JP2008232073A - Exhaust emission purifier - Google Patents

Exhaust emission purifier Download PDF

Info

Publication number
JP2008232073A
JP2008232073A JP2007075446A JP2007075446A JP2008232073A JP 2008232073 A JP2008232073 A JP 2008232073A JP 2007075446 A JP2007075446 A JP 2007075446A JP 2007075446 A JP2007075446 A JP 2007075446A JP 2008232073 A JP2008232073 A JP 2008232073A
Authority
JP
Japan
Prior art keywords
temperature
forced regeneration
filter
amount
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007075446A
Other languages
Japanese (ja)
Other versions
JP4986667B2 (en
Inventor
Takayuki Adachi
隆幸 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2007075446A priority Critical patent/JP4986667B2/en
Publication of JP2008232073A publication Critical patent/JP2008232073A/en
Application granted granted Critical
Publication of JP4986667B2 publication Critical patent/JP4986667B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission purifier of continuous regeneration type capable of certainly performing the forced regeneration (forced combustive removal of deposited PM) using a simple constitution even if the properties of the fuel have changed. <P>SOLUTION: The exhaust emission purifier of continuous regeneration type is equipped with a means (S9 in Fig.2) to set the forced regenerating temperature and the forced regenerating time in accordance with presumption of the PM deposited amount when the forced regenerating conditions are judged as being met, a means (S10 in Fig.2) to control the adding amount of the fuel to inside a cylinder or to a catalyst so as to maintain the filter temperature upon raising to the forced regenerating temperature when the catalyst temperature is at or over the lower limit value of the activation point if the forced regenerating conditions are met, a means (not illustrated) to correct the control amount by multiplying with an adjustment factor in order to let the control amount comply with the change of the fuel properties, a means (S1-S6 in Fig.4) to measure the elapsed time with the out-of-reference time when the filter temperature is below the regeneration starting temperature during control of the fuel adding amount, and a means (S7-S8 in Fig.4) to alter the set adjustment factor to the larger side when the measured time attains the prescribed time. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、ディーゼルエンジンの排気中に含まれるPM(Particulate Matter:粒子状物質)を除去処理するための排気浄化装置に関する。   The present invention relates to an exhaust emission control device for removing PM (particulate matter) contained in exhaust gas from a diesel engine.

近年、ディーゼルエンジンの排気中に含まれるPMの有望な低減手段のひとつとして、連続再生式の排気浄化装置(CR-DPF:Continuous Regeneratoin-Diesel Particulate Filter)の開発が促進される。   In recent years, development of a continuous regeneration type exhaust purification device (CR-DPF: Continuous Regeneratoin-Diesel Particulate Filter) has been promoted as one of the promising means for reducing PM contained in diesel engine exhaust.

連続再生式の排気浄化装置は、エンジンの排気中に含まれるPMをフィルタに捕集しつつ、触媒の作用により、その堆積PMを連続的に燃焼除去するものである。このような排気浄化装置においても、触媒には活性化温度があり、これを下回るような排気温度での運転状態が長く継続すると、フィルタの連続再生が十分に行われず、PM堆積量が過剰になり、エンジン性能に悪影響を及ぼしかねない。また、触媒温度が活性化温度を超える運転状態へ移行すると、フィルタの過剰に堆積するPMが急激に燃焼する可能性があり、フィルタの溶損や亀裂を生じやすくなる。そのため、必要な時期に堆積PMの強制的な燃焼除去(強制再生)が行われる。   The continuously regenerative exhaust purification device continuously removes the accumulated PM by the action of a catalyst while collecting PM contained in the exhaust of the engine in a filter. Even in such an exhaust purification device, the catalyst has an activation temperature, and if the operation state at an exhaust temperature lower than this is continued for a long time, the filter is not continuously regenerated sufficiently, and the PM accumulation amount is excessive. This may adversely affect engine performance. In addition, when the catalyst temperature shifts to an operating state where the activation temperature exceeds the activation temperature, the PM accumulated excessively on the filter may burn rapidly, and the filter is liable to be melted or cracked. Therefore, forced combustion removal (forced regeneration) of the deposited PM is performed at a necessary time.

強制再生については、フィルタ温度を再生開始温度以上に高めるへく燃料噴射時期を遅角させる方法がある(特許文献1、特許文献2)。燃料噴射時期を遅角させると、通常噴射の場合よりも排気温度が上昇するほか、排気中の未燃HCが増えるため、触媒の酸化反応に伴う発熱により、排気がさらに昇温され、フィルタ温度を再生開始温度以上に上昇させるのである。
特開2005−048709号 特開2004−124855号
As for forced regeneration, there is a method of delaying the fuel injection timing to raise the filter temperature to be higher than the regeneration start temperature (Patent Document 1, Patent Document 2). If the fuel injection timing is retarded, the exhaust temperature will rise more than in the case of normal injection, and the unburned HC in the exhaust will increase, so the exhaust will be further heated by the heat generated by the oxidation reaction of the catalyst, and the filter temperature Is raised above the regeneration start temperature.
JP 2005-048709 A JP 2004-124855 A

近年、環境負荷の軽減を図る上から、バイオエタノール燃料などが注目される。連続再生式の排気浄化装置を備えるエンジンにおいて、バイオエタノール燃料などを使用すると、軽油と燃料性状が異なるため、強制再生が設計通りに行かない可能性が考えられる。昇温の過不足により、フィルタの再生不良やフィルタの溶損などを招きかねない。特許文献1においては、燃料性状により変化するPM成分の排出特性に基づいてPM堆積量を成分と共に演算する手段が開示される。   In recent years, bioethanol fuel and the like are attracting attention in order to reduce the environmental burden. If bioethanol fuel or the like is used in an engine equipped with a continuous regeneration type exhaust purification device, the forced regeneration may not be performed as designed because the fuel property differs from that of light oil. Excessive or insufficient temperature rise may cause filter regeneration failure or filter melting. Patent Document 1 discloses a means for calculating a PM accumulation amount together with a component based on a PM component emission characteristic that varies depending on fuel properties.

この発明は、燃料性状が変化しても、簡単な構成により、強制再生(堆積PMの強制的な燃焼除去)を確実に行える手段の提供を目的とする。   An object of the present invention is to provide means capable of reliably performing forced regeneration (forced combustion removal of deposited PM) with a simple configuration even if the fuel properties change.

第1の発明は、エンジンの排気に含まれるPMをフィルタに捕集しつつ触媒の作用によりフィルタの堆積PMを燃焼させる排気浄化装置において、フィルタのPM堆積量を推定する手段、所定の強制再生条件が成立かどうを判定する手段、強制再生条件の成立が判定されるとPM堆積量の推定に応じた強制再生温度および強制再生時間を設定する手段、強制再生条件の成立が判定されると触媒が活性化温度の下限値以上のときにフィルタ温度を強制再生温度に高めて維持するように筒内または触媒への燃料の添加量を制御する手段、この制御量を燃料性状の変化に対応させるべく調整係数を掛けて補正する手段、この補正に用いる調整係数を変更可能に設定する手段、燃料添加量の制御中にフィルタ温度が再生開始温度を下回る基準外温度の経過時間を計測する手段、この計測時間が所定時間に達すると調整係数の設定を大側に変更する手段、を備えることを特徴とする。   According to a first aspect of the present invention, there is provided an exhaust gas purification apparatus for burning PM accumulated in a filter by the action of a catalyst while collecting PM contained in engine exhaust in the filter, and means for estimating the PM accumulation amount of the filter, predetermined forced regeneration Means for determining whether the condition is satisfied, means for setting the forced regeneration temperature and forced regeneration time according to the estimation of the PM accumulation amount when it is determined that the forced regeneration condition is satisfied, and determination that the forced regeneration condition is satisfied A means to control the amount of fuel added to the cylinder or to maintain the filter temperature at the forced regeneration temperature when the catalyst is above the lower limit of the activation temperature, and this control amount corresponds to changes in fuel properties Means for multiplying by an adjustment coefficient to correct, means for setting the adjustment coefficient used for this correction to be changeable, and the elapsed time of the non-reference temperature at which the filter temperature falls below the regeneration start temperature during control of the fuel addition amount. Means for measuring, means for changing the setting of the adjustment factor the measured time reaches the predetermined time the larger side, characterized in that it comprises a.

第2の発明は、エンジンの排気に含まれるPMをフィルタに捕集しつつ触媒の作用によりフィルタの堆積PMを燃焼させる排気浄化装置において、フィルタのPM堆積量を推定する手段、所定の強制再生条件が成立かどうを判定する手段、強制再生条件の成立が判定されるとPM堆積量の推定に応じた強制再生温度および強制再生時間を設定する手段、強制再生条件の成立が判定されると触媒が活性化温度の下限値以上のときにフィルタ温度を強制再生温度に高めて維持するように筒内または触媒への燃料の添加量を制御する手段、この制御量を燃料性状の変化に対応させるべく調整係数を掛けて補正する手段、この補正に用いる調整係数を変更可能に設定する手段、燃料添加量の制御中にフィルタ温度が強制再生温度を上回る基準外温度の経過時間を計測する手段、この計測時間が所定時間に達すると調整係数の設定を小側に変更する手段、を備えることを特徴とする。   According to a second aspect of the present invention, there is provided an exhaust purification apparatus for burning PM accumulated in a filter by the action of a catalyst while collecting PM contained in engine exhaust in the filter, and means for estimating the PM accumulation amount of the filter, predetermined forced regeneration Means for determining whether the condition is satisfied, means for setting the forced regeneration temperature and forced regeneration time according to the estimation of the PM accumulation amount when it is determined that the forced regeneration condition is satisfied, and determination that the forced regeneration condition is satisfied A means to control the amount of fuel added to the cylinder or to maintain the filter temperature at the forced regeneration temperature when the catalyst is above the lower limit of the activation temperature, and this control amount corresponds to changes in fuel properties Means for multiplying by an adjustment coefficient to correct, means for setting the adjustment coefficient used for this correction to be changeable, and the elapsed time of the non-reference temperature at which the filter temperature exceeds the forced regeneration temperature during control of the fuel addition amount. Means for measuring, means for changing the setting of the adjustment factor the measured time reaches the predetermined time to the small side, characterized in that it comprises a.

第3の発明は、エンジンの排気に含まれるPMをフィルタに捕集しつつ触媒の作用によりフィルタの堆積PMを燃焼させる排気浄化装置において、フィルタのPM堆積量を推定する手段、所定の強制再生条件が成立かどうを判定する手段、強制再生条件の成立が判定されるとPM堆積量の推定に応じた強制再生温度および強制再生時間を設定する手段、強制再生条件の成立が判定されると触媒が活性化温度の下限値以上のときにフィルタ温度を強制再生温度に高めて維持するように筒内または触媒への燃料の添加量を制御する手段、この制御量を燃料性状の変化に対応させるべく調整係数を掛けて補正する手段、この補正に用いる調整係数を変更可能に設定する手段、燃料添加量の制御中にフィルタ温度が再生開始温度を下回る基準外温度の経過時間を計測する手段、この計測時間が所定時間に達すると調整係数の設定を大側に変更する手段、燃料添加量の制御中にフィルタ温度が強制再生温度を上回る基準外温度の経過時間を計測する手段、この計測時間が所定時間に達すると調整係数の設定を小側に変更する手段、を備えることを特徴とする。   According to a third aspect of the present invention, there is provided an exhaust purification apparatus for burning PM accumulated in a filter by the action of a catalyst while collecting PM contained in engine exhaust in the filter, and means for estimating the PM accumulation amount of the filter, predetermined forced regeneration Means for determining whether the condition is satisfied, means for setting the forced regeneration temperature and forced regeneration time according to the estimation of the PM accumulation amount when it is determined that the forced regeneration condition is satisfied, and determination that the forced regeneration condition is satisfied A means to control the amount of fuel added to the cylinder or to maintain the filter temperature at the forced regeneration temperature when the catalyst is above the lower limit of the activation temperature, and this control amount corresponds to changes in fuel properties Means for multiplying by an adjustment coefficient to correct, means for setting the adjustment coefficient used for this correction to be changeable, and the elapsed time of the non-reference temperature at which the filter temperature falls below the regeneration start temperature during control of the fuel addition amount. Means for measuring, means for changing the setting of the adjustment coefficient to the larger side when the measurement time reaches a predetermined time, means for measuring the elapsed time of the non-standard temperature at which the filter temperature exceeds the forced regeneration temperature during control of the fuel addition amount And a means for changing the setting of the adjustment coefficient to a smaller side when the measurement time reaches a predetermined time.

第4の発明は、第1の発明〜第3の発明の何れか1つに係る排気浄化装置において、調整係数は、フィルタ温度の移動平均値に応じた設定に変更されることを特徴とする。   According to a fourth aspect of the present invention, in the exhaust gas purification apparatus according to any one of the first to third aspects, the adjustment coefficient is changed to a setting corresponding to a moving average value of the filter temperature. .

第5の発明は、第1の発明〜第4の発明の何れか1つに係る排気浄化装置において、調整係数の変更が繰り返される回数を計測する手段、その所定回数を超える繰り返しを禁止する手段、所定回数の変更後は基準外温度の経過時間が所定時間に達すると強制再生を中止する共にその中止を警報する手段、を備えることを特徴とする。   According to a fifth aspect of the present invention, in the exhaust purification apparatus according to any one of the first to fourth aspects of the present invention, means for measuring the number of times the adjustment coefficient change is repeated, and means for prohibiting repetition exceeding the predetermined number In addition, after the predetermined number of changes, there is provided means for stopping the forced regeneration and warning the cancellation when the elapsed time of the non-reference temperature reaches a predetermined time.

第6の発明は、第1の発明〜第5の発明の何れか1つに係る排気浄化装置において、強制再生条件の成立が判定されると触媒温度が活性化温度の下限値を下回るときは触媒温度を活性化温度の下限値以上に昇温させるべく排気温度を積極的に高める手段、を備えることを特徴とする。   According to a sixth aspect of the present invention, in the exhaust emission control device according to any one of the first to fifth aspects, when it is determined that the forced regeneration condition is satisfied, the catalyst temperature falls below a lower limit value of the activation temperature. Means for positively increasing the exhaust temperature in order to raise the catalyst temperature above the lower limit of the activation temperature.

第1の発明においては、強制再生条件の成立が判定されると、触媒が活性化温度の下限値以上のときは、筒内または触媒に燃料が添加される。添加の燃料は、触媒上で反応するため、その反応熱により、排気が昇温される。燃料の添加量は、フィルタを強制再生温度に高めて維持するように制御されるが、燃料性状が変化すると、触媒上の反応熱も変化するため、排気の昇温特性が変化する。これに対応するため、燃料添加量(制御量)を補正するための調整係数が変更可能に設定され、添加量の制御中において、フィルタ温度が再生開始温度を下回る場合、基準外温度の経過時間が計測され、計測時間が所定時間に達すると、調整係数の設定が大側に変更されるのである。そのため、燃料添加量の制御特性が増側に補正され、触媒上の反応熱も大きくなり、燃料性状の変化に伴う昇温不足が防止され、強制再生(堆積PMの燃焼除去)を確実に行えるようになる。   In the first invention, when it is determined that the forced regeneration condition is satisfied, fuel is added to the cylinder or to the catalyst when the catalyst is equal to or higher than the lower limit value of the activation temperature. Since the added fuel reacts on the catalyst, the temperature of the exhaust is raised by the heat of reaction. The amount of fuel added is controlled so that the filter is maintained at the forced regeneration temperature. However, when the fuel property changes, the reaction heat on the catalyst also changes, so the temperature rise characteristic of the exhaust changes. To cope with this, the adjustment coefficient for correcting the fuel addition amount (control amount) is set to be changeable, and when the filter temperature falls below the regeneration start temperature during the control of the addition amount, the elapsed time of the non-standard temperature When the measurement time reaches a predetermined time, the setting of the adjustment coefficient is changed to the large side. Therefore, the control characteristics of the fuel addition amount are corrected to the increase side, the reaction heat on the catalyst is also increased, insufficient temperature rise due to changes in fuel properties is prevented, and forced regeneration (burned PM removal and combustion) can be performed reliably. It becomes like this.

第2の発明においては、燃料の添加量は、フィルタを強制再生温度に高めて維持するように制御されるが、フィルタ温度が強制再生温度を上回る場合、基準外温度の経過時間が計測され、計測時間が所定時間に達すると、調整係数の設定が小側に変更されるため、燃料添加量の制御特性が減側に補正され、触媒上の反応熱も小さくなり、燃料性状の変化に伴う過剰昇温が防止され、フィルタの溶損などを招くことなく、強制再生(堆積PMの燃焼除去)を確実に行えるようになる。   In the second invention, the amount of fuel added is controlled to maintain the filter at the forced regeneration temperature, but when the filter temperature exceeds the forced regeneration temperature, the elapsed time of the non-reference temperature is measured, When the measurement time reaches the specified time, the adjustment coefficient setting is changed to the smaller side, so the control characteristics of the fuel addition amount are corrected to the reduced side, the reaction heat on the catalyst is reduced, and the fuel properties change. Excessive temperature rise is prevented, and forced regeneration (burned PM removal) can be reliably performed without causing filter melting or the like.

第3の発明においては、調整係数の変更により、燃料性状の変化に対応可能となり、強制再生中においては、フィルタ温度を再生開始温度以上かつ強制再生温度以下に制御しえるようになる。そのため、フィルタの強制再生不良やフィルタの溶損などの防止が得られ、強制再生に対する信頼性を高められるのである。   In the third aspect of the invention, it is possible to cope with changes in fuel properties by changing the adjustment coefficient, and during forced regeneration, the filter temperature can be controlled above the regeneration start temperature and below the forced regeneration temperature. For this reason, it is possible to prevent the forced regeneration failure of the filter and the melting damage of the filter, and to improve the reliability with respect to the forced regeneration.

第4の発明においては、調整係数はフィルタ温度の移動平均値に応じた設定に変更されるので、強制再生の制御に燃料性状の変化を適確に反映させることができる。   In the fourth aspect of the invention, since the adjustment coefficient is changed to a setting corresponding to the moving average value of the filter temperature, the change in the fuel property can be accurately reflected in the forced regeneration control.

第5の発明においては、調整係数の変更後、燃料添加量(制御量)の補正が十分でない場合、調整係数の変更が繰り返されるが、その変更回数に限度が設定され、限度を超える変更を行わすに強制再生を中止するので、燃料添加の無駄を抑えることができる。また、警報により、適切な対処(燃料を変える等)も促せるのである。   In the fifth invention, after the adjustment coefficient is changed, if the fuel addition amount (control amount) is not sufficiently corrected, the adjustment coefficient is repeatedly changed. However, a limit is set for the number of changes, and a change exceeding the limit is made. Since forced regeneration is stopped, the waste of fuel addition can be suppressed. In addition, the alarm can prompt appropriate measures (such as changing the fuel).

第6の発明においては、強制再生条件の成立が判定されると、触媒温度が活性化温度の下限値を下回るのときは、排気温度が積極的に高められ、触媒温度が活性化温度の下限値以上になると、燃料添加制御が開始されるので、触媒を十分に活性化できない運転領域においても、強制再生を有効に行えるようになる。   In the sixth invention, when it is determined that the forced regeneration condition is satisfied, when the catalyst temperature is lower than the lower limit value of the activation temperature, the exhaust temperature is positively increased, and the catalyst temperature is lower than the lower limit value of the activation temperature. If it exceeds the value, the fuel addition control is started, so that the forced regeneration can be effectively performed even in the operation region where the catalyst cannot be sufficiently activated.

図1において、10はディーゼルエンジンであり、コモンレール式燃料噴射装置(図示せず)を備える。エンジン10の吸気通路11にターボ過給機12のコンプレッサ,インタクーラ13,吸気絞り弁14が介装される。エンジン10の排気通路15にターボ過給機12のタービン,排気絞り弁16,連続再生式フィルタ装置(CR-DPF)17、が介装される。コモンレール式燃料噴射装置は、コモンレールに燃料を蓄圧する高圧ポンプと、コモンレールに各気筒の噴射ノズルを接続する燃料供給管と、を備える。燃料噴射装置および後述の予熱手段を制御するのがコントロールユニット20であり、通常制御のほか、強制再生用の昇温制御が設定される。18はEGR(排気還流)装置のEGRバルブであり、19はターボ過給機12のタービンを迂回するターボバイパスの開閉バルブ(ターボバイパス弁)であり、29はEGRクーラである。   In FIG. 1, reference numeral 10 denotes a diesel engine, which includes a common rail fuel injection device (not shown). A compressor, an intercooler 13, and an intake throttle valve 14 of the turbocharger 12 are interposed in the intake passage 11 of the engine 10. A turbine of the turbocharger 12, an exhaust throttle valve 16, and a continuous regeneration filter device (CR-DPF) 17 are installed in the exhaust passage 15 of the engine 10. The common rail fuel injection device includes a high-pressure pump that accumulates fuel in the common rail, and a fuel supply pipe that connects the injection nozzle of each cylinder to the common rail. The control unit 20 controls the fuel injection device and the preheating means described later. In addition to the normal control, the temperature increase control for forced regeneration is set. 18 is an EGR valve of an EGR (exhaust gas recirculation) device, 19 is a turbo bypass opening / closing valve (turbo bypass valve) that bypasses the turbine of the turbocharger 12, and 29 is an EGR cooler.

CR-DPF17は、DPF21(Diesel Particulate Filter)と酸化触媒22(DOC:Diesel Oxidation Catalyst )とから構成される。DPF21は、ハニカム構造体に形成され、その格子状に区画される流路(セル)の入口と出口が交互に目封じされる。つまり、入口の目封じされる流路と出口の目封じされる流路とが交互に隣接され、これらを区画する多孔質の隔壁が排気の通過を許容するようになっている。この例においては、隔壁に捕集されるPMの燃焼可能な着火温度を低めに設定するため、触媒再生型フィルタ(CSF:Catalyzed Soot Filter)が採用される。DOC22は、触媒を担持するハニカム構造体に形成され、ハニカム構造体の格子状に区画される流路を通過する排気に含まれる主にHCやNOxを酸化処理するものであり、その反応熱により触媒温度が上昇して堆積PMの燃焼を促進するのである。   The CR-DPF 17 includes a DPF 21 (Diesel Particulate Filter) and an oxidation catalyst 22 (DOC: Diesel Oxidation Catalyst). The DPF 21 is formed in a honeycomb structure, and the inlets and outlets of flow paths (cells) partitioned in a lattice shape are alternately sealed. That is, the flow path sealed at the inlet and the flow path sealed at the outlet are alternately adjacent to each other, and the porous partition walls that partition these allow passage of the exhaust gas. In this example, a catalyst regeneration type filter (CSF: Catalyst Soot Filter) is employed in order to set a combustible ignition temperature of PM collected in the partition walls. DOC22 is formed in a honeycomb structure carrying a catalyst, and mainly oxidizes HC and NOx contained in the exhaust gas that passes through the flow path partitioned in a lattice shape of the honeycomb structure. The catalyst temperature rises to promote the combustion of the deposited PM.

コントロールユニット20の制御に必要な検出手段として、エンジン回転数Neを検出する回転センサ(クランク角センサを兼ねる)およびエンジン負荷Qを検出するアクセル開度センサのほか、CR-DPF17前後の差圧を検出する差圧センサ23、CR-DPF17の入口温度を検出する温度センサ26とCR-DPF17の中間温度24を検出する温度センサとCR-DPF17の出口温度を検出する温度センサ25、吸入空気量(吸気流量)を検出するエアフローセンサ27、等が設けられる。   As a detection means necessary for the control of the control unit 20, in addition to a rotation sensor (also serving as a crank angle sensor) for detecting the engine speed Ne and an accelerator opening sensor for detecting the engine load Q, a differential pressure before and after the CR-DPF 17 is used. A differential pressure sensor 23 for detecting, a temperature sensor 26 for detecting the inlet temperature of the CR-DPF 17, a temperature sensor 25 for detecting the intermediate temperature 24 of the CR-DPF 17, a temperature sensor 25 for detecting the outlet temperature of the CR-DPF 17, and an intake air amount ( An air flow sensor 27 for detecting an intake air flow rate) is provided.

図7は、PM堆積量と排気温度との関係を表す例示するものであり、PM排出量=PM燃焼量となる基準温度を上回る排気温度の運転状態のときは、PM燃焼量>PM排出量となり、PM堆積量が減少する一方、基準温度を下回る排気温度の運転状態のときは、PM燃焼量<PM排出量となり、PM堆積量が増加する。そのため、基準温度を下回る排気温度の運転状態が継続することにより、PM堆積量が所定値を超えると、エンジン性能の低下を回避するため、強制再生が必要となるのである。   FIG. 7 exemplifies the relationship between the PM accumulation amount and the exhaust gas temperature. When the exhaust gas temperature exceeds the reference temperature at which the PM emission amount = the PM combustion amount, the PM combustion amount> the PM emission amount. Thus, while the PM accumulation amount decreases, when the exhaust gas temperature is lower than the reference temperature, the PM combustion amount is smaller than the PM emission amount, and the PM accumulation amount increases. For this reason, if the PM accumulation amount exceeds a predetermined value by continuing the operation state of the exhaust temperature lower than the reference temperature, forced regeneration is necessary to avoid a decrease in engine performance.

コントロールユニット20は、エンジン回転数Neとエンジン負荷Qとから通常制御に基づいて各噴射ノズルへの燃料噴射信号(メイン噴射量の指令およびメイン噴射時期の指令)を決定する。CR-DPF17の強制再生が必要と判定すると、強制再生用の昇温制御に切り替わり、CR-DPF17の入口温度(排気温度)が触媒の活性化温度の下限値(例えば、230℃)を下回るときは、昇温制御1に基づいて、触媒の予熱手段を駆動するほか、必要があればメイン噴射に続いて燃料可能なタイミングでアフタ噴射を行うような燃料噴射信号(アフタ噴射量の指令およびアフタ噴射時期の指令)を決定する一方、CR-DPFの入口温度が触媒の活性化温度の下限値以上のときは、昇温制御2に基づいて、メイン噴射から大幅に遅れるタイミングでポスト噴射を行うような燃料噴射信号(ポスト噴射量の指令およびポスト噴射時期の指令)を決定するのである。   The control unit 20 determines a fuel injection signal (a main injection amount command and a main injection timing command) to each injection nozzle based on normal control from the engine speed Ne and the engine load Q. When it is determined that the forced regeneration of the CR-DPF 17 is necessary, the temperature is switched to the forced regeneration temperature control, and the inlet temperature (exhaust temperature) of the CR-DPF 17 falls below the lower limit of the catalyst activation temperature (for example, 230 ° C.). In addition to driving the catalyst preheating means based on the temperature raising control 1, the fuel injection signal (after injection amount command and after When the CR-DPF inlet temperature is equal to or higher than the lower limit value of the catalyst activation temperature, post injection is performed at a timing significantly delayed from the main injection based on the temperature increase control 2. Such a fuel injection signal (post injection amount command and post injection timing command) is determined.

触媒の予熱手段については、EGRバルブ18,吸気絞り弁14,排気絞り弁16,ターボバイパス弁19、がエンジンの排気温度を積極的に高める制御に利用される。ターボ過給機12が可変ノズル式の場合、ターボバイパス弁に代えて可変ノズルを触媒の予熱手段として制御することも考えられる。   As for the catalyst preheating means, the EGR valve 18, the intake throttle valve 14, the exhaust throttle valve 16, and the turbo bypass valve 19 are used for control to positively increase the exhaust temperature of the engine. When the turbocharger 12 is a variable nozzle type, it is conceivable to control the variable nozzle as a catalyst preheating means instead of the turbo bypass valve.

CR-DPF17の強制再生が必要な時期かどうかの判定については、DPF21のPM堆積量(運転状態から推定されるPM排出量とフィルタのPM燃焼特性から推定されるPM燃焼量との減算値を積算する算出値)が所定値以上のときに強制再生時期と判定する手段(図2のS2)と、CR-DPF17前後の差圧が所定値以上のときに強制再生時期と判定する手段(図2のS4)と、PM堆積量に基づく強制再生の完了から計測される運転時間(または運転距離)が強制再生用に設定されるインターバルに達するとその間に強制再生の履歴がないときに強制再生時期と判定する手段(図2のS6)と、運転時間(または運転距離または強制再生の回数)がPM堆積量を定期的に初期化する0リセット強制再生用のインターバルに達すると強制再生時期と判定する手段(図2のS8)と、が設定される。   For determining whether or not the forced regeneration of CR-DPF 17 is necessary, the PM accumulation amount of DPF 21 (the subtraction value between the PM emission amount estimated from the operating state and the PM combustion amount estimated from the PM combustion characteristic of the filter) Means (S2 in FIG. 2) for determining the forced regeneration time when the calculated value) is greater than or equal to the predetermined value (S2 in FIG. 2), and means for determining the forced regeneration time when the differential pressure before and after the CR-DPF 17 is greater than or equal to the predetermined value 2) S4), and when the operation time (or driving distance) measured from the completion of forced regeneration based on the PM accumulation amount reaches the interval set for forced regeneration, forced regeneration when there is no forced regeneration history When the operation time (or the operation distance or the number of forced regenerations) reaches the 0 reset forced regeneration interval that periodically initializes the PM accumulation amount, the forced regeneration time is determined. Means for determining (S8 in FIG. 2); It is set.

CR-DPF17の強制再生時期は、このような複数の異なる方法に基づいて判定され、これらの何れかの判定を受けると、そのときの判定方法に対応する強制モードとしてPM堆積量に応じた強制再生温度Tregおよび強制再生時間Tを決定する手段(図2のS9)が設定される。強制再生温度Treg(昇温制御2の目標温度)および強制再生時間Tは、各強制再生モードが想定するPM堆積量に応じて設定される。強制再生温度Tregは、PM堆積量が大きい程、低く設定され、強制再生温度Tregが低い程、強制再生時間Tは、長く設定される。   The forced regeneration time of the CR-DPF 17 is determined based on a plurality of such different methods. When any of these determinations is received, the forced mode corresponding to the PM deposition amount is determined as a forced mode corresponding to the determination method at that time. A means for determining the regeneration temperature Treg and the forced regeneration time T (S9 in FIG. 2) is set. The forced regeneration temperature Treg (target temperature of the temperature increase control 2) and the forced regeneration time T are set according to the PM accumulation amount assumed in each forced regeneration mode. The forced regeneration temperature Treg is set lower as the PM deposition amount is larger, and the forced regeneration time T is set longer as the forced regeneration temperature Treg is lower.

PM堆積量の算出(図2のS1)については、エンジン回転数Neおよびエンジン負荷Qに基づいて、単位時間あたりのPM排出量を求める。その一方、DPFのPM燃焼特性に基づいて、触媒の酸化作用により堆積PMの燃焼が開始される排気条件において、単位時間あたりのPM燃焼量を求める。具体的には、DPF温度(温度センサ24,25の検出値から推定される)と空間速度(排気流量/フィルタ容量)とからDPFのPM燃焼速度を求め、単位時間あたりのPM燃料量に変換する。そして、PM排出量からPM燃焼量を引く減算値を順次に積算することにより、DPFのPM堆積量を求めるのである。積算値は、負になる可能性があるので、負の積算値=0に修正する処理が設定される。   Regarding the calculation of the PM accumulation amount (S1 in FIG. 2), the PM emission amount per unit time is obtained based on the engine speed Ne and the engine load Q. On the other hand, based on the PM combustion characteristics of the DPF, the PM combustion amount per unit time is obtained under the exhaust conditions in which the combustion of the deposited PM is started by the oxidation action of the catalyst. Specifically, the PM combustion speed of the DPF is obtained from the DPF temperature (estimated from the detected values of the temperature sensors 24 and 25) and the space velocity (exhaust flow rate / filter capacity), and converted into the PM fuel amount per unit time. To do. Then, the PM accumulation amount of the DPF is obtained by sequentially integrating the subtraction value obtained by subtracting the PM combustion amount from the PM emission amount. Since the integrated value may be negative, a process for correcting the negative integrated value = 0 is set.

図2,図3は、コントロールユニット20の制御内容を説明するフローチャートであり、S1においては、運転状態から推定されるPM排出量とフィルタのPM燃焼特性から推定されるPM燃焼量との減算値を積算する算出値を求める。S2においては、PM堆積量の算出値が所定値(閾値)以上かどうかを判定する。S3においては、CR-DPF17前後の差圧を読み込む。S4においては、CR-DPF17前後の差圧が所定値(閾値)以上かどうかを判定する。S5においては、運転時間のカウント値を読み込む。S6においては、運転時間のカウント値が強制再生用のインターバルに達したかどうか、かつその間に強制再生の履歴がないかどうか、を判定する。S7においては、運転時間のカウント値を読み込む。S8においては、運転時間のカウント値が0リセット強制再生用のインターバルに達したかどうかを判定する。   2 and 3 are flowcharts for explaining the control contents of the control unit 20. In S1, a subtraction value between the PM emission amount estimated from the operating state and the PM combustion amount estimated from the PM combustion characteristic of the filter. The calculated value that integrates is obtained. In S2, it is determined whether or not the calculated value of the PM accumulation amount is equal to or greater than a predetermined value (threshold value). In S3, the differential pressure before and after CR-DPF 17 is read. In S4, it is determined whether or not the differential pressure before and after the CR-DPF 17 is equal to or greater than a predetermined value (threshold). In S5, the operation time count value is read. In S6, it is determined whether or not the count value of the operation time has reached the interval for forced regeneration and whether or not there is a history of forced regeneration during that time. In S7, the operation time count value is read. In S8, it is determined whether or not the count value of the operation time has reached the zero reset forced regeneration interval.

S2の判定がnoかつS4の判定がnoかつS6の判定がnoかつS8の判定がnoのときは、S1へ戻る。S2の判定がyesまたはS4の判定がyesまたはS6の判定がyesまたはS8の判定がyesのときは、S9へ進む。S9においては、強制再生時期の判定(yes)がS2の判定〜S8の判定の何れかに拠るのかに応じて強制再生モードを選定する。S2の判定に拠る場合、PM堆積量の超過に対応する強制再生モードにより、強制再生温度Treg1および強制再生時間T1を設定する。S4の判定に拠る場合、差圧の超過に対応する強制再生モードにより、強制再生温度Treg2またはおよび強制再生時間T2を設定する。S6の判定に拠る場合、強制再生用のインターバルに対応する強制再生モードにより、強制再生温度Treg3および強制再生時間T3を設定する。S8の判定に拠る場合、0リセット強制再生用のインターバルに対応する強制再生モードにより、強制再生温度Treg4および強制再生時間T4を設定する。   If the determination of S2 is no, the determination of S4 is no, the determination of S6 is no, and the determination of S8 is no, the process returns to S1. If the determination of S2 is yes or the determination of S4 is yes or the determination of S6 is yes or the determination of S8 is yes, the process proceeds to S9. In S9, the forced regeneration mode is selected depending on whether the forced regeneration timing determination (yes) depends on any of the determinations in S2 to S8. When based on the determination of S2, the forced regeneration temperature Treg1 and the forced regeneration time T1 are set in the forced regeneration mode corresponding to the excess of the PM accumulation amount. When based on the determination of S4, the forced regeneration temperature Treg2 or the forced regeneration time T2 is set by the forced regeneration mode corresponding to the excess of the differential pressure. When the determination in S6 is performed, the forced regeneration temperature Treg3 and the forced regeneration time T3 are set in the forced regeneration mode corresponding to the forced regeneration interval. When the determination in S8 is made, the forced regeneration temperature Treg4 and the forced regeneration time T4 are set in the forced regeneration mode corresponding to the zero reset forced regeneration interval.

S10においては、選定の強制再生モードに基づいて強制再生を実行する。CP-DPF17の入口温度が触媒の活性化温度の下限値以上のときは、CR-DPF17の中間温度およびCR-DPF17の出口温度を監視しながら、メイン噴射から大幅に遅れるタイミングでポスト噴射を行うように制御する(昇温制御2)。CP-DPF17の入口温度が触媒の活性化温度の下限値を下回るときは、CR-DPF17の中間温度を監視しながら、触媒の予熱手段を制御するほか、必要があればメイン噴射に続いて燃焼可能なタイミングでアフタ噴射を行うように燃料噴射装置を制御する(昇温制御1)。アフタ噴射においては、燃料の発熱量のうちの動力に使用されない熱量が増えて排気温度が上昇する。CR-DPF17の入口温度が触媒の活性化温度の下限値以上になると、昇温制御1から昇温制御2へ切り替わり、ポスト噴射により、筒内に添加の燃料が触媒上で酸化反応され、その反応熱により堆積PMの燃焼処理が促進される。   In S10, forced regeneration is executed based on the selected forced regeneration mode. When the inlet temperature of the CP-DPF 17 is equal to or higher than the lower limit of the catalyst activation temperature, the post-injection is performed at a timing significantly delayed from the main injection while monitoring the intermediate temperature of the CR-DPF 17 and the outlet temperature of the CR-DPF 17 (Temperature rising control 2). When the CP-DPF 17 inlet temperature falls below the lower limit of the catalyst activation temperature, the catalyst preheating means is controlled while monitoring the intermediate temperature of the CR-DPF 17, and if necessary, combustion follows the main injection. The fuel injection device is controlled to perform after injection at a possible timing (temperature increase control 1). In after-injection, the amount of heat not used for power out of the amount of heat generated by the fuel increases, and the exhaust temperature rises. When the inlet temperature of the CR-DPF 17 exceeds the lower limit value of the activation temperature of the catalyst, the temperature rise control 1 is switched to the temperature rise control 2, and the post-injection causes the added fuel to oxidize on the catalyst. The heat of reaction accelerates the combustion process of the deposited PM.

S11においては、強制再生温度以上かどうか、強制再生時間のカウント条件が成立かどうかを判定する。S12においては、カウント(DPF温度が強制再生温度以上の経過時間)が強制再生時間Tに達したかどうかを判定する。S11の判定がyesかつS12の判定がyesのときは、S13へ進み、強制再生モードをリセットする。S14においては、強制再生を終了すると共に通常の燃料噴射制御へ復帰するのである。   In S11, it is determined whether the temperature is higher than the forced regeneration temperature and whether the forced regeneration time count condition is satisfied. In S12, it is determined whether or not the count (elapsed time when the DPF temperature is equal to or higher than the forced regeneration temperature) has reached the forced regeneration time T. When the determination of S11 is yes and the determination of S12 is yes, the process proceeds to S13, and the forced regeneration mode is reset. In S14, the forced regeneration is terminated and the normal fuel injection control is restored.

このようにDPF21の強制再生時期の判定については、PM堆積量の推定に基づく判定方法と、差圧レベルに基づく判定方法と、強制再生用のインターバルに基づく判定方法と、0リセット強制再生用のインターバルに基づく判定方法と、が併用されるのであり、これらのチェックが働くため、PM堆積量が過剰に至るのを未然に回避しえる確率が高められる。これら判定方法に対応する強制再生モードとして想定されるPM堆積量に応じた強制再生温度Tregおよび強制再生時間Tが設定され、これらに基づく終了条件が成立するまでの間、CR-DPF17の昇温制御が行われるのである。このため、強制再生時期の判定方法によりPM堆積量の判定レベルが異なっても、強制再生をそのときのPM堆積量に適合する燃焼形態(燃焼時間や燃焼温度)をもって効率よく適正に処理しえるようになり、過剰な強制再生による燃費の悪化や堆積PMの異常燃焼によるフィルタおよび触媒の劣化を防止できる。   As described above, regarding the determination of the forced regeneration timing of the DPF 21, the determination method based on the estimation of the PM accumulation amount, the determination method based on the differential pressure level, the determination method based on the forced regeneration interval, and the zero reset forced regeneration Since the determination method based on the interval is used in combination, and these checks work, the probability that the PM accumulation amount will be excessive can be increased. The forced regeneration temperature Treg and the forced regeneration time T corresponding to the PM accumulation amount assumed as the forced regeneration mode corresponding to these determination methods are set, and until the termination condition based on these is satisfied, the temperature of the CR-DPF 17 is increased. Control is done. For this reason, even if the judgment level of the PM accumulation amount differs depending on the judgment method of the forced regeneration timing, the forced regeneration can be processed efficiently and appropriately with a combustion mode (combustion time and combustion temperature) that matches the PM accumulation amount at that time. Thus, it is possible to prevent deterioration of the fuel efficiency due to excessive forced regeneration and deterioration of the filter and catalyst due to abnormal combustion of the accumulated PM.

具体的には、想定されるPM堆積量が大きくなる程、昇温制御2の目標温度(強制再生温度Treg)が低く設定されるので、堆積PMの異常燃焼が防止され、強制再生を効率よく適正に制御できるのである。また、強制再生用のインターバルに基づく再生処理および0リセット強制再生用のインターバルに基づく再生処理により、PM堆積量の実際値と推定値とのズレが補正されるので、PM堆積量の推定精度も高度に維持しえるのである。   Specifically, the target temperature (forced regeneration temperature Treg) of the temperature raising control 2 is set lower as the assumed amount of PM deposition increases, so that abnormal combustion of the deposited PM is prevented and forced regeneration is efficiently performed. It can be controlled properly. In addition, the deviation between the actual value and the estimated value of the PM accumulation amount is corrected by the regeneration process based on the forced regeneration interval and the regeneration process based on the zero reset forced regeneration interval. It can be maintained at a high level.

昇温制御2のポスト噴射については、強制再生温度Tregと排気温度と排気流量とから基本噴射量が決定される。燃料性状が変化すると、DPF21の昇温特性が変化する可能性があり、これに対処するため、ポスト噴射量を補正するための調整係数Kが変更可能に設定され、ポスト噴射量=基本噴射量×調整係数Kに制御される。   For post-injection of temperature rise control 2, the basic injection amount is determined from the forced regeneration temperature Treg, the exhaust temperature, and the exhaust flow rate. When the fuel property changes, the temperature rise characteristic of the DPF 21 may change. To cope with this, the adjustment coefficient K for correcting the post injection amount is set to be changeable. Post injection amount = basic injection amount X Controlled by adjustment factor K.

図4は、調整係数Kの変更処理を説明するフローチャートであり、S1においては、エンジン運転中かどうかを判定する。S2においては、強制再生中かどうかを判定する。S3においては、昇温制御2中かどうかを判定する。S1の判定がyesかつS2の判定がyesかつS3の判定がyesのときは、S4へ進む。S1の判定がnoまたはS2の判定がnoまたはS3の判定がnoのときは、リターンに至る。   FIG. 4 is a flowchart for explaining the adjustment coefficient K changing process. In S1, it is determined whether the engine is operating. In S2, it is determined whether forced regeneration is in progress. In S3, it is determined whether the temperature raising control 2 is in progress. If the determination of S1 is yes, the determination of S2 is yes, and the determination of S3 is yes, the process proceeds to S4. If the determination of S1 is no or S2 is no or the determination of S3 is no, a return is reached.

S4においては、DPF温度の移動平均値Taveを演算する。S5においては、Tave<再生開始温度Ts1(PM燃焼量>PM排出量となる温度条件)かどうかを判定する。S5の判定がyesのときは、S6へ進む一方、S5の判定がnoのときは、S9へ進む。S6においては、基準外温度(Tave<Ts1)の経過時間(t)をカウントする。S7においては、t≧基準時間t1かどうかを判定する。S7の判定がyesのときは、S8へ進む一方、S7の判定がnoのときは、リターンに至る。つまり、S5〜S7においては、排気温度の移動平均値Taveが再生開始温度Ts1を下回る基準外温度の経過時間tが基準時間t1に達するかどうかの判定が行われ、この判定がyesのときは、ポスト噴射による昇温が不足と判定されるため、S8において、調整係数Kを大側に変更する。   In S4, the moving average value Tave of the DPF temperature is calculated. In S5, it is determined whether or not Tave <regeneration start temperature Ts1 (temperature condition that satisfies PM combustion amount> PM emission amount). When the determination of S5 is yes, the process proceeds to S6, and when the determination of S5 is no, the process proceeds to S9. In S6, the elapsed time (t) of the non-reference temperature (Tave <Ts1) is counted. In S7, it is determined whether t ≧ reference time t1. If the determination of S7 is yes, the process proceeds to S8, while if the determination of S7 is no, a return is reached. That is, in S5 to S7, it is determined whether or not the elapsed time t of the non-reference temperature at which the moving average value Tave of the exhaust temperature is lower than the regeneration start temperature Ts1 reaches the reference time t1, and when this determination is yes Since it is determined that the temperature rise due to post injection is insufficient, the adjustment coefficient K is changed to the larger side in S8.

S9においては、Tave>強制再生温度Tregかどうかを判定する。S9の判定がyesのときは、S10へ進む一方、S9の判定がnoのときは、リターンに至る。S10においては、基準外温度(Tave≧Treg)の経過時間(t)をカウントする。S11においては、t≧基準時間t2かどうかを判定する。S11の判定がyesのときは、S8へ進む一方、S11の判定がnoのときは、リターンに至る。つまり、S9〜S11においては、DPF温度の移動平均値Taveが強制再生温度Tregを上回る基準外温度の経過時間tが基準時間t2に達するかどうかの判定が行われ、この判定がyesのときは、ポスト噴射による昇温が過剰と判定されるため、S8において、調整係数Kを小側に変更する。   In S9, it is determined whether Tave> forced regeneration temperature Treg. If the determination in S9 is yes, the process proceeds to S10, while if the determination in S9 is no, a return is reached. In S10, the elapsed time (t) of the non-reference temperature (Tave ≧ Treg) is counted. In S11, it is determined whether t ≧ reference time t2. When the determination of S11 is yes, the process proceeds to S8, while when the determination of S11 is no, a return is reached. That is, in S9 to S11, it is determined whether or not the elapsed time t of the non-standard temperature at which the moving average value Tave of the DPF temperature exceeds the forced regeneration temperature Treg reaches the reference time t2, and when this determination is yes Since it is determined that the temperature rise due to post injection is excessive, the adjustment coefficient K is changed to a smaller side in S8.

S8においては、DPF温度の移動平均値Taveに基づいてこれをパラメータに設定される調整係数マップ(図5、参照)からTaveに対応する調整係数Kを求め、ポスト噴射の基本噴射量に掛ける調整係数Kの設定を変更するのである。   In S8, an adjustment coefficient K corresponding to Tave is obtained from an adjustment coefficient map (see FIG. 5) set as a parameter based on the moving average value Tave of the DPF temperature, and is adjusted by multiplying the basic injection amount of post injection. The setting of the coefficient K is changed.

このような処理においては、燃料性状が変化しても、調整係数Kの変更により、ポスト噴射(筒内への燃料添加)による昇温の過不足が防止され、DPF温度を再生開始温度Ts1以上かつ強制再生温度Treg以下の好適な温度環境に維持することができる。調整係数Kは、燃料性状に対応するものであり、ポスト噴射量のみでなく、メイン噴射量(アフタ噴射量を含む)についても、これを燃料性状に応じて補正のために適用されることになる。   In such a process, even if the fuel properties change, the adjustment factor K is changed to prevent excessive or insufficient temperature rise due to post injection (addition of fuel into the cylinder), and the DPF temperature is made higher than the regeneration start temperature Ts1. And it can be maintained in a suitable temperature environment below the forced regeneration temperature Treg. The adjustment coefficient K corresponds to the fuel property, and not only the post injection amount but also the main injection amount (including the after injection amount) is applied for correction according to the fuel property. Become.

図4においては、昇温制御2において、S5〜S6またはS9〜S11が繰り返され、S8の変更が繰り返される可能性があるので、S8の変更が繰り返される回数を計測する手段、その所定回数を超える繰り返しを禁止する手段、所定回数の変更後はS6の判定またはS11の判定がyesになると強制再生を中止する共にその中止を警報する手段、を備えることが望ましい。これにより、燃料の無駄な消費が抑えられ、また警報により、適切な対処(燃料を変える等)も促せるからのである。図5において、基準調整係数K=1は、純粋な軽油を調整係数である。   In FIG. 4, S5 to S6 or S9 to S11 are repeated in the temperature raising control 2, and the change of S8 may be repeated. Therefore, the means for measuring the number of times the change of S8 is repeated, the predetermined number of times It is desirable to provide means for prohibiting over-repetition, and means for stopping the forced regeneration and warning the suspension when the determination of S6 or S11 becomes yes after a predetermined number of changes. As a result, wasteful consumption of fuel can be suppressed, and appropriate measures (such as changing the fuel) can be promoted by an alarm. In FIG. 5, the reference adjustment coefficient K = 1 is an adjustment coefficient for pure light oil.

燃料性状の変化に対応する別の実施形態として、燃料種別毎の発熱量に対応する調整係数マップ(図6、参照)を設定する一方、通常運転時において、吸気流量(吸入空気量)と排気空燃比とから燃料供給重量を求め、燃料供給重量と排気温度とから燃料の発熱量を求め、発熱量から燃料種別を推定し、調整係数マップから対応する調整係数K(例えば、燃料種別Aに対応する調整係数Ka)を求め、この調整係数Kにより昇温制御2を含む燃料噴射量を補正することも考えられる。   As another embodiment corresponding to the change in fuel properties, an adjustment coefficient map (see FIG. 6) corresponding to the calorific value for each fuel type is set, while the intake flow rate (intake air amount) and the exhaust gas during normal operation. The fuel supply weight is obtained from the air-fuel ratio, the heat generation amount of the fuel is obtained from the fuel supply weight and the exhaust temperature, the fuel type is estimated from the heat generation amount, and the corresponding adjustment coefficient K (for example, the fuel type A is set to the fuel type A). It is also conceivable to obtain a corresponding adjustment coefficient Ka) and correct the fuel injection amount including the temperature increase control 2 by this adjustment coefficient K.

昇温制御2の対象は、ポスト噴射に限定されるものでなく、CR-DPF17上流の排気通路に燃料を添加する装置を設定することもできる。昇温制御1の対象は、既述の予熱手段のほか、エンジン負荷を強制的に高める装置(リターダブレーキやエンジン駆動の補機類)も利用することができる。   The target of the temperature raising control 2 is not limited to post injection, and a device for adding fuel to the exhaust passage upstream of the CR-DPF 17 can also be set. In addition to the preheating means described above, the target for the temperature raising control 1 can also use a device for forcibly increasing the engine load (retarder brake or engine-driven accessories).

システムの構成を説明する概要図である。It is a schematic diagram explaining the structure of a system. コントロールユニットの制御内容を説明するフローチャートである。It is a flowchart explaining the control content of a control unit. コントロールユニットの制御内容を説明するフローチャートである。It is a flowchart explaining the control content of a control unit. コントロールユニットの制御内容を説明するフローチャートである。It is a flowchart explaining the control content of a control unit. 調整係数マップを例示する特性図である。It is a characteristic view which illustrates an adjustment coefficient map. 別の調整係数マップを例示する特性図である。It is a characteristic view which illustrates another adjustment coefficient map. コントロールユニットの制御内容を説明する特性図である。It is a characteristic view explaining the control content of a control unit.

符号の説明Explanation of symbols

10 ディーゼルエンジン
11 吸気通路
12 ターボ過給機
14 吸気絞り弁
15 排気通路
16 排気絞り弁
17 CR-DPF(連続再生式フィルタ装置)
18 EGRバルブ
19 ターボバイパス弁
20 コントロールユニット
21 DPF(CSF)
22 DOC
23 差圧センサ
24〜26 温度センサ
27 エアフローセンサ
10 Diesel Engine 11 Intake Passage 12 Turbocharger 14 Intake Throttle Valve 15 Exhaust Passage 16 Exhaust Throttle Valve 17 CR-DPF (Continuous Regenerative Filter Device)
18 EGR valve 19 Turbo bypass valve 20 Control unit 21 DPF (CSF)
22 DOC
23 Differential pressure sensor 24-26 Temperature sensor 27 Air flow sensor

Claims (6)

エンジンの排気に含まれるPMをフィルタに捕集しつつ触媒の作用によりフィルタの堆積PMを燃焼させる排気浄化装置において、フィルタのPM堆積量を推定する手段、所定の強制再生条件が成立かどうを判定する手段、強制再生条件の成立が判定されるとPM堆積量の推定に応じた強制再生温度および強制再生時間を設定する手段、強制再生条件の成立が判定されると触媒が活性化温度の下限値以上のときにフィルタ温度を強制再生温度に高めて維持するように筒内または触媒への燃料の添加量を制御する手段、この制御量を燃料性状の変化に対応させるべく調整係数を掛けて補正する手段、この補正に用いる調整係数を変更可能に設定する手段、燃料添加量の制御中にフィルタ温度が再生開始温度を下回る基準外温度の経過時間を計測する手段、この計測時間が所定時間に達すると調整係数の設定を大側に変更する手段、を備えることを特徴とする排気浄化装置。   In an exhaust purification system that burns PM accumulated in the filter by the action of a catalyst while collecting PM contained in engine exhaust in the filter, means for estimating the amount of PM accumulated in the filter, whether a predetermined forced regeneration condition is satisfied The means for determining, the means for setting the forced regeneration temperature and the forced regeneration time according to the estimation of the PM accumulation amount when it is determined that the forced regeneration condition is satisfied, and the catalyst at the activation temperature when the satisfaction of the forced regeneration condition is determined. Means for controlling the amount of fuel added to the cylinder or the catalyst so as to maintain the filter temperature at the forced regeneration temperature when the value is lower than the lower limit value, and multiplying the control amount by an adjustment coefficient to correspond to the change in fuel properties. Means for adjusting the adjustment coefficient used for this correction, means for measuring the elapsed time of the non-reference temperature at which the filter temperature falls below the regeneration start temperature during control of the fuel addition amount, Exhaust purification device of the measuring time, characterized in that it comprises means, to change the larger side configuration with adjustment factor reaches a predetermined time. エンジンの排気に含まれるPMをフィルタに捕集しつつ触媒の作用によりフィルタの堆積PMを燃焼させる排気浄化装置において、フィルタのPM堆積量を推定する手段、所定の強制再生条件が成立かどうを判定する手段、強制再生条件の成立が判定されるとPM堆積量の推定に応じた強制再生温度および強制再生時間を設定する手段、強制再生条件の成立が判定されると触媒が活性化温度の下限値以上のときにフィルタ温度を強制再生温度に高めて維持するように筒内または触媒への燃料の添加量を制御する手段、この制御量を燃料性状の変化に対応させるべく調整係数を掛けて補正する手段、この補正に用いる調整係数を変更可能に設定する手段、燃料添加量の制御中にフィルタ温度が強制再生温度を上回る基準外温度の経過時間を計測する手段、この計測時間が所定時間に達すると調整係数の設定を小側に変更する手段、を備えることを特徴とする排気浄化装置。   In an exhaust purification system that burns PM accumulated in the filter by the action of a catalyst while collecting PM contained in engine exhaust in the filter, means for estimating the amount of PM accumulated in the filter, whether a predetermined forced regeneration condition is satisfied The means for determining, the means for setting the forced regeneration temperature and the forced regeneration time according to the estimation of the PM accumulation amount when it is determined that the forced regeneration condition is satisfied, and the catalyst at the activation temperature when the satisfaction of the forced regeneration condition is determined. Means for controlling the amount of fuel added to the cylinder or the catalyst so as to maintain the filter temperature at the forced regeneration temperature when the value is lower than the lower limit value, and multiplying the control amount by an adjustment coefficient to correspond to the change in fuel properties. Means for adjusting the adjustment coefficient used for the correction, means for measuring the elapsed time of the non-reference temperature at which the filter temperature exceeds the forced regeneration temperature during control of the fuel addition amount, Exhaust purification apparatus of measuring time, characterized in that it comprises means, for changing the small side configuration with adjustment factor reaches a predetermined time. エンジンの排気に含まれるPMをフィルタに捕集しつつ触媒の作用によりフィルタの堆積PMを燃焼させる排気浄化装置において、フィルタのPM堆積量を推定する手段、所定の強制再生条件が成立かどうを判定する手段、強制再生条件の成立が判定されるとPM堆積量の推定に応じた強制再生温度および強制再生時間を設定する手段、強制再生条件の成立が判定されると触媒が活性化温度の下限値以上のときにフィルタ温度を強制再生温度に高めて維持するように筒内または触媒への燃料の添加量を制御する手段、この制御量を燃料性状の変化に対応させるべく調整係数を掛けて補正する手段、この補正に用いる調整係数を変更可能に設定する手段、燃料添加量の制御中にフィルタ温度が再生開始温度を下回る基準外温度の経過時間を計測する手段、この計測時間が所定時間に達すると調整係数の設定を大側に変更する手段、燃料添加量の制御中にフィルタ温度が強制再生温度を上回る基準外温度の経過時間を計測する手段、この計測時間が所定時間に達すると調整係数の設定を小側に変更する手段、を備えることを特徴とする排気浄化装置。   In an exhaust purification system that burns PM accumulated in the filter by the action of a catalyst while collecting PM contained in engine exhaust in the filter, means for estimating the amount of PM accumulated in the filter, whether a predetermined forced regeneration condition is satisfied The means for determining, the means for setting the forced regeneration temperature and the forced regeneration time according to the estimation of the PM accumulation amount when it is determined that the forced regeneration condition is satisfied, and the catalyst at the activation temperature when the satisfaction of the forced regeneration condition is determined. Means for controlling the amount of fuel added to the cylinder or the catalyst so as to maintain the filter temperature at the forced regeneration temperature when the value is lower than the lower limit value, and multiplying the control amount by an adjustment coefficient to correspond to the change in fuel properties. Means for adjusting the adjustment coefficient used for this correction, means for measuring the elapsed time of the non-reference temperature at which the filter temperature falls below the regeneration start temperature during control of the fuel addition amount, Means for changing the setting of the adjustment coefficient to the larger side when the measurement time of the engine reaches a predetermined time, means for measuring the elapsed time of the non-standard temperature at which the filter temperature exceeds the forced regeneration temperature during control of the fuel addition amount, and this measurement time Means for changing the setting of the adjustment coefficient to a smaller side when the time reaches a predetermined time. 調整係数は、フィルタ温度の移動平均値に応じた設定に変更されることを特徴とする請求項1〜請求項3の何れか1つに記載の排気浄化装置。   The exhaust purification device according to any one of claims 1 to 3, wherein the adjustment coefficient is changed to a setting corresponding to a moving average value of the filter temperature. 調整係数の変更が繰り返される回数を計測する手段、その所定回数を超える繰り返しを禁止する手段、所定回数の変更後は基準外温度の経過時間が所定時間に達すると強制再生を中止する共にその中止を警報する手段、を備えることを特徴とする請求項1〜請求項4の何れか1つに記載の排気浄化装置。   A means for measuring the number of times the adjustment coefficient change is repeated, a means for prohibiting repetition exceeding the predetermined number of times, and after the predetermined number of changes, the forced regeneration is stopped when the elapsed time of the non-reference temperature reaches a predetermined time and the cancellation The exhaust emission control device according to any one of claims 1 to 4, further comprising a warning unit. 強制再生条件の成立が判定されると触媒温度が活性化温度の下限値を下回るときは触媒温度を活性化温度の下限値以上に昇温させるべく排気温度を積極的に高める手段、を備えることを特徴とする請求項1〜請求項5の何れか1つに記載の排気浄化装置。   When it is determined that the forced regeneration condition is satisfied, there is provided means for positively increasing the exhaust temperature so as to raise the catalyst temperature above the lower limit value of the activation temperature when the catalyst temperature falls below the lower limit value of the activation temperature. The exhaust emission control device according to any one of claims 1 to 5, wherein:
JP2007075446A 2007-03-22 2007-03-22 Exhaust purification device Expired - Fee Related JP4986667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007075446A JP4986667B2 (en) 2007-03-22 2007-03-22 Exhaust purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007075446A JP4986667B2 (en) 2007-03-22 2007-03-22 Exhaust purification device

Publications (2)

Publication Number Publication Date
JP2008232073A true JP2008232073A (en) 2008-10-02
JP4986667B2 JP4986667B2 (en) 2012-07-25

Family

ID=39905171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007075446A Expired - Fee Related JP4986667B2 (en) 2007-03-22 2007-03-22 Exhaust purification device

Country Status (1)

Country Link
JP (1) JP4986667B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010090037A1 (en) * 2009-02-06 2010-08-12 本田技研工業株式会社 Internal combustion engine exhaust purifying device and exhaust purifying method
JP2019100264A (en) * 2017-12-04 2019-06-24 ヤンマー株式会社 Internal combustion engine
JP2019183758A (en) * 2018-04-11 2019-10-24 株式会社豊田自動織機 Exhaust emission control device
WO2020195223A1 (en) * 2019-03-27 2020-10-01 日立オートモティブシステムズ株式会社 Internal combustion engine control device
JP2022018214A (en) * 2020-07-15 2022-01-27 いすゞ自動車株式会社 Control device and control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002817A (en) * 2003-06-10 2005-01-06 Nissan Motor Co Ltd Exhaust emission control device for diesel engine
JP2005299555A (en) * 2004-04-14 2005-10-27 Nissan Diesel Motor Co Ltd Exhaust emission control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002817A (en) * 2003-06-10 2005-01-06 Nissan Motor Co Ltd Exhaust emission control device for diesel engine
JP2005299555A (en) * 2004-04-14 2005-10-27 Nissan Diesel Motor Co Ltd Exhaust emission control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010090037A1 (en) * 2009-02-06 2010-08-12 本田技研工業株式会社 Internal combustion engine exhaust purifying device and exhaust purifying method
JP2019100264A (en) * 2017-12-04 2019-06-24 ヤンマー株式会社 Internal combustion engine
JP2019183758A (en) * 2018-04-11 2019-10-24 株式会社豊田自動織機 Exhaust emission control device
WO2020195223A1 (en) * 2019-03-27 2020-10-01 日立オートモティブシステムズ株式会社 Internal combustion engine control device
JP7356245B2 (en) 2019-03-27 2023-10-04 日立Astemo株式会社 Internal combustion engine control device
JP2022018214A (en) * 2020-07-15 2022-01-27 いすゞ自動車株式会社 Control device and control method

Also Published As

Publication number Publication date
JP4986667B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4075573B2 (en) Exhaust gas purification device for internal combustion engine
US6622480B2 (en) Diesel particulate filter unit and regeneration control method of the same
JP4506539B2 (en) Exhaust gas purification device for internal combustion engine
JP2007023874A (en) Exhaust emission control system and method for controlling exhaust emission control system
JP2004218484A (en) Regenerator for particulate filter, and exhaust emission control device for engine
JP2006029239A (en) Exhaust emission control filter overheat prevention device
JP2008031854A (en) Exhaust emission control device for internal combustion engine
JP2010265844A (en) Exhaust emission control device for internal combustion engine
JP4453718B2 (en) Exhaust gas purification device for internal combustion engine
JP4986667B2 (en) Exhaust purification device
JP4150308B2 (en) Exhaust purification device
JP4308702B2 (en) Exhaust purification equipment
JP4305402B2 (en) Exhaust gas purification device for internal combustion engine
JP4320586B2 (en) Exhaust gas purification device for internal combustion engine
JP4008867B2 (en) Exhaust purification equipment
JP4185882B2 (en) Exhaust purification device
JP4008866B2 (en) Exhaust purification equipment
JP4365724B2 (en) Exhaust purification equipment
JP4333230B2 (en) Exhaust gas purification system for internal combustion engine
JP2010169032A (en) Engine control device
JP4070687B2 (en) Exhaust purification device
JP2004190568A (en) Filter regeneration control device for diesel engine
JP5751198B2 (en) Exhaust gas purification device for internal combustion engine
JP4070681B2 (en) Exhaust purification device
JP2010112251A (en) Exhaust purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees