323116A 2004-11-08 2004-11-08 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4424159B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004323116A JP4424159B2 (en) 2004-11-08 2004-11-08 Exhaust gas purification device for internal combustion engine
DE200510052990 DE102005052990A1 (en) 2004-11-08 2005-11-07 Emission control device for an internal-combustion engine which has particle filter for collecting particles of exhaust gas and an inlet air clean up device installed with throttle with facility to monitor emission particles in filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004323116A JP4424159B2 (en) 2004-11-08 2004-11-08 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006132458A JP2006132458A (en) 2006-05-25
JP4424159B2 true JP4424159B2 (en) 2010-03-03

Family

ID=36217435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004323116A Expired - Fee Related JP4424159B2 (en) 2004-11-08 2004-11-08 Exhaust gas purification device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP4424159B2 (en)
DE (1) DE102005052990A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4049193B2 (en) 2006-06-13 2008-02-20 いすゞ自動車株式会社 Exhaust gas purification system control method and exhaust gas purification system
JP4055808B2 (en) 2006-06-13 2008-03-05 いすゞ自動車株式会社 Exhaust gas purification system control method and exhaust gas purification system
JP4232823B2 (en) 2006-12-26 2009-03-04 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US8322132B2 (en) * 2008-04-30 2012-12-04 Perkins Engines Company Limited Exhaust treatment system implementing regeneration control
JP5263123B2 (en) * 2009-10-30 2013-08-14 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP5452265B2 (en) * 2010-02-08 2014-03-26 株式会社デンソー Engine waste heat control device
JP2015209838A (en) * 2014-04-30 2015-11-24 株式会社クボタ Diesel engine exhaust treatment device
JP6769369B2 (en) * 2017-03-27 2020-10-14 トヨタ自動車株式会社 Internal combustion engine control device
JP7070440B2 (en) * 2019-01-07 2022-05-18 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083139A (en) * 2001-09-10 2003-03-19 Hino Motors Ltd Exhaust temperature rising device for internal combustion engine
JP4320586B2 (en) * 2002-11-28 2009-08-26 株式会社デンソー Exhaust gas purification device for internal combustion engine

Also Published As

Publication number Publication date
DE102005052990A1 (en) 2006-05-11
JP2006132458A (en) 2006-05-25

Similar Documents

Publication Publication Date Title
JP4333289B2 (en) Exhaust gas purification system
JP4161546B2 (en) Regeneration control method for continuous regeneration type diesel particulate filter device
JP4017010B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP3992057B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP4930215B2 (en) Exhaust purification device
JP2004162613A (en) Exhaust emission control device for internal combustion engine
WO2007088715A1 (en) Method for controlling exhaust gas purification system, and exhaust gas purification system
JP2007040221A (en) Exhaust emission control device
JP2004124855A (en) Exhaust emission control device for internal combustion engine
WO2007108167A1 (en) Method of controlling exhaust gas purification system and exhaust gas purification system
JP4320586B2 (en) Exhaust gas purification device for internal combustion engine
JP4424159B2 (en) Exhaust gas purification device for internal combustion engine
JP4305402B2 (en) Exhaust gas purification device for internal combustion engine
JP2003206722A (en) Exhaust emission control device for internal combustion engine
JP2007154729A (en) Exhaust emission control device for internal combustion engine
JP4333160B2 (en) Exhaust gas purification system for internal combustion engine
JP4008866B2 (en) Exhaust purification equipment
JP2008232073A (en) Exhaust emission purifier
JP2006274907A (en) Exhaust emission control device
JP6729473B2 (en) Filter regeneration control device and filter regeneration control method
JP5227149B2 (en) Engine exhaust purification system
JP4349219B2 (en) Exhaust gas purification device for internal combustion engine
JP2004162612A (en) Exhaust emission control device for internal combustion engine
JP4070687B2 (en) Exhaust purification device
JP4107017B2 (en) Engine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees