WO2020195223A1 - Internal combustion engine control device - Google Patents

Internal combustion engine control device Download PDF

Info

Publication number
WO2020195223A1
WO2020195223A1 PCT/JP2020/004728 JP2020004728W WO2020195223A1 WO 2020195223 A1 WO2020195223 A1 WO 2020195223A1 JP 2020004728 W JP2020004728 W JP 2020004728W WO 2020195223 A1 WO2020195223 A1 WO 2020195223A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
cylinder
air
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2020/004728
Other languages
French (fr)
Japanese (ja)
Inventor
隆太郎 小祝
一浩 押領司
佐藤 真也
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2020195223A1 publication Critical patent/WO2020195223A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00

Definitions

  • the present invention relates to an internal combustion engine control device.
  • particulate matter In an internal combustion engine, particulate matter (PM: Particulate Matter) is generated when the air-fuel mixture, which is a mixture of fuel and air, burns.
  • PM Particulate Matter
  • a so-called direct injection engine there is an air-fuel mixture (hereinafter, referred to as a rich air-fuel mixture) in which the proportion of fuel is locally concentrated. Therefore, in the fuel chamber of the direct injection engine, the ratio of fuel in the air to the air-fuel mixture tends to be uneven, and the PM emission amount increases.
  • a PM collection filter is provided in order to reduce PM contained in the exhaust gas of the internal combustion engine.
  • the PM collection filter needs to burn and remove the collected PM in order to prevent clogging.
  • the temperature of the PM collection filter may rise excessively due to the combustion of PM, and the filter may be damaged. Therefore, it is necessary to accurately grasp the amount of PM accumulated in the PM collection filter, and it is important to estimate the amount of PM flowing into the PM collection filter.
  • the amount of PM produced increases at the location where the rich mixture and fuel adhere in a specific temperature range. Therefore, in order to estimate the amount of PM, it is important to estimate the state of the air-fuel mixture in the cylinder and the ratio of the fuel adhering to the wall surface in the cylinder.
  • a technique for estimating the state of the air-fuel mixture for example, there is a technique described in Patent Document 1.
  • Patent Document 1 describes a technique including an injection fuel classification means and an air-fuel mixture state estimation means.
  • the injection fuel classification means classifies the fuel that is continuously injected in the cylinder of the internal combustion engine for a predetermined injection period from the start of the predetermined injection into a plurality of parts.
  • the air-fuel mixture state estimation means assumes that each part of the classified injection fuel is independently and sequentially injected according to the lapse of time from a predetermined injection start time, and each part of the injection fuel is a cylinder.
  • the state of each air-fuel mixture formed by mixing with the in-cylinder gas sucked into the inside is individually estimated.
  • Patent Document 1 is a technique for estimating the state of an air-fuel mixture in a diesel engine as an internal combustion engine.
  • the diesel engine is diffusion combustion in which the fuel injected from the fuel injection device evaporates and combustion proceeds while taking in air. In diffusion combustion, the movement of the fuel spray and the combustion reaction proceed at the same time, so that the fuel spray dominates the combustion.
  • a mixture of fuel and air is activated by the ignition energy generated by the spark plug, starts combustion, and the performance starts in a combustion form called flame propagation in the premixed combustion that progresses in the cylinder. is there.
  • Premixed combustion differs from diesel engine combustion because the air-fuel mixture and ignition timing dominate the combustion.
  • the gasoline engine usually injects fuel during the intake stroke.
  • the purpose of this object is to provide an internal combustion engine control device capable of accurately estimating the state of the air-fuel mixture in the cylinder of the cylinder in consideration of the above problems.
  • the internal combustion engine control device is an internal combustion engine control device that controls an internal combustion engine.
  • the internal combustion engine consists of a cylinder, a piston that slides inside the cylinder, a crankshaft that is connected to the piston, an injector that injects fuel into the cylinder, and a mixture of air and fuel inside the cylinder. It has a spark plug that ignites the engine.
  • the internal combustion engine control device includes a control unit that acquires the ignition timing at which the spark plug ignites the air-fuel mixture in the cylinder and the fuel injection start timing at which the injector starts the injection of fuel into the cylinder.
  • the control unit calculates the degree of dispersion of the air-fuel mixture distribution in the cylinder based on the ignition timing and the fuel injection start timing.
  • the internal combustion engine control device is an internal combustion engine control device that controls an internal combustion engine.
  • the internal combustion engine consists of a cylinder, a piston that slides inside the cylinder, a crankshaft that is connected to the piston, an injector that injects fuel into the cylinder, and a mixture of air and fuel inside the cylinder. It has a spark plug that ignites the engine.
  • the internal combustion engine control device includes a control unit that acquires the opening / closing timing of an exhaust valve arranged so as to open / close the exhaust port of the cylinder, and the intake pressure which is the pressure of the air taken into the cylinder.
  • the control unit calculates the fuel adhesion ratio, which is the ratio of the amount of fuel adhering to the wall surface of the cylinder and the crown surface of the piston, based on the opening / closing timing of the exhaust valve and the intake pressure.
  • the state of the air-fuel mixture in the cylinder of the cylinder can be accurately estimated.
  • FIG. 1 is a schematic configuration diagram showing a system configuration of the internal combustion engine of this example.
  • the internal combustion engine 2 shown in FIG. 1 is an in-cylinder injection type internal combustion engine (direct injection engine) that directly injects fuel made of gasoline into the cylinder.
  • the internal combustion engine 2 is a four-cycle engine that repeats four strokes of an intake stroke, a compression stroke, a combustion (expansion) stroke, and an exhaust stroke. Further, the internal combustion engine 2 is, for example, a multi-cylinder engine including four cylinders (cylinders).
  • the number of cylinders of the internal combustion engine 2 is not limited to four, and may have six or eight or more cylinders. Further, the number of cycles of the internal combustion engine 2 is not limited to 4 cycles.
  • the internal combustion engine 2 includes a cylinder 21, a piston 22, a crankshaft 23, an intake valve 24, an exhaust valve 25, a spark plug 26, and an injector 27 which is a fuel injection device. are doing.
  • the internal combustion engine 2 is controlled by the internal combustion engine control device 10.
  • the piston 22 is slidably arranged in the cylinder 21a of the cylinder 21.
  • the piston 22 compresses the fuel-gas mixture that has flowed into the cylinder 21a of the cylinder 21. Then, the piston 22 reciprocates in the cylinder 21a due to the combustion pressure generated in the cylinder 21a.
  • a crankshaft 23 is connected to the piston 22 via a connecting rod. Then, the reciprocating motion of the piston 22 is converted into a rotary motion by the crankshaft 23. Further, the crankshaft 23 is provided with a crank angle sensor 29 that detects the crank angle of the crankshaft 23. The crank angle sensor 29 detects the crank angle of the crankshaft 23 from the rotating disk provided on the crankshaft 23. The crank angle sensor 29 is connected to an internal combustion engine control device 10 described later. Then, the crank angle sensor 29 outputs the detected angle information regarding the crank angle to the internal combustion engine control device 10.
  • the intake valve 24 is arranged to be openable and closable at the intake port of the cylinder 21, and the exhaust valve 25 is arranged to be openable and closable at the exhaust port of the cylinder 21.
  • the intake valve 24 is in contact with an intake side camshaft (not shown), and the exhaust valve 25 is in contact with an exhaust side camshaft (not shown). Then, the intake valve 24 and the exhaust valve 25 are driven by the rotation of the intake side camshaft and the exhaust side camshaft.
  • gas (air) flows into the cylinder 21a of the cylinder 21 from the intake port. Further, by driving the exhaust valve 25, the exhaust gas after combustion is discharged from the exhaust port of the cylinder 21.
  • the injector 27 injects fuel into the cylinder 21a of the cylinder 21.
  • the injector 27 is connected to the internal combustion engine control device 10.
  • the internal combustion engine control device 10 calculates the target fuel injection amount by dividing the intake amount output from the airflow sensor 42, which will be described later, by the target air-fuel ratio determined by the rotation speed, the intake pressure, and the like. Then, the internal combustion engine control device 10 injects fuel from the injector 27 according to the calculated target fuel injection amount. As a result, in the cylinder 21a, an air-fuel mixture in which air and fuel are mixed is generated.
  • a spark plug 26 and an injector 27 are attached to the cylinder 21.
  • An ignition coil (not shown) is connected to the spark plug 26.
  • the ignition coil generates a high voltage under the control of the internal combustion engine control device 10 and applies it to the spark plug 26.
  • sparks are generated in the spark plug 26.
  • the spark generated in the spark plug 26 burns the air-fuel mixture in the cylinder 21a and explodes.
  • the piston 22 is pushed down by the exploding air-fuel mixture.
  • the pushing-down motion of the piston 22 is converted into a rotational motion of the crankshaft 23, which becomes a driving force for a vehicle or the like.
  • the cylinder 21 is provided with a cooling water sensor 28 that measures the temperature of the cooling water that cools the cylinder 21.
  • the cooling water sensor 28 is connected to the internal combustion engine control device 10, and outputs the measured temperature of the cooling water to the internal combustion engine control device 10.
  • An intake pipe 31 for taking in gas composed of air is connected to the intake port of the cylinder 21, and an exhaust pipe 32 for exhausting the exhaust gas is connected to the exhaust port of the cylinder 21. Further, the intake pipe 31 and the exhaust pipe 32 are connected by an EGR pipe 33.
  • the EGR pipe 33 returns a part of the exhaust gas passing through the exhaust pipe 32 to the intake pipe 31. This reduces pumping loss.
  • the EGR tube 33 is provided with an EGR valve 45.
  • the EGR valve 45 regulates the flow rate of gas passing through the EGR pipe 33.
  • the intake pipe 31 is provided with a throttle valve 41 and an air flow sensor 42.
  • the throttle valve 41 is provided on the upstream side of the intake pipe 31 at the connection point with the intake port and the EGR pipe 33.
  • the throttle valve 41 is driven so as to be openable and closable by a drive motor (not shown). Then, the opening degree of the throttle valve 41 is adjusted based on the accelerator operation of the driver. As a result, the amount of gas taken into the intake pipe 31 (intake amount) is adjusted.
  • the air flow sensor 42 measures the amount of intake air taken into the intake pipe 31.
  • the air flow sensor 42 is connected to the internal combustion engine control device 10.
  • the air flow sensor 42 outputs the measured intake air amount to the internal combustion engine control device 10.
  • the intake pipe 31 is provided with an intake pressure sensor 43 and an intake temperature sensor 44.
  • the intake pressure sensor 43 and the intake temperature sensor 44 are connected to the internal combustion engine control device 10.
  • the intake pressure sensor 43 measures the pressure (intake pressure) of the gas passing through the intake pipe 31. Then, the intake pressure sensor 43 outputs the measured intake pressure to the internal combustion engine control device 10.
  • the intake air temperature sensor 44 measures the temperature of the gas passing through the intake pipe 31 (intake air temperature). Then, the intake air temperature sensor 44 outputs the measured intake air temperature to the internal combustion engine control device 10.
  • the exhaust pipe 32 is provided with an air-fuel ratio sensor 46, a three-way catalyst 34, and a gasoline particulate filter (hereinafter referred to as “GPF”) 35.
  • the air-fuel ratio sensor 46 measures the oxygen concentration contained in the exhaust gas passing through the exhaust pipe 32. Then, the air-fuel ratio sensor 46 is connected to the internal combustion engine control device 10, and outputs the measured oxygen concentration to the internal combustion engine control device 10.
  • the three-way catalyst 34 is provided in the intermediate portion of the exhaust pipe 32.
  • the three-way catalyst 34 purifies harmful substances contained in the exhaust gas by an oxidation / reduction reaction.
  • a GPF 35 is provided on the downstream side of the three-way catalyst 34 in the exhaust pipe 32.
  • the GPF35 which is a PM collection filter, collects particulate matter contained in the exhaust gas, so-called PM.
  • a GPF upstream temperature sensor 47 is provided on the upstream side of the GPF 35, that is, between the three-way catalyst 34 and the GPF 35. The GPF upstream temperature sensor 47 measures the temperature of the exhaust gas flowing into the GPF 35. Then, the GPF upstream temperature sensor 47 is connected to the internal combustion engine control device 10, and outputs the measured exhaust gas temperature to the internal combustion engine control device 10.
  • the GPF 35 is provided with a differential pressure sensor 48.
  • the differential pressure sensor 48 measures the pressure difference (differential pressure) between the upstream side and the downstream side of the GPF 35. Then, the differential pressure sensor 48 is connected to the internal combustion engine control device 10, and outputs the measured differential pressure to the internal combustion engine control device 10.
  • the present invention is not limited to this.
  • it may be a PM collection filter such as a quaternary catalyst in which a GPF 35 is provided with a purification function of a three-way catalyst 34.
  • FIG. 2 is a block diagram showing the configuration of the internal combustion engine control device 10.
  • the internal combustion engine control device 10 which is an ECU (Engine Control Unit) includes a CPU (Central Processing Unit) 101 showing an example of a control unit, a RAM (Random Access Memory) 102, and a ROM (Read Only). It has a Memory) 103, an input / output port 104, and an input circuit 105. Further, the internal combustion engine control device 10 has a GPF control unit 110 showing an example of the control unit.
  • ECU Engine Control Unit
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only
  • GPF control unit 110 showing an example of the control unit.
  • the input circuit 105 which shows an example of the receiving unit, inputs the output of each sensor such as the intake amount from the airflow sensor 42, the intake pressure from the intake pressure sensor 43, the intake temperature from the intake temperature sensor 44, and the rotation speed from the crank angle sensor 29. Will be done.
  • the input signal input to the input circuit 105 is not limited to the above.
  • the input circuit 105 performs signal processing such as noise removal on the input signal and sends it to the input / output port 104.
  • the value input to the input port of the input / output port 104 is stored in the RAM 102.
  • the ROM 103 which shows an example of the storage unit, stores a control program that describes the contents of various arithmetic processes executed by the CPU 101, a MAP, a data table, and the like used for each process.
  • the RAM 102 is provided with a storage area for storing the value input to the input port of the input / output port 104 and the value representing the operation amount of each actuator calculated according to the control program. Further, a value representing the operation amount of each actuator stored in the RAM 102 is sent to the output port of the input / output port 104.
  • each drive circuit for driving the injector 27, the spark plug 26, and the throttle valve 41 is connected to the input / output port 104. Then, the drive signal set in the output port of the input / output port 104 is sent to the injector 27, the spark plug 26, and the throttle valve 41 via each drive circuit.
  • the GPF control unit 110 is connected to the input / output port 104.
  • the GPF control unit 110 calculates the internal temperature of the GPF 35 (hereinafter referred to as the GPF temperature) and the amount of PM deposited on the GPF 35 based on the information output from various sensors. Then, when the calculated GPF temperature and PM accumulation amount exceed the set threshold values, the PM in the GPF 35 is burned and removed by controlling the spark plug 26 and the injector 27 and adjusting the air-fuel ratio and the ignition timing. In this example, this operation of burning and removing PM in GPF is referred to as regeneration control of GPF35.
  • FIG. 3 is a block diagram showing the configuration of the GPF control unit 110.
  • the GPF control unit 110 includes a scattering degree calculation processing unit 201, a fuel adhesion ratio calculation processing unit 202, a temperature / pressure state calculation processing unit 203, a PM emission amount calculation processing unit 204, and PM deposition. It has an amount calculation processing unit 205 and a reproduction control processing unit 206.
  • the PM emission amount calculation processing unit 204 is connected to the scattering degree calculation processing unit 201, the fuel adhesion ratio calculation processing unit 202, and the temperature / pressure state calculation processing unit 203. Then, the PM discharge amount calculation processing unit 204 is connected to the PM accumulation amount calculation processing unit 205, and the PM accumulation amount calculation processing unit 205 is connected to the regeneration control processing unit 206.
  • the dispersion degree calculation processing unit 201 is based on the engine speed, fuel injection pulse, fuel injection start timing, ignition timing, etc., and the degree of dispersion of the air-fuel mixture distribution in the cylinder 21a of the cylinder 21, that is, the air-fuel mixture in the cylinder 21a. Calculate the state of. Then, the dispersion degree calculation processing unit 201 outputs the calculated dispersion degree of the air-fuel mixture distribution to the PM emission amount calculation processing unit 204. The method of calculating the degree of dispersion of the air-fuel mixture distribution in the dispersion degree calculation processing unit 201 will be described later.
  • the fuel adhesion ratio calculation processing unit 202 is based on the engine speed, fuel injection pulse, fuel injection start timing, ignition timing, cooling water temperature, intake pressure, fuel pressure, exhaust valve opening / closing timing, intake pressure, and the like. Calculate the injection amount of the fuel injected into. Further, based on the above information, the fuel adhesion ratio calculation processing unit 202 determines the ratio (fuel adhesion) of the fuel N2 attached to the wall surface of the cylinder 21a and the fuel N3 (see FIG. 11) attached to the crown surface 22a of the piston 22. Percentage) is calculated. Then, the fuel adhesion ratio calculation processing unit 202 outputs the calculated fuel adhesion ratio to the PM emission amount calculation processing unit 204. The method of calculating the fuel adhesion ratio in the fuel adhesion ratio calculation processing unit 202 will be described later.
  • the temperature / pressure state calculation processing unit 203 calculates the temperature history of the air-fuel mixture in the cylinder 21a and the pressure history of the cylinder 21a based on the intake pressure, the intake temperature, and the cylinder volume of the cylinder 21.
  • the temperature / pressure state calculation processing unit 203 outputs the calculated temperature / pressure history to the PM emission amount calculation processing unit 204.
  • the method of calculating the temperature / pressure history in the temperature / pressure state calculation processing unit 203 will be described later.
  • the PM emission calculation processing unit 204 calculates the PM emission (PM emission) emitted from the internal combustion engine 2 based on the degree of dispersion of the air-fuel mixture distribution, the fuel adhesion ratio, and the temperature and pressure history. Then, the PM discharge amount calculation processing unit 204 outputs the calculated PM discharge amount to the PM accumulation amount calculation processing unit 205. The method of calculating the PM emission amount in the PM emission amount calculation processing unit 204 will be described later.
  • the PM accumulation amount calculation processing unit 205 calculates the amount of PM accumulated in the GPF35 (PM accumulation amount) based on the PM discharge amount. Then, the PM accumulation amount calculation processing unit 205 outputs the calculated PM accumulation amount to the regeneration control processing unit 206. The method of calculating the PM deposit amount in the PM deposit amount calculation processing unit 205 will be described later.
  • the regeneration control processing unit 206 determines whether or not to perform regeneration control of the GPF 35 based on the amount of PM deposited. Then, the reproduction control processing unit 206 commands the reproduction control based on the determination result.
  • the drive circuit (not shown) generates a drive signal based on the regeneration control command from the regeneration control processing unit 206 to drive the spark plug 26 and the injector 27. The determination operation in the reproduction control processing unit 206 will be described later.
  • the GPF control unit 110 described above may be provided in the CPU 101. Therefore, various calculation processing units included in the GPF control unit 110 are provided in the CPU 101. Then, the CPU 101 calculates the degree of dispersion of the air-fuel mixture, the fuel adhesion ratio, the temperature and pressure history of the air-fuel mixture, the PM discharge amount, and the PM accumulation amount, and determines the regeneration control of the GPF 35.
  • the GPF control unit 110 may be provided in the internal combustion engine control device 10 as a control unit separate from the CPU 101.
  • FIG. 4 is a characteristic diagram showing the PM generation rate
  • FIG. 5 is a graph showing the air-fuel mixture distribution in the cylinder 21a and showing the relationship between the air-fuel mixture ratio and the equivalent ratio.
  • the horizontal axis shows the temperature of the reaction gas, that is, the air-fuel mixture
  • the vertical axis shows the equivalent ratio.
  • the equivalent ratio is an index showing the fuel concentration in the air-fuel mixture, and is the value obtained by dividing the theoretical air-fuel ratio, which is the theoretically highest combustion efficiency air-fuel ratio, by the actual air-fuel ratio.
  • the rate of PM production increases, with no increase in the equivalent ratio.
  • FIG. 5 is a diagram showing the air-fuel mixture distribution in the cylinder 21a.
  • the horizontal axis shows the equivalent ratio and the vertical axis shows the air-fuel mixture ratio.
  • Gasoline engines usually burn in a state where fuel and air are uniformly mixed (highly homogeneous state).
  • the fuel injection start timing such as fuel injection in the compression stroke is late, or the air flow is slow. If it is weak, the mixture of fuel and air will be insufficient. Therefore, the in-cylinder 21a tends to be in a state (low homogeneous state) in which an air-fuel mixture (hereinafter, rich air-fuel mixture) in which the ratio of fuel is locally concentrated is present.
  • rich air-fuel mixture an air-fuel mixture
  • the equivalent ratio is higher than a certain value (rich), that is, when the ratio of fuel becomes high, the amount of PM produced increases.
  • PM generation can be estimated by estimating the air-fuel mixture distribution in the cylinder 21a.
  • this air-fuel mixture distribution there is a method of estimating the air-fuel mixture distribution using the probability density function of the mixed fraction space.
  • Beta function is one of the probability density functions.
  • the beta function P (Z) in the mixed fraction space is obtained by the following equations 1 to 4. [Equation 1] [Equation 2] [Equation 3] [Equation 4]
  • Z is the mixed fraction [-]
  • Z ave is the in-cylinder average value of the mixed fraction
  • is the variance of the mixed fraction
  • a / F is the air-fuel ratio
  • a and b are the distribution constants. Is shown.
  • FIG. 6 is a diagram showing the distribution of beta functions.
  • the beta function P (Z) becomes convex upward, convex downward, or mixed fraction Z depending on the combination of the in-cylinder average value Z ave of the mixed fraction and the variance ⁇ of the mixed fraction.
  • a distribution such as monotonous decrease can be obtained.
  • a state in which fuel and air are mixed well high homogeneous state
  • the ⁇ a 1
  • Z ave b 1
  • beta function P (Z) becomes convex upward.
  • the state in which fuel and air are separated in cylinder 21a low homogeneous state)
  • a 2
  • Z ave In b 2
  • beta function P (Z) becomes convex downward.
  • the in-cylinder average value Z ave of the mixed fraction can be given from the average air-fuel ratio A / F of the in-cylinder 21a.
  • the average air-fuel ratio A / F is set to 14.7 as the ideal air-fuel ratio has been described, but the present invention is not limited to this.
  • the important parameter when estimating the state of the air-fuel mixture in the probability density function is the variance ⁇ . If the change in dispersion can be calculated based on the operating conditions of the vehicle and the amount of operation of each actuator such as the injector 27 and the spark plug 26, the state of the air-fuel mixture distribution in the cylinder 21a can be calculated by the probability density function. ..
  • FIG. 7 is a flowchart showing the calculation operation of the scattering degree of the air-fuel mixture distribution in the scattering degree calculation processing unit 201.
  • the dispersion degree calculation processing unit 201 acquires the operating conditions of the internal combustion engine 2 (step S11).
  • the dispersion degree calculation processing unit 201 acquires output information of various sensors, an operation amount of each actuator, and the like as operating conditions of the internal combustion engine 2.
  • the output information and the amount of operation of the sensor include, for example, the rotation speed Ne, the fuel injection pulse ti, the fuel injection start timing ⁇ SOI , the ignition timing ⁇ ADV, and the like.
  • the rotation speed Ne is the rotation speed of the crankshaft 23, and the fuel injection pulse ti is a period during which fuel is injected from the injector 27. Further, the fuel injection start time ⁇ SOI is a time when fuel injection is started from the injector 27 with respect to the crank angle.
  • the ignition timing ⁇ ADV is the timing at which the spark plug 26 ignites the air-fuel mixture in the cylinder 21a with respect to the crank angle.
  • the rotation speed Ne is acquired based on the detection information of the crank angle sensor 29.
  • the fuel injection pulse ti and the fuel injection start time ⁇ SOI are known as the control amount of the injector 27, and the ignition timing ⁇ ADV is known as the control amount of the spark plug 26.
  • the scattering degree calculation processing unit 201 calculates the rotation period ct based on the acquired rotation speed Ne (step S12).
  • the rotation cycle tc [s] is calculated by the following equation 5 using the rotation speed Ne [rpm]. [Equation 5]
  • the scatter degree calculation processing unit 201 calculates the fuel injection end time ⁇ EOI [ATDC] (step S13).
  • the fuel injection end time ⁇ EOI is calculated by the following equation 6 using the fuel injection pulse ti [s], the fuel injection start time ⁇ SOI [ATDC], and the rotation speed Ne [rpm]. [Equation 6]
  • the scatter degree calculation processing unit 201 calculates the mixing time tm (step S14).
  • the mixing time tm represents the time from the end of fuel injection to ignition.
  • the mixing time tm [s] is calculated by the following equation 7 using the ignition timing ⁇ ADV [ATDC], the rotation speed Ne [rpm], and the fuel injection end time ⁇ EOI [ATDC]. [Equation 7]
  • the dispersion degree calculation processing unit 201 calculates the dispersion degree of the air-fuel mixture distribution, that is, the variance ⁇ (step S15).
  • the degree of dispersion ⁇ of the air-fuel mixture distribution is calculated by the following equation 8 using the mixing time tm [s]. [Equation 8]
  • the degree of dispersion ⁇ of the air-fuel mixture distribution can be calculated more accurately from the following equation 9 by using the injection pulse ti [s], the rotation period ct [s], and the mixing time tm [s]. [Equation 9]
  • FIG. 8 is an explanatory view showing the shape of the spray in the central cross section of the fuel spray injected from the injector 27.
  • the fuel injected from the injector 27 is sprayed in a substantially conical shape. Therefore, the central cross section of the fuel spray is triangular.
  • the spray tip speed u tip is calculated by the following equation 10. [Equation 10] U 0 shown in the formula 10 is the initial velocity [m / s] of the injection, and t is the injection time [s].
  • Equation 11 ⁇ in Equation 11 is the injection angle [rad]
  • ti the fuel injection pulse [s].
  • the initial position of the spray at the end of injection can be calculated by a function of the initial injection speed u 0 , the injection time t, and the injection angle ⁇ .
  • the initial injection speed u 0 the injection angle
  • the initial position of the spray at the end of injection is a function of the fuel injection pulse ti. Therefore, by using the fuel injection pulse ti, that is, the period during which the fuel is injected, the degree of dispersion ⁇ of the air-fuel mixture distribution in the cylinder 21a can be estimated in consideration of the initial distribution of the fuel. As a result, the calculation accuracy of the degree of dispersion ⁇ of the air-fuel mixture distribution can be improved by the fuel injection pulse ti.
  • FIG. 9 is an explanatory diagram showing the vaporization rate of fuel after fuel injection.
  • the SOI in FIG. 9 indicates the start time of fuel injection, and the EOI indicates the end time of fuel injection.
  • the vaporization rate of the fuel increases from 0 when the injection is completed and the EOI is completed. Then, the time from the end time EOI of the fuel injection until the vaporization rate becomes 1 is the delay time until the start of mixing, that is, the time that occurs until the fuel evaporates (evaporation delay time).
  • a model formula in which the evaporation rate is regulated by the ratio of the saturated vapor pressure of the fuel to the pressure is shown in the following formula 12. [Equation 12]
  • Equation 13 shows a model equation in which the temperature change during the intake stroke is controlled by the heat transfer of the wall surface of the cylinder 21a.
  • ⁇ f is the gas density of the fuel component [kg / m 3 ]
  • ⁇ l is the liquid density of the fuel component [kg / m 3 ]
  • D is the nucleic acid coefficient [m 2 / s 2 ]
  • d is the particle size [m 2 / s 2 ].
  • m] ⁇ s, f are saturated gas pressure [Pa]
  • M is the mass [kg] of the cylinder 21a
  • C p is the constant pressure specific heat [J / Kg / K]
  • is the heat transfer rate [W / m 2 / K] and S are the surface area [m 2 ] of the cylinder 21a
  • T is the gas temperature [K]
  • T w is the wall surface temperature [K].
  • Equation 14 shows that the evaporation delay time shown in FIG. 9 is a function of the rotation cycle tc.
  • the evaporation delay time can be obtained by using the rotation cycle tk.
  • the degree of dispersion ⁇ of the air-fuel mixture distribution in the cylinder 21a can be estimated in consideration of the evaporation delay time of the formed spray. Therefore, the calculation accuracy of the degree of dispersion ⁇ of the air-fuel mixture distribution can be improved by the rotation period tc.
  • FIG. 10 shows the mixing fraction of the cylinder 21a immediately after fuel injection and at the ignition timing.
  • the solid line shown in FIG. 10 shows the mixing fraction immediately after fuel injection, and the dotted line shows the mixing fraction at the ignition timing.
  • Equation 16 Equation 16
  • the turbulent diffusion coefficient D can be expressed by the following equation 18 using the turbulent energy k and the turbulent energy dissipation rate ⁇ . [Equation 18] Re is a Reynolds number.
  • Equation 19 the variance ⁇ of the air-fuel mixture distribution in the real space is obtained by the following equation 19.
  • FIGS. 11 to 13 show the calculation operation of the fuel adhesion ratio and the PM generation characteristics in the fuel adhesion ratio calculation processing unit 202.
  • FIG. 11 is a diagram showing a state of adhesion of fuel in the cylinder 21a.
  • FIG. 12 is a flowchart showing the calculation operation of the fuel adhesion ratio in the fuel adhesion ratio calculation processing unit 202.
  • the fuel adhesion ratio calculation processing unit 202 acquires the operating conditions of the internal combustion engine 2 (step S21).
  • the fuel adhesion ratio calculation processing unit 202 acquires output information of various sensors, an operating amount of each actuator, and the like as operating conditions of the internal combustion engine 2.
  • the sensor output information and the amount of operation include, for example, the exhaust valve timing ⁇ evic , the intake pressure Pi, the fuel pressure Pf which is the pressure applied to the fuel from the injector 27, the fuel injection start time ⁇ SOI , the fuel injection pulse ti, and the rotation speed Ne. Cooling water temperature Tw or the like.
  • the intake pressure Pi is the pressure at which the cylinder 21 flows into the cylinder 21a, and is acquired based on the measurement information measured by the intake pressure sensor 43.
  • the rotation speed Ne is acquired based on the detection information of the crank angle sensor 29.
  • the exhaust valve timing ⁇ evc is the opening / closing timing of the exhaust valve 25.
  • the fuel injection pulse ti, fuel pressure P, and fuel injection start time ⁇ SOI are known as the control amount of the injector 27, and the exhaust valve timing ⁇ evc is known as the control amount of the injector 27 and the exhaust valve 25, respectively.
  • the cooling water temperature Tw is acquired from the cooling water sensor 28 provided in the cylinder 21.
  • the fuel adhesion ratio calculation processing unit 202 determines the cylinder based on the exhaust valve timing ⁇ evic , the intake pressure Pi, the fuel pressure Pf, the fuel injection start time ⁇ SOI , the fuel injection pulse ti, the rotation speed Ne, and the cooling water temperature Tw.
  • the ratio (fuel adhesion ratio) ⁇ of the amount of fuel adhering to the wall surface of the inner 21a and the crown surface 22a of the piston 22 is calculated (step S22).
  • the fuel adhesion ratio ⁇ is calculated by the following formula 20.
  • the rotation cycle tc is calculated by the above-mentioned equation 5 based on the rotation speed Ne. [Equation 20]
  • the fuel adhesion ratio ⁇ is calculated as a function of the exhaust valve timing ⁇ evic , the intake pressure Pi, the fuel pressure Pf, the fuel injection start time ⁇ SOI , the fuel injection pulse ti, the rotation cycle tk, and the cooling water temperature Tw. be able to.
  • the calculation operation of the fuel adhesion ratio ⁇ in the fuel adhesion ratio calculation processing unit 202 is completed.
  • Fuel Adhesion Control Factors Next, the fuel adhesion control factors in the in-cylinder injection type internal combustion engine 2 will be described.
  • the following factors can be considered as control factors for fuel adhesion in the in-cylinder injection type internal combustion engine 2.
  • the temperature and pressure of the air-fuel mixture in the cylinder 21a affect the penetration (injection distance) of the fuel as a factor of the state of the air-fuel mixture in the cylinder.
  • a fuel evaporation factor it is considered that the wall surface temperature and the vaporization temperature affect the evaporation of the attached fuel.
  • Spray tip distance S is, the pressure difference [Delta] P L of the fuel pressure and ambient gas, based on the elapsed time t after the ejection ambient gas density [rho A, the fuel is calculated by the following equation 21. [Equation 21]
  • Equation 21 the spray tip distance S is, the pressure difference [Delta] P L of the fuel pressure and ambient gas, to be dependent on the ambient gas density [rho A seen. Further, the relationship shown in the following equation 22 can be obtained from the gas state equation. In the formula 22, T is the temperature of the cylinder 21a, P is the pressure of the cylinder 21a, and R is the gas constant. [Equation 22]
  • the injection tip distance S has a negative correlation with the pressure P of the ambient gas and has a sex correlation with the temperature T.
  • VVT Variable valve timing mechanism
  • one of the causes of the change in the pressure P in the cylinder 21a is, for example, the change in the intake pressure due to the adjustment of the opening degree of the throttle valve 41 performed for controlling the intake air amount.
  • the opening degree of the throttle valve 41 becomes small, the intake pressure decreases, and the pressure P in the cylinder 21a decreases.
  • the injection tip distance S becomes longer.
  • FIG. 13 is a diagram showing the position of the piston 22 and the state of fuel adhesion.
  • the relative positional relationship between the tip position of the injected fuel at the end time of fuel injection and the piston 22 is important. As shown in FIG. 13, when the fuel N1 is injected at a position where the distance between the piston 22 and the injector 27 is close, the injected fuel N1 reaches the crown surface 22a of the piston 22. Therefore, the fuel N3 adhering to the crown surface 22a of the piston 22 increases.
  • the injection tip distance S is proportional to the fuel pressure Pf and the elapsed time t from the injection. Further, the elapsed time t from the injection can be calculated from the fuel injection pulse ti, which is the injection period. Therefore, the injection tip distance S can be calculated from the fuel injection pulse ti. Further, the position of the piston 22 is uniquely determined by the crank angle detected by the crank angle sensor 29.
  • FIG. 14 is a flowchart showing a temperature / pressure history calculation operation in the temperature / pressure state calculation processing unit 203.
  • the temperature / pressure state calculation processing unit 203 acquires the operating conditions of the internal combustion engine 2 (step S31).
  • the dispersion degree calculation processing unit 201 acquires output information of various sensors, an operation amount of each actuator, and the like as operating conditions of the internal combustion engine 2. Examples of the output information and the amount of operation of the sensor include the intake pressure Pi, the intake temperature Ti, and the in-cylinder volume V.
  • the intake air temperature Ti is the temperature of the air taken into the cylinder 21, and is acquired based on the measurement information measured by the intake air temperature sensor 44.
  • the intake pressure Pi is the pressure at which the intake pressure Pi is taken into the cylinder 21, and is acquired based on the measurement information measured by the intake pressure sensor 43.
  • the in-cylinder volume V is acquired based on the detection information of the crank angle sensor 29.
  • the temperature / pressure state calculation processing unit 203 calculates the in-cylinder pressure (hereinafter referred to as the ignition timing in-cylinder pressure) PADV at the ignition timing (step S32).
  • the temperature / pressure state calculation processing unit 203 includes the intake pressure Pi, the in-cylinder volume V, the ignition timing in-cylinder volume V ( ⁇ ADV ), and the in-cylinder volume at the time when the intake valve 24 is closed (hereinafter, intake air).
  • the ignition timing in-cylinder pressure PADV is calculated by the following equation 23 based on V ( ⁇ IVC ) (called the valve closing timing in-cylinder volume). [Equation 23]
  • the ignition timing in-cylinder volume V ( ⁇ ADV ) and the intake valve closing timing in-cylinder volume V ( ⁇ IVC ) may be preset constants. Further, the ignition timing cylinder internal volume V ( ⁇ ADV ) and the intake valve closing timing tubular internal volume V ( ⁇ IVC ) may be calculated for each cycle based on the detection information of the crank angle sensor 29. In this case, the accuracy of calculating the ignition timing in-cylinder pressure PADV can be improved.
  • the temperature / pressure state calculation processing unit 203 calculates the in-cylinder pressure history Papp (step S33).
  • the temperature / pressure state calculation processing unit 203 sets the following equation 24 and based on the ignition timing in-cylinder pressure P ADV , the in-cylinder volume V, the ignition timing in-cylinder volume V ( ⁇ ADV ), and the specific heat ratio ⁇ .
  • the in-cylinder pressure history Papp is calculated by the equation 25.
  • Equation 24 [Equation 25]
  • a and m are constants
  • Q f is the total calorific value
  • ⁇ burn is the combustion period. From equations 24 and 25, the pressure inside the cylinder 21a can be calculated including during the combustion period.
  • the specific heat ratio ⁇ may be a preset constant, or may be obtained by another method.
  • the temperature / pressure state calculation processing unit 203 calculates the ignition timing temperature TADV (step S34).
  • the temperature / pressure state calculation processing unit 203 ignites based on the intake air temperature Ti, the ignition timing cylinder internal volume V ( ⁇ ADV ), the intake valve closing timing tubular internal volume V ( ⁇ IVC ), and the specific heat ratio. Calculate the timing temperature T ADV . [Equation 26]
  • the temperature / pressure state calculation processing unit 203 calculates the product MR of the in-cylinder air mass and the gas constant based on the ignition timing in-cylinder pressure P ADV , the ignition timing in-cylinder volume V ( ⁇ ADV ), and the ignition timing temperature T ADV . Then, the calculation is performed by the following equation 27 (step S35). [Equation 27]
  • the temperature / pressure state calculation processing unit 203 calculates the in-cylinder gas temperature history Tave ( ⁇ ), which is the temperature history of the air-fuel mixture in the in-cylinder 21a (step S36).
  • the temperature / pressure state calculation processing unit 203 uses the following equation 28 to formulate the in-cylinder gas temperature based on the in-cylinder pressure history Papp , the in-cylinder volume V, and the product MR of the in-cylinder air mass and the gas constant.
  • the history Tave ( ⁇ ) is calculated. [Equation 28]
  • the temperature / pressure history calculation operation in the temperature / pressure state calculation processing unit 203 is completed.
  • the pressure in the cylinder 21a and the gas temperature in the cylinder of the air-fuel mixture which change variously depending on the operating conditions, can be calculated, so that the PM calculation accuracy described later can be improved.
  • FIG. 15 is a graph showing the relationship between the air-fuel mixture ratio and the fuel concentration.
  • the production of PM largely depends on the proportion of the air-fuel mixture.
  • the ratio of the air-fuel mixture largely depends on the generation of PM is mixture mixture due to the distribution resulting from the probability density function P 1 and (Z), the fuel deposition due probability density function due to fuel adhesion It increases at P 2 (Z).
  • the average reaction rate W ( ⁇ ) [g / m 3 ⁇ s] of PM is determined by the following equation 20 according to the air-fuel mixture-induced probability density function P 1 (Z) and the fuel adhesion-induced probability density function P 2 (Z). Can be calculated.
  • Equation 29 w 1 is the reaction rate due to the air-fuel mixture [g / m 3 ⁇ s]
  • w 2 is the reaction rate due to fuel adhesion [g / m 3 ⁇ s]
  • Z is the mixing fraction
  • T is the temperature [K].
  • p is the pressure [pa].
  • the air-fuel mixture-induced probability density function P 1 (Z) is calculated by the above equation 1. Further, the fuel adhesion-induced probability density function P 2 (Z) is a fixed value set in advance as a probability density function having a certain size.
  • the air-fuel mixture-induced probability density function P 1 (Z) and the fuel adhesion-induced probability density function P 2 (Z) are weighted by the fuel adhesion ratio ⁇ calculated by the above-mentioned equation 20. It is summed up. As a result, the ratio of the air-fuel mixture from the cold state to the warm state in the internal combustion engine 2 can be accurately detected.
  • Figure 16 shows the air-fuel mixture caused the reaction rate w 1 map is a characteristic diagram showing an air-fuel mixture caused the reaction rate w 1 on the map represented in that the gas mixture the reaction gas temperature distribution constant a.
  • the reaction rate w1 caused by the air-fuel mixture is mapped with the reaction gas temperature as the horizontal axis and the distribution constant a as the vertical axis.
  • FIG. 17 shows a fuel adhesion due kinetics w 2 map is a characteristic diagram showing the relationship of the reaction gas temperature and fuel adhesion due kinetics w 2 is the air-fuel mixture.
  • the characteristic diagrams shown in FIGS. 16 and 17 are created in advance and stored in a storage unit such as a ROM 103. Thus, it is possible to shorten the calculation time of the mixture resulting from the reaction rate w 1 and the fuel deposition due kinetics w 2.
  • FIG. 18 is a flowchart showing a PM emission amount calculation operation in the PM emission amount calculation processing unit 204.
  • the PM emission amount calculation processing unit 204 calculates the distribution constant a (step S41).
  • the PM emission amount calculation processing unit 204 uses the distribution constant a from the above equation 3 based on the in-cylinder average value Zave of the mixed fraction and the variance ⁇ calculated by the dispersion degree calculation processing unit 201. Is calculated.
  • the PM emission amount calculation processing unit 204 calculates the air-fuel mixture-induced reaction rate w 1 and the fuel adhesion-induced reaction rate w 2 (step S42).
  • the PM emission calculation processing unit 204 uses the maps shown in FIGS. 16 and 17 based on the distribution constant a calculated in the process of step S41 and the reaction gas temperature Tb, and causes the air-fuel mixture.
  • the reaction rate w 1 and the reaction rate w 2 due to fuel adhesion are calculated.
  • the reaction gas temperature Tb is obtained from the in-cylinder gas temperature history Tave ( ⁇ ) calculated by the temperature / pressure state calculation processing unit 203.
  • step S43 the PM emission amount calculation processing unit 204 calculates the PM emission amount (step S43).
  • step S43 PM emission amount calculation processing section 204 first calculates the average reaction rate W of the PM from the equation 29 described above ( ⁇ ) [g / m 3 ⁇ s].
  • step S43 the PM emission amount calculation processing unit 204 integrates the average reaction rate W ( ⁇ ) of PM with the crank angle ⁇ from the ignition timing ⁇ ADV to the exhaust valve opening timing ⁇ EVO , as shown in the following equation 30. [Equation 30]
  • the PM emission amount calculation processing unit 204 can calculate the PM emission amount PMcycle [g] per cycle.
  • the PM emission amount calculation processing unit 204 calculates the PM concentration PMout [g / m 3 ] in the standard state (25 ° C., 100 kPa) by the following formula 31. Further, as shown in Equation 31, the calculation of PM concentration PMout [g / m 3], the in-cylinder pressure history P app of temperature and pressure state calculation processing unit 203 is calculated is used. [Equation 31]
  • the PM emission amount calculation operation in the PM emission amount calculation processing unit 204 is completed.
  • the reaction rate and PM emission of PM from the cold state to the warm state in the internal combustion engine 2 can be accurately estimated. ..
  • the reaction rate of PM and the amount of PM emission may be calculated using only the fuel adhesion ratio ⁇ and the fuel adhesion cause probability density function P 2 (Z), or the internal combustion engine 2 may calculate.
  • FIG. 19 is a schematic view showing the internal state of the GPF 35 and the PM flowing into the GPF 35.
  • PM deposition amount PM collection amount-PM combustion amount
  • FIG. 20 is a flowchart showing a PM accumulation amount calculation operation in the PM accumulation amount calculation processing unit 205.
  • FIG. 21 is a characteristic diagram showing the relationship between the upstream temperature of GPF35 and the PM combustion rate
  • FIG. 22 is a characteristic diagram showing the relationship between the excess air ratio and the PM combustion rate correction coefficient A.
  • the PM accumulation amount calculation processing unit 205 calculates the amount of PM flowing into the GPF 35 (step S51).
  • PM accumulation amount calculation processing section 205 calculates [g / m 3], based on the exhaust gas flow Q EXH [m 3 / s] ,
  • the PM inflow amount PM usGPF [g / s] is calculated by the following formula 32. [Equation 32]
  • the exhaust flow rate Q EXH [m 3 / s] is obtained from the intake air amount Q in [m 3 / s] measured by the air flow sensor 42 attached to the intake pipe 31.
  • the PM deposition amount calculation processing unit 205 calculates the amount of PM collected in the GPF 35, that is, the PM collection amount (step S52).
  • PM accumulation amount calculation processing section 205 based on the PM inflow PM usGPF [g / s] and PM trapping efficiency eta adp, PM collecting quantity PMadp [g / s] of the following formula 33 Calculated by [Equation 33]
  • the PM collection efficiency ⁇ app is preset and stored in the ROM 103.
  • the PM accumulation amount calculation processing unit 205 acquires the PM combustion rate Vburn [g / s] based on the PM combustion rate map preset and stored in the ROM 103 and the upstream temperature of the GPF 35 (step S53). ..
  • the upstream temperature [K] of the GPF 35 is a temperature detected by the GPF upstream temperature sensor 47 provided on the upstream side of the GPF 35.
  • the PM combustion speed map is shown in FIG. In FIG. 21, the horizontal axis shows the upstream temperature of GPF35, and the vertical axis shows the PM combustion rate. As shown in FIG. 21, the PM combustion rate increases as the upstream temperature of the GPF 35 rises.
  • the PM deposition amount calculation processing unit 205 acquires the correction coefficient A (step S54).
  • the PM accumulation amount calculation processing unit 205 has the PM combustion rate correction coefficient map preset and stored in the ROM 103, and the air excess rate ⁇ detected by the air-fuel ratio sensor 46 provided in the exhaust pipe 32. Based on, the PM combustion rate correction coefficient A is acquired.
  • the PM combustion speed correction coefficient map is shown in FIG. In FIG. 22, the horizontal axis shows the excess air ratio ⁇ , and the vertical axis shows the PM combustion rate correction coefficient A. Considering that the PM combustion rate increases due to the increase in the oxygen concentration in the exhaust gas, as shown in FIG. 22, in the PM combustion rate correction coefficient map, the PM combustion rate correction coefficient increases as the excess air ratio ⁇ increases. A is increasing.
  • the PM accumulation amount calculation processing unit 205 calculates the PM combustion amount (step S55).
  • the PM accumulation amount calculation processing unit 205 uses the PM combustion rate Vburn [g / s] per second and the PM combustion rate correction coefficient A to determine the PM combustion amount PMburn [g / s]. It is calculated by the following formula 34. [Equation 34]
  • the PM deposit amount calculation processing unit 205 calculates the PM deposit amount (step S55).
  • the PM accumulation amount calculation processing unit 205 sets the PM accumulation amount PMload (n) in the nth cycle (current cycle) to the PM accumulation amount PMload (n-1) in the n-1 cycle (pre-cycle). ), PM collection amount PMadp, PM combustion amount PMburn, and unit time ⁇ t, calculated from the following equation 35. [Equation 35]
  • the PM emission amount calculation processing unit 204 described above can calculate an accurate PM emission amount, and further, by calculating the PM collection amount collected by the GPF35 and the PM combustion amount burned inside the GPF35, the GPF35 can be obtained. The amount of PM deposited can be calculated accurately.
  • FIG. 23 is a flowchart showing a determination operation of the reproduction control command in the reproduction control processing unit 206.
  • the reproduction control processing unit 206 determines whether or not to perform reproduction control (step S61). In the process of step S61, when the reproduction control processing unit 206 determines that the reproduction control is not performed (NO determination in step S61). Then, the reproduction control processing unit 206 ends the determination operation.
  • step S61 when it is determined that the reproduction control is performed (YES determination in step S61), the reproduction control processing unit 206 outputs a reproduction control command (step S62). As a result, the determination operation of the reproduction control command in the reproduction control processing unit 206 is completed.
  • the regeneration control processing unit 206 determines whether or not the PM accumulation amount PM load calculated by the PM accumulation amount calculation processing unit 205 described above exceeds the PM accumulation allowance stored in the ROM 103 or the like. to decide. Further, in the determination process of step S61, the reproduction control processing unit 206 determines whether or not the temperature measured by the GPF upstream temperature sensor 47 exceeds the GPF allowable temperature in which the ROM 103 or the like is stored.
  • the regeneration control processing unit 206 issues a lean burn control command and a fuel cut prohibition command.
  • the lean burn control command is a command that controls the throttle valve 41 and the injector 27 so that the combustion exceeds the ideal air-fuel ratio.
  • the fuel cut prohibition command is a command for controlling the injector 27 and prohibiting the stop of the fuel supply to the cylinder 21a of the cylinder 21.
  • the amount of PM flowing into the GPF 35 is accurately calculated in consideration of the degree of dispersion ⁇ of the air-fuel mixture distribution, the fuel adhesion ratio ⁇ , and the reaction gas temperature Tb. can do.
  • the regeneration control of the GPF 35 can be performed at an appropriate timing, and it is possible to prevent the GPF 35 from being damaged due to excessive accumulation of PM.
  • GPF upstream temperature sensor 48 ... Differential pressure sensor, 101 ... CPU ( Control unit), 102 ... RAM, 103 ... ROM (storage unit), 104 ... input / output port, 105 ... input circuit (reception unit), 110 ... GPF control unit (control unit), 201 ... scatter degree calculation processing unit, 202 ... Fuel adhesion ratio calculation processing unit, 203 ... Temperature and pressure state calculation processing unit, 204 ... PM emission amount calculation processing unit, 205 ... PM accumulation amount calculation processing unit, 206 ... Regeneration control processing unit

Abstract

Provided is an internal combustion engine control device with which the state of an air-fuel mixture in a cylinder can be estimated accurately. This internal combustion engine control device 10 is provided with control units 101 and 110 for acquiring an ignition timing at which a spark plug ignites an air-fuel mixture inside a cylinder and a fuel injection start timing at which an injector begins injecting fuel into the cylinder. The control units 101 and 110 calculate a degree of variation in the distribution of the air-fuel mixture in the cylinder on the basis of the ignition timing and the fuel injection start timing.

Description

内燃機関制御装置Internal combustion engine controller
 本発明は、内燃機関制御装置に関するものである。 The present invention relates to an internal combustion engine control device.
 内燃機関では、燃料と空気が混合された混合気が燃焼する際に、粒子状物資(PM:Particulate Matter)が生成される。特に、シリンダの燃料室内に直接燃料を噴射するエンジン、いわゆる直噴エンジンでは、局所的に燃料の割合が濃くなる混合気(以下、リッチ混合気と称す)が存在する。そのため、直噴エンジンの燃料室内は、混合気における空気の燃料の割合が不均一な状態になりやすく、PM排出量が増加する。 In an internal combustion engine, particulate matter (PM: Particulate Matter) is generated when the air-fuel mixture, which is a mixture of fuel and air, burns. In particular, in an engine that injects fuel directly into the fuel chamber of a cylinder, a so-called direct injection engine, there is an air-fuel mixture (hereinafter, referred to as a rich air-fuel mixture) in which the proportion of fuel is locally concentrated. Therefore, in the fuel chamber of the direct injection engine, the ratio of fuel in the air to the air-fuel mixture tends to be uneven, and the PM emission amount increases.
 そのため、内燃機関の排気に含まれるPMを低減させるために、PM捕集フィルタが設けられている。PM捕集フィルタは、目詰まりを防ぐために、捕集したPMを燃焼させて除去する必要がある。この際、PMがPM捕集フィルタに過大に堆積していると、PMの燃焼によりPM捕集フィルタの温度が過度に上昇し、フィルタが破損する恐れがある。そのため、PM捕集フィルタに堆積しているPMの量を正確に把握する必要があり、PM捕集フィルタに流入するPMの量を推定することが重要となる。 Therefore, a PM collection filter is provided in order to reduce PM contained in the exhaust gas of the internal combustion engine. The PM collection filter needs to burn and remove the collected PM in order to prevent clogging. At this time, if PM is excessively deposited on the PM collection filter, the temperature of the PM collection filter may rise excessively due to the combustion of PM, and the filter may be damaged. Therefore, it is necessary to accurately grasp the amount of PM accumulated in the PM collection filter, and it is important to estimate the amount of PM flowing into the PM collection filter.
 また、PMは、特定の温度域において、リッチ混合気と燃料が付着した箇所で生成量が増加する。そのため、PMの量を推定するためには、筒内内での混合気の状態や、筒内の壁面に付着した燃料の割合を推定することが重要となる。混合気の状態を推定する技術としては、例えば、特許文献1に記載されているようなものがある。 In addition, the amount of PM produced increases at the location where the rich mixture and fuel adhere in a specific temperature range. Therefore, in order to estimate the amount of PM, it is important to estimate the state of the air-fuel mixture in the cylinder and the ratio of the fuel adhering to the wall surface in the cylinder. As a technique for estimating the state of the air-fuel mixture, for example, there is a technique described in Patent Document 1.
 特許文献1には、噴射燃料区分手段と、混合気状態推定手段と、を備えた技術が記載されている。噴射燃料区分手段は、内燃機関の筒内内にて所定の噴射開始時点から所定の噴射期間だけ連続して噴射される燃料を複数の部分に区分する。そして、混合気状態推定手段は、区分された噴射燃料の各部分が所定の噴射開始時点からの時間経過に従って独立して順次噴射されていくとの仮定のもと、噴射燃料の各部分が筒内内に吸入されている筒内ガスと混ざり合って形成されていくそれぞれの混合気の状態を個別に推定する。 Patent Document 1 describes a technique including an injection fuel classification means and an air-fuel mixture state estimation means. The injection fuel classification means classifies the fuel that is continuously injected in the cylinder of the internal combustion engine for a predetermined injection period from the start of the predetermined injection into a plurality of parts. Then, the air-fuel mixture state estimation means assumes that each part of the classified injection fuel is independently and sequentially injected according to the lapse of time from a predetermined injection start time, and each part of the injection fuel is a cylinder. The state of each air-fuel mixture formed by mixing with the in-cylinder gas sucked into the inside is individually estimated.
 特許文献1に記載された技術は、内燃機関としてディーゼルエンジンにおける混合気の状態を推定する技術である。ディーゼルエンジンは、燃料噴射装置から噴射された燃料が蒸発し、空気を取り込みながら燃焼が進行する拡散燃焼である。そして、拡散燃焼は、燃料噴霧の移動と燃焼反応が同時に進行するため、燃料噴霧が燃焼を支配している。 The technique described in Patent Document 1 is a technique for estimating the state of an air-fuel mixture in a diesel engine as an internal combustion engine. The diesel engine is diffusion combustion in which the fuel injected from the fuel injection device evaporates and combustion proceeds while taking in air. In diffusion combustion, the movement of the fuel spray and the combustion reaction proceed at the same time, so that the fuel spray dominates the combustion.
特開2006-274991号公報Japanese Unexamined Patent Publication No. 2006-274991
 しかしながら、ガソリンエンジンは、燃料と空気からなる混合気が点火プラグで発生する点火エネルギーによって活性化され、燃焼を開始し、火炎伝播と呼ばれる燃焼形態で開演が筒内内を進行する予混合燃焼である。予混合燃焼は、混合気と点火時期が燃焼を支配しているため、ディーゼルエンジンの燃焼とは異なる。そして、ガソリンエンジンは、通常、吸気行程時に燃料を噴射している。 However, in a gasoline engine, a mixture of fuel and air is activated by the ignition energy generated by the spark plug, starts combustion, and the performance starts in a combustion form called flame propagation in the premixed combustion that progresses in the cylinder. is there. Premixed combustion differs from diesel engine combustion because the air-fuel mixture and ignition timing dominate the combustion. And the gasoline engine usually injects fuel during the intake stroke.
 そのため、特許文献1に記載された技術を適用した場合、1サイクルあたりの計算期間が長期化し、燃料を分割する領域が増加する。その結果、特許文献1に記載された技術では、計算負荷が増大し、筒内内における燃料と空気の混合状態、すなわち混合気の状態を正確に推定することが困難なものとなっていた。 Therefore, when the technique described in Patent Document 1 is applied, the calculation period per cycle becomes longer, and the area for dividing the fuel increases. As a result, in the technique described in Patent Document 1, the calculation load increases, and it is difficult to accurately estimate the mixed state of fuel and air in the cylinder, that is, the state of the air-fuel mixture.
 本目的は、上記の問題点を考慮し、気筒の筒内における混合気の状態を正確に推定することができる内燃機関制御装置を提供することにある。 The purpose of this object is to provide an internal combustion engine control device capable of accurately estimating the state of the air-fuel mixture in the cylinder of the cylinder in consideration of the above problems.
 上記課題を解決し、目的を達成するため、内燃機関制御装置は、内燃機関を制御する内燃機関制御装置である。内燃機関は、気筒と、気筒の筒内を摺動するピストンと、ピストンに接続されたクランクシャフトと、気筒の筒内に燃料を噴射するインジェクターと、筒内において空気と燃料が混合した混合気を点火させる点火プラグと、を有している。
 内燃機関制御装置は、点火プラグが筒内の混合気を点火する点火時期、インジェクターが筒内に燃料の噴射が開始される燃料噴射開始時期を取得する制御部を備えている。制御部は、点火時期及び燃料噴射開始時期に基づいて、筒内における混合気の分布の散らばり度合いを算出する。
In order to solve the above problems and achieve the object, the internal combustion engine control device is an internal combustion engine control device that controls an internal combustion engine. The internal combustion engine consists of a cylinder, a piston that slides inside the cylinder, a crankshaft that is connected to the piston, an injector that injects fuel into the cylinder, and a mixture of air and fuel inside the cylinder. It has a spark plug that ignites the engine.
The internal combustion engine control device includes a control unit that acquires the ignition timing at which the spark plug ignites the air-fuel mixture in the cylinder and the fuel injection start timing at which the injector starts the injection of fuel into the cylinder. The control unit calculates the degree of dispersion of the air-fuel mixture distribution in the cylinder based on the ignition timing and the fuel injection start timing.
 また、上記課題を解決し、目的を達成するため、内燃機関制御装置は、内燃機関を制御する内燃機関制御装置である。内燃機関は、気筒と、気筒の筒内を摺動するピストンと、ピストンに接続されたクランクシャフトと、気筒の筒内に燃料を噴射するインジェクターと、筒内において空気と燃料が混合した混合気を点火させる点火プラグと、を有している。
 内燃機関制御装置は、気筒の排気ポートの開閉可能に配置された排気バルブの開閉タイミング、気筒に吸気される空気の圧力である吸気圧を取得する制御部を備えている。制御部は、排気バルブの開閉タイミング及び吸気圧に基づいて、筒内の壁面及びピストンの冠面に付着した燃料の量の割合である燃料付着割合を算出する。
Further, in order to solve the above problems and achieve the object, the internal combustion engine control device is an internal combustion engine control device that controls an internal combustion engine. The internal combustion engine consists of a cylinder, a piston that slides inside the cylinder, a crankshaft that is connected to the piston, an injector that injects fuel into the cylinder, and a mixture of air and fuel inside the cylinder. It has a spark plug that ignites the engine.
The internal combustion engine control device includes a control unit that acquires the opening / closing timing of an exhaust valve arranged so as to open / close the exhaust port of the cylinder, and the intake pressure which is the pressure of the air taken into the cylinder. The control unit calculates the fuel adhesion ratio, which is the ratio of the amount of fuel adhering to the wall surface of the cylinder and the crown surface of the piston, based on the opening / closing timing of the exhaust valve and the intake pressure.
 上記構成の内燃機関制御装置によれば、気筒の筒内における混合気の状態を正確に推定することができる。 According to the internal combustion engine control device having the above configuration, the state of the air-fuel mixture in the cylinder of the cylinder can be accurately estimated.
実施の形態例にかかる内燃機関制御装置が搭載された内燃機関のシステム構成を示す概略構成図である。It is a schematic block diagram which shows the system structure of the internal combustion engine equipped with the internal combustion engine control device which concerns on embodiment. 実施の形態例にかかる内燃機関制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the internal combustion engine control device which concerns on Example of Embodiment. 実施の形態例にかかる内燃機関制御装置におけるGPF制御部の構成を示すブロック図である。It is a block diagram which shows the structure of the GPF control part in the internal combustion engine control device which concerns on embodiment. PMの生成速度を示す特性図である。It is a characteristic figure which shows the generation rate of PM. 内燃機関の筒内における混合気割合を示すもので、混合気の割合と当量比の関係を示すグラフである。It shows the ratio of the air-fuel mixture in the cylinder of the internal combustion engine, and is a graph which shows the relationship between the ratio of the air-fuel mixture and the equivalent ratio. 確率密度関数であるベータ関数を示すグラフである。It is a graph which shows the beta function which is a probability density function. 実施の形態例にかかる内燃機関制御装置における混合気分布の散らばり度合いの算出動作を示すフローチャートである。It is a flowchart which shows the calculation operation of the degree of dispersion degree of the air-fuel mixture distribution in the internal combustion engine control device which concerns on embodiment. インジェクターから噴射された燃料噴霧の中心断面における噴霧の形状を示す説明図である。It is explanatory drawing which shows the shape of the spray in the central cross section of the fuel spray injected from an injector. 燃料噴射後の燃料の気化率を示す説明図である。It is explanatory drawing which shows the vaporization rate of fuel after fuel injection. 燃料噴射直後と点火時期における筒内の混合分率を示すグラフである。It is a graph which shows the mixing fraction in a cylinder immediately after a fuel injection and at an ignition timing. 筒内における燃料の付着状態を示す図である。It is a figure which shows the adhesion state of fuel in a cylinder. 実施の形態例にかかる内燃機関制御装置における燃料付着割合の算出動作を示すフローチャートであるIt is a flowchart which shows the calculation operation of the fuel adhesion ratio in the internal combustion engine control device which concerns on Example of Embodiment. ピストンの位置と燃料付着の状態を示す図である。It is a figure which shows the position of a piston and the state of fuel adhesion. 実施の形態例にかかる内燃機関制御装置における温度圧力履歴の算出動作を示すフローチャートである。It is a flowchart which shows the calculation operation of the temperature and pressure history in the internal combustion engine control device which concerns on Example of Embodiment. 混合気割合と燃料濃度との関係を示すグラフである。It is a graph which shows the relationship between a mixture ratio and a fuel concentration. 混合気起因反応速度マップを示すもので、混合気である反応ガス温度と分布定数で表されたマップ上の混合気起因反応速度を示す特性図である。It shows the reaction rate map caused by the air-fuel mixture, and is a characteristic diagram showing the reaction rate caused by the air-fuel mixture on the map represented by the reaction gas temperature of the air-fuel mixture and the distribution constant. 燃料付着起因反応速度マップを示すもので、混合気である反応ガス温度と燃料付着起因反応速度の関係を示す特性図である。It shows the reaction rate map due to fuel adhesion, and is a characteristic diagram showing the relationship between the reaction gas temperature of the air-fuel mixture and the reaction rate due to fuel adhesion. 実施の形態例にかかる内燃機関制御装置におけるPM排出量の算出動作を示すフローチャートである。It is a flowchart which shows the calculation operation of the PM emission amount in the internal combustion engine control device which concerns on Example of Embodiment. GPFの内部状態と、GPFに流入するPMを示す模式図である。It is a schematic diagram which shows the internal state of GPF and PM flowing into GPF. 実施の形態例にかかる内燃機関制御装置におけるPM堆積量の算出動作を示すフローチャートである。It is a flowchart which shows the calculation operation of the PM accumulation amount in the internal combustion engine control device which concerns on Example of Embodiment. PM燃焼速度マップを示すもので、GPFの上流温度とPM燃焼速度との関係を示す特性図である。It shows a PM combustion rate map, and is a characteristic figure which shows the relationship between the upstream temperature of GPF and PM combustion rate. PM燃焼速度補正係数マップを示すもので、空気過剰率とPM燃焼速度補正係数の関係を示す特性図である。It shows the PM combustion rate correction coefficient map, and is the characteristic figure which shows the relationship between the air excess rate and PM combustion rate correction coefficient. 実施の形態例にかかる内燃機関制御装置における再生制御指令の判定動作を示すフローチャートである。It is a flowchart which shows the determination operation of the regeneration control command in the internal combustion engine control device which concerns on Example of Embodiment.
1.実施の形態例
 以下、実施の形態例(以下、「本例」という)にかかる内燃機関制御装置について、図1~図23を参照して説明する。なお、各図において共通の部材には、同一の符号を付している。
1. 1. Example of Embodiment Hereinafter, the internal combustion engine control device according to the embodiment (hereinafter, referred to as “this example”) will be described with reference to FIGS. 1 to 23. The common members in the drawings are designated by the same reference numerals.
1-1.内燃機関の構成例
 まず、内燃機関の構成例について説明する。
 図1は、本例の内燃機関のシステム構成を示す概略構成図である。
1-1. Configuration example of an internal combustion engine First, a configuration example of an internal combustion engine will be described.
FIG. 1 is a schematic configuration diagram showing a system configuration of the internal combustion engine of this example.
 図1に示す内燃機関2は、ガソリンからなる燃料を筒内に直接噴射する筒内噴射型の内燃機関(直噴エンジン)である。内燃機関2は、吸入行程、圧縮行程、燃焼(膨張)行程、排気行程の4行程を繰り返す4サイクルエンジンである。さらに、内燃機関2は、例えば、4つの気筒(シリンダ)を備えた多気筒エンジンである。なお、内燃機関2が有する気筒の数は、4つに限定されるものではなく、6つ又は8つ以上の気筒を有していてもよい。また、内燃機関2のサイクル数は、4サイクルに限定されるものではない、 The internal combustion engine 2 shown in FIG. 1 is an in-cylinder injection type internal combustion engine (direct injection engine) that directly injects fuel made of gasoline into the cylinder. The internal combustion engine 2 is a four-cycle engine that repeats four strokes of an intake stroke, a compression stroke, a combustion (expansion) stroke, and an exhaust stroke. Further, the internal combustion engine 2 is, for example, a multi-cylinder engine including four cylinders (cylinders). The number of cylinders of the internal combustion engine 2 is not limited to four, and may have six or eight or more cylinders. Further, the number of cycles of the internal combustion engine 2 is not limited to 4 cycles.
 図1に示すように、内燃機関2は、気筒21と、ピストン22と、クランクシャフト23と、吸気バルブ24と、排気バルブ25と、点火プラグ26と、燃料噴射装置であるインジェクター27とを有している。この内燃機関2は、内燃機関制御装置10により制御される。 As shown in FIG. 1, the internal combustion engine 2 includes a cylinder 21, a piston 22, a crankshaft 23, an intake valve 24, an exhaust valve 25, a spark plug 26, and an injector 27 which is a fuel injection device. are doing. The internal combustion engine 2 is controlled by the internal combustion engine control device 10.
 ピストン22は、気筒21の筒内21aに摺動可能に配置されている。ピストン22は、気筒21の筒内21aに流入した燃料とガスの混合気を圧縮する。そして、ピストン22は、筒内21aに生じた燃焼圧力により気筒21の筒内21aを往復運動する。 The piston 22 is slidably arranged in the cylinder 21a of the cylinder 21. The piston 22 compresses the fuel-gas mixture that has flowed into the cylinder 21a of the cylinder 21. Then, the piston 22 reciprocates in the cylinder 21a due to the combustion pressure generated in the cylinder 21a.
 ピストン22には、クランクシャフト23がコンロッドを介して接続されている。そして、ピストン22の往復運動がクランクシャフト23により回転運動に変換される。また、クランクシャフト23には、クランクシャフト23のクランク角度を検出するクランク角度センサ29が設けられている。クランク角度センサ29は、クランクシャフト23に設けた回転円盤からクランクシャフト23のクランク角度を検出する。クランク角度センサ29は、後述する内燃機関制御装置10に接続されている。そして、クランク角度センサ29は、検出したクランク角度に関する角度情報を内燃機関制御装置10に出力する。 A crankshaft 23 is connected to the piston 22 via a connecting rod. Then, the reciprocating motion of the piston 22 is converted into a rotary motion by the crankshaft 23. Further, the crankshaft 23 is provided with a crank angle sensor 29 that detects the crank angle of the crankshaft 23. The crank angle sensor 29 detects the crank angle of the crankshaft 23 from the rotating disk provided on the crankshaft 23. The crank angle sensor 29 is connected to an internal combustion engine control device 10 described later. Then, the crank angle sensor 29 outputs the detected angle information regarding the crank angle to the internal combustion engine control device 10.
 吸気バルブ24は、気筒21における吸気ポートに開閉可能に配置されており、排気バルブ25は、気筒21における排気ポートに開閉可能に配置されている。吸気バルブ24は、不図示の吸気側カムシャフトに当接し、排気バルブ25は、不図示の排気側カムシャフトに当接している。そして、吸気側カムシャフト及び排気側カムシャフトが回転することで、吸気バルブ24及び排気バルブ25が駆動する。吸気バルブ24が駆動することで、吸気ポートから気筒21の筒内21aにガス(空気)が流入する。また、排気バルブ25が駆動することで、燃焼後の排気ガスが気筒21の排気ポートから排出される。 The intake valve 24 is arranged to be openable and closable at the intake port of the cylinder 21, and the exhaust valve 25 is arranged to be openable and closable at the exhaust port of the cylinder 21. The intake valve 24 is in contact with an intake side camshaft (not shown), and the exhaust valve 25 is in contact with an exhaust side camshaft (not shown). Then, the intake valve 24 and the exhaust valve 25 are driven by the rotation of the intake side camshaft and the exhaust side camshaft. When the intake valve 24 is driven, gas (air) flows into the cylinder 21a of the cylinder 21 from the intake port. Further, by driving the exhaust valve 25, the exhaust gas after combustion is discharged from the exhaust port of the cylinder 21.
 インジェクター27は、気筒21の筒内21aに燃料を噴射する。インジェクター27は、内燃機関制御装置10に接続されている。内燃機関制御装置10は、後述するエアフローセンサ42から出力された吸気量を、回転数、吸気圧力等で決まる目標空燃比で割ることで、目標燃料噴射量を算出する。そして、内燃機関制御装置10は、算出した目標燃料噴射量にしたがってインジェクター27から燃料を噴射させる。これにより、筒内21aでは、空気と燃料が混合された混合気が生成される。 The injector 27 injects fuel into the cylinder 21a of the cylinder 21. The injector 27 is connected to the internal combustion engine control device 10. The internal combustion engine control device 10 calculates the target fuel injection amount by dividing the intake amount output from the airflow sensor 42, which will be described later, by the target air-fuel ratio determined by the rotation speed, the intake pressure, and the like. Then, the internal combustion engine control device 10 injects fuel from the injector 27 according to the calculated target fuel injection amount. As a result, in the cylinder 21a, an air-fuel mixture in which air and fuel are mixed is generated.
 気筒21には、点火プラグ26と、インジェクター27が取り付けられている。点火プラグ26には、不図示の点火コイルが接続されている。点火コイルは、内燃機関制御装置10の制御の下、高電圧を生成し、点火プラグ26に印加する。これにより、点火プラグ26に火花が発生する。そして、点火プラグ26に発生した火花により、筒内21aの混合気が燃焼し、爆発する。爆発した混合気によりピストン22が押し下げられる。このピストン22の押し下げ運動がクランクシャフト23の回転運動に変換されて、車両等の駆動力となる。 A spark plug 26 and an injector 27 are attached to the cylinder 21. An ignition coil (not shown) is connected to the spark plug 26. The ignition coil generates a high voltage under the control of the internal combustion engine control device 10 and applies it to the spark plug 26. As a result, sparks are generated in the spark plug 26. Then, the spark generated in the spark plug 26 burns the air-fuel mixture in the cylinder 21a and explodes. The piston 22 is pushed down by the exploding air-fuel mixture. The pushing-down motion of the piston 22 is converted into a rotational motion of the crankshaft 23, which becomes a driving force for a vehicle or the like.
 また、気筒21には、気筒21を冷却する冷却水の温度を測定する冷却水センサ28が設けられている。冷却水センサ28は、内燃機関制御装置10に接続されており、測定した冷却水の温度を内燃機関制御装置10に出力する。 Further, the cylinder 21 is provided with a cooling water sensor 28 that measures the temperature of the cooling water that cools the cylinder 21. The cooling water sensor 28 is connected to the internal combustion engine control device 10, and outputs the measured temperature of the cooling water to the internal combustion engine control device 10.
 気筒21の吸気ポートには、空気からなるガスを取り込む吸気管31が接続され、気筒21の排気ポートには、排気ガスを排気する排気管32が接続されている。また、吸気管31と排気管32は、EGR管33により接続されている。 An intake pipe 31 for taking in gas composed of air is connected to the intake port of the cylinder 21, and an exhaust pipe 32 for exhausting the exhaust gas is connected to the exhaust port of the cylinder 21. Further, the intake pipe 31 and the exhaust pipe 32 are connected by an EGR pipe 33.
EGR管33は、排気管32を通過する排気ガスの一部を吸気管31に戻す。これにより、ポンピングロスが低減される。EGR管33には、EGR弁45が設けられている。EGR弁45は、EGR管33を通るガスの流量を調整する。 The EGR pipe 33 returns a part of the exhaust gas passing through the exhaust pipe 32 to the intake pipe 31. This reduces pumping loss. The EGR tube 33 is provided with an EGR valve 45. The EGR valve 45 regulates the flow rate of gas passing through the EGR pipe 33.
 吸気管31には、スロットル弁41と、エアフローセンサ42が設けられている。スロットル弁41は、吸気管31における吸気ポートやEGR管33との接続箇所よりも上流側に設けられている。スロットル弁41は、不図示の駆動モータにより開閉可能に駆動する。そして、運転者のアクセル操作に基づいて、スロットル弁41の開度が調整される。
これにより、吸気管31に取り込まれたガスの量(吸気量)が調整される。
The intake pipe 31 is provided with a throttle valve 41 and an air flow sensor 42. The throttle valve 41 is provided on the upstream side of the intake pipe 31 at the connection point with the intake port and the EGR pipe 33. The throttle valve 41 is driven so as to be openable and closable by a drive motor (not shown). Then, the opening degree of the throttle valve 41 is adjusted based on the accelerator operation of the driver.
As a result, the amount of gas taken into the intake pipe 31 (intake amount) is adjusted.
 エアフローセンサ42は、吸気管31に取り込まれた吸気量を測定する。エアフローセンサ42は、内燃機関制御装置10に接続されている。エアフローセンサ42は、測定した吸気量を内燃機関制御装置10に出力する。 The air flow sensor 42 measures the amount of intake air taken into the intake pipe 31. The air flow sensor 42 is connected to the internal combustion engine control device 10. The air flow sensor 42 outputs the measured intake air amount to the internal combustion engine control device 10.
 また、吸気管31には、吸気圧力センサ43及び吸気温度センサ44が設けられている。吸気圧力センサ43及び吸気温度センサ44は、内燃機関制御装置10に接続されている。吸気圧力センサ43は、吸気管31を通るガスの圧力(吸気圧力)を測定する。そして、吸気圧力センサ43は、測定した吸気圧力を内燃機関制御装置10に出力する。また、吸気温度センサ44は、吸気管31を通るガスの温度(吸気温度)を測定する。そして、吸気温度センサ44は、測定した吸気温度を内燃機関制御装置10に出力する。 Further, the intake pipe 31 is provided with an intake pressure sensor 43 and an intake temperature sensor 44. The intake pressure sensor 43 and the intake temperature sensor 44 are connected to the internal combustion engine control device 10. The intake pressure sensor 43 measures the pressure (intake pressure) of the gas passing through the intake pipe 31. Then, the intake pressure sensor 43 outputs the measured intake pressure to the internal combustion engine control device 10. Further, the intake air temperature sensor 44 measures the temperature of the gas passing through the intake pipe 31 (intake air temperature). Then, the intake air temperature sensor 44 outputs the measured intake air temperature to the internal combustion engine control device 10.
 排気管32には、空燃比センサ46、三元触媒34と、ガソリンパーティキュートフィルタ(Gasoline Particulate Filter:以下「GPF」という)35が設けられている。
空燃比センサ46は、排気管32を通る排気ガス中に含まれる酸素濃度を測定する。そして、そして、空燃比センサ46は、内燃機関制御装置10に接続されており、測定した酸素濃度を内燃機関制御装置10に出力する。
The exhaust pipe 32 is provided with an air-fuel ratio sensor 46, a three-way catalyst 34, and a gasoline particulate filter (hereinafter referred to as “GPF”) 35.
The air-fuel ratio sensor 46 measures the oxygen concentration contained in the exhaust gas passing through the exhaust pipe 32. Then, the air-fuel ratio sensor 46 is connected to the internal combustion engine control device 10, and outputs the measured oxygen concentration to the internal combustion engine control device 10.
 三元触媒34は、排気管32に中間部に設けられている。三元触媒34は、酸化・還元反応により排気ガスに含まれる有害物質を浄化する。 The three-way catalyst 34 is provided in the intermediate portion of the exhaust pipe 32. The three-way catalyst 34 purifies harmful substances contained in the exhaust gas by an oxidation / reduction reaction.
 排気管32における三元触媒34よりも下流側には、GPF35が設けられている。PM捕集フィルタであるGPF35は、排気ガス中に含まれる粒子状物質、いわゆるPMを捕集する。また、GPF35よりも上流側、すなわち三元触媒34とGPF35との間には、GPF上流温度センサ47が設けられている。GPF上流温度センサ47は、GPF35に流入する排気ガスの温度を測定する。そして、GPF上流温度センサ47は、内燃機関制御装置10に接続されており、測定した排気ガスの温度を内燃機関制御装置10に出力する。 A GPF 35 is provided on the downstream side of the three-way catalyst 34 in the exhaust pipe 32. The GPF35, which is a PM collection filter, collects particulate matter contained in the exhaust gas, so-called PM. Further, a GPF upstream temperature sensor 47 is provided on the upstream side of the GPF 35, that is, between the three-way catalyst 34 and the GPF 35. The GPF upstream temperature sensor 47 measures the temperature of the exhaust gas flowing into the GPF 35. Then, the GPF upstream temperature sensor 47 is connected to the internal combustion engine control device 10, and outputs the measured exhaust gas temperature to the internal combustion engine control device 10.
 また、GPF35には、差圧センサ48が設けられている。差圧センサ48は、GPF35の上流側と下流側の圧力の差(差圧)を測定する。そして、差圧センサ48は、内燃機関制御装置10に接続されており、測定した差圧を内燃機関制御装置10に出力する。 Further, the GPF 35 is provided with a differential pressure sensor 48. The differential pressure sensor 48 measures the pressure difference (differential pressure) between the upstream side and the downstream side of the GPF 35. Then, the differential pressure sensor 48 is connected to the internal combustion engine control device 10, and outputs the measured differential pressure to the internal combustion engine control device 10.
 なお、本例では、三元触媒34とGPF35を別部材として構成した例を説明したが、これに限定されるものではない。例えば、GPF35に三元触媒34の浄化機能を付与した四限触媒等のPM捕集フィルタであってもよい。 In this example, an example in which the three-way catalyst 34 and the GPF 35 are configured as separate members has been described, but the present invention is not limited to this. For example, it may be a PM collection filter such as a quaternary catalyst in which a GPF 35 is provided with a purification function of a three-way catalyst 34.
1-2.内燃機関制御装置10の構成例
 次に、図2を参照して内燃機関制御装置10の構成例について説明する。
 図2は、内燃機関制御装置10の構成を示すブロック図である。
1-2. Configuration Example of Internal Combustion Engine Control Device 10 Next, a configuration example of the internal combustion engine control device 10 will be described with reference to FIG.
FIG. 2 is a block diagram showing the configuration of the internal combustion engine control device 10.
 図2に示すように、ECU(Engine Control Unit)である内燃機関制御装置10は、制御部の一例を示すCPU(Central Processing Unit)101と、RAM(Random Access Memory)102と、ROM(Read Only Memory)103と、入出力ポート104と、入力回路105を有している。また、内燃機関制御装置10は、制御部の一例を示すGPF制御部110を有している。 As shown in FIG. 2, the internal combustion engine control device 10 which is an ECU (Engine Control Unit) includes a CPU (Central Processing Unit) 101 showing an example of a control unit, a RAM (Random Access Memory) 102, and a ROM (Read Only). It has a Memory) 103, an input / output port 104, and an input circuit 105. Further, the internal combustion engine control device 10 has a GPF control unit 110 showing an example of the control unit.
 受信部の一例を示す入力回路105には、エアフローセンサ42から吸気量、吸気圧力センサ43から吸気圧力、吸気温度センサ44から吸気温度やクランク角度センサ29から回転数等の各センサの出力が入力される。なお、入力回路105に入力される入力信号は、上述したものに限定されない。入力回路105は、入力された信号に対してノイズ除去等の信号処理を行って、入出力ポート104へ送る。入出力ポート104の入力ポートに入力された値はRAM102に格納される。 The input circuit 105, which shows an example of the receiving unit, inputs the output of each sensor such as the intake amount from the airflow sensor 42, the intake pressure from the intake pressure sensor 43, the intake temperature from the intake temperature sensor 44, and the rotation speed from the crank angle sensor 29. Will be done. The input signal input to the input circuit 105 is not limited to the above. The input circuit 105 performs signal processing such as noise removal on the input signal and sends it to the input / output port 104. The value input to the input port of the input / output port 104 is stored in the RAM 102.
 記憶部の一例を示すROM103には、CPU101により実行される各種演算処理の内容を記述した制御プログラムや、各処理に用いられるMAPやデータテーブル等が記憶されている。RAM102には、入出力ポート104の入力ポートに入力された値や、制御プログラムに従って演算された各アクチュエータの操作量を表す値を格納する格納領域が設けられている。また、RAM102に格納された各アクチュエータの操作量を表す値は、入出力ポート104の出力ポートに送られる。 The ROM 103, which shows an example of the storage unit, stores a control program that describes the contents of various arithmetic processes executed by the CPU 101, a MAP, a data table, and the like used for each process. The RAM 102 is provided with a storage area for storing the value input to the input port of the input / output port 104 and the value representing the operation amount of each actuator calculated according to the control program. Further, a value representing the operation amount of each actuator stored in the RAM 102 is sent to the output port of the input / output port 104.
 また、入出力ポート104には、インジェクター27、点火プラグ26や、スロットル弁41を駆動するためのそれぞれの駆動回路が接続されている。そして、入出力ポート104の出力ポートにセットされた駆動信号は、各駆動回路を経て、インジェクター27、点火プラグ26やスロットル弁41に送られる。 Further, each drive circuit for driving the injector 27, the spark plug 26, and the throttle valve 41 is connected to the input / output port 104. Then, the drive signal set in the output port of the input / output port 104 is sent to the injector 27, the spark plug 26, and the throttle valve 41 via each drive circuit.
 また、入出力ポート104には、GPF制御部110が接続されている。GPF制御部110は、各種センサから出力された情報に基づいて、GPF35の内部温度(以下、GPF温度)や、GPF35に堆積するPM堆積量を算出する。そして、算出したGPF温度やPM堆積量が設定した閾値を超えた場合、点火プラグ26やインジェクター27を制御し、空燃比や点火タイミングを調整することで、GPF35中のPMを燃焼除去する。
このGPF中のPMを燃焼除去する動作を本例では、GPF35の再生制御と称す。
Further, the GPF control unit 110 is connected to the input / output port 104. The GPF control unit 110 calculates the internal temperature of the GPF 35 (hereinafter referred to as the GPF temperature) and the amount of PM deposited on the GPF 35 based on the information output from various sensors. Then, when the calculated GPF temperature and PM accumulation amount exceed the set threshold values, the PM in the GPF 35 is burned and removed by controlling the spark plug 26 and the injector 27 and adjusting the air-fuel ratio and the ignition timing.
In this example, this operation of burning and removing PM in GPF is referred to as regeneration control of GPF35.
1-3.GPF制御部110の構成例
 次に、図3を参照してGPF制御部110の構成例について説明する。
 図3は、GPF制御部110の構成を示すブロック図である。
1-3. Configuration Example of GPF Control Unit 110 Next, a configuration example of the GPF control unit 110 will be described with reference to FIG.
FIG. 3 is a block diagram showing the configuration of the GPF control unit 110.
 図3に示すように、GPF制御部110は、散らばり度合い算出処理部201と、燃料付着割合算出処理部202と、温度圧力状態算出処理部203と、PM排出量算出処理部204と、PM堆積量算出処理部205と、再生制御処理部206とを有している。PM排出量算出処理部204には、散らばり度合い算出処理部201、燃料付着割合算出処理部202、及び温度圧力状態算出処理部203が接続されている。そして、PM堆積量算出処理部205には、PM排出量算出処理部204が接続され、再生制御処理部206には、PM堆積量算出処理部205が接続されている。 As shown in FIG. 3, the GPF control unit 110 includes a scattering degree calculation processing unit 201, a fuel adhesion ratio calculation processing unit 202, a temperature / pressure state calculation processing unit 203, a PM emission amount calculation processing unit 204, and PM deposition. It has an amount calculation processing unit 205 and a reproduction control processing unit 206. The PM emission amount calculation processing unit 204 is connected to the scattering degree calculation processing unit 201, the fuel adhesion ratio calculation processing unit 202, and the temperature / pressure state calculation processing unit 203. Then, the PM discharge amount calculation processing unit 204 is connected to the PM accumulation amount calculation processing unit 205, and the PM accumulation amount calculation processing unit 205 is connected to the regeneration control processing unit 206.
 散らばり度合い算出処理部201は、エンジン回転数、燃料噴射パルス、燃料噴射開始時期、及び点火時期等に基づいて、気筒21の筒内21aにおける混合気分布の散らばり度合い、すなわち筒内21aにおける混合気の状態を算出する。そして、散らばり度合い算出処理部201は、算出した混合気分布の散らばり度合いをPM排出量算出処理部204に出力する。なお、散らばり度合い算出処理部201における、混合気分布の散らばり度合いの算出方法については、後述する。 The dispersion degree calculation processing unit 201 is based on the engine speed, fuel injection pulse, fuel injection start timing, ignition timing, etc., and the degree of dispersion of the air-fuel mixture distribution in the cylinder 21a of the cylinder 21, that is, the air-fuel mixture in the cylinder 21a. Calculate the state of. Then, the dispersion degree calculation processing unit 201 outputs the calculated dispersion degree of the air-fuel mixture distribution to the PM emission amount calculation processing unit 204. The method of calculating the degree of dispersion of the air-fuel mixture distribution in the dispersion degree calculation processing unit 201 will be described later.
 燃料付着割合算出処理部202は、エンジン回転数、燃料噴射パルス、燃料噴射開始時期、点火時期、冷却水温度、吸気圧力、燃圧、排気バルブの開閉タイミング、吸気圧力等に基づいて、筒内21aに噴射された燃料の噴射量を算出する。また、燃料付着割合算出処理部202は、上述した情報に基づいて、筒内21aの壁面に付着した燃料N2やピストン22の冠面22aに付着した燃料N3(図11参照)の割合(燃料付着割合)を算出する。そして、燃料付着割合算出処理部202は、算出した燃料付着割合をPM排出量算出処理部204に出力する。なお、燃料付着割合算出処理部202における、燃料付着割合の算出方法については、後述する。 The fuel adhesion ratio calculation processing unit 202 is based on the engine speed, fuel injection pulse, fuel injection start timing, ignition timing, cooling water temperature, intake pressure, fuel pressure, exhaust valve opening / closing timing, intake pressure, and the like. Calculate the injection amount of the fuel injected into. Further, based on the above information, the fuel adhesion ratio calculation processing unit 202 determines the ratio (fuel adhesion) of the fuel N2 attached to the wall surface of the cylinder 21a and the fuel N3 (see FIG. 11) attached to the crown surface 22a of the piston 22. Percentage) is calculated. Then, the fuel adhesion ratio calculation processing unit 202 outputs the calculated fuel adhesion ratio to the PM emission amount calculation processing unit 204. The method of calculating the fuel adhesion ratio in the fuel adhesion ratio calculation processing unit 202 will be described later.
 温度圧力状態算出処理部203は、吸気圧力、吸気温度及び気筒21の筒内容積に基づいて、筒内21aにおける混合気の温度履歴及び筒内21aの圧力履歴を算出する。温度圧力状態算出処理部203は、算出した温度圧力履歴をPM排出量算出処理部204に出力する。なお、温度圧力状態算出処理部203における温度圧力履歴の算出方法については、後述する。 The temperature / pressure state calculation processing unit 203 calculates the temperature history of the air-fuel mixture in the cylinder 21a and the pressure history of the cylinder 21a based on the intake pressure, the intake temperature, and the cylinder volume of the cylinder 21. The temperature / pressure state calculation processing unit 203 outputs the calculated temperature / pressure history to the PM emission amount calculation processing unit 204. The method of calculating the temperature / pressure history in the temperature / pressure state calculation processing unit 203 will be described later.
 PM排出量算出処理部204は、混合気分布の散らばり度合い、燃料付着割合及び温度圧力履歴に基づいて、内燃機関2から排出されたPMの排出量(PM排出量)を算出する。そして、PM排出量算出処理部204は、算出したPM排出量をPM堆積量算出処理部205に出力する。なお、PM排出量算出処理部204におけるPM排出量の算出方法については、後述する。 The PM emission calculation processing unit 204 calculates the PM emission (PM emission) emitted from the internal combustion engine 2 based on the degree of dispersion of the air-fuel mixture distribution, the fuel adhesion ratio, and the temperature and pressure history. Then, the PM discharge amount calculation processing unit 204 outputs the calculated PM discharge amount to the PM accumulation amount calculation processing unit 205. The method of calculating the PM emission amount in the PM emission amount calculation processing unit 204 will be described later.
 PM堆積量算出処理部205は、PM排出量に基づいて、GPF35中に堆積しているPMの量(PM堆積量)を算出する。そして、PM堆積量算出処理部205は、算出したPM堆積量を再生制御処理部206に出力する。なお、PM堆積量算出処理部205におけるPM堆積量の算出方法については、後述する。 The PM accumulation amount calculation processing unit 205 calculates the amount of PM accumulated in the GPF35 (PM accumulation amount) based on the PM discharge amount. Then, the PM accumulation amount calculation processing unit 205 outputs the calculated PM accumulation amount to the regeneration control processing unit 206. The method of calculating the PM deposit amount in the PM deposit amount calculation processing unit 205 will be described later.
 再生制御処理部206は、PM堆積量に基づいて、GPF35の再生制御を行うか否かを判定する。そして、再生制御処理部206は、判定結果に基づいて、再生制御を指令する。不図示の駆動回路は、再生制御処理部206からの再生制御指令に基づいて、駆動信号を生成し、点火プラグ26やインジェクター27を駆動させる。なお、再生制御処理部206における判定動作については、後述する。 The regeneration control processing unit 206 determines whether or not to perform regeneration control of the GPF 35 based on the amount of PM deposited. Then, the reproduction control processing unit 206 commands the reproduction control based on the determination result. The drive circuit (not shown) generates a drive signal based on the regeneration control command from the regeneration control processing unit 206 to drive the spark plug 26 and the injector 27. The determination operation in the reproduction control processing unit 206 will be described later.
 なお、上述したGPF制御部110は、CPU101に設けられていてもよい。そのため、GPF制御部110が有する各種算出処理部は、CPU101に設けられる。そして、CPU101が、混合気の散らばり度合い、燃料付着割合、混合気の温度圧力履歴、PM排出量、PM堆積量の算出処理を行うと共に、GPF35の再生制御の判定を行う。 The GPF control unit 110 described above may be provided in the CPU 101. Therefore, various calculation processing units included in the GPF control unit 110 are provided in the CPU 101. Then, the CPU 101 calculates the degree of dispersion of the air-fuel mixture, the fuel adhesion ratio, the temperature and pressure history of the air-fuel mixture, the PM discharge amount, and the PM accumulation amount, and determines the regeneration control of the GPF 35.
 また、図2に示すように、GPF制御部110をCPU101とは別の制御部として内燃機関制御装置10に設けてもよい。 Further, as shown in FIG. 2, the GPF control unit 110 may be provided in the internal combustion engine control device 10 as a control unit separate from the CPU 101.
2.PMの生成の特性
 次に、PMの生成の特性について図4を参照して説明する。
 図4は、PMの生成速度を示す特性図であり、図5は、筒内21a内における混合気分布を示すもので、混合気の割合と当量比の関係を示すグラフ図である。
2. 2. Characteristics of PM generation Next, the characteristics of PM generation will be described with reference to FIG.
FIG. 4 is a characteristic diagram showing the PM generation rate, and FIG. 5 is a graph showing the air-fuel mixture distribution in the cylinder 21a and showing the relationship between the air-fuel mixture ratio and the equivalent ratio.
 図4では、横軸に反応ガス、すなわち混合気の温度を示し、縦軸に当量比を示している。当量比は、混合気中における燃料濃度を表す指標で、実際の空燃比で、理論上最も燃焼効率の高い空燃比である理論空燃比を割った値である。図4に示すように、当量比の増加に戸もない、PMの生成速度が増加する。このように、PMの量を高精度に推定するためには、筒内21a内における当量比の大きな混合気がどの程度存在するのを推定することが重要となる。 In FIG. 4, the horizontal axis shows the temperature of the reaction gas, that is, the air-fuel mixture, and the vertical axis shows the equivalent ratio. The equivalent ratio is an index showing the fuel concentration in the air-fuel mixture, and is the value obtained by dividing the theoretical air-fuel ratio, which is the theoretically highest combustion efficiency air-fuel ratio, by the actual air-fuel ratio. As shown in FIG. 4, the rate of PM production increases, with no increase in the equivalent ratio. As described above, in order to estimate the amount of PM with high accuracy, it is important to estimate how much an air-fuel mixture having a large equivalent ratio in the cylinder 21a exists.
 なお、図4に示す例では、縦軸として当量比を用いた例を説明したが、これに限定されるものではなく、燃料と空気の比に関連する指標として、空燃比や燃空比、燃料質量分率等を適用してもよい。 In the example shown in FIG. 4, an example in which the equivalent ratio is used as the vertical axis has been described, but the present invention is not limited to this, and the air-fuel ratio and the fuel-air ratio are used as indexes related to the fuel-air ratio. Fuel mass fraction and the like may be applied.
 次に、混合気が高均質な状態と低均質な状態における筒内21aにおける混合気分布について説明する。
 図5は、筒内21aにおける混合気分布を示す図である。図5では、横軸に当量比、縦軸に混合気割合を示している。
Next, the distribution of the air-fuel mixture in the cylinder 21a in the highly homogeneous state and the low-homogeneous state of the air-fuel mixture will be described.
FIG. 5 is a diagram showing the air-fuel mixture distribution in the cylinder 21a. In FIG. 5, the horizontal axis shows the equivalent ratio and the vertical axis shows the air-fuel mixture ratio.
 ガソリンエンジンは、通常、燃料と空気が均一に混合した状態(高均質な状態)で燃焼する。しかしながら、図1に示すような、燃料を筒内21aに直接噴射する筒内噴射型の内燃機関2では、圧縮行程での燃料の噴射等の燃料噴射開始時期が遅い場合や、空気の流動が弱い場合等には、燃料と空気の混合が不十分となる。そのため、筒内21aには、局所的に燃料の割合が濃くなる混合気(以下、リッチ混合気)が存在する状態(低均質な状態)になりやすい。また、図5に示すように、当量比が一定値よりも高い状態(リッチ)、すなわち燃料の割合が濃くなると、PMの生成量が増大する。 Gasoline engines usually burn in a state where fuel and air are uniformly mixed (highly homogeneous state). However, in the in-cylinder injection type internal combustion engine 2 that injects fuel directly into the in-cylinder 21a as shown in FIG. 1, the fuel injection start timing such as fuel injection in the compression stroke is late, or the air flow is slow. If it is weak, the mixture of fuel and air will be insufficient. Therefore, the in-cylinder 21a tends to be in a state (low homogeneous state) in which an air-fuel mixture (hereinafter, rich air-fuel mixture) in which the ratio of fuel is locally concentrated is present. Further, as shown in FIG. 5, when the equivalent ratio is higher than a certain value (rich), that is, when the ratio of fuel becomes high, the amount of PM produced increases.
 そのため、筒内21aにおける混合気分布を推定することで、PMの生成の推定を行うことができる。この混合気分布を推定する一つの手段としては、混合気分布を混合分率空間の確率密度関数を用いて推定する方法がある。 Therefore, PM generation can be estimated by estimating the air-fuel mixture distribution in the cylinder 21a. As one means of estimating this air-fuel mixture distribution, there is a method of estimating the air-fuel mixture distribution using the probability density function of the mixed fraction space.
3.確立密度関数を用いた算出方法
 次に、筒内21aにおける混合気分布を混合分率空間(混合分率を横軸にしたグラフ)の確率密度関数を用いて算出する方法について説明する。なお、本例では、確率密度関数を用いて筒内21aの混合気分布を推定する方法について説明するが、混合気分布の推定方法については、これに限定されるものではない。
3. 3. Calculation method using the probability density function Next, a method of calculating the air-fuel mixture distribution in the cylinder 21a using the probability density function of the mixed fraction space (graph with the mixed fraction on the horizontal axis) will be described. In this example, a method of estimating the air-fuel mixture distribution in the cylinder 21a using the probability density function will be described, but the method of estimating the air-fuel mixture distribution is not limited to this.
 確率密度関数の一つにベータ関数がある。混合分率空間におけるベータ関数P(Z)は、以下の式1~式4で求められる。
[式1]
Figure JPOXMLDOC01-appb-I000001
[式2]
Figure JPOXMLDOC01-appb-I000002
[式3]
Figure JPOXMLDOC01-appb-I000003
[式4]
Figure JPOXMLDOC01-appb-I000004
Beta function is one of the probability density functions. The beta function P (Z) in the mixed fraction space is obtained by the following equations 1 to 4.
[Equation 1]
Figure JPOXMLDOC01-appb-I000001
[Equation 2]
Figure JPOXMLDOC01-appb-I000002
[Equation 3]
Figure JPOXMLDOC01-appb-I000003
[Equation 4]
Figure JPOXMLDOC01-appb-I000004
 上述した式1~式4におけるZは混合分率[-]、Zaveは混合分率の筒内平均値、σは混合分率の分散、A/Fは空燃比、a、bは分布定数を示している。 In Equations 1 to 4 described above, Z is the mixed fraction [-], Z ave is the in-cylinder average value of the mixed fraction, σ is the variance of the mixed fraction, A / F is the air-fuel ratio, and a and b are the distribution constants. Is shown.
 図6は、ベータ関数の分布を示す図である。
 図6に示すように、ベータ関数P(Z)は、混合分率の筒内平均値Zaveと混合分率の分散σの組み合わせにより、上に凸、下に凸、又は混合分率Zに対して単調減少などの分布が得られる。例えば、燃料と空気がよく混合した状態(高均質な状態)は、σ=a,Zave=bでは、ベータ関数P(Z)は、上に凸となる。また、燃料と空気が筒内21aで分離している状態(低均質な状態)は、σ=a、Zave=bでは、ベータ関数P(Z)は、下に凸となる。ここれ、混合分率の筒内平均値Zaveは、筒内21aの平均空燃比A/Fから与えることができる。なお、本例では、平均空燃比A/Fを理想空燃比として14.7とした例を説明したが、これに限定されるものではない。
FIG. 6 is a diagram showing the distribution of beta functions.
As shown in FIG. 6, the beta function P (Z) becomes convex upward, convex downward, or mixed fraction Z depending on the combination of the in-cylinder average value Z ave of the mixed fraction and the variance σ of the mixed fraction. On the other hand, a distribution such as monotonous decrease can be obtained. For example, a state in which fuel and air are mixed well (high homogeneous state), the σ = a 1, Z ave = b 1, beta function P (Z) becomes convex upward. The state in which fuel and air are separated in cylinder 21a (low homogeneous state), σ = a 2, Z ave = In b 2, beta function P (Z) becomes convex downward. Here, the in-cylinder average value Z ave of the mixed fraction can be given from the average air-fuel ratio A / F of the in-cylinder 21a. In this example, an example in which the average air-fuel ratio A / F is set to 14.7 as the ideal air-fuel ratio has been described, but the present invention is not limited to this.
 ここで、確率密度関数において混合気の状態を推定する際の重要なパラメータは、分散σである。車両の運転条件や、インジェクター27や点火プラグ26等の各アクチュエータの操作量により、分散の変化を算出することができれば、確率密度関数によって筒内21aの混合気分布の状態を算出することができる。 Here, the important parameter when estimating the state of the air-fuel mixture in the probability density function is the variance σ. If the change in dispersion can be calculated based on the operating conditions of the vehicle and the amount of operation of each actuator such as the injector 27 and the spark plug 26, the state of the air-fuel mixture distribution in the cylinder 21a can be calculated by the probability density function. ..
4.混合気分布の散らばり度合いの算出動作
 次に、図7を参照して散らばり度合い算出処理部201における、混合気分布の散らばり度合いの算出動作について説明する。
 図7は、散らばり度合い算出処理部201における、混合気分布の散らばり度合いの算出動作を示すフローチャートである。
4. Calculation operation of the degree of dispersion of the air-fuel mixture distribution Next, the operation of calculating the degree of dispersion of the air-fuel mixture distribution in the dispersion degree calculation processing unit 201 will be described with reference to FIG. 7.
FIG. 7 is a flowchart showing the calculation operation of the scattering degree of the air-fuel mixture distribution in the scattering degree calculation processing unit 201.
 図7に示すように、まず散らばり度合い算出処理部201は、内燃機関2の運転条件を取得する(ステップS11)。ステップS11の処理では、散らばり度合い算出処理部201は、内燃機関2の運転条件として、各種センサの出力情報や、各アクチュエータの操作量等を取得する。センサの出力情報や操作量としては、例えば、回転数Ne、燃料噴射パルスti、燃料噴射開始時期θSOI、点火時期θADV等である。 As shown in FIG. 7, first, the dispersion degree calculation processing unit 201 acquires the operating conditions of the internal combustion engine 2 (step S11). In the process of step S11, the dispersion degree calculation processing unit 201 acquires output information of various sensors, an operation amount of each actuator, and the like as operating conditions of the internal combustion engine 2. The output information and the amount of operation of the sensor include, for example, the rotation speed Ne, the fuel injection pulse ti, the fuel injection start timing θ SOI , the ignition timing θ ADV, and the like.
 回転数Neは、クランクシャフト23の回転数であり、燃料噴射パルスtiは、インジェクター27から燃料が噴射される期間である。また、燃料噴射開始時期θSOIは、クランク角度に対するインジェクター27から燃料の噴射が開始される時期である。そして、点火時期θADVは、クランク角度に対する点火プラグ26が筒内21aの混合気を点火する時期である。回転数Neは、クランク角度センサ29の検出情報に基づいて取得される。燃料噴射パルスti及び燃料噴射開始時期θSOIは、インジェクター27の制御量、点火時期θADVは点火プラグ26の制御量として、それぞれ既知である。 The rotation speed Ne is the rotation speed of the crankshaft 23, and the fuel injection pulse ti is a period during which fuel is injected from the injector 27. Further, the fuel injection start time θ SOI is a time when fuel injection is started from the injector 27 with respect to the crank angle. The ignition timing θ ADV is the timing at which the spark plug 26 ignites the air-fuel mixture in the cylinder 21a with respect to the crank angle. The rotation speed Ne is acquired based on the detection information of the crank angle sensor 29. The fuel injection pulse ti and the fuel injection start time θ SOI are known as the control amount of the injector 27, and the ignition timing θ ADV is known as the control amount of the spark plug 26.
 次に、散らばり度合い算出処理部201は、取得した回転数Neに基づいて、回転周期tcを計算する(ステップS12)。回転周期tc[s]は、回転数Ne[rpm]を用いて下記式5により算出される。
[式5]
Figure JPOXMLDOC01-appb-I000005
Next, the scattering degree calculation processing unit 201 calculates the rotation period ct based on the acquired rotation speed Ne (step S12). The rotation cycle tc [s] is calculated by the following equation 5 using the rotation speed Ne [rpm].
[Equation 5]
Figure JPOXMLDOC01-appb-I000005
 次に、回転周期tcを計算した後、散らばり度合い算出処理部201は、燃料噴射終了時期θEOI[ATDC]を計算する(ステップS13)。燃料噴射終了時期θEOIは、燃料噴射パルスti[s]、燃料噴射開始時期θSOI[ATDC]、回転数Ne[rpm]を用いて下記式6により算出される。
[式6]
Figure JPOXMLDOC01-appb-I000006
Next, after calculating the rotation cycle tc, the scatter degree calculation processing unit 201 calculates the fuel injection end time θ EOI [ATDC] (step S13). The fuel injection end time θ EOI is calculated by the following equation 6 using the fuel injection pulse ti [s], the fuel injection start time θ SOI [ATDC], and the rotation speed Ne [rpm].
[Equation 6]
Figure JPOXMLDOC01-appb-I000006
 燃料噴射終了時期θEOIを計算した後、散らばり度合い算出処理部201は、混合時間tmを計算する(ステップS14)。ここで、混合時間tmは、燃料噴射が終了してから点火するまでの時間を表す。混合時間tm[s]は、点火時期θADV[ATDC]、回転数Ne[rpm]、燃料噴射終了時期θEOI[ATDC]を用いて下記式7により算出される。
[式7]
Figure JPOXMLDOC01-appb-I000007
After calculating the fuel injection end time θ EOI , the scatter degree calculation processing unit 201 calculates the mixing time tm (step S14). Here, the mixing time tm represents the time from the end of fuel injection to ignition. The mixing time tm [s] is calculated by the following equation 7 using the ignition timing θ ADV [ATDC], the rotation speed Ne [rpm], and the fuel injection end time θ EOI [ATDC].
[Equation 7]
Figure JPOXMLDOC01-appb-I000007
 混合時間tmを計算した後、散らばり度合い算出処理部201は、混合気分布の散らばり度合い、すなわち分散σを計算する(ステップS15)。混合気分布の散らばり度合いσは、混合時間tm[s]を用いて、下記式8により算出される。
[式8]
Figure JPOXMLDOC01-appb-I000008
After calculating the mixing time tm, the dispersion degree calculation processing unit 201 calculates the dispersion degree of the air-fuel mixture distribution, that is, the variance σ (step S15). The degree of dispersion σ of the air-fuel mixture distribution is calculated by the following equation 8 using the mixing time tm [s].
[Equation 8]
Figure JPOXMLDOC01-appb-I000008
 また、混合気分布の散らばり度合いσは、噴射パルスti[s]、回転周期tc[s]、混合時間tm[s]を用いて、下記式9からより正確に算出することもできる。
[式9]
Figure JPOXMLDOC01-appb-I000009
Further, the degree of dispersion σ of the air-fuel mixture distribution can be calculated more accurately from the following equation 9 by using the injection pulse ti [s], the rotation period ct [s], and the mixing time tm [s].
[Equation 9]
Figure JPOXMLDOC01-appb-I000009
 これにより、散らばり度合い算出処理部201における、混合気分布の散らばり度合いσの算出動作が完了する。 As a result, the calculation operation of the dispersion degree σ of the air-fuel mixture distribution in the dispersion degree calculation processing unit 201 is completed.
4-1.混合気分布の散らばり度合いの算出根拠
 次に、噴射パルスti[s]、回転周期tc[s]、混合時間tm[s]を用いて、混合気分布の散らばり度合いσが算出される根拠について図8~図10を参照して説明する。
 ここで、燃料と空気からなる混合気は、「燃料噴霧の形成」、「形成した噴霧の蒸発」、「蒸発した燃料と空気との混合」の3つのプロセスを経て形成される。
4-1. Basis for calculating the degree of dispersion of the air-fuel mixture distribution Next, the basis for calculating the degree of dispersion σ of the air-fuel mixture distribution using the injection pulse ti [s], the rotation period ct [s], and the mixing time tm [s] is shown in the figure. This will be described with reference to FIGS. 8 to 10.
Here, the air-fuel mixture composed of fuel and air is formed through three processes of "formation of fuel spray", "evaporation of the formed spray", and "mixing of evaporated fuel and air".
[燃料噴霧の形成]
 まず、「燃料噴霧の形成」と燃料噴射パルスti[s]との関係について図8を参照して説明する。
 図8は、インジェクター27から噴射された燃料噴霧の中心断面における噴霧の形状を示す説明図である。
[Formation of fuel spray]
First, the relationship between "formation of fuel spray" and the fuel injection pulse ti [s] will be described with reference to FIG.
FIG. 8 is an explanatory view showing the shape of the spray in the central cross section of the fuel spray injected from the injector 27.
 図8に示すように、インジェクター27から噴射された燃料は、略円錐形状に噴霧される。そのため、燃料噴霧の中心断面は、三角形となる。ここで、噴霧の先端速度utipは、下記式10により算出される。
[式10]
Figure JPOXMLDOC01-appb-I000010
 式10に示すuは、噴射の初期速度[m/s]であり、tは噴射時間[s]である。
As shown in FIG. 8, the fuel injected from the injector 27 is sprayed in a substantially conical shape. Therefore, the central cross section of the fuel spray is triangular. Here, the spray tip speed u tip is calculated by the following equation 10.
[Equation 10]
Figure JPOXMLDOC01-appb-I000010
U 0 shown in the formula 10 is the initial velocity [m / s] of the injection, and t is the injection time [s].
 また、式10の積分により噴射終了時の三角形となる噴霧中心断面の面積S1は下記式11により算出される。
[式11]
Figure JPOXMLDOC01-appb-I000011
 式11に示すθは噴射角[rad]、tiは燃料噴射パルス[s]である。
Further, the area S1 of the spray center cross section which becomes a triangle at the end of injection by the integration of the equation 10 is calculated by the following equation 11.
[Equation 11]
Figure JPOXMLDOC01-appb-I000011
Θ in Equation 11 is the injection angle [rad], and ti is the fuel injection pulse [s].
 式11に示すように、噴射終了時の噴霧の初期位置は、噴射初期速度u、噴射時間t、噴射角度θの関数により算出することができる、ここで、噴射初期速度u、噴射角度θが一定である場合、噴射終了時の噴霧の初期位置は、燃料噴射パルスtiの関数である。そのため、燃料噴射パルスti、いわゆる燃料が噴射される期間を用いることで、燃料の初期分布を考慮して、筒内21aの混合気分布の散らばり度合いσを推定することができる。その結果、燃料噴射パルスtiにより混合気分布の散らばり度合いσの計算精度を向上させることができる。 As shown in Equation 11, the initial position of the spray at the end of injection can be calculated by a function of the initial injection speed u 0 , the injection time t, and the injection angle θ. Here, the initial injection speed u 0 , the injection angle When θ is constant, the initial position of the spray at the end of injection is a function of the fuel injection pulse ti. Therefore, by using the fuel injection pulse ti, that is, the period during which the fuel is injected, the degree of dispersion σ of the air-fuel mixture distribution in the cylinder 21a can be estimated in consideration of the initial distribution of the fuel. As a result, the calculation accuracy of the degree of dispersion σ of the air-fuel mixture distribution can be improved by the fuel injection pulse ti.
[形成した噴霧の蒸発]
 次に、「形成した噴霧の蒸発」と回転周期tc[s]との関係について図9を参照して説明する。
 図9は、燃料噴射後の燃料の気化率を示す説明図である。図9におけるSOIは燃料噴射の開始時期を示し、EOIは燃料噴射の終了時期を示す。
[Evaporation of the formed spray]
Next, the relationship between the "evaporation of the formed spray" and the rotation cycle tc [s] will be described with reference to FIG.
FIG. 9 is an explanatory diagram showing the vaporization rate of fuel after fuel injection. The SOI in FIG. 9 indicates the start time of fuel injection, and the EOI indicates the end time of fuel injection.
 図9に示すように、燃料は、噴射が終了EOIすると、気化率が0から上昇する。そして、燃料噴射の終了時期EOIから気化率が1になるまでの時間が混合開始までの遅れ時間、いわゆる燃料が蒸発するまでに生じる時間(蒸発遅れ時間)となる。ここで、蒸発速度が燃料の飽和蒸気圧と圧力の比で律速されるとしたモデル式を下記式12に示す。
[式12]
Figure JPOXMLDOC01-appb-I000012
As shown in FIG. 9, the vaporization rate of the fuel increases from 0 when the injection is completed and the EOI is completed. Then, the time from the end time EOI of the fuel injection until the vaporization rate becomes 1 is the delay time until the start of mixing, that is, the time that occurs until the fuel evaporates (evaporation delay time). Here, a model formula in which the evaporation rate is regulated by the ratio of the saturated vapor pressure of the fuel to the pressure is shown in the following formula 12.
[Equation 12]
Figure JPOXMLDOC01-appb-I000012
 また、吸気行程中の温度変化が筒内21aの壁面の熱伝達により支配されるとしたモデル式を下記式13に示す。
[式13]
Figure JPOXMLDOC01-appb-I000013
Further, the following equation 13 shows a model equation in which the temperature change during the intake stroke is controlled by the heat transfer of the wall surface of the cylinder 21a.
[Equation 13]
Figure JPOXMLDOC01-appb-I000013
 ここで、ρは燃料成分のガス密度[kg/m]、ρは燃料成分の液体密度[kg/m]、Dは核酸係数[m/s]、dは粒子径[m]、ρs,fは飽和蒸気圧[Pa]、Mは筒内21aの質量[kg]、Cは定圧比熱[J/Kg/K]、αは熱伝達率[W/m/K]、Sは筒内21aの表面積[m]、Tはガス温度[K]、Tは壁面温度[K]である。 Here, ρ f is the gas density of the fuel component [kg / m 3 ], ρ l is the liquid density of the fuel component [kg / m 3 ], D is the nucleic acid coefficient [m 2 / s 2 ], and d is the particle size [m 2 / s 2 ]. m], ρ s, f are saturated gas pressure [Pa], M is the mass [kg] of the cylinder 21a, C p is the constant pressure specific heat [J / Kg / K], and α is the heat transfer rate [W / m 2 / K] and S are the surface area [m 2 ] of the cylinder 21a, T is the gas temperature [K], and T w is the wall surface temperature [K].
 そして、式12と式13から下記式14を導出することができる。
[式14]
Figure JPOXMLDOC01-appb-I000014
Then, the following equation 14 can be derived from the equations 12 and 13.
[Equation 14]
Figure JPOXMLDOC01-appb-I000014
 式14は、図9に示される蒸発遅れ時間が回転周期tcの関数であることを示している。これにより、回転周期tcを用いることで、蒸発遅れ時間を求めることができる。その結果、回転周期tcを用いることで、形成した噴霧の蒸発遅れ時間を考慮して、筒内21aの混合気分布の散らばり度合いσを推定することができる。そのため、回転周期tcにより混合気分布の散らばり度合いσの計算精度を向上させることができる。 Equation 14 shows that the evaporation delay time shown in FIG. 9 is a function of the rotation cycle tc. As a result, the evaporation delay time can be obtained by using the rotation cycle tk. As a result, by using the rotation cycle tk, the degree of dispersion σ of the air-fuel mixture distribution in the cylinder 21a can be estimated in consideration of the evaporation delay time of the formed spray. Therefore, the calculation accuracy of the degree of dispersion σ of the air-fuel mixture distribution can be improved by the rotation period tc.
[蒸発した燃料と空気との混合]
 次に、「蒸発した燃料と空気との混合」と混合時間tm[s]との関係について図10を参照して説明する。
 図10は、燃料噴射直後と点火時期における筒内21aの混合分率を示している。図10に示す実線は燃料噴射直後の混合分率を示し、点線は点火時期における混合分率を示している。
[Mixing of evaporated fuel and air]
Next, the relationship between "mixing of evaporated fuel and air" and the mixing time tm [s] will be described with reference to FIG.
FIG. 10 shows the mixing fraction of the cylinder 21a immediately after fuel injection and at the ignition timing. The solid line shown in FIG. 10 shows the mixing fraction immediately after fuel injection, and the dotted line shows the mixing fraction at the ignition timing.
 図10に示すように、燃料噴射直後の混合分率の分散は大きいが、乱流拡散により燃料と空気の混合が進み、筒内平均値Zaveに近づく。そして、点火時期には、分散が小さい状態となる。燃料の空気の拡散は、拡散現象の基本式である1次元拡散方程式から検討することができる。1次元拡散方程式を下記式15に示す。
[式15]
Figure JPOXMLDOC01-appb-I000015
As shown in FIG. 10, the dispersion of the mixed fraction immediately after the fuel injection is large, but the mixing of the fuel and the air progresses due to the turbulent diffusion, and the in-cylinder average value Z ave approaches. Then, at the ignition timing, the dispersion becomes small. The diffusion of fuel air can be examined from the one-dimensional diffusion equation, which is the basic equation of the diffusion phenomenon. The one-dimensional diffusion equation is shown in Equation 15 below.
[Equation 15]
Figure JPOXMLDOC01-appb-I000015
 式15は、無限遠でZ=0とする境界条件を課すことで厳密解が得られる。厳密解は下記式16により示される。
[式16]
Figure JPOXMLDOC01-appb-I000016
The exact solution of Equation 15 can be obtained by imposing the boundary condition that Z = 0 at infinity. The exact solution is given by Equation 16 below.
[Equation 16]
Figure JPOXMLDOC01-appb-I000016
 また、式16において分散σは、下記式17で示される
 [式17]
Figure JPOXMLDOC01-appb-I000017
Further, in the equation 16, the variance σ is represented by the following equation 17 [Equation 17].
Figure JPOXMLDOC01-appb-I000017
 ここで、乱流拡散による混合を対象とする場合、Dは乱流拡散係数で評価する。そして、乱流拡散係数Dは、乱流エネルギーk及び乱流エネルギー散逸率εを用いて下記式18により示すことができる。
[式18]
Figure JPOXMLDOC01-appb-I000018
 なお、Reは、レイノルズ数である。
Here, when mixing by turbulent diffusion is targeted, D is evaluated by the turbulent diffusion coefficient. The turbulent diffusion coefficient D can be expressed by the following equation 18 using the turbulent energy k and the turbulent energy dissipation rate ε.
[Equation 18]
Figure JPOXMLDOC01-appb-I000018
Re is a Reynolds number.
 簡単化のため、燃料の空気の混合は、噴射終わりから点火時期までの時間で進行すると仮定すると、式17における時間tは噴射終了時期から点火時期までの時間、すなわち混合時間tmで与えられる。その結果、実空間における混合気分布の分散σは、下記式19により求められる。
[式19]
Figure JPOXMLDOC01-appb-I000019
For the sake of simplicity, assuming that the mixing of fuel air proceeds in the time from the end of injection to the ignition timing, the time t in Equation 17 is given by the time from the end of injection to the ignition timing, that is, the mixing time tm. As a result, the variance σ of the air-fuel mixture distribution in the real space is obtained by the following equation 19.
[Equation 19]
Figure JPOXMLDOC01-appb-I000019
 このように、混合時間tmを用いることで、燃料と空気の乱流拡散プロセスを考慮して、筒内21aの混合気分布の散らばり度合いσを推定することができる。その結果、混合時間tmにより混合気分布の散らばり度合いσの計算精度を向上させることができる。 In this way, by using the mixing time tm, it is possible to estimate the degree of dispersion σ of the air-fuel mixture distribution in the cylinder 21a in consideration of the turbulent diffusion process of fuel and air. As a result, the calculation accuracy of the degree of dispersion σ of the air-fuel mixture distribution can be improved by the mixing time tm.
5.燃料付着割合の算出動作及びPMの生成特性
 次に、図11から図13を燃料付着割合算出処理部202における燃料付着割合の算出動作及びPMの生成特性について説明する。
 まず、図11を参照して燃料の付着割合とPMの生成の関係について説明する。
 図11は、筒内21aにおける燃料の付着状態を示す図である。
5. Calculation operation of fuel adhesion ratio and PM generation characteristics Next, FIGS. 11 to 13 show the calculation operation of the fuel adhesion ratio and the PM generation characteristics in the fuel adhesion ratio calculation processing unit 202.
First, the relationship between the fuel adhesion ratio and PM generation will be described with reference to FIG.
FIG. 11 is a diagram showing a state of adhesion of fuel in the cylinder 21a.
 筒内噴射型の内燃機関2では、特に機関の冷間時に気筒21の筒内21aにおける燃料の霧化が促進され難くなる。そのため、図11に示すように、インジェクター27から筒内21aに燃料N1が噴射されると、筒内21aの壁面やピストン22の冠面22aに燃料N2、N3が付着する。このため、機関の冷間時に通常は、燃料噴射開始時期を吸気行程中に設定し、いわゆる吸気行程噴射を行う。そして、燃料噴射から点火までの機関を極力長く確保して、噴射された燃料の霧化を促進するようにしている。 In the in-cylinder injection type internal combustion engine 2, it becomes difficult to promote atomization of fuel in the in-cylinder 21a of the cylinder 21 especially when the engine is cold. Therefore, as shown in FIG. 11, when the fuel N1 is injected from the injector 27 into the cylinder 21a, the fuels N2 and N3 adhere to the wall surface of the cylinder 21a and the crown surface 22a of the piston 22. Therefore, when the engine is cold, the fuel injection start time is usually set during the intake stroke, and so-called intake stroke injection is performed. Then, the engine from fuel injection to ignition is secured as long as possible to promote atomization of the injected fuel.
 ただし、吸気行程噴射を行っても、筒内21aの壁面やピストン22の冠面22aに付着した燃料N2、N3を全て解消することは困難である。そして、付着した燃料N2、N3のうち一部の燃料は燃焼に供されることなく、機関の燃焼後も筒内21aの壁面やピストン22の冠面22aに付着した状態で残留する。残留した燃料は、その後の機関燃焼時に除々に霧化され、不完全燃焼して気筒21から排出される。燃料が不完全燃焼して排出されることで、PMの生成の起因となっていた。このように、機関の冷間時には燃料の付着割合を推定することが、PMの生成の推定を行う際に重要となる。 However, it is difficult to eliminate all the fuels N2 and N3 adhering to the wall surface of the cylinder 21a and the crown surface 22a of the piston 22 even if the intake stroke injection is performed. Then, some of the attached fuels N2 and N3 are not used for combustion and remain attached to the wall surface of the cylinder 21a and the crown surface 22a of the piston 22 even after the combustion of the engine. The remaining fuel is gradually atomized during subsequent engine combustion, is incompletely burned, and is discharged from the cylinder 21. Incomplete combustion of the fuel and its discharge caused the generation of PM. As described above, it is important to estimate the fuel adhesion ratio when the engine is cold when estimating the PM production.
 次に、図12を参照して燃料付着割合算出処理部202における、燃料付着割合の算出動作について説明する。
 図12は、燃料付着割合算出処理部202における、燃料付着割合の算出動作を示すフローチャートである。
Next, the operation of calculating the fuel adhesion ratio in the fuel adhesion ratio calculation processing unit 202 will be described with reference to FIG.
FIG. 12 is a flowchart showing the calculation operation of the fuel adhesion ratio in the fuel adhesion ratio calculation processing unit 202.
 図12に示すように、燃料付着割合算出処理部202は、内燃機関2の運転条件を取得する(ステップS21)。ステップS21の処理では、燃料付着割合算出処理部202は、内燃機関2の運転条件として、各種センサの出力情報や、各アクチュエータの操作量等を取得する。センサの出力情報や操作量としては、例えば、排気バルブタイミングθevc、吸気圧Pi、インジェクター27から燃料にかけられる圧力である燃圧Pf、燃料噴射開始時期θSOI、燃料噴射パルスti、回転数Ne、冷却水温度Tw等である。 As shown in FIG. 12, the fuel adhesion ratio calculation processing unit 202 acquires the operating conditions of the internal combustion engine 2 (step S21). In the process of step S21, the fuel adhesion ratio calculation processing unit 202 acquires output information of various sensors, an operating amount of each actuator, and the like as operating conditions of the internal combustion engine 2. The sensor output information and the amount of operation include, for example, the exhaust valve timing θ evic , the intake pressure Pi, the fuel pressure Pf which is the pressure applied to the fuel from the injector 27, the fuel injection start time θ SOI , the fuel injection pulse ti, and the rotation speed Ne. Cooling water temperature Tw or the like.
 吸気圧Piは、気筒21の筒内21aに流入する際の圧力であり、吸気圧力センサ43が計測した計測情報に基づいて取得される。回転数Neは、クランク角度センサ29の検出情報に基づいて取得される。排気バルブタイミングθevcは、排気バルブ25の開閉タイミングである。燃料噴射パルスti、燃圧P、燃料噴射開始時期θSOIは、インジェクター27の制御量、排気バルブタイミングθevcは、インジェクター27や排気バルブ25の制御量として、それぞれ既知である。また、冷却水温度Twは、気筒21に設けられた冷却水センサ28から取得される。 The intake pressure Pi is the pressure at which the cylinder 21 flows into the cylinder 21a, and is acquired based on the measurement information measured by the intake pressure sensor 43. The rotation speed Ne is acquired based on the detection information of the crank angle sensor 29. The exhaust valve timing θ evc is the opening / closing timing of the exhaust valve 25. The fuel injection pulse ti, fuel pressure P, and fuel injection start time θ SOI are known as the control amount of the injector 27, and the exhaust valve timing θ evc is known as the control amount of the injector 27 and the exhaust valve 25, respectively. Further, the cooling water temperature Tw is acquired from the cooling water sensor 28 provided in the cylinder 21.
 次に、燃料付着割合算出処理部202は、排気バルブタイミングθevc、吸気圧Pi、燃圧Pf、燃料噴射開始時期θSOI、燃料噴射パルスti、回転数Ne、冷却水温度Twに基づいて、筒内21aの壁面やピストン22の冠面22aに付着する燃料量の割合(燃料付着割合)αを計算する(ステップS22)。燃料付着割合αは、下記式20により算出される。なお、回転周期tcは、回転数Neにより上述した式5により算出される。
[式20]
Figure JPOXMLDOC01-appb-I000020
Next, the fuel adhesion ratio calculation processing unit 202 determines the cylinder based on the exhaust valve timing θ evic , the intake pressure Pi, the fuel pressure Pf, the fuel injection start time θ SOI , the fuel injection pulse ti, the rotation speed Ne, and the cooling water temperature Tw. The ratio (fuel adhesion ratio) α of the amount of fuel adhering to the wall surface of the inner 21a and the crown surface 22a of the piston 22 is calculated (step S22). The fuel adhesion ratio α is calculated by the following formula 20. The rotation cycle tc is calculated by the above-mentioned equation 5 based on the rotation speed Ne.
[Equation 20]
Figure JPOXMLDOC01-appb-I000020
 式20に示すように、排気バルブタイミングθevc、吸気圧Pi、燃圧Pf、燃料噴射開始時期θSOI、燃料噴射パルスti、回転周期tc、冷却水温度Twの関数として燃料付着割合αを算出することができる。これにより、燃料付着割合算出処理部202における燃料付着割合αの算出動作が完了する。 As shown in Equation 20, the fuel adhesion ratio α is calculated as a function of the exhaust valve timing θ evic , the intake pressure Pi, the fuel pressure Pf, the fuel injection start time θ SOI , the fuel injection pulse ti, the rotation cycle tk, and the cooling water temperature Tw. be able to. As a result, the calculation operation of the fuel adhesion ratio α in the fuel adhesion ratio calculation processing unit 202 is completed.
6.燃料付着の制御要因
 次に、筒内噴射型の内燃機関2における燃料付着の制御要因について説明する。
6. Fuel Adhesion Control Factors Next, the fuel adhesion control factors in the in-cylinder injection type internal combustion engine 2 will be described.
 筒内噴射型の内燃機関2における燃料付着の制御要因としては、次のような要因が考えられる。まず、筒内混合気状態要因として、筒内21aでの混合気の温度、圧力が燃料のペネトレーション(噴射距離)に影響を与えるものと考えられる。また、燃料分布要因として、噴射された燃料の初期分布と筒内21aの壁面やピストン22の冠面22aとの距離が近いほど燃料付着が増加するものと考えられる。そして、燃料蒸発要因として、壁面温度と気化温度が付着した燃料の蒸発に影響を与えるものと考えられる。 The following factors can be considered as control factors for fuel adhesion in the in-cylinder injection type internal combustion engine 2. First, it is considered that the temperature and pressure of the air-fuel mixture in the cylinder 21a affect the penetration (injection distance) of the fuel as a factor of the state of the air-fuel mixture in the cylinder. Further, as a fuel distribution factor, it is considered that the closer the initial distribution of the injected fuel to the wall surface of the cylinder 21a and the crown surface 22a of the piston 22, the more the fuel adhesion increases. Then, as a fuel evaporation factor, it is considered that the wall surface temperature and the vaporization temperature affect the evaporation of the attached fuel.
[筒内混合気状態要因]
 まず、筒内混合気状態要因の制御因子について説明する。
 噴霧先端距離Sは、燃料圧力と周囲気体の圧力差ΔP、周囲気体密度ρ、燃料を噴射してからの経過時間tに基づいて、下記式21により算出される。
[式21]
Figure JPOXMLDOC01-appb-I000021
[In-cylinder air-fuel mixture state factor]
First, the control factors of the in-cylinder air-fuel mixture state factors will be described.
Spray tip distance S is, the pressure difference [Delta] P L of the fuel pressure and ambient gas, based on the elapsed time t after the ejection ambient gas density [rho A, the fuel is calculated by the following equation 21.
[Equation 21]
Figure JPOXMLDOC01-appb-I000021
 式21に示すように、噴霧先端距離Sは、燃料圧力と周囲気体の圧力差ΔP、周囲気体密度ρに依存していることが分かる。また、気体の状態方程式から、下記式22に示す関係を得ることができる。なお、式22におけるTは、筒内21aの温度、Pは筒内21aの圧力、Rはガス定数である。
[式22]
Figure JPOXMLDOC01-appb-I000022
As shown in Equation 21, the spray tip distance S is, the pressure difference [Delta] P L of the fuel pressure and ambient gas, to be dependent on the ambient gas density [rho A seen. Further, the relationship shown in the following equation 22 can be obtained from the gas state equation. In the formula 22, T is the temperature of the cylinder 21a, P is the pressure of the cylinder 21a, and R is the gas constant.
[Equation 22]
Figure JPOXMLDOC01-appb-I000022
 式22に示すように、噴射先端距離Sは、周囲気体の圧力Pと負の相関を持ち、温度Tと性の相関を持つことが分かる。そして、筒内21aの温度Tが変化する一因としては、例えば、可変バルブタイミング機構(Variable Valve Timing機構:以下、VVTという)等の操作により内部EGR(Exhaust Gas Recirculation)ガス量の変化がある。例えば、排気バルブ25の閉じ時期が下死点から離れると、前サイクルの燃焼ガスの残留量が増加するため、筒内21aの温度Tが上昇する。その結果、式22に示すように、噴射先端距離Sが短くなる。 As shown in Equation 22, it can be seen that the injection tip distance S has a negative correlation with the pressure P of the ambient gas and has a sex correlation with the temperature T. One of the reasons why the temperature T of the cylinder 21a changes is that the amount of internal EGR (Exhaust Gas Recirculation) gas changes due to the operation of a variable valve timing mechanism (hereinafter referred to as VVT) or the like. .. For example, when the closing time of the exhaust valve 25 deviates from the bottom dead center, the residual amount of the combustion gas in the previous cycle increases, so that the temperature T in the cylinder 21a rises. As a result, as shown in Equation 22, the injection tip distance S becomes shorter.
 また、筒内21aの圧力Pが変化する一因としては、例えば、吸入空気量制御のために行うスロットル弁41の開度調整による吸気圧変化がある。例えば、スロットル弁41の開度が小さくなると、吸気圧が低下し、筒内21aの圧力Pが低下する。その結果、式22に示すように、噴射先端距離Sが長くなる。 Further, one of the causes of the change in the pressure P in the cylinder 21a is, for example, the change in the intake pressure due to the adjustment of the opening degree of the throttle valve 41 performed for controlling the intake air amount. For example, when the opening degree of the throttle valve 41 becomes small, the intake pressure decreases, and the pressure P in the cylinder 21a decreases. As a result, as shown in Equation 22, the injection tip distance S becomes longer.
 これらにより、排気バルブタイミングθevcと吸気圧Piを変数として用いることで、筒内21aにおける混合気の温度や圧力の状態に起因する燃料付着の変化を算出することができる。その結果、排気バルブタイミングθevcと吸気圧Piによって、燃料付着割合αの計算精度を向上させることができる。 From these, by using the exhaust valve timing θ evic and the intake pressure Pi as variables, it is possible to calculate the change in fuel adhesion due to the temperature and pressure state of the air-fuel mixture in the cylinder 21a. As a result, the calculation accuracy of the fuel adhesion ratio α can be improved by the exhaust valve timing θ evic and the intake pressure Pi.
[燃料分布要因]
 次に、燃料分布要因の制御因子について図13を参照して説明する。
 図13は、ピストン22の位置と燃料付着の状態を示す図である。
[Fuel distribution factor]
Next, the control factor of the fuel distribution factor will be described with reference to FIG.
FIG. 13 is a diagram showing the position of the piston 22 and the state of fuel adhesion.
 燃料分布要因の制御因子を検討する際には、燃料噴射終了時期における噴射された燃料の先端位置と、ピストン22との相対的な位置関係が重要である。図13に示すように、ピストン22とインジェクター27との間隔が近い位置で、燃料N1を噴射すると、噴射された燃料N1がピストン22の冠面22aに到達する。そのため、ピストン22の冠面22aに付着する燃料N3は増加する。 When examining the control factor of the fuel distribution factor, the relative positional relationship between the tip position of the injected fuel at the end time of fuel injection and the piston 22 is important. As shown in FIG. 13, when the fuel N1 is injected at a position where the distance between the piston 22 and the injector 27 is close, the injected fuel N1 reaches the crown surface 22a of the piston 22. Therefore, the fuel N3 adhering to the crown surface 22a of the piston 22 increases.
 また、ピストン22とインジェクター27との間隔が遠い位置で、燃料N1を噴射すると、噴射された燃料N1は、ピストン22の冠面22aに到達し難い。そのため、ピストン22の冠面22aに付着する燃料N3は減少する。 Further, when the fuel N1 is injected at a position where the distance between the piston 22 and the injector 27 is long, it is difficult for the injected fuel N1 to reach the crown surface 22a of the piston 22. Therefore, the fuel N3 adhering to the crown surface 22a of the piston 22 is reduced.
 上述した式22に示すように、噴射先端距離Sは、燃圧Pfと、噴射からの経過時間tに比例する。また、噴射からの経過時間tは、噴射期間である燃料噴射パルスtiにより算出することができる。そのため、噴射先端距離Sは、燃料噴射パルスtiにより算出することができる。また、ピストン22の位置は、クランク角度センサ29が検出したクランク角度により一義的に決まる。 As shown in the above equation 22, the injection tip distance S is proportional to the fuel pressure Pf and the elapsed time t from the injection. Further, the elapsed time t from the injection can be calculated from the fuel injection pulse ti, which is the injection period. Therefore, the injection tip distance S can be calculated from the fuel injection pulse ti. Further, the position of the piston 22 is uniquely determined by the crank angle detected by the crank angle sensor 29.
 これらにより、燃圧pf、燃料噴射パルスtiを変数として用いることで、燃料分布に起因する燃料付着の変化を算出することができる。その結果、燃圧pf、燃料噴射パルスti、回転数Neによって、燃料付着割合αの計算精度を向上させることができる。 From these, by using the fuel pressure pf and the fuel injection pulse ti as variables, it is possible to calculate the change in fuel adhesion due to the fuel distribution. As a result, the calculation accuracy of the fuel adhesion ratio α can be improved by the fuel pressure pf, the fuel injection pulse ti, and the rotation speed Ne.
[燃料蒸発要因]
 次に、燃料蒸発要因の制御要因について説明する。
 筒内21aの壁面やピストン22の冠面22aに付着した燃料N2、N3には、付着してから点火までの期間に蒸発が発生する。この蒸発期間は、上述した式14で示したように回転周期tcに比例する。また、蒸発は、筒内21aの壁面の温度が高いほど促進する。そして、筒内21aの壁面の温度は、冷却水温度Twに大きく依存する。そのため、回転周期tc及び冷却水温度Twを用いることで、燃料の蒸発に起因する燃料付着の変化を算出することができる。その結果、回転周期tc及び冷却水温度Twによって、燃料付着割合αの計算精度を向上させることができる。
[Fuel evaporation factor]
Next, the control factors of the fuel evaporation factor will be described.
The fuels N2 and N3 adhering to the wall surface of the cylinder 21a and the crown surface 22a of the piston 22 evaporate during the period from adhering to ignition. This evaporation period is proportional to the rotation period tc as shown by the above equation 14. Further, evaporation is promoted as the temperature of the wall surface of the cylinder 21a is higher. The temperature of the wall surface of the cylinder 21a largely depends on the cooling water temperature Tw. Therefore, by using the rotation cycle tk and the cooling water temperature Tw, it is possible to calculate the change in fuel adhesion due to the evaporation of the fuel. As a result, the calculation accuracy of the fuel adhesion ratio α can be improved by the rotation cycle tk and the cooling water temperature Tw.
7.温度圧力状態算出処理部の動作例
 次に、温度圧力状態算出処理部203の動作例について図14を参照して説明する。
 図14は、温度圧力状態算出処理部203における温度圧力履歴の算出動作を示すフローチャートである。
7. Operation example of the temperature / pressure state calculation processing unit Next, an operation example of the temperature / pressure state calculation processing unit 203 will be described with reference to FIG.
FIG. 14 is a flowchart showing a temperature / pressure history calculation operation in the temperature / pressure state calculation processing unit 203.
 図14に示すように、まず温度圧力状態算出処理部203は、内燃機関2の運転条件を取得する(ステップS31)。ステップS31の処理では、散らばり度合い算出処理部201は、内燃機関2の運転条件として、各種センサの出力情報や、各アクチュエータの操作量等を取得する。センサの出力情報や操作量としては、例えば、吸気圧Pi、吸気温度Ti、筒内容積V等が挙げられる。 As shown in FIG. 14, first, the temperature / pressure state calculation processing unit 203 acquires the operating conditions of the internal combustion engine 2 (step S31). In the process of step S31, the dispersion degree calculation processing unit 201 acquires output information of various sensors, an operation amount of each actuator, and the like as operating conditions of the internal combustion engine 2. Examples of the output information and the amount of operation of the sensor include the intake pressure Pi, the intake temperature Ti, and the in-cylinder volume V.
 吸気温度Tiは、気筒21に吸気される空気の温度であり、吸気温度センサ44が計測した計測情報に基づいて取得される。吸気圧Piは、気筒21に吸気される際の圧力であり、吸気圧力センサ43が計測した計測情報に基づいて取得される。筒内容積Vは、クランク角度センサ29の検出情報に基づいて取得される。 The intake air temperature Ti is the temperature of the air taken into the cylinder 21, and is acquired based on the measurement information measured by the intake air temperature sensor 44. The intake pressure Pi is the pressure at which the intake pressure Pi is taken into the cylinder 21, and is acquired based on the measurement information measured by the intake pressure sensor 43. The in-cylinder volume V is acquired based on the detection information of the crank angle sensor 29.
 次に、温度圧力状態算出処理部203は、点火時期での筒内圧力(以下、点火時期筒内圧力という)PADVを計算する(ステップS32)。ステップS32の処理では、温度圧力状態算出処理部203は、吸気圧Pi、筒内容積V、点火時期筒内容積V(θADV)、吸気バルブ24が閉じる時期での筒内容積(以下、吸気バルブ閉じ時期筒内容積という)V(θIVC)に基づいて、下記式23により点火時期筒内圧力PADVを算出する。
[式23]
Figure JPOXMLDOC01-appb-I000023
Next, the temperature / pressure state calculation processing unit 203 calculates the in-cylinder pressure (hereinafter referred to as the ignition timing in-cylinder pressure) PADV at the ignition timing (step S32). In the process of step S32, the temperature / pressure state calculation processing unit 203 includes the intake pressure Pi, the in-cylinder volume V, the ignition timing in-cylinder volume V (θ ADV ), and the in-cylinder volume at the time when the intake valve 24 is closed (hereinafter, intake air). The ignition timing in-cylinder pressure PADV is calculated by the following equation 23 based on V (θ IVC ) (called the valve closing timing in-cylinder volume).
[Equation 23]
Figure JPOXMLDOC01-appb-I000023
 なお、点火時期筒内容積V(θADV)及び吸気バルブ閉じ時期筒内容積V(θIVC)は、予め設定された定数であってもよい。また、点火時期筒内容積V(θADV)及び吸気バルブ閉じ時期筒内容積V(θIVC)は、サイクル毎に、クランク角度センサ29の検出情報に基づいて算出してもよい。この場合、点火時期筒内圧力PADVの算出精度を向上させることができる。 The ignition timing in-cylinder volume V (θ ADV ) and the intake valve closing timing in-cylinder volume V (θ IVC ) may be preset constants. Further, the ignition timing cylinder internal volume V (θ ADV ) and the intake valve closing timing tubular internal volume V (θ IVC ) may be calculated for each cycle based on the detection information of the crank angle sensor 29. In this case, the accuracy of calculating the ignition timing in-cylinder pressure PADV can be improved.
 次に、温度圧力状態算出処理部203は、筒内圧力履歴Pappを計算する(ステップS33)。ステップS33の処理では、温度圧力状態算出処理部203は、点火時期筒内圧力PADV、筒内容積V、点火時期筒内容積V(θADV)及び比熱比γに基づいて、下記式24及び式25によって筒内圧力履歴Pappを算出する。
[式24]
Figure JPOXMLDOC01-appb-I000024
[式25]
Figure JPOXMLDOC01-appb-I000025
 ここで、a、mは定数、Qは総発熱量、Δθburnは燃焼期間である。式24及び式25から燃焼期間中も含めて筒内21aの圧力を算出することができる。また、比熱比γは、予め設定された定数であってもよく、あるいは他の方法により求めてもよい。
Next, the temperature / pressure state calculation processing unit 203 calculates the in-cylinder pressure history Papp (step S33). In the process of step S33, the temperature / pressure state calculation processing unit 203 sets the following equation 24 and based on the ignition timing in-cylinder pressure P ADV , the in-cylinder volume V, the ignition timing in-cylinder volume V (θ ADV ), and the specific heat ratio γ. The in-cylinder pressure history Papp is calculated by the equation 25.
[Equation 24]
Figure JPOXMLDOC01-appb-I000024
[Equation 25]
Figure JPOXMLDOC01-appb-I000025
Here, a and m are constants, Q f is the total calorific value, and Δθ burn is the combustion period. From equations 24 and 25, the pressure inside the cylinder 21a can be calculated including during the combustion period. Further, the specific heat ratio γ may be a preset constant, or may be obtained by another method.
 次に、温度圧力状態算出処理部203は、点火時期温度TADVを計算する(ステップS34)。ステップS34の処理では、温度圧力状態算出処理部203は、吸気温度Ti、点火時期筒内容積V(θADV)及び吸気バルブ閉じ時期筒内容積V(θIVC)と比熱比に基づいて、点火時期温度TADVを算出する。
[式26]
Figure JPOXMLDOC01-appb-I000026
Next, the temperature / pressure state calculation processing unit 203 calculates the ignition timing temperature TADV (step S34). In the process of step S34, the temperature / pressure state calculation processing unit 203 ignites based on the intake air temperature Ti, the ignition timing cylinder internal volume V (θ ADV ), the intake valve closing timing tubular internal volume V (θ IVC ), and the specific heat ratio. Calculate the timing temperature T ADV .
[Equation 26]
Figure JPOXMLDOC01-appb-I000026
 次に、温度圧力状態算出処理部203は、筒内空気質量と気体定数の積MRを、点火時期筒内圧力PADV、点火時期筒内容積V(θADV)及び点火時期温度TADVに基づいて、下記式27により計算する(ステップS35)。
[式27]
Figure JPOXMLDOC01-appb-I000027
Next, the temperature / pressure state calculation processing unit 203 calculates the product MR of the in-cylinder air mass and the gas constant based on the ignition timing in-cylinder pressure P ADV , the ignition timing in-cylinder volume V (θ ADV ), and the ignition timing temperature T ADV . Then, the calculation is performed by the following equation 27 (step S35).
[Equation 27]
Figure JPOXMLDOC01-appb-I000027
 次に、温度圧力状態算出処理部203は、筒内21aにおける混合気の温度履歴である筒内ガス温度履歴Tave(θ)を計算する(ステップS36)。ステップS36の処理では、温度圧力状態算出処理部203は、筒内圧力履歴Papp、筒内容積Vと、筒内空気質量と気体定数の積MRに基づいて、下記式28により筒内ガス温度履歴Tave(θ)を算出する。
[式28]
Figure JPOXMLDOC01-appb-I000028
Next, the temperature / pressure state calculation processing unit 203 calculates the in-cylinder gas temperature history Tave (θ), which is the temperature history of the air-fuel mixture in the in-cylinder 21a (step S36). In the process of step S36, the temperature / pressure state calculation processing unit 203 uses the following equation 28 to formulate the in-cylinder gas temperature based on the in-cylinder pressure history Papp , the in-cylinder volume V, and the product MR of the in-cylinder air mass and the gas constant. The history Tave (θ) is calculated.
[Equation 28]
Figure JPOXMLDOC01-appb-I000028
 これにより、温度圧力状態算出処理部203における温度圧力履歴の算出動作が完了する。この結果、運転条件により様々に変化する筒内21aの圧力及び混合気の筒内ガス温度を算出することができるため、後述するPMの算出精度を向上させることができる。 As a result, the temperature / pressure history calculation operation in the temperature / pressure state calculation processing unit 203 is completed. As a result, the pressure in the cylinder 21a and the gas temperature in the cylinder of the air-fuel mixture, which change variously depending on the operating conditions, can be calculated, so that the PM calculation accuracy described later can be improved.
8.PM排出量算出処理部の動作例
 次に、PM排出量算出処理部204の動作例について図15~図18を参照して説明する。
 図15は、混合気割合と燃料濃度との関係を示すグラフである。
8. Operation Example of PM Emission Calculation Processing Unit Next, an operation example of the PM emission amount calculation processing unit 204 will be described with reference to FIGS. 15 to 18.
FIG. 15 is a graph showing the relationship between the air-fuel mixture ratio and the fuel concentration.
 上述したようにPMの生成は、混合気の割合に大きく依存している。図15に示すように、PMの生成に大きく依存する混合気の割合は、混合気分布に起因する混合気起因確率密度関数P(Z)と、燃料付着に起因する燃料付着起因確率密度関数P(Z)で増加する。そして、PMの平均反応速度W(θ)[g/m・s]は、混合気起因確率密度関数P(Z)と、燃料付着起因確率密度関数P(Z)により下記式20により算出することができる。
[式29]
Figure JPOXMLDOC01-appb-I000029
 ここで、wは混合気起因反応速度[g/m・s]、wは燃料付着起因反応速度[g/m・s]、Zは混合分率、Tは温度[K]、pは圧力[pa]である。
As mentioned above, the production of PM largely depends on the proportion of the air-fuel mixture. As shown in FIG. 15, the ratio of the air-fuel mixture largely depends on the generation of PM is mixture mixture due to the distribution resulting from the probability density function P 1 and (Z), the fuel deposition due probability density function due to fuel adhesion It increases at P 2 (Z). The average reaction rate W (θ) [g / m 3 · s] of PM is determined by the following equation 20 according to the air-fuel mixture-induced probability density function P 1 (Z) and the fuel adhesion-induced probability density function P 2 (Z). Can be calculated.
[Equation 29]
Figure JPOXMLDOC01-appb-I000029
Here, w 1 is the reaction rate due to the air-fuel mixture [g / m 3 · s], w 2 is the reaction rate due to fuel adhesion [g / m 3 · s], Z is the mixing fraction, and T is the temperature [K]. p is the pressure [pa].
 混合気起因確率密度関数P(Z)は、上述した式1により算出される。また、燃料付着起因確率密度関数P(Z)は、予め設定された、ある大きさを持つ確率密度関数とした固定値である。 The air-fuel mixture-induced probability density function P 1 (Z) is calculated by the above equation 1. Further, the fuel adhesion-induced probability density function P 2 (Z) is a fixed value set in advance as a probability density function having a certain size.
 また、内燃機関2の冷機状態では、燃料付着の影響が大きく作用し、内燃機関2の暖機状態では、混合気分布の散らばり度合いの影響が大きく作用する。そのため、式29に示すように混合気起因確率密度関数P(Z)と、燃料付着起因確率密度関数P(Z)は、上述した式20により算出された燃料付着割合αで重み付けされて和算されている。これにより、内燃機関2における冷機状態から暖機状態までの混合気の割合を正確に検出することができる。 Further, in the cold state of the internal combustion engine 2, the influence of fuel adhesion has a large effect, and in the warm state of the internal combustion engine 2, the influence of the degree of dispersion of the air-fuel mixture distribution has a large effect. Therefore, as shown in Equation 29, the air-fuel mixture-induced probability density function P 1 (Z) and the fuel adhesion-induced probability density function P 2 (Z) are weighted by the fuel adhesion ratio α calculated by the above-mentioned equation 20. It is summed up. As a result, the ratio of the air-fuel mixture from the cold state to the warm state in the internal combustion engine 2 can be accurately detected.
 図16は、混合気起因反応速度wマップを示すもので、混合気である反応ガス温度と分布定数aで表されたマップ上の混合気起因反応速度wを示す特性図である。図16では、反応ガス温度を横軸、分布定数aを縦軸として混合気起因反応速度w1をマップ化している。また、図17は、燃料付着起因反応速度wマップを示すもので、混合気である反応ガス温度と燃料付着起因反応速度wの関係を示す特性図である。
 図16及び図17に示す特性図は、予め作成されてROM103等の記憶部に格納されている。これにより、混合気起因反応速度w及び燃料付着起因反応速度wの計算時間の短縮を図ることができる。
Figure 16 shows the air-fuel mixture caused the reaction rate w 1 map is a characteristic diagram showing an air-fuel mixture caused the reaction rate w 1 on the map represented in that the gas mixture the reaction gas temperature distribution constant a. In FIG. 16, the reaction rate w1 caused by the air-fuel mixture is mapped with the reaction gas temperature as the horizontal axis and the distribution constant a as the vertical axis. Further, FIG. 17 shows a fuel adhesion due kinetics w 2 map is a characteristic diagram showing the relationship of the reaction gas temperature and fuel adhesion due kinetics w 2 is the air-fuel mixture.
The characteristic diagrams shown in FIGS. 16 and 17 are created in advance and stored in a storage unit such as a ROM 103. Thus, it is possible to shorten the calculation time of the mixture resulting from the reaction rate w 1 and the fuel deposition due kinetics w 2.
 次に、PM排出量算出処理部204におけるPM排出量の算出動作について図18を参照して説明する。
 図18は、PM排出量算出処理部204におけるPM排出量の算出動作を示すフローチャートである。
Next, the operation of calculating the PM emission amount in the PM emission amount calculation processing unit 204 will be described with reference to FIG.
FIG. 18 is a flowchart showing a PM emission amount calculation operation in the PM emission amount calculation processing unit 204.
 図18に示すように、PM排出量算出処理部204は、分布定数aを計算する(ステップS41)。ステップS41の処理では、PM排出量算出処理部204は、混合分率の筒内平均値Zaveと、散らばり度合い算出処理部201が算出した分散σに基づいて、上述した式3から分布定数aを算出する。 As shown in FIG. 18, the PM emission amount calculation processing unit 204 calculates the distribution constant a (step S41). In the process of step S41, the PM emission amount calculation processing unit 204 uses the distribution constant a from the above equation 3 based on the in-cylinder average value Zave of the mixed fraction and the variance σ calculated by the dispersion degree calculation processing unit 201. Is calculated.
 次に、PM排出量算出処理部204は、混合気起因反応速度w及び燃料付着起因反応速度wを計算する(ステップS42)。ステップS42の処理では、PM排出量算出処理部204は、ステップS41の処理で算出した分布定数aと、反応ガス温度Tbに基づいて、図16及び図17に示すマップを用いて、混合気起因反応速度w及び燃料付着起因反応速度wを算出する。なお、反応ガス温度Tbは、温度圧力状態算出処理部203が算出した筒内ガス温度履歴Tave(θ)から求められる。 Next, the PM emission amount calculation processing unit 204 calculates the air-fuel mixture-induced reaction rate w 1 and the fuel adhesion-induced reaction rate w 2 (step S42). In the process of step S42, the PM emission calculation processing unit 204 uses the maps shown in FIGS. 16 and 17 based on the distribution constant a calculated in the process of step S41 and the reaction gas temperature Tb, and causes the air-fuel mixture. The reaction rate w 1 and the reaction rate w 2 due to fuel adhesion are calculated. The reaction gas temperature Tb is obtained from the in-cylinder gas temperature history Tave (θ) calculated by the temperature / pressure state calculation processing unit 203.
 次に、PM排出量算出処理部204は、PM排出量を計算する(ステップS43)。ステップS43では、PM排出量算出処理部204は、まず上述した式29からPMの平均反応速度W(θ)[g/m・s]を算出する。次に、PM排出量算出処理部204は、下記式30に示すように、PMの平均反応速度W(θ)を点火時期θADVから排気バルブ開き時期θEVOまでのクランク角度θで積分する。
[式30]
Figure JPOXMLDOC01-appb-I000030
Next, the PM emission amount calculation processing unit 204 calculates the PM emission amount (step S43). In step S43, PM emission amount calculation processing section 204 first calculates the average reaction rate W of the PM from the equation 29 described above (θ) [g / m 3 · s]. Next, the PM emission amount calculation processing unit 204 integrates the average reaction rate W (θ) of PM with the crank angle θ from the ignition timing θ ADV to the exhaust valve opening timing θ EVO , as shown in the following equation 30.
[Equation 30]
Figure JPOXMLDOC01-appb-I000030
 そして、式30により、PM排出量算出処理部204は、1サイクル当たりのPM排出量PMcycle[g]を算出することができる。次に、PM排出量算出処理部204は、下記式31により、標準状態時(25℃、100kPa)のPM濃度PMout[g/m]を算出する。また、式31に示すように、PM濃度PMout[g/m]の算出には、温度圧力状態算出処理部203が算出した筒内圧力履歴Pappが用いられる。
[式31]
Figure JPOXMLDOC01-appb-I000031
Then, according to the formula 30, the PM emission amount calculation processing unit 204 can calculate the PM emission amount PMcycle [g] per cycle. Next, the PM emission amount calculation processing unit 204 calculates the PM concentration PMout [g / m 3 ] in the standard state (25 ° C., 100 kPa) by the following formula 31. Further, as shown in Equation 31, the calculation of PM concentration PMout [g / m 3], the in-cylinder pressure history P app of temperature and pressure state calculation processing unit 203 is calculated is used.
[Equation 31]
Figure JPOXMLDOC01-appb-I000031
 これにより、PM排出量算出処理部204におけるPM排出量の算出動作が完了する。
このように、混合気分布の散らばり度合いσと、燃料付着割合αを用いることで、内燃機関2における冷機状態から暖機状態までのPMの反応速度及びPM排出量を正確に推定することができる。なお、内燃機関2が冷機状態では、燃料付着割合αと燃料付着起因確率密度関数P(Z)だけを用いて、PMの反応速度及びPM排出量を算出してもよいあるいは内燃機関2が暖機状態では、混合気分布の散らばり度合いσと、混合気起因確率密度関数P(Z)だけを用いて、PMの反応速度及びPM排出量を算出してもよい。
As a result, the PM emission amount calculation operation in the PM emission amount calculation processing unit 204 is completed.
In this way, by using the degree of dispersion σ of the air-fuel mixture distribution and the fuel adhesion ratio α, the reaction rate and PM emission of PM from the cold state to the warm state in the internal combustion engine 2 can be accurately estimated. .. When the internal combustion engine 2 is in the cold state, the reaction rate of PM and the amount of PM emission may be calculated using only the fuel adhesion ratio α and the fuel adhesion cause probability density function P 2 (Z), or the internal combustion engine 2 may calculate. the warm-up state, the degree σ scattered the mixture distribution, using only the gas mixture resulting from the probability density function P 1 (Z), it may be calculated reaction rate and PM emissions PM.
9.PM堆積量算出処理部の動作例
 次に、PM堆積量算出処理部205の動作例について図19~図22を参照して説明する。
 図19は、GPF35の内部状態と、GPF35に流入するPMを示す模式図である。
9. Operation Example of PM Accumulation Amount Calculation Processing Unit Next, an operation example of the PM deposition amount calculation processing unit 205 will be described with reference to FIGS. 19 to 22.
FIG. 19 is a schematic view showing the internal state of the GPF 35 and the PM flowing into the GPF 35.
 図19に示すように、GPF35には、排気ガスと共にPMが流入する。そして、GPF35は、内部に設けられたフィルタ部35aによってPMを捕集する。また、GPF35に捕集されたPMは、燃焼により消滅する。そのため、GPF35に堆積するPMの量(PM堆積量)は、GPF35が捕集するPMの量(PM捕集量)と、燃焼により消滅するPMの量(PM燃焼量)に基づいて、以下のように算出される。
 PM堆積量=PM捕集量-PM燃焼量
As shown in FIG. 19, PM flows into the GPF 35 together with the exhaust gas. Then, the GPF 35 collects PM by the filter unit 35a provided inside. Further, the PM collected in GPF35 disappears by combustion. Therefore, the amount of PM deposited on the GPF35 (PM deposition amount) is based on the amount of PM collected by the GPF35 (PM collection amount) and the amount of PM extinguished by combustion (PM combustion amount) as follows. Is calculated as follows.
PM accumulation amount = PM collection amount-PM combustion amount
 次に、図20~図22を参照して、PM堆積量算出処理部205におけるPM堆積量の算出動作について説明する。
 図20は、PM堆積量算出処理部205におけるPM堆積量の算出動作を示すフローチャートである。図21は、GPF35の上流温度とPM燃焼速度との関係を示す特性図、図22は、空気過剰率とPM燃焼速度補正係数Aの関係を示す特性図である。
Next, the operation of calculating the PM deposit amount in the PM deposit amount calculation processing unit 205 will be described with reference to FIGS. 20 to 22.
FIG. 20 is a flowchart showing a PM accumulation amount calculation operation in the PM accumulation amount calculation processing unit 205. FIG. 21 is a characteristic diagram showing the relationship between the upstream temperature of GPF35 and the PM combustion rate, and FIG. 22 is a characteristic diagram showing the relationship between the excess air ratio and the PM combustion rate correction coefficient A.
 図20に示すように、まずPM堆積量算出処理部205は、GPF35に流入するPMの量を計算する(ステップS51)。ステップS51の処理では、PM堆積量算出処理部205は、PM排出量算出処理部204が算出したPM濃度PMout[g/m]と、排気流量QEXH[m/s]に基づいて、PM流入量PMusGPF[g/s]を下記式32により算出する。
[式32]
Figure JPOXMLDOC01-appb-I000032
As shown in FIG. 20, first, the PM accumulation amount calculation processing unit 205 calculates the amount of PM flowing into the GPF 35 (step S51). In the process of step S51, PM accumulation amount calculation processing section 205, the PM concentration PMout the PM emission amount calculation processing section 204 calculates [g / m 3], based on the exhaust gas flow Q EXH [m 3 / s] , The PM inflow amount PM usGPF [g / s] is calculated by the following formula 32.
[Equation 32]
Figure JPOXMLDOC01-appb-I000032
 なお、排気流量QEXH[m/s]は、吸気管31に取り付けられたエアフローセンサ42が測定した吸気量Qin[m/s]により求められる。 The exhaust flow rate Q EXH [m 3 / s] is obtained from the intake air amount Q in [m 3 / s] measured by the air flow sensor 42 attached to the intake pipe 31.
 次に、PM堆積量算出処理部205は、GPF35に捕集されるPMの量、すなわちPM捕集量を計算する(ステップS52)。ステップS52の処理では、PM堆積量算出処理部205は、PM流入量PMusGPF[g/s]とPM捕集効率ηadpに基づいて、PM捕集量PMadp[g/s]を下記式33により算出する。
[式33]
Figure JPOXMLDOC01-appb-I000033
 なお、PM捕集効率ηadpは、予め設定されROM103に格納されている。
Next, the PM deposition amount calculation processing unit 205 calculates the amount of PM collected in the GPF 35, that is, the PM collection amount (step S52). In the process of step S52, PM accumulation amount calculation processing section 205 based on the PM inflow PM usGPF [g / s] and PM trapping efficiency eta adp, PM collecting quantity PMadp [g / s] of the following formula 33 Calculated by
[Equation 33]
Figure JPOXMLDOC01-appb-I000033
The PM collection efficiency η app is preset and stored in the ROM 103.
 次に、PM堆積量算出処理部205は、予め設定されROM103に格納されたPM燃焼速度マップと、GPF35の上流温度に基づいて、PM燃焼速度Vburn[g/s]を取得する(ステップS53)。GPF35の上流温度[K]は、GPF35の上流側に設けられたGPF上流温度センサ47が検出した温度である。 Next, the PM accumulation amount calculation processing unit 205 acquires the PM combustion rate Vburn [g / s] based on the PM combustion rate map preset and stored in the ROM 103 and the upstream temperature of the GPF 35 (step S53). .. The upstream temperature [K] of the GPF 35 is a temperature detected by the GPF upstream temperature sensor 47 provided on the upstream side of the GPF 35.
 PM燃焼速度マップを図21に示す。図21では、横軸にGPF35の上流温度、縦軸にPM燃焼速度を示している。図21に示すように、GPF35の上流温度が上昇することで、PM燃焼速度が増加する。 The PM combustion speed map is shown in FIG. In FIG. 21, the horizontal axis shows the upstream temperature of GPF35, and the vertical axis shows the PM combustion rate. As shown in FIG. 21, the PM combustion rate increases as the upstream temperature of the GPF 35 rises.
 次に、PM堆積量算出処理部205は、補正係数Aを取得する(ステップS54)。ステップS54の処理では、PM堆積量算出処理部205は、予め設定されROM103に格納されたPM燃焼速度補正係数マップと、排気管32に設けられた空燃比センサ46によって検出された空気過剰率λに基づいて、PM燃焼速度補正係数Aを取得する。 Next, the PM deposition amount calculation processing unit 205 acquires the correction coefficient A (step S54). In the process of step S54, the PM accumulation amount calculation processing unit 205 has the PM combustion rate correction coefficient map preset and stored in the ROM 103, and the air excess rate λ detected by the air-fuel ratio sensor 46 provided in the exhaust pipe 32. Based on, the PM combustion rate correction coefficient A is acquired.
 PM燃焼速度補正係数マップを図22に示す。図22では、横軸に空気過剰率λ、縦軸にPM燃焼速度補正係数Aを示している。排気中の酸素濃度の上昇によりPM燃焼速度が増加することを考慮して、図22に示すように、PM燃焼速度補正係数マップでは、空気過剰率λの増加に伴って、PM燃焼速度補正係数Aが増加している。 The PM combustion speed correction coefficient map is shown in FIG. In FIG. 22, the horizontal axis shows the excess air ratio λ, and the vertical axis shows the PM combustion rate correction coefficient A. Considering that the PM combustion rate increases due to the increase in the oxygen concentration in the exhaust gas, as shown in FIG. 22, in the PM combustion rate correction coefficient map, the PM combustion rate correction coefficient increases as the excess air ratio λ increases. A is increasing.
 次に、PM堆積量算出処理部205は、PM燃焼量を計算する(ステップS55)。ステップS55の処理では、PM堆積量算出処理部205は、1秒あたりのPM燃焼速度Vburn[g/s]と、PM燃焼速度補正係数Aを用いて、PM燃焼量PMburn[g/s]を下記式34により算出する。
 [式34]
Figure JPOXMLDOC01-appb-I000034
Next, the PM accumulation amount calculation processing unit 205 calculates the PM combustion amount (step S55). In the process of step S55, the PM accumulation amount calculation processing unit 205 uses the PM combustion rate Vburn [g / s] per second and the PM combustion rate correction coefficient A to determine the PM combustion amount PMburn [g / s]. It is calculated by the following formula 34.
[Equation 34]
Figure JPOXMLDOC01-appb-I000034
 次に、PM堆積量算出処理部205は、PM堆積量を算出する(ステップS55)。ステップS55の処理において、PM堆積量算出処理部205は、nサイクル(現サイクル)目のPM堆積量PMload(n)を、n-1サイクル(前サイクル)目のPM堆積量PMload(n-1)、PM捕集量PMadp、PM燃焼量PMburn、と単位時間Δtに基づいて、下記式35より算出する。
[式35]
Figure JPOXMLDOC01-appb-I000035
Next, the PM deposit amount calculation processing unit 205 calculates the PM deposit amount (step S55). In the process of step S55, the PM accumulation amount calculation processing unit 205 sets the PM accumulation amount PMload (n) in the nth cycle (current cycle) to the PM accumulation amount PMload (n-1) in the n-1 cycle (pre-cycle). ), PM collection amount PMadp, PM combustion amount PMburn, and unit time Δt, calculated from the following equation 35.
[Equation 35]
Figure JPOXMLDOC01-appb-I000035
 これにより、PM堆積量算出処理部205におけるPM堆積量の算出動作が完了する。
上述したPM排出量算出処理部204によって正確なPM排出量を算出することができ、さらにGPF35が捕集するPM捕集量とGPF35内部で燃焼されるPM燃焼量を算出することで、GPF35に堆積するPM堆積量を正確に算出することができる。
As a result, the operation of calculating the PM accumulation amount in the PM accumulation amount calculation processing unit 205 is completed.
The PM emission amount calculation processing unit 204 described above can calculate an accurate PM emission amount, and further, by calculating the PM collection amount collected by the GPF35 and the PM combustion amount burned inside the GPF35, the GPF35 can be obtained. The amount of PM deposited can be calculated accurately.
10.再生制御処理部の動作例
 次に、再生制御処理部206における再生制御指令の判定動作について図23を参照して説明する。
 図23は、再生制御処理部206における再生制御指令の判定動作を示すフローチャートである。
10. Operation example of the reproduction control processing unit Next, the determination operation of the reproduction control command in the reproduction control processing unit 206 will be described with reference to FIG.
FIG. 23 is a flowchart showing a determination operation of the reproduction control command in the reproduction control processing unit 206.
 図23に示すように、再生制御処理部206は、再生制御を行うか否かを判定する(ステップS61)。ステップS61の処理において、再生制御処理部206は、再生制御を行わないと判定した場合(ステップS61のNO判定)。そして、再生制御処理部206は、判定動作を終了する。 As shown in FIG. 23, the reproduction control processing unit 206 determines whether or not to perform reproduction control (step S61). In the process of step S61, when the reproduction control processing unit 206 determines that the reproduction control is not performed (NO determination in step S61). Then, the reproduction control processing unit 206 ends the determination operation.
 また、ステップS61の処理において、再生制御処理部206は、再生制御を行うと判定した場合(ステップS61のYES判定)、再生制御指令を出力する(ステップS62)。これにより、再生制御処理部206における再生制御指令の判定動作が完了する。 Further, in the process of step S61, when it is determined that the reproduction control is performed (YES determination in step S61), the reproduction control processing unit 206 outputs a reproduction control command (step S62). As a result, the determination operation of the reproduction control command in the reproduction control processing unit 206 is completed.
 なお、ステップS61の判定処理において、再生制御処理部206は、上述したPM堆積量算出処理部205が算出したPM堆積量PMloadがROM103等の格納されているPM堆積許容量を超えたか否かで判断する。また、ステップS61の判定処理において、再生制御処理部206は、GPF上流温度センサ47が計測した温度がROM103等の格納されているGPF許容温度を超えたか否かで判断する。 In the determination process of step S61, the regeneration control processing unit 206 determines whether or not the PM accumulation amount PM load calculated by the PM accumulation amount calculation processing unit 205 described above exceeds the PM accumulation allowance stored in the ROM 103 or the like. to decide. Further, in the determination process of step S61, the reproduction control processing unit 206 determines whether or not the temperature measured by the GPF upstream temperature sensor 47 exceeds the GPF allowable temperature in which the ROM 103 or the like is stored.
 また、ステップS62の再生制御指令としては、例えば、PM堆積量がPM堆積量許容量を超えた際に、再生制御処理部206は、リーンバーン制御指令や、燃料カット禁止指令を行う。リーンバーン制御指令は、スロットル弁41やインジェクター27を制御し、理想空燃比以上の燃焼となるように制御する指令である。また、燃料カット禁止指令は、インジェクター27を制御し、気筒21の筒内21aへの燃料供給の停止を禁止する指令である。これらの指令により、GPF35の温度がGPF破損温度以上になることを防止し、GPF35が破損することを防止できる。 Further, as the regeneration control command in step S62, for example, when the PM deposit amount exceeds the PM deposit amount allowable amount, the regeneration control processing unit 206 issues a lean burn control command and a fuel cut prohibition command. The lean burn control command is a command that controls the throttle valve 41 and the injector 27 so that the combustion exceeds the ideal air-fuel ratio. Further, the fuel cut prohibition command is a command for controlling the injector 27 and prohibiting the stop of the fuel supply to the cylinder 21a of the cylinder 21. By these commands, it is possible to prevent the temperature of the GPF 35 from becoming higher than the GPF failure temperature and prevent the GPF 35 from being damaged.
 このように、本例の内燃機関制御装置10によれば、混合気分布の散らばり度合いσと、燃料付着割合α、反応ガス温度Tbを考慮して、GPF35に流入するPMの量を正確に算出することができる。これにより、適切なタイミングでGPF35の再生制御を行うことができ、PMの過大堆積によるGPF35が破損することを防止することができる。 As described above, according to the internal combustion engine control device 10 of this example, the amount of PM flowing into the GPF 35 is accurately calculated in consideration of the degree of dispersion σ of the air-fuel mixture distribution, the fuel adhesion ratio α, and the reaction gas temperature Tb. can do. As a result, the regeneration control of the GPF 35 can be performed at an appropriate timing, and it is possible to prevent the GPF 35 from being damaged due to excessive accumulation of PM.
 なお、上述しかつ図面に示した実施の形態に限定されるものではなく、特許請求の範囲に記載した発明の要旨を逸脱しない範囲内で種々の変形実施が可能である。 It should be noted that the embodiment is not limited to the embodiment described above and shown in the drawings, and various modifications can be carried out within a range that does not deviate from the gist of the invention described in the claims.
 2…内燃機関、 10…内燃機関制御装置、 21…気筒、 21a…筒内、 22…ピストン、 22a…冠面、 23…クランクシャフト、 24…吸気バルブ、 25…排気バルブ、 26…点火プラグ、 27…インジェクター、 28…冷却水センサ、 29…クランク角度センサ、 31…吸気管、 32…排気管、 33…EGR管、 34…三元触媒、 35…ガソリンパーティキュートフィルタ(PM捕集フィルタ)、 41…スロットル弁、 42…エアフローセンサ、 43…吸気圧力センサ、 44…吸気温度センサ、 45…EGR弁、 46…空燃比センサ、 47…GPF上流温度センサ、 48…差圧センサ、 101…CPU(制御部)、 102…RAM、 103…ROM(記憶部)、 104…入出力ポート、 105…入力回路(受信部)、 110…GPF制御部(制御部)、 201…散らばり度合い算出処理部、 202…燃料付着割合算出処理部、 203…温度圧力状態算出処理部、 204…PM排出量算出処理部、 205…PM堆積量算出処理部、 206…再生制御処理部 2 ... Internal combustion engine, 10 ... Internal combustion engine controller, 21 ... Cylinder, 21a ... In-cylinder, 22 ... Piston, 22a ... Crown surface, 23 ... Crank shaft, 24 ... Intake valve, 25 ... Exhaust valve, 26 ... Ignition plug, 27 ... Injector, 28 ... Cooling water sensor, 29 ... Crank angle sensor, 31 ... Intake pipe, 32 ... Exhaust pipe, 33 ... EGR pipe, 34 ... Three-way catalyst, 35 ... Gasoline party cute filter (PM collection filter), 41 ... Throttle valve, 42 ... Airflow sensor, 43 ... Intake pressure sensor, 44 ... Intake temperature sensor, 45 ... EGR valve, 46 ... Air fuel ratio sensor, 47 ... GPF upstream temperature sensor, 48 ... Differential pressure sensor, 101 ... CPU ( Control unit), 102 ... RAM, 103 ... ROM (storage unit), 104 ... input / output port, 105 ... input circuit (reception unit), 110 ... GPF control unit (control unit), 201 ... scatter degree calculation processing unit, 202 ... Fuel adhesion ratio calculation processing unit, 203 ... Temperature and pressure state calculation processing unit, 204 ... PM emission amount calculation processing unit, 205 ... PM accumulation amount calculation processing unit, 206 ... Regeneration control processing unit

Claims (14)

  1.  気筒と、前記気筒の筒内を摺動するピストンと、前記ピストンに接続されたクランクシャフトと、前記気筒の筒内に燃料を噴射するインジェクターと、前記筒内において空気と前記燃料が混合した混合気を点火させる点火プラグと、を有する内燃機関を制御する内燃機関制御装置において、
     前記点火プラグが前記筒内の前記混合気を点火する点火時期、前記インジェクターが前記筒内に燃料の噴射が開始される燃料噴射開始時期を取得し、前記点火時期及び前記燃料噴射開始時期に基づいて、前記筒内における前記混合気の分布の散らばり度合いを算出する制御部を備えた内燃機関制御装置。
    A cylinder, a piston that slides in the cylinder of the cylinder, a crankshaft connected to the piston, an injector that injects fuel into the cylinder of the cylinder, and a mixture of air and the fuel in the cylinder. In an internal combustion engine control device that controls an internal combustion engine having a spark plug for igniting qi.
    The ignition timing at which the spark plug ignites the air-fuel mixture in the cylinder and the fuel injection start timing at which the injector starts fuel injection into the cylinder are acquired, and based on the ignition timing and the fuel injection start timing. An internal combustion engine control device including a control unit for calculating the degree of dispersion of the air-fuel mixture distribution in the cylinder.
  2.  前記制御部は、前記インジェクターから燃料が噴射される期間である燃料噴射パルスを取得し、前記点火時期及び前記燃料噴射開始時期に加えて、前記燃料噴射パルスに基づいて、前記混合気の分布の散らばり度合いを算出する
     請求項1に記載の内燃機関制御装置。
    The control unit acquires a fuel injection pulse which is a period during which fuel is injected from the injector, and in addition to the ignition timing and the fuel injection start timing, the distribution of the air-fuel mixture is based on the fuel injection pulse. The internal combustion engine control device according to claim 1, wherein the degree of scattering is calculated.
  3.  前記制御部は、前記クランクシャフトの回転数を取得し、前記点火時期及び前記燃料噴射開始時期、前記燃料噴射パルスに加えて、前記回転数に基づいて、前記混合気の分布の散らばり度合いを算出する
     請求項2に記載の内燃機関制御装置。
    The control unit acquires the rotation speed of the crankshaft and calculates the degree of dispersion of the air-fuel mixture distribution based on the ignition timing, the fuel injection start timing, the fuel injection pulse, and the rotation speed. The internal combustion engine control device according to claim 2.
  4.  前記制御部は、前記気筒の排気ポートの開閉可能に配置された排気バルブの開閉タイミング、前記気筒に吸気される空気の圧力である吸気圧を取得し、前記排気バルブの開閉タイミング及び前記吸気圧に基づいて、前記筒内の壁面及び前記ピストンの冠面に付着した前記燃料の量の割合である燃料付着割合を算出する
     請求項1に記載の内燃機関制御装置。
    The control unit acquires the opening / closing timing of the exhaust valve arranged so as to open / close the exhaust port of the cylinder and the intake pressure which is the pressure of the air taken into the cylinder, and the opening / closing timing of the exhaust valve and the intake pressure. The internal combustion engine control device according to claim 1, wherein the fuel adhesion ratio, which is the ratio of the amount of the fuel adhered to the wall surface in the cylinder and the crown surface of the piston, is calculated based on the above.
  5.  前記制御部は、前記クランクシャフトの回転数及び前記気筒を冷却する冷却水の温度を取得し、前記排気バルブの開閉タイミング及び前記吸気圧に加えて、前記回転数及び前記冷却水の温度に基づいて、前記燃料付着割合を算出する
     請求項4に記載の内燃機関制御装置。
    The control unit acquires the rotation speed of the crankshaft and the temperature of the cooling water for cooling the cylinder, and is based on the rotation speed and the temperature of the cooling water in addition to the opening / closing timing of the exhaust valve and the intake pressure. The internal combustion engine control device according to claim 4, wherein the fuel adhesion ratio is calculated.
  6.  前記制御部は、前記インジェクターにより前記燃料に加えられる圧力である燃圧と、前記インジェクターから燃料が噴射される期間である燃料噴射パルスを取得し、前記排気バルブの開閉タイミング、前記吸気圧、前記回転数及び前記冷却水の温度に加えて、前記燃圧、前記燃料噴射開始時期及び前記燃料噴射パルスに基づいて、前記燃料付着割合を算出する
     請求項5に記載の内燃機関制御装置。
    The control unit acquires the fuel pressure which is the pressure applied to the fuel by the injector and the fuel injection pulse which is the period during which the fuel is injected from the injector, and the opening / closing timing of the exhaust valve, the intake pressure, and the rotation. The internal combustion engine control device according to claim 5, wherein the fuel adhesion ratio is calculated based on the fuel pressure, the fuel injection start timing, and the fuel injection pulse in addition to the number and the temperature of the cooling water.
  7.  前記制御部は、算出した前記混合気の分布の散らばり度合いに基づいて、前記気筒から排出される粒子状物資の量を算出する
     請求項1に記載の内燃機関制御装置。
    The internal combustion engine control device according to claim 1, wherein the control unit calculates the amount of particulate matter discharged from the cylinder based on the calculated degree of dispersion of the air-fuel mixture distribution.
  8.  前記制御部は、算出した前記混合気の分布の散らばり度合い及び前記燃料付着割合に基づいて、前記気筒から排出される粒子状物質の排出量を算出する
     請求項4に記載の内燃機関制御装置。
    The internal combustion engine control device according to claim 4, wherein the control unit calculates the amount of particulate matter discharged from the cylinder based on the calculated degree of dispersion of the air-fuel mixture distribution and the fuel adhesion ratio.
  9.  前記制御部は、前記粒子状物質の平均反応速度を算出し、算出した前記平均反応速度から前記粒子状物質の排出量を算出する
     請求項7又は8に記載の内燃機関制御装置。
    The internal combustion engine control device according to claim 7 or 8, wherein the control unit calculates the average reaction rate of the particulate matter, and calculates the emission amount of the particulate matter from the calculated average reaction rate.
  10.  前記制御部は、前記気筒に吸気される空気の温度である吸気温度、前記気筒に吸気される空気の圧力である吸気圧及び前記気筒における筒内容積を取得し、前記吸気温度、前記吸気圧及び前記筒内容積に基づいて、前記筒内における前記混合気の温度履歴、及び前記筒内の圧力履歴を算出する
     請求項9に記載の内燃機関制御装置。
    The control unit acquires the intake air temperature, which is the temperature of the air taken into the cylinder, the intake pressure, which is the pressure of the air taken into the cylinder, and the in-cylinder volume in the cylinder, and the intake temperature and the intake pressure. The internal combustion engine control device according to claim 9, wherein the temperature history of the air-fuel mixture in the cylinder and the pressure history in the cylinder are calculated based on the in-cylinder volume.
  11.  前記制御部は、算出した前記混合気の温度履歴から前記粒子状物質の排出量を算出する
     請求項10に記載の内燃機関制御装置。
    The internal combustion engine control device according to claim 10, wherein the control unit calculates an emission amount of the particulate matter from the calculated temperature history of the air-fuel mixture.
  12.  前記制御部は、算出した前記粒子状物質の排出量に基づいて、前記内燃機関に設けられた前記粒子状物質を捕集するPM捕集フィルタに堆積された前記粒子状物質の堆積量を算出する
     請求項7又は8に記載の内燃機関制御装置。
    The control unit calculates the accumulated amount of the particulate matter deposited on the PM collection filter for collecting the particulate matter provided in the internal combustion engine based on the calculated emission amount of the particulate matter. The internal combustion engine control device according to claim 7 or 8.
  13.  前記制御部は、算出した前記粒子状物質の堆積量に基づいて、前記PM捕集フィルタから前記粒子状物質を除去する再生制御指令を出力するか否かを判断する
     請求項12に記載の内燃機関制御装置。
    The internal combustion engine according to claim 12, wherein the control unit determines whether or not to output a regeneration control command for removing the particulate matter from the PM collection filter based on the calculated accumulated amount of the particulate matter. Engine control device.
  14.  気筒と、前記気筒の筒内を摺動するピストンと、前記ピストンに接続されたクランクシャフトと、前記気筒の筒内に燃料を噴射するインジェクターと、前記筒内において空気と前記燃料が混合した混合気を点火させる点火プラグと、を有する内燃機関を制御する内燃機関制御装置において、
     前記気筒の排気ポートの開閉可能に配置された排気バルブの開閉タイミング、前記気筒に吸気される空気の圧力である吸気圧を取得し、前記排気バルブの開閉タイミング及び前記吸気圧に基づいて、前記筒内の壁面及び前記ピストンの冠面に付着した前記燃料の量の割合である燃料付着割合を算出する制御部を備えた内燃機関制御装置。
    A cylinder, a piston that slides in the cylinder of the cylinder, a crankshaft connected to the piston, an injector that injects fuel into the cylinder of the cylinder, and a mixture of air and the fuel in the cylinder. In an internal combustion engine control device that controls an internal combustion engine having a spark plug for igniting qi.
    The opening / closing timing of the exhaust valve arranged so as to open / close the exhaust port of the cylinder and the intake pressure which is the pressure of the air taken into the cylinder are acquired, and based on the opening / closing timing of the exhaust valve and the intake pressure, the said An internal combustion engine control device including a control unit that calculates a fuel adhesion ratio, which is a ratio of the amount of the fuel adhering to the wall surface of the cylinder and the crown surface of the piston.
PCT/JP2020/004728 2019-03-27 2020-02-07 Internal combustion engine control device WO2020195223A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-060464 2019-03-27
JP2019060464A JP7356245B2 (en) 2019-03-27 2019-03-27 Internal combustion engine control device

Publications (1)

Publication Number Publication Date
WO2020195223A1 true WO2020195223A1 (en) 2020-10-01

Family

ID=72608989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004728 WO2020195223A1 (en) 2019-03-27 2020-02-07 Internal combustion engine control device

Country Status (2)

Country Link
JP (1) JP7356245B2 (en)
WO (1) WO2020195223A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150897A (en) * 1997-07-31 1999-02-23 Toyota Motor Corp Fuel injection device
JP2002332849A (en) * 2001-05-07 2002-11-22 Mazda Motor Corp Controller for spark ignition type direct-injection engine
JP2002371893A (en) * 2001-06-15 2002-12-26 Toyota Motor Corp Control device for internal combustion engine
JP2008121494A (en) * 2006-11-10 2008-05-29 Toyota Motor Corp Controller of internal combustion engine
JP2008232073A (en) * 2007-03-22 2008-10-02 Nissan Diesel Motor Co Ltd Exhaust emission purifier
JP2010121606A (en) * 2008-11-21 2010-06-03 Mitsubishi Fuso Truck & Bus Corp Optimization method for engine control parameter
JP2010121605A (en) * 2008-11-21 2010-06-03 Mitsubishi Fuso Truck & Bus Corp Optimization method for engine control parameter
JP2014105652A (en) * 2012-11-28 2014-06-09 Toyota Motor Corp Engine control device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315383A (en) 2006-04-24 2007-12-06 Toyota Central Res & Dev Lab Inc Spark-ignition internal combustion engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150897A (en) * 1997-07-31 1999-02-23 Toyota Motor Corp Fuel injection device
JP2002332849A (en) * 2001-05-07 2002-11-22 Mazda Motor Corp Controller for spark ignition type direct-injection engine
JP2002371893A (en) * 2001-06-15 2002-12-26 Toyota Motor Corp Control device for internal combustion engine
JP2008121494A (en) * 2006-11-10 2008-05-29 Toyota Motor Corp Controller of internal combustion engine
JP2008232073A (en) * 2007-03-22 2008-10-02 Nissan Diesel Motor Co Ltd Exhaust emission purifier
JP2010121606A (en) * 2008-11-21 2010-06-03 Mitsubishi Fuso Truck & Bus Corp Optimization method for engine control parameter
JP2010121605A (en) * 2008-11-21 2010-06-03 Mitsubishi Fuso Truck & Bus Corp Optimization method for engine control parameter
JP2014105652A (en) * 2012-11-28 2014-06-09 Toyota Motor Corp Engine control device

Also Published As

Publication number Publication date
JP7356245B2 (en) 2023-10-04
JP2020159298A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
RU140272U1 (en) ENGINE SYSTEM
CN102444492B (en) Engine operating method
US7628145B2 (en) Control method of compression self ignition internal combustion engine
CN101970846B (en) Method for monitoring an egr valve in an internal combustion engine
US8857153B2 (en) Method for measuring the quality of ammonia injection for an exhaust gas after treatment system of a vehicle
RU2616727C2 (en) Engine operating process (versions) and system
CN102667114B (en) Fuel property determination system for internal combustion engine
US6557526B1 (en) Setting minimum spark advance for best torque in an internal combustion engine
RU2586417C2 (en) Method for recovery of exhaust after treatment device (versions) and engine system
JP2006226188A (en) Fuel property detection device of diesel engine
CN105386885B (en) Include the engine emissions control system of combustion chamber temperature monitoring system
JP2016539272A (en) Internal combustion engine and direct fuel injection method
US8868319B2 (en) System and method for controlling intake valve timing in homogeneous charge compression ignition engines
JP4339878B2 (en) Control device for compression ignition internal combustion engine
CN103573451A (en) Internal combustion engine with direct injection and reduced particulate emissions
RU2704909C2 (en) System and method for adjusting exhaust valve timing
WO2020195223A1 (en) Internal combustion engine control device
JP2008025406A (en) Controller of internal combustion engine
JP6225740B2 (en) Fuel injection control device for internal combustion engine
JP6536613B2 (en) Control device for internal combustion engine
US11162452B2 (en) Control apparatus for internal combustion engine
US20210301751A1 (en) Control apparatus for internal combustion engine
JP6237375B2 (en) Fuel spray spread angle detector
US20210301755A1 (en) Control apparatus for internal combustion engine
US7841326B2 (en) Method for operating an internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20776517

Country of ref document: EP

Kind code of ref document: A1