KR101163785B1 - A method for detection soot mass in a catalyzed particulate filter system of diesel vehicle - Google Patents

A method for detection soot mass in a catalyzed particulate filter system of diesel vehicle Download PDF

Info

Publication number
KR101163785B1
KR101163785B1 KR1020050118156A KR20050118156A KR101163785B1 KR 101163785 B1 KR101163785 B1 KR 101163785B1 KR 1020050118156 A KR1020050118156 A KR 1020050118156A KR 20050118156 A KR20050118156 A KR 20050118156A KR 101163785 B1 KR101163785 B1 KR 101163785B1
Authority
KR
South Korea
Prior art keywords
vehicle speed
soot
cpf
current
deposition amount
Prior art date
Application number
KR1020050118156A
Other languages
Korean (ko)
Other versions
KR20070059379A (en
Inventor
배기송
Original Assignee
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 기아자동차주식회사 filed Critical 기아자동차주식회사
Priority to KR1020050118156A priority Critical patent/KR101163785B1/en
Publication of KR20070059379A publication Critical patent/KR20070059379A/en
Application granted granted Critical
Publication of KR101163785B1 publication Critical patent/KR101163785B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/12Parameters used for exhaust control or diagnosing said parameters being related to the vehicle exterior
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1606Particle filter loading or soot amount

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

본 발명은 디젤차량의 촉매입자필터(CPF) 시스템에서 CRT효과를 통한 수트량(soot mass) 검출 방법으로서, 각 단계는 The present invention is a soot mass detection method through the CRT effect in a catalytic particle filter (CPF) system of a diesel vehicle, each step is

수트 퇴적량 모니터링 구간여부 판단 단계; Determining whether or not the soot deposition amount monitoring interval;

모니터링 구간을 만족하는 경우 현 차압, CPF 입구온도 및 배기유량 검출 단계; Detecting the current differential pressure, the CPF inlet temperature and the exhaust flow rate if the monitoring interval is satisfied;

제1 수트 퇴적량 산출 단계; Calculating a first soot deposition amount;

제1 수트 퇴적량 산출 후 현 차속이 기준차속 이상인지 여부 판단 단계; Determining whether the current vehicle speed is greater than or equal to the reference vehicle speed after calculating the first suit deposition amount;

현 차속이 기준차속 이상인 경우 CRT 모니터링 단계; Monitoring the CRT when the current vehicle speed is greater than or equal to the reference vehicle speed;

CRT 모니터링 후 현 차속이 기준차속 미만인지 여부 판단 단계; Determining whether the current vehicle speed is less than the reference vehicle speed after monitoring the CRT;

현 차속이 기준차속 이상인 경우 현 CPF 입구온도가 기준온도 이상인지 여부 판단 단계; 및 Determining whether the current CPF inlet temperature is greater than or equal to the reference temperature when the current vehicle speed is greater than or equal to the reference vehicle speed; And

현 CPF 입구온도가 기준온도 이상인 경우 제2 수트 퇴적량 산출 단계로 이루어지는 것을 특징으로 한다. If the current CPF inlet temperature is higher than the reference temperature is characterized in that the second soot deposition amount calculation step.

디젤, CPF, CRT, 수트(soot) Diesel, CPF, CRT, soot

Description

디젤차량의 촉매입자필터시스템에서 수트량 검출 방법 {A method for detection soot mass in a catalyzed particulate filter system of diesel vehicle} A method for detection soot mass in a catalyzed particulate filter system of diesel vehicle}

도 1은 종래 CPF 시스템에서 수트 퇴적량 모니터링 방법 흐름도. 1 is a flowchart illustrating a method for monitoring soot deposition in a conventional CPF system.

도 2a는 종래 CRT효과 발생 후 시내 주행시 수트 퇴적량 인식 그래프. Figure 2a is a graph of the suit accumulation amount when running in the city after the conventional CRT effect occurs.

도 2b는 종래 CRT효과 발생 후 일반국도 주행시 수트 퇴적량 인식 그래프. Figure 2b is a graph of the suit accumulation amount when driving on the national highway after the conventional CRT effect occurs.

도 2c는 종래 CRT효과 발생 후 고속도로 주행시 수트 퇴적량 인식 그래프. Figure 2c is a graph of the suit accumulation amount during the highway driving after the conventional CRT effect occurs.

도 3은 본 발명에 따른 CPF 시스템에서 수트 퇴적량 모니터링 방법 흐름도. 3 is a flow chart of a method for monitoring soot deposition in a CPF system according to the present invention.

도 4는 본 발명의 차속과 CPF 입구온도에 따른 수트 퇴적량의 오프셋 값 매핑 데이터 표. Figure 4 is a table of offset value mapping data of the soot deposition amount according to the vehicle speed and the CPF inlet temperature of the present invention.

도 5는 본 발명에 따른 제어로직 적용 후 차량 주행시 수트 퇴적량 인식 그래프. 5 is a graph of the suit accumulation amount recognition when driving the vehicle after applying the control logic according to the present invention.

본 발명은 디젤차량의 촉매입자필터시스템에서 수트량 검출 방법에 관한 것으로서, 보다 구체적으로는 CPF(Catalyzed Particulate Filter) 시스템이 장착된 디젤차량에서 CRT(Continuous Regeneration Trap) 효과를 통한 수트(soot) 퇴적량을 정확히 판단하기 위한 디젤차량의 촉매입자필터시스템에서 수트량 검출 방법에 관한 것이다. The present invention relates to a soot amount detection method in a catalytic particle filter system of a diesel vehicle, and more particularly, soot deposition through a CRT (Continuous Regeneration Trap) effect in a diesel vehicle equipped with a CPF (Catalyzed Particulate Filter) system. It relates to a soot amount detection method in a catalytic particle filter system of a diesel vehicle for accurately determining the amount.

최근 혁신적인 기술 도약에 힘입어 승용 디젤 차량의 수요가 증대되어 가고 있는 추세이다. 이러한, 추세에 요구되어지는 배출가스의 엄격한 규제는 디젤차량의 중,장기적 개발 및 판매에서 중요한 요소로 작용하고 있다. 상기와 같은, 엄격한 규제를 극복하기 위한 다방면의 노력 중 가장 주목되는 것이 CPF(Catalyzed Particulate Filter, 이후 CPF라 칭함) 시스템이다. Recently, the demand for passenger diesel vehicles is increasing due to the technological leap. Such strict regulation of emission gas, which is required for the trend, is an important factor in the long-term development and sales of diesel vehicles. Among the various efforts to overcome such strict regulations, the most attention is the CPF (Catalyzed Particulate Filter, hereinafter CPF) system.

상기 CPF 시스템은 디젤차량에서 가장 심각한 문제로 인식되는 디젤 PM(Particulate Matters)을 저감하는데 기본적인 해결책이 될 뿐만 아니라, 대기오염의 주범으로 인식하고 하는 가시매연을 완전히 제거하는데 큰 역할을 담당하고 있다. 따라서, 상기 CPF 시스템의 기술개발은 각 정부의 환경 규제강화 대응뿐 아니라, CLEAN DIESEL에 대한 소비자 욕구에 대한 시장측면에서도 필수적인 시스템으로 자리 잡고 있다. The CPF system is not only a basic solution for reducing diesel particulates (PM), which is recognized as the most serious problem in diesel vehicles, but also plays a large role in completely removing visible smoke that is recognized as a major cause of air pollution. Therefore, the technology development of the CPF system has become an essential system not only in response to strengthening environmental regulations of each government, but also in terms of the market for consumer desire for CLEAN DIESEL.

이러한, CPF 시스템 내부의 수트(soot) 퇴적량을 인식하는 방법에 있어서, 종래에는 도 1의 흐름도에 도시된 바와 같이, 수트 퇴적량 모니터링 구간여부를 판단한 후 모니터링 구간을 만족하는 경우 현 차압, CPF 입구온도 및 배기유량을 검출하고[S10, S12], 그에 따른 수트 퇴적량을 산출하게 되므로 CRT(Continuous Regeneration Trap) 효과 즉, 수트의 주성분인 카본(C) 입자를 NO2 성분과 반응시켜 연속 재생을 이루는 현상의 발생 이후 정확한 수트 퇴적량을 인식하지 못해 지속적으로 오인식(under reading)하는 문제점을 갖고 있다[S14]. 즉, 차압과 CPF 입구온도 및 배기유량만으로는 정확한 수트 퇴적량을 인식할 수가 없다. In the method of recognizing the soot deposition in the CPF system, conventional differential pressure, CPF when the monitoring interval is satisfied after determining whether the soot deposition amount is monitored, as shown in the flowchart of FIG. 1. Since the inlet temperature and the exhaust flow rate are detected [S10, S12], and the soot deposition amount is calculated, continuous regeneration trap (CRT) effect, that is, carbon (C) particles, which are the main component of the soot, is reacted with the NO 2 component for continuous regeneration. After the occurrence of this phenomenon, it does not recognize the exact amount of soot deposition and has a problem of continuously under reading (S14). That is, only the differential pressure, the CPF inlet temperature, and the exhaust flow rate cannot recognize the exact soot deposition amount.

이는, 도 2a ~ 2c에 도시된 바와 같이, 먼저 도 2a는 CRT 효과 발생 후 시내 주행시(최대 60kph) 약 125km 주행 이후에도 여전치 차압에 의한 수트 퇴적량의 인식치가 오인식(under reading) 즉, 실제 수트 퇴적량(붉은점)과 인식되는 퇴적량이 일치하지 않음을 알 수 있으며, 또한, 도 2b는 CRT 효과 발생 후 일반국도 주행시(최대 80kph)에도 실제 수트 퇴적량(붉은점)과 인식되는 퇴적량이 일치하지 않아 여전히 차압에 의한 수트 퇴적량의 인식치가 오인식되는 것을 알 수 있으며, 또한, 도 2c는 CRT 효과 발생 후 고속도로 주행시(최대 100kph)에도 실제 수트 퇴적량(붉은점)과 인식되는 퇴적량이 일치하지 않아 여전히 차압에 의한 수트 퇴적량의 인식치가 오인식되는 것을 알 수 있다. As shown in FIGS. 2A to 2C, first, FIG. 2A shows that the recognition value of the amount of soot deposition due to the differential pressure is under reading, that is, the actual suit, even after driving about 125 km in the city driving (up to 60 kph) after the CRT effect occurs. It can be seen that the deposition amount (red dot) and the recognized deposition amount do not coincide. Also, FIG. 2B shows that the actual soot deposition amount (red dot) coincides with the recognized deposition amount even when driving on a general national road (up to 80 kph) after the CRT effect occurs. It can be seen that the recognition value of the soot deposition amount due to the differential pressure is still misunderstood. Also, FIG. 2C shows that the actual soot deposition amount (red dot) and the recognized accumulation amount do not match even when driving on the highway (up to 100 kph) after the CRT effect occurs. As a result, the recognition value of the soot deposition due to the differential pressure is still misrecognized.

이에, 본 제안은 CPF시스템의 개발 과정중 CPF 내부의 수트 퇴적량을 인식하는 방법중 CRT 효과가 발생한 이후 차압모델을 통해서 정확한 수트 퇴적량을 인식할 수 있도록 하기 위해 제안된 것이다. Therefore, this proposal is proposed to recognize the accurate soot deposition through the differential pressure model after the CRT effect occurs in the method of recognizing the soot deposition in the CPF system.

본 발명은 상기 종래기술의 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 CPF 시스템이 장착된 디젤차량에서 CRT 효과를 통한 수트(soot) 퇴적량을 정확히 판단할 수 있도록 하기 위한 디젤차량의 촉매입자필터시스템에서 수트량 검출 방법을 제공하는 것이다. The present invention has been made to solve the problems of the prior art, an object of the present invention is to provide a diesel vehicle for accurately determining the soot (soot) deposition amount through the CRT effect in a diesel vehicle equipped with a CPF system It is to provide a soot amount detection method in a catalytic particle filter system.

상기 목적을 이루기 위한, 본 발명에 따른 수트 퇴적량 검출 방법은, Soot deposition amount detection method according to the present invention for achieving the above object,

수트 퇴적량 모니터링 구간여부 판단 단계; Determining whether or not the soot deposition amount monitoring interval;

모니터링 구간을 만족하는 경우 현 차압, CPF 입구온도 및 배기유량 검출 단계; Detecting the current differential pressure, the CPF inlet temperature and the exhaust flow rate if the monitoring interval is satisfied;

제1 수트 퇴적량 산출 단계; Calculating a first soot deposition amount;

제1 수트 퇴적량 산출 후 현 차속이 기준차속 이상인지 여부 판단 단계; Determining whether the current vehicle speed is greater than or equal to the reference vehicle speed after calculating the first suit deposition amount;

현 차속이 기준차속 이상인 경우 CRT 모니터링 단계; Monitoring the CRT when the current vehicle speed is greater than or equal to the reference vehicle speed;

CRT 모니터링 후 현 차속이 기준차속 미만인지 여부 판단 단계; Determining whether the current vehicle speed is less than the reference vehicle speed after monitoring the CRT;

현 차속이 기준차속 이상인 경우 현 CPF 입구온도가 기준온도 이상인지 여부 판단 단계; 및 Determining whether the current CPF inlet temperature is greater than or equal to the reference temperature when the current vehicle speed is greater than or equal to the reference vehicle speed; And

현 CPF 입구온도가 기준온도 이상인 경우 제2 수트 퇴적량 산출 단계로 이루어지는 것을 특징으로 한다. If the current CPF inlet temperature is higher than the reference temperature is characterized in that the second soot deposition amount calculation step.

이하, 도면을 참조하여 본 발명에 따른 바람직한 실시예를 설명한다. Hereinafter, with reference to the drawings will be described a preferred embodiment according to the present invention.

본 실시예에 따른 CPF시스템이 장착된 디젤차량에서의 수트(soot) 퇴적량 검출 방법을 흐름도인 도 3을 참조하여 설명한다. A method of detecting soot deposition in a diesel vehicle equipped with a CPF system according to the present embodiment will be described with reference to FIG. 3.

도 3에서 보는 바와 같이, 본 실시예에서는 수트 퇴적량의 정확한 인식을 위해 먼저, 수트 퇴적량 모니터링 구간을 만족하는지 여부를 판단한다[S100]. 상기에서, 모니터링 구간 만족은 차량이 주행상태이고 냉각수온이 설정온도(40℃) 이상인 상태이다. As shown in FIG. 3, in the present embodiment, for accurate recognition of the soot deposition amount, first, it is determined whether the soot deposition amount monitoring interval is satisfied [S100]. In the above, the monitoring section satisfaction is a state in which the vehicle is in a running state and the coolant temperature is equal to or higher than the set temperature (40 ° C).

상기 S100 단계에서, 수트 퇴적량 모니터링 구간을 만족하는 경우 현 차압, CPF 입구온도 및 배기유량을 검출한 후 제1 수트 퇴적량을 산출한다[S102, S104]. 상기에서, 수트 퇴적량 산출은 다르시(Darcy) 법칙을 통해 구해진 저항계수(Restriction Number)와 필터상에 적재된 수트 질량과의 관계를 실험을 통해 매핑(mapping)한 후 이를 바탕으로 측정된 차압과 CPF 입구온도 및 배기유량에 따라 현 필터 내 퇴적된 수트량의 산출을 이룬다. 상기 다르시(Darcy) 법칙을 이용하여 유체가 유로를 통과할 때 차압과 유량과의 관계는 아래 수학식 1에 나타난 바와 같다. In step S100, when the soot deposition amount monitoring interval is satisfied, the first soot deposition amount is calculated after detecting the current differential pressure, the CPF inlet temperature, and the exhaust flow rate [S102, S104]. In the above, the soot deposition amount is calculated by mapping the relationship between the Restriction Number obtained through the Darcy law and the soot mass loaded on the filter through an experiment. The amount of soot deposited in the current filter is calculated according to the CPF inlet temperature and the exhaust flow rate. When the fluid passes through the flow path using the Darcy law, the relationship between the differential pressure and the flow rate is shown in Equation 1 below.

Figure 112005071192223-pat00001
Figure 112005071192223-pat00001

상기에서, Q(m3/S)는 유량In the above, Q (m 3 / S) is the flow rate

A(m2)는 필터의 단면적A (m 2 ) is the cross-sectional area of the filter

△P는 차압          ΔP is differential pressure

R은 저항계수(Restriction Number)          R is the Restriction Number

μ는 유체의 점성계수          μ is the viscosity coefficient of the fluid

L(m)은 필터의 두께를 의미한다.           L (m) means the thickness of the filter.

참고로, 상기에서 필터의 단면적(A)과 필터의 두께(L)는 CPF에 따라 달리 설 정되며, 점성계수 μ는 온도함수로 계산된다. 또한, 상기 Q는 이상기체방정식에 의해 아래 수학식 2와 같이 산출된다. For reference, the cross-sectional area (A) of the filter and the thickness (L) of the filter is set differently according to the CPF, and the viscosity coefficient μ is calculated as the temperature function. In addition, Q is calculated by the ideal gas equation as shown in Equation 2 below.

Figure 112005071192223-pat00002
Figure 112005071192223-pat00002

상기에서, P는 차압In the above, P is the differential pressure

R은 저항계수          R is the coefficient of resistance

T는 CPF 입구온도를 의미한다.           T means CPF inlet temperature.

다시 도 3의 흐름도로 돌아가서, 상기 S104 단계에서 1차적으로 수트 퇴적량을 산출한 후에는, 차량의 현 차속이 기준차속(본 실시예에서는 120kph로 설정하였으나, 이 값은 차종에 따라 달리 설정하여 적용가능한 값임) 이상인지 여부를 판단하여[S106], 현 차속이 기준차속 이상인 경우 CRT 모니터링을 시작한 후 차량의 현 차속이 기준차속 이상인지 여부를 판단한다[S108, S110]. Returning to the flowchart of FIG. 3 again, after first calculating the soot deposition amount in step S104, the current vehicle speed of the vehicle is set to the reference vehicle speed (120 kph in this embodiment, but this value is set differently according to the vehicle type). If the current vehicle speed is greater than or equal to the reference vehicle speed, it is determined whether the current vehicle speed of the vehicle is greater than or equal to the reference vehicle speed after the CRT monitoring is started [S108, S110].

상기 S110 단계에서, 차량의 현 차속이 기준차속 이상인 경우 현 CPF 입구온도가 기준온도(본 실시예에서는 600℃로 설정하였으나, 이 값은 차종에 따라 달리 설정하여 적용가능한 값임) 이상인지 여부를 판단하여[S112], 현 CPF 입구온도가 기준온도 이상인 경우 2차적으로 수트 퇴적량을 다시 산출한다[S114]. 상기에서, 제2 수트 퇴적량의 산출은 앞서 제1 수트 퇴적량의 산출 방법과 동일하지만, 제2 수트 퇴적량의 산출시에는 도 4에 도시된 바와 같이, 차속과 CPF 입구온도에 따른 수트 퇴적량의 오프셋(offset) 값을 매핑화시킨 후 이를 상기 제1 수트 퇴적량에 부가시켜 제2 수트 퇴적량을 산출하게 된다. 이로써, 도 5에 도시된 바와 같이, 차량의 주행시 수트 퇴적량을 인식하는데 있어서, 기존의 수트 퇴적량의 인식치와 같이 오인식(under reading)되지 않고(도 2a~2c 참조), 실제 수트 퇴적량(붉은점)과 인식되는 퇴적량이 일치됨을 알 수 있다. In step S110, when the current vehicle speed of the vehicle is greater than or equal to the reference vehicle speed, it is determined whether the current CPF inlet temperature is equal to or greater than the reference temperature (600 DEG C in the present embodiment, but this value is differently applicable depending on the vehicle model). [S112], if the current CPF inlet temperature is above the reference temperature, the soot deposition amount is secondarily calculated again [S114]. In the above, the calculation of the second soot deposition amount is the same as the method of calculating the first soot deposition amount, but when calculating the second soot deposition amount, as shown in FIG. 4, the soot deposition according to the vehicle speed and the CPF inlet temperature is shown. An offset value of the amount is mapped and then added to the first soot deposition amount to calculate a second soot deposition amount. Thus, as shown in FIG. 5, in recognizing the amount of soot deposition during driving of the vehicle, the actual soot deposition amount is not under-read (refer to FIGS. 2A to 2C) as in the conventional soot deposition amount. It can be seen that (red dot) coincides with the amount of deposits recognized.

상기에서와 같이, 본 실시예에서는 수트 퇴적량을 정확히 판단하기 위해 1차적으로 퇴적된 수트량을 산출한 후, 차속과 CRT 모니터링 구간인지 여부(통상적으로, CRT 구간은 차속이 120kph 이상이고 CPF 입구온도가 300℃ 이상에서만 발생가능하므로, 차속 및 CPF 입구온도 정보를 바탕으로 CRT 구간의 종료여부를 알 수 있음)에 따라 2차적으로 퇴적된 수트량을 다시 산출함으로써, 퇴적된 수트량의 정확한 인식을 이룰 수 있도록 한 것이다. As described above, in this embodiment, after calculating the amount of soot deposited primarily to accurately determine the amount of soot deposition, whether the vehicle speed and the CRT monitoring section (typically, the CRT section has a vehicle speed of 120 kph or more and a CPF entrance Since the temperature can only be generated at 300 ℃ or higher, it is possible to know whether the CRT section is terminated based on the vehicle speed and the CPF inlet temperature information.) To achieve this.

본 발명의 기술적 범위를 해석함에 있어서는, 상기에서 설명된 실시예에 한정하여 해석되어서는 아니 되며, 본 발명의 기술적 범위는 특허청구범위에 기재된 사항의 합리적 해석에 의해 결정되어져야 한다. In interpreting the technical scope of the present invention, it should not be construed as being limited to the embodiments described above, and the technical scope of the present invention should be determined by reasonable interpretation of the matters described in the claims.

본 발명의 디젤차량의 촉매입자필터시스템에서 수트량 검출 방법에 따르면, 수트 퇴적량을 정확하게 검출할 수 있으며, 이를 통해 CPF 시스템의 신뢰성을 향상시킬 수 있는 효과를 갖는다. According to the soot amount detection method in the catalyst particle filter system of the diesel vehicle of the present invention, it is possible to accurately detect the soot deposition amount, thereby improving the reliability of the CPF system.

Claims (5)

디젤차량의 촉매입자필터(CPF) 시스템에서 CRT효과를 통한 수트량(soot mass) 검출 방법에 있어서, In a soot mass detection method through a CRT effect in a catalytic particle filter (CPF) system of a diesel vehicle, 수트 퇴적량 모니터링 구간여부 판단 단계; Determining whether or not the soot deposition amount monitoring interval; 모니터링 구간을 만족하는 경우 현 차압, CPF 입구온도 및 배기유량 검출 단계; Detecting the current differential pressure, the CPF inlet temperature and the exhaust flow rate if the monitoring interval is satisfied; 제1 수트 퇴적량 산출 단계; Calculating a first soot deposition amount; 제1 수트 퇴적량 산출 후 현 차속이 기준차속 이상인지 여부 판단 단계; Determining whether the current vehicle speed is greater than or equal to the reference vehicle speed after calculating the first suit deposition amount; 현 차속이 기준차속 이상인 경우 CRT 모니터링 단계; Monitoring the CRT when the current vehicle speed is greater than or equal to the reference vehicle speed; CRT 모니터링 후 현 차속이 기준차속 미만인지 여부 판단 단계; Determining whether the current vehicle speed is less than the reference vehicle speed after monitoring the CRT; 현 차속이 기준차속 이상인 경우 현 CPF 입구온도가 기준온도 이상인지 여부 판단 단계; 및 Determining whether the current CPF inlet temperature is greater than or equal to the reference temperature when the current vehicle speed is greater than or equal to the reference vehicle speed; And 현 CPF 입구온도가 기준온도 이상인 경우 제2 수트 퇴적량 산출 단계로 이루어지는 것을 특징으로 하는 디젤차량의 촉매입자필터시스템에서 수트량 검출 방법. And a second soot deposition amount calculating step when the current CPF inlet temperature is higher than or equal to the reference temperature. 제 1항에 있어서, The method of claim 1, 상기에서 수트 퇴적량 모니터링 구간여부 판단은 차량이 주행상태이고 냉각수온이 설정온도(40℃) 이상인 상태인 것을 특징으로 하는 디젤차량의 촉매입자필터시스템에서 수트량 검출 방법. The method for detecting soot deposition in the catalyst particle filter system of a diesel vehicle, characterized in that the determination of whether or not the soot deposition amount monitoring section is in a state in which the vehicle is in a running state and the cooling water temperature is higher than a set temperature (40 ° C.). 제 1항에 있어서, The method of claim 1, 상기에서 제1,2 수트 퇴적량은 다르시(Darcy) 법칙을 통해 구해진 저항계수(Restriction Number)와 필터상에 적재된 수트 질량과의 관계를 실험을 통해 매핑(mapping)한 후 이를 바탕으로 측정된 차압과 CPF 입구온도 및 배기유량에 따라 현 필터 내 퇴적된 수트량의 산출이 이루어지는 것을 특징으로 하는 디젤차량의 촉매입자필터시스템에서 수트량 검출 방법. In the above, the first and second soot deposition amounts are measured based on the mapping between the resistance number obtained through the Darcy law and the soot mass loaded on the filter through an experiment. A method for detecting soot in a catalytic particle filter system of a diesel vehicle, wherein the amount of soot deposited in the current filter is calculated according to the differential pressure, the CPF inlet temperature, and the exhaust flow rate. 제 1항에 있어서, The method of claim 1, 상기에서 기준차속은 120kph인 것을 특징으로 하는 디젤차량의 촉매입자필터시스템에서 수트량 검출 방법. The soot amount detection method in the catalyst particle filter system of the diesel vehicle, characterized in that the reference vehicle speed is 120kph. 제 1항에 있어서, The method of claim 1, 상기에서 기준온도는 600℃인 것을 특징으로 하는 디젤차량의 촉매입자필터시스템에서 수트량 검출 방법. The soot amount detection method in the catalyst particle filter system of a diesel vehicle, characterized in that the reference temperature is 600 ℃.
KR1020050118156A 2005-12-06 2005-12-06 A method for detection soot mass in a catalyzed particulate filter system of diesel vehicle KR101163785B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050118156A KR101163785B1 (en) 2005-12-06 2005-12-06 A method for detection soot mass in a catalyzed particulate filter system of diesel vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050118156A KR101163785B1 (en) 2005-12-06 2005-12-06 A method for detection soot mass in a catalyzed particulate filter system of diesel vehicle

Publications (2)

Publication Number Publication Date
KR20070059379A KR20070059379A (en) 2007-06-12
KR101163785B1 true KR101163785B1 (en) 2012-07-09

Family

ID=38355695

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050118156A KR101163785B1 (en) 2005-12-06 2005-12-06 A method for detection soot mass in a catalyzed particulate filter system of diesel vehicle

Country Status (1)

Country Link
KR (1) KR101163785B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100888304B1 (en) * 2007-11-20 2009-03-11 현대자동차주식회사 Method for estimating quantity of diesel particulate in dpf

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005054631A (en) 2003-08-01 2005-03-03 Nissan Diesel Motor Co Ltd Exhaust emission control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005054631A (en) 2003-08-01 2005-03-03 Nissan Diesel Motor Co Ltd Exhaust emission control device

Also Published As

Publication number Publication date
KR20070059379A (en) 2007-06-12

Similar Documents

Publication Publication Date Title
US6941750B2 (en) Method of determining the amount of particulate accumulated in a particulate filter
US8316635B2 (en) Methods of increasing accuracy of soot load estimates
CN105089757B (en) Method and device for detecting soot and ash loads of a particle filter
US7065960B2 (en) Method for activation of the regeneration of a particulate filter based on an estimate of the quantity of particulate accumulated in the particulate filter
CN110462177B (en) Method and computer program product for diagnosing a particulate filter
US8478565B2 (en) Method of monitoring soot mass in a particulate filter and monitoring system for same with correction for active regeneration inefficiency
US20080282682A1 (en) Integrated DPF loading and failure sensor
US8359827B2 (en) Abnormality diagnosis system and method for diagnosing abnormality in filter regeneration system
CN102337953B (en) Method operating a diesel particulate filter
JP2007315275A (en) Exhaust gas purifying filter failure diagnosis device and method
WO2004016916A1 (en) Filter control device
EP2929157B1 (en) On board diagnosis of the condition of an exhaust particle filter
AU2009226856A1 (en) Method for determining the charge state of a particle filter installed in the exhaust gas line of an internal combustion engine and device for reducing the particle emissions of an internal combustion engine
US10465625B2 (en) Method for monitoring an exhaust-gas sensor
CN106837496A (en) Engine particulate purifying regeneration control system
KR101163785B1 (en) A method for detection soot mass in a catalyzed particulate filter system of diesel vehicle
CN109312654B (en) Device for cleaning exhaust gas with filter function and diagnostic method for the device
US8865082B2 (en) Method and system for monitoring a hydrocarbon adsorber
CN111255549A (en) Method and device for determining the particle load of a particle filter
CN103133103A (en) Method for detecting breakage of diesel particulate filter
CN110005509B (en) Method and system for detecting the amount of particulate matter trapped by a diesel particulate filter
US20060272320A1 (en) Method for determining start and end points of regeneration of diesel soot-filtering device
JP3598542B2 (en) Exhaust purification system for diesel internal combustion engine
JP2679456B2 (en) Exhaust gas cleaning device for diesel engine
CN117072295A (en) Early warning method and device for frequent regeneration of DPF

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150630

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee