JP3598542B2 - Exhaust purification system for diesel internal combustion engine - Google Patents

Exhaust purification system for diesel internal combustion engine Download PDF

Info

Publication number
JP3598542B2
JP3598542B2 JP24507994A JP24507994A JP3598542B2 JP 3598542 B2 JP3598542 B2 JP 3598542B2 JP 24507994 A JP24507994 A JP 24507994A JP 24507994 A JP24507994 A JP 24507994A JP 3598542 B2 JP3598542 B2 JP 3598542B2
Authority
JP
Japan
Prior art keywords
filter
differential pressure
temperature
volume flow
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24507994A
Other languages
Japanese (ja)
Other versions
JPH08109818A (en
Inventor
隆之 戸谷
信史 保浦
秀治 吉田
恵一 加藤
孝太郎 林
正仁 柴田
誠 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP24507994A priority Critical patent/JP3598542B2/en
Publication of JPH08109818A publication Critical patent/JPH08109818A/en
Application granted granted Critical
Publication of JP3598542B2 publication Critical patent/JP3598542B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Processes For Solid Components From Exhaust (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、ディーゼル内燃機関の排気浄化装置であって、特に排気ガスが通過するフィルタの層流特性に基づきフィルタに溜まった微粒子捕集量の検出精度を向上させたものに関する。
【0002】
【従来の技術】
従来、ディーゼル内燃機関において、排気ガスの微粒子(パティキュレイト)の捕集量を検出するものとしてDPF(Diesel Particulate Filter )システムがある。これは、排気ガスが通過するフィルタの層流特性を利用するものであり、フィルタを通過する体積流量が差圧(圧力差)に比例する数1を利用するものである。
【0003】
【数1】
V=A×ΔP=(A0 +Ap)×ΔP
ここで、Vは体積流量、ΔPは差圧、Aは通気抵抗である。但し、通気抵抗はフィルタの初期圧損によるもの(A0 )と微粒子捕集量によるもの(Ap)で決められる。
【0004】
そして、A0 <<Apならば、実質的にフィルタに溜まった微粒子捕集量は、Apおよびフィルタ間に生じる差圧(圧力差)より算出される。その際、同一捕集量でも運転条件(体積流量の条件)によって、発生差圧が異なるので、これを常に基準状態に補正する必要がある。
このため、ある捕集量のもとで体積流量Vがフィルタに流入したときフィルタ間の差圧がΔPであったとし、またある運転条件を基準としたときの基準体積流量がVstdであるとすると、このときの補正された差圧(以下、補正差圧という)ΔP1は数2で表される。
【0005】
【数2】
ΔP1=ΔP×Vstd/V
このようにして、補正差圧ΔP1は、フィルタの微粒子捕集量が一定ならば、体積流量が変化しても一定値になる。かくして、補正差圧ΔP1が微粒子捕集量と1対1に対応して補正差圧ΔP1から微粒子捕集量が得られる。
【0006】
しかしながら、フィルタの圧損により排気ガスが通過するフィルタの層流特性が少しずれる場合がある。図2は、フィルタの圧損に起因する層流特性に少しずれがある場合におけるフィルタの体積流量Vー差圧ΔP特性(フィルタ特性)を示すグラフである。この図において、点線はフィルタの圧損による影響が少ない理想的フィルタ特性(層流性)による体積流量−差圧特性を示し、実線は実際にフィルタによる圧損による影響がある体積流量−差圧特性を示している。このように、フィルタに圧損があると、補正差圧ΔP1を上記数2により算出すると、誤差が大きくなる。
【0007】
そこで、本発明者等は、補正差圧ΔP1の算出において、このフィルタ特性を加味することにより、上記問題を解決するものを提案した(特願平5−170580号)。このものにおける補正差圧ΔP1の算出は数3により行われる。
【0008】
【数3】
ΔP1=ΔP×(Vstd/V)1/a
ここで、ΔPは前記のフィルタの差圧、Vはフィルタの前記通過体積流量、
Vstdは基準の体積流量、aは前記通過体積流量Vと前記差圧との特性、すなわちフィルタ特性に基ずく係数で、0.5<a<1である。
【0009】
【発明が解決しようとする課題】
上記のように補正差圧計算にフィルタ特性を考慮に入れることにより補正差圧の精度を大幅に向上させることができる。
しかしながら、これでも完全に補正することが出来ず、運転条件により補正差圧ΔPがずれることが判明した。すなわち、フィルタ特性を考慮に入れて補正差圧を求めるようにしても、運転条件を変化させた場合に補正差圧ΔP1が変化することが判明した。
【0010】
この運転条件の変化による補正差圧ΔP1の変化について図3を用いて説明する。まず、基準運転条件Aで運転すると、フィルタには微粒子が捕集されるため補正差圧ΔP1値は上昇する。その後、別の運転条件Bにし、ある程度、時間が経過したら運転条件を基準運転条件Aに戻す。この一連の運転中の補正差圧値ΔP1は図3(b)に示すように変化する。なお、図3(a)はフィルタ特性を考慮に入れない場合の補正差圧ΔP1の変化を示している。このように、フィルタ特性を考慮に入れることにより補正差圧の精度を向上させることができるものの、運転条件により補正差圧ΔP1にずれが生じてしまう。
【0011】
従って、微粒子が適切な量になった時に、定期的に燃焼(フィルタの安定再生)させるためには、微粒子の捕集量(補正差圧)を精度よく検出しなければならず、上記数3によるフィルタ特性を考慮に入れた補正差圧の算出では、まだ不十分である。
上記のような運転条件によるずれについて、本発明者等は、種々について検討したところ、フィルタ特性に温度特性があり、フィルタの温度によりフィルタの圧損特性が変化し、補正差圧ΔP1の算出に誤差が生じるためであることを見い出した。
【0012】
図4に、異なる運転条件C、D(捕集量は同一の時)で、フィルタに流入する排気ガスの体積流量が同一の場合の、体積流量V、フィルタ温度Tf、差圧ΔPの変化を示す。排気ガスの体積流量が同一であるためフィルタ間に発生する差圧は同一のはずであるが、運転条件が異なるため排気ガス温度が異なり、これによってフィルタ特性も異なり、発生する差圧に違いが出ていることが分かる。
【0013】
従って、数3において、体積流量Vが同一のため、(Vstd/V)1 /aの部分)はそれらの運転条件C、Dにおいて同じになるが、差圧ΔPが異なるため補正差圧ΔP1の値に違いが生じる。
図5に、運転条件を変化(フィルタ温度を変化)させた時の、フィルタ特性のずれの様子を示す。実線は基準運転条件時のフィルタ温度T0 の場合のフィルタ特性である。基準運転条件より負荷の高い運転条件の場合、排気ガス温度は上昇し、フィルタ温度も上昇する。すると、フィルタおよびパティキュレートの温度特性により圧損が減少し、フィルタ特性は点線のように下にずれる。逆に、基準運転条件より負荷の低い運転条件の場合はフィルタ特性は2点鎖線のように上にずれる。但し、ずれ量は温度に対してほぼ線形である。
【0014】
このように運転条件が変化すると、排気ガス温度が変化し、フィルタの温度も変化する。フィルタには温度特性があるため運転条件が変化するごとにフィルタ特性がずれ、補正差圧に誤差が生じる。
本発明は上記問題に鑑みてなされたもので、フィルタの温度特性を考慮してフィルタに溜まった微粒子の捕集量を示す補正差圧を求め、フィルタの再生処理を行うようにすることを目的とする。
【0015】
【課題を解決するための手段】
本発明は上記目的を達成するため、請求項1に記載の発明においては、ディーゼル内燃機関(1)の排気系に設置されて排気ガスの微粒子を捕集し、かつ層流特性を有するフィルタ(7)を具備したディーゼル内燃機関の排気浄化装置であって、前記フィルタ(7)を通過する排気ガスの体積流量と、前記フィルタ(7)の間の差圧とを求め、基準の体積流量に対する前記通過排気ガスの体積流量で前記差圧を補正した補正差圧を検出する捕集量検出手段(3,8〜14,102〜108)を備え、この検出した補正差圧に基づいて前記フィルタ(7)の再生処理を行うようにしたディーゼル内燃機関の排気浄化装置において、前記捕集量検出手段(3,8〜14,ステップ102〜108)は、前記フィルタ(7)の温度を検出するフィルタ温度検出手段(10,11,105)を有し、この検出したフィルタ温度と基準運転条件時のフィルタ温度とを用いた式で、前記検出したフィルタ温度が前記基準運転条件時のフィルタ温度より高いときに前記補正差圧を大きくし、前記検出したフィルタ温度が前記基準運転条件時のフィルタ温度より低いときに前記補正差圧を小さくするように、前記補正差圧を温度補正することを特徴としている。
【0016】
請求項2に記載の発明においては、ディーゼル内燃機関(1)の排気系に設置されて排気ガスの微粒子を捕集し、かつ層流特性を有するフィルタ(7)を具備したディーゼル内燃機関の排気浄化装置において、前記フィルタ(7)を通過する体積流量を求める体積流量検出手段(104)と、前記フィルタ(7)の間の差圧を求める差圧検出手段(103)と、前記フィルタ(7)の温度を検出するフィルタ温度検出手段(105)と、前記フィルタ(7)の圧損に起因する体積流量ー差圧特性および前記フィルタ(7)の温度に起因する体積流量ー差圧特性に基づき、前記検出した差圧を、前記検出した体積流量およびフィルタ温度により補正して、補正差圧を演算する補正差圧演算手段(106〜108)を備え、前記演算した補正差圧に基づいて前記フィルタ(7)の再生処理を行うようになっており、前記補正差圧演算手段は、前記検出したフィルタ温度と基準運転条件時のフィルタ温度とを用いた式で、前記検出したフィルタ温度が前記基準運転条件時のフィルタ温度より高いときに前記検出した差圧を大きくし、前記検出したフィルタ温度が前記基準運転条件時のフィルタ温度より低いときに前記検出した差圧を小さくするように、前記検出した差圧を補正することを特徴としている。
【0017】
上記の補正差圧ΔP1は、後述する実施例においては、以下の数4により求められる。
【0018】
【数4】
ΔP1=ΔP×(Vstd/V)1/a ×(1+(Tf−T0 )×Kt)
ここで、ΔPは前述のフィルタ特性、Vはフィルタ(7)の通過体積流量、
Vstdは基準の体積流量、aはフィルタ温度T0 (基準運転条件時のフィルタ温度)時の前記通過体積流量Vと前記差圧との特性(フィルタ特性)に基づく係数、Tfはフィルタ温度、T0 は基準運転条件時のフィルタ温度、Ktはフィルタ特性の温度特性を補正する係数である。
【0019】
請求項3に記載の発明では、請求項2に記載の発明において、前記補正差圧演算手段(106〜108)は、前記フィルタ(7)の圧損に起因する体積流量ー差圧特性を、体積流量ー基準の差圧に対する差圧特性に規格化して前記フィルタの圧損に対する前記差圧の補正を行う
ことを特徴としている。
【0020】
請求項4に記載の発明では、請求項1乃至3のいずれか1つに記載の発明において、前記フィルタ温度検出手段(105)は、前記フィルタ(7)に流入する排気温度と流出する排気温度の平均値により前記フィルタ(7)の温度を検出する
ことを特徴としている。
【0021】
なお、上記各手段のカッコ内の符号は、後述する実施例記載の具体的手段との対応関係を示すものである。
【0022】
【発明の作用効果】
請求項1に記載の発明によれば、フィルタを通過する排気ガスの体積流量と、フィルタの間の差圧とを求め、基準の体積流量に対する前記通過排気ガスの体積流量で差圧を補正した補正差圧を検出し、この検出した補正差圧に基づいてフィルタの再生処理を行うようにしている。
【0023】
さらに、フィルタの温度を検出し、この検出したフィルタ温度にて前記補正差圧を温度補正している。
従って、フィルタの温度により、補正差圧がずれるのを補正しているから、種々の運転条件によりフィルタ温度が変化する状態が発生しても、それを考慮した補正差圧を得ることにより、運転条件の変化に係わらず正しくフィルタの再生処理を行うことができる。
【0024】
請求項2に記載の発明によれば、フィルタの圧損に起因する体積流量ー差圧特性およびフィルタの温度に起因する体積流量ー差圧特性に基づき、検出した差圧を、検出した体積流量およびフィルタ温度により補正して補正差圧を演算し、この演算した補正差圧に基づいてフィルタの再生処理を行うようにしている。
従って、フィルタの圧損特性および温度特性を考慮して正確な補正差圧を得るこができ、これによりフィルタの再生処理を正しく行うことができる。
【0025】
請求項3に記載の発明においては、フィルタの圧損に起因する体積流量ー差圧特性を、体積流量ー基準の差圧に対する差圧特性に規格化してフィルタの圧損に対する差圧の補正を行っている。
従って、このような規格化により、捕集量によらず1つの特性にてフィルタの圧損に対する差圧の補正を行うことができる。
【0026】
請求項4に記載の発明では、フィルタに流入する排気温度と流出する排気温度の平均値によりフィルタの温度を検出している。
従って、フィルタの平均温度をほぼ正確に把握して、上記請求項1乃至3に記載の発明を適切に実施することができる。
【0027】
【実施例】
以下、本発明を図に示す実施例について説明する。
図1は、本発明の一実施例を示すディーゼル内燃機関の排気浄化装置の概略構成図である。但し、図1はディーゼルエンジンの排気系に設けられた排気浄化装置の捕集量検出(補正差圧算出)に関する部分のみを抜粋した構成からなる。
【0028】
ディーゼルエンジン1の吸入側にはエアクリーナ2が設けられており、その吸入流量を検知するための熱線式流量センサ3がエアクリーナ2からディーゼルエンジン1への流路の途中に設けられている。
ディーゼルエンジン1の排気管4には排気浄化装置5が設けられている。排気浄化装置5は排気管4に連結されているハウジング6を有している。ハウジング6の中にはセラミック多孔からなるフィルタ7が設置されており、それに排気ガスが通過することにより排気ガスに含まれる微粒子が捕集される。
【0029】
フィルタ7の目詰まり防止のため、フィルタ7の微粒子の捕集量が検出され、捕集量がある値に達したら、フィルタ7に捕集された微粒子は図示しない加熱装置で燃焼再生される。
排気浄化装置5には、フィルタ7のディーゼルエンジン1側の絶対圧力(前圧)を検知するための圧力センサ8、フィルタ7の排気側の絶対圧力(後圧)を検知するための圧力センサ9が設けられている。また、ディーゼルエンジン1からフィルタ7に流れ込む排気絶対温度(入ガス温度)を検知するための温度センサ10、フィルタ7から流出する排気絶対温度(出ガス温度)を検知するための温度センサ11が設けられている。
【0030】
そして、各センサからの信号は電子制御ユニット(ECU)12に入力される。このECU12内にはCPU13が設けられており、各センサ信号は最終的にはCPU13に入力される。また、このCPU13には、微粒子の捕集量を演算する捕集量演算部14が設けられている。
この捕集量演算部14による演算を詳細に説明する。
【0031】
まず、捕集量演算部14ではフィルタ7に流入する体積流量Vを熱線式流量センサ3の吸入流量と圧力センサ8の前圧、温度センサ10の入ガス温度と温度センサ11の出ガス温度の平均温度より、公知の演算方法を用いて求める。
また、圧力センサ8及び9の前圧から後圧を引くことによりフィルタ7の差圧(ΔP)が得られる。フィルタ温度は温度センサ10及び11の入ガス温度と出ガス温度の平均温度より得られ、これによりフィルタ7の平均温度をほぼ正確に把握することができる。このようにして捕集量演算部14で、ある微粒子の捕集量で、ある運転条件下の体積流量と差圧とフィルタ温度が求められる。
【0032】
体積流量が得られると、フィルタ特性に基づく差圧補正値が求められる。数4における(Vstd/V)1/a の部分である。この差圧補正値を数5のように定義する。
【0033】
【数5】
F=(Vstd/V)1/a
ここで、Fは係数であり、フィルタ7に流入する排気ガスの体積流量をパラメータとしたフィルタ特性に基づく差圧補正値と言える。但し、CPU13でこのような演算を行うのは困難であるため体積流量Vをパラメータとした2次元マップにより差圧補正値Fを求める。マップはフィルタ特性より求める。
【0034】
図6(a)にある捕集量のもとで測定したフィルタ7の体積流量−差圧特性、つまりフィルタ特性を示す。ここで、Vstdは基準運転条件時の体積流量で、そのときに発生した差圧をΔPstdとする。この特性を基準運転条件ΔPstdで規格化したフィルタ特性を図6(b)に示す。この規格化した値をKpとする。
【0035】
ここで、数3におけるΔP1はΔPstdであるので、数3より、
ΔP/ΔPstd=1/(Vstd/V)1/a となる。また、ΔP/ΔPstd=Kpであるため、これと数5により、Kp=1/Fとなる。但し、このフィルタ特性は捕集量に依存しない。つまり、フィルタ特性は無次元である。よって、数5は実際の演算では数6のように行う。
【0036】
【数6】
F=1/MAP(V)
ここで、MAP(V)は、体積流量Vをパラメータとし、図6(b)に示す関数により求めた差圧補正値Kpである。
上記のような規格化をしない場合には、捕集量毎に図6(a)のマップをそれぞれ用意しておく必要があるが、上記のように規格化することにより、捕集量によらず1つのマップで値を求めることができる。
【0037】
また、捕集量演算部14では、フィルタ温度(温度センサ10及び11の入ガス温度と出ガス温度の平均温度)よりフィルタ特性の温度係数補正値が求められる。数4における1+(Tf−T0 )×Ktの部分である。
フィルタ特性は基準運転状態時のもので温度はT0 である。これよりフィルタ温度Tfが高い場合、つまりTf>T0 の時、前述したように実際のフィルタ特性値Kpは、ECU12内で持つ基準運転条件時のフィルタ特性値よりも低くなり、補正差圧値ΔP1は少なめの値になる。このため、1+(Tf−T0 )×Ktの式で、フィルタ特性の温度による変化によって生じる補正差圧ΔP1の誤差を補正する。すなわち、Tf>T0 の時、1+(Tf−T0 )×Ktが>1となり、マイナス側に発生する補正差圧ΔP1の誤差を補正する。Tf<T0 の時は前述した場合と逆の方向に補正する。
【0038】
よって、捕集量演算部14では数4の計算を数7のように演算することによって実現している。
【0039】
【数7】
ΔP1=ΔP/MAP(V)×(1+(Tf−T0 )×Kt)
ここで、ΔPは前記フィルタ特性、MAP(V)はフィルタ7の通過体積流量Vをパラメータとした関数で基準運転条件時におけるフィルタ温度のもとでのフィルタ特性をもとにした差圧補正係数、Tfはフィルタ温度、T0 は基準運転条件時のフィルタ温度、Ktはフィルタ特性の温度特性を補正する係数を表す。
【0040】
上記した捕集量演算部14の処理を含むCPU13での演算処理について図7に示すフローチャートを基に説明する。
まず、ステップ101にて再生中であるか否かを判定する。後述する再生制御中でなければ、ステップ102に進み、センサ3,8〜11からのセンサ値を取り込む。
【0041】
次のステップ103では、圧力センサ8及び9にてそれぞれ検出した前圧から後圧を引くことによりフィルタ7の差圧ΔPを求め、ステップ104では、熱線式流量センサ3の吸入流量と圧力センサ8の前圧、温度センサ10の入ガス温度と温度センサ11の出ガス温度の平均温度より体積流量Vを求める。ステップ105では、温度センサ10及び11の入ガス温度と出ガス温度の平均温度よりフィルタ温度Tfを求める。
【0042】
この後、ステップ106にて、図6(b)に示す関数により体積流量VからMAP(V)を求め、ステップ107にて、フィルタ温度Tfから温度補正値1+(Tf−T0 )×Ktを算出する。そして、ステップ108に進み、上記数7を用いて補正差圧ΔP1を算出する。なお、上記ステップ102〜108の演算処理が、上述した捕集量演算部14の処理に該当する。
【0043】
この補正差圧ΔP1を設定値と比較することにより、フィルタ7の再生が必要か否かがステップ109にて判定される。この判定がYESになると、ステップ110にて再生制御要求フラグが設定される。このフラグが設定されると、再生制御ルーチン200では、公知のフィルタ再生制御、すなわち図示しない加熱装置およびエアポンプを所定時間作動させて、フィルタ7に捕集された微粒子を燃焼させる。再生制御フラグが設定されていない間は、この再生制御ルーチン200では何も制御を行わない。
【0044】
図3(c)に、上述したフィルタ特性の温度特性を加味した補正差圧ΔP1について、運転条件を変化させた場合の測定結果を示す。この図から明らかなように、図3(a),(b)に示すものよりかなり精度が向上している。
従って、本実施例によれば、微粒子の捕集量が正確に把握され、微粒子が適切な量で定期的に燃焼できるので、フィルタ7、加熱装置の耐久性を向上させることができる。
【0045】
なお、上記実施例では、差圧補正とフィルタ温度による補正とを行うものを示したが、フィルタ温度のみによる補正でも十分効果があるものであり、このもののみでも発明を認識しうるものである。
また、図7に示すフローチャートに示す各ステップはそれぞれの機能を実現する機能実現手段として構成されるものであり、これらの機能実現手段により、上記したコンピュータ制御のみならず、ハードロジック構成によっても本発明を構成し得るものである。
【図面の簡単な説明】
【図1】本発明の実施例に係るディーゼル内燃機関の排気浄化装置の概略構成を示す図である。
【図2】フィルタの圧損に起因するフィルタの体積流量ー差圧特性を示すグラフである。
【図3】運転条件を変化させた場合の補正差圧の変化を示す図であり、(a)はフィルタ特性を考慮しない場合、(b)はフィルタ特性を考慮した場合、(c)は本実施例による場合を示している。
【図4】異なる運転条件での、体積流量、フィルタ温度、差圧の変化を示す図である。
【図5】フィルタ温度に起因するフィルタの体積流量ー差圧特性を示すグラフである。
【図6】フィルタ特性を示すグラフであり、(a)はある捕集量のもとで測定したフィルタの体積流量ー差圧特性を示し、(b)は規格化したフィルタの体積流量ー差圧特性を示している。
【図7】捕集量演算等のCPUで行う演算処理を示すフローチャートである。
【符号の説明】
1 ディーゼルエンジン
2 エアクリーナ
3 熱線式流量センサ
4 排気管
5 排気浄化装置
6 ハウジング
7 フィルタ
8,9 圧力センサ
10,11 温度センサ
12 電子制御ユニット(ECU)
13 中央演算処理装置(CPU)
14 捕集量演算部
[0001]
[Industrial applications]
The present invention relates to an exhaust gas purifying apparatus for a diesel internal combustion engine, and more particularly to an apparatus for improving the detection accuracy of the amount of trapped fine particles accumulated in a filter based on laminar flow characteristics of the filter through which exhaust gas passes.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a diesel internal combustion engine, there is a DPF (Diesel Particulate Filter) system as a device that detects an amount of trapped fine particles (particulates) of exhaust gas. This utilizes the laminar flow characteristics of the filter through which the exhaust gas passes, and uses Equation 1 in which the volume flow rate passing through the filter is proportional to the differential pressure (pressure difference).
[0003]
(Equation 1)
V = A × ΔP = (A0 + Ap) × ΔP
Here, V is a volume flow rate, ΔP is a differential pressure, and A is a ventilation resistance. However, the ventilation resistance is determined based on the initial pressure loss of the filter (A0) and the particle collection amount (Ap).
[0004]
If A0 << Ap, the amount of trapped fine particles substantially accumulated in the filter is calculated from the differential pressure (pressure difference) generated between Ap and the filter. At this time, the generated differential pressure varies depending on the operating conditions (conditions of the volume flow rate) even with the same trapping amount, so that it is necessary to always correct this to the reference state.
For this reason, it is assumed that when the volume flow rate V flows into the filter under a certain trapping amount, the differential pressure between the filters is ΔP, and that the reference volume flow rate based on a certain operating condition is Vstd. Then, the corrected differential pressure (hereinafter, referred to as corrected differential pressure) ΔP1 at this time is expressed by Expression 2.
[0005]
(Equation 2)
ΔP1 = ΔP × Vstd / V
In this way, if the amount of trapped fine particles of the filter is constant, the corrected differential pressure ΔP1 becomes a constant value even if the volume flow rate changes. Thus, the corrected differential pressure ΔP1 corresponds to the amount of collected fine particles in a one-to-one correspondence, and the amount of collected fine particles is obtained from the corrected differential pressure ΔP1.
[0006]
However, the laminar flow characteristics of the filter through which the exhaust gas passes may be slightly shifted due to the pressure loss of the filter. FIG. 2 is a graph showing the volume flow rate V-differential pressure ΔP characteristic (filter characteristic) of the filter when the laminar flow characteristic caused by the pressure loss of the filter slightly shifts. In this figure, the dotted line shows the volume flow rate-differential pressure characteristic due to the ideal filter characteristic (laminar flow) that is less affected by the pressure loss of the filter, and the solid line shows the volume flow rate-differential pressure characteristic actually affected by the filter pressure loss. Is shown. As described above, when the filter has a pressure loss, the error increases when the corrected differential pressure ΔP1 is calculated by the above equation (2).
[0007]
The inventors of the present invention have proposed a device that solves the above-described problem by taking this filter characteristic into account when calculating the corrected differential pressure ΔP1 (Japanese Patent Application No. 5-170580). The calculation of the corrected differential pressure ΔP1 in this case is performed according to Equation 3.
[0008]
(Equation 3)
ΔP1 = ΔP × (Vstd / V) 1 / a
Here, ΔP is the differential pressure of the filter, V is the passing volume flow rate of the filter,
Vstd is a reference volume flow rate, and a is a coefficient based on a characteristic between the passing volume flow rate V and the differential pressure, that is, a filter characteristic, and 0.5 <a <1.
[0009]
[Problems to be solved by the invention]
As described above, the accuracy of the corrected differential pressure can be significantly improved by taking the filter characteristics into account in the calculation of the corrected differential pressure.
However, even with this, it was not possible to make a complete correction, and it was found that the corrected differential pressure ΔP was shifted depending on the operating conditions. In other words, it has been found that even when the corrected differential pressure is determined in consideration of the filter characteristics, the corrected differential pressure ΔP1 changes when the operating conditions are changed.
[0010]
The change in the corrected differential pressure ΔP1 due to the change in the operating condition will be described with reference to FIG. First, when the operation is performed under the reference operation condition A, the particulate matter is collected by the filter, so that the value of the corrected differential pressure ΔP1 increases. Thereafter, another operating condition B is set, and after a certain time has elapsed, the operating condition is returned to the reference operating condition A. The corrected differential pressure value ΔP1 during this series of operations changes as shown in FIG. FIG. 3A shows a change in the corrected differential pressure ΔP1 when the filter characteristics are not taken into consideration. As described above, although the accuracy of the corrected differential pressure can be improved by taking the filter characteristics into consideration, a deviation occurs in the corrected differential pressure ΔP1 depending on operating conditions.
[0011]
Therefore, in order to periodically burn (stable regeneration of the filter) when the amount of the fine particles reaches an appropriate amount, the amount of collected fine particles (corrected differential pressure) must be accurately detected. The calculation of the corrected differential pressure taking into account the filter characteristics is still insufficient.
The inventors of the present invention have examined various factors regarding the deviation due to the operating conditions as described above. As a result, the filter characteristic has a temperature characteristic, the pressure loss characteristic of the filter changes depending on the temperature of the filter, and an error occurs in the calculation of the corrected differential pressure ΔP1. Was found to occur.
[0012]
FIG. 4 shows changes in the volume flow rate V, the filter temperature Tf, and the differential pressure ΔP when the exhaust gas flowing into the filter has the same volume flow rate under different operating conditions C and D (when the trapping amounts are the same). Show. Since the volume flow rate of the exhaust gas is the same, the differential pressure generated between the filters should be the same.However, the operating conditions are different, the exhaust gas temperature is different, the filter characteristics are different, and the generated differential pressure is different. You can see that it is out.
[0013]
Therefore, in equation (3), since the volume flow rate V is the same, (Vstd / V) 1 / a is the same under those operating conditions C and D, but since the differential pressure ΔP is different, the corrected differential pressure ΔP1 The values differ.
FIG. 5 shows how the filter characteristics shift when the operating conditions are changed (the filter temperature is changed). The solid line shows the filter characteristics in the case of the filter temperature T0 under the reference operation condition. In the case of an operating condition having a higher load than the reference operating condition, the exhaust gas temperature increases and the filter temperature also increases. Then, the pressure loss decreases due to the temperature characteristics of the filter and the particulates, and the filter characteristics shift downward as indicated by the dotted line. Conversely, in the case of an operating condition having a lower load than the reference operating condition, the filter characteristic shifts upward as indicated by a two-dot chain line. However, the deviation amount is almost linear with respect to the temperature.
[0014]
When the operating conditions change in this way, the exhaust gas temperature changes, and the filter temperature also changes. Since the filter has a temperature characteristic, the filter characteristic shifts each time the operating condition changes, and an error occurs in the corrected differential pressure.
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to obtain a correction differential pressure indicating a trapped amount of fine particles collected in a filter in consideration of a temperature characteristic of the filter, and to perform a regeneration process of the filter. And
[0015]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, there is provided a filter which is installed in an exhaust system of a diesel internal combustion engine (1) to collect fine particles of exhaust gas and have a laminar flow characteristic. 7) An exhaust gas purification apparatus for a diesel internal combustion engine, comprising: a volume flow rate of exhaust gas passing through the filter (7); and a differential pressure between the filters (7). Trapping amount detection means (3, 8 to 14, 102 to 108) for detecting a corrected differential pressure obtained by correcting the differential pressure based on a volume flow rate of the passing exhaust gas, and the filter is provided based on the detected corrected differential pressure. In the exhaust gas purifying apparatus for a diesel internal combustion engine configured to perform the regeneration process (7), the trapped amount detection means (3, 8 to 14, steps 102 to 108) detects the temperature of the filter (7). fill Has a temperature detecting means (10,11,105), the formula using the filter temperature during the detected filter temperature and the reference operating conditions, filter the detected temperature is higher than the filter temperature during the reference operating conditions When the correction differential pressure is increased, the temperature of the correction differential pressure is corrected so as to reduce the correction differential pressure when the detected filter temperature is lower than the filter temperature under the reference operating condition. I have.
[0016]
According to a second aspect of the present invention, the exhaust gas of a diesel internal combustion engine is provided in an exhaust system of the diesel internal combustion engine (1), the filter (7) collecting particulates of exhaust gas and having a laminar flow characteristic. In the purifying apparatus, a volume flow rate detecting means (104) for obtaining a volume flow rate passing through the filter (7), a differential pressure detecting means (103) for obtaining a differential pressure between the filter (7), and the filter (7). A) a filter temperature detecting means (105) for detecting a temperature, and a volume flow-differential pressure characteristic caused by a pressure loss of the filter (7) and a volume flow-differential pressure characteristic caused by a temperature of the filter (7). And a correction differential pressure calculating means (106-108) for correcting the detected differential pressure based on the detected volume flow rate and filter temperature to calculate a corrected differential pressure. Based being adapted to perform the reproduction process of the filter (7), the correction differential pressure calculating means, the formula using the filter temperature during the detected filter temperature and the reference operating conditions, the detected filter The detected differential pressure is increased when the temperature is higher than the filter temperature under the reference operation condition, and the detected differential pressure is reduced when the detected filter temperature is lower than the filter temperature under the reference operation condition. Preferably, the detected differential pressure is corrected .
[0017]
The above-mentioned corrected differential pressure ΔP1 is obtained by the following Expression 4 in an embodiment described later.
[0018]
(Equation 4)
ΔP1 = ΔP × (Vstd / V) 1 / a × (1+ (Tf−T0) × Kt)
Here, ΔP is the above-described filter characteristic, V is the volume flow rate passing through the filter (7),
Vstd is a reference volume flow rate, a is a coefficient based on a characteristic (filter characteristic) between the passing volume flow rate V and the differential pressure at the time of the filter temperature T0 (filter temperature under the reference operation condition), Tf is a filter temperature, and T0 is The filter temperature Kt under the reference operating condition is a coefficient for correcting the temperature characteristics of the filter characteristics.
[0019]
According to a third aspect of the present invention, in the second aspect of the present invention, the correction differential pressure calculating means (106 to 108) calculates a volume flow rate-differential pressure characteristic caused by a pressure loss of the filter (7) by volume. It is characterized in that the differential pressure is corrected for the pressure loss of the filter by normalizing to a differential pressure characteristic with respect to a flow rate-reference differential pressure.
[0020]
According to a fourth aspect of the present invention, in the first aspect of the present invention, the filter temperature detecting means (105) includes an exhaust gas temperature flowing into the filter (7) and an exhaust gas temperature flowing out of the filter (7). The temperature of the filter (7) is detected based on the average value of.
[0021]
In addition, the code | symbol in parenthesis of the said each means shows the correspondence with the concrete means of the Example described later.
[0022]
Operation and Effect of the Invention
According to the first aspect of the present invention, the volume flow rate of the exhaust gas passing through the filter and the differential pressure between the filters are obtained, and the differential pressure is corrected by the volume flow rate of the passing exhaust gas with respect to a reference volume flow rate. A corrected differential pressure is detected, and a filter regeneration process is performed based on the detected corrected differential pressure.
[0023]
Further, the temperature of the filter is detected, and the corrected differential pressure is temperature corrected based on the detected filter temperature.
Therefore, since the deviation of the corrected differential pressure is corrected by the temperature of the filter, even if a state in which the filter temperature changes due to various operating conditions occurs, the operation is performed by obtaining the corrected differential pressure in consideration thereof. The filter regeneration processing can be performed correctly regardless of the change in the condition.
[0024]
According to the invention described in claim 2, based on the volume flow rate-differential pressure characteristic caused by the pressure loss of the filter and the volume flow rate-differential pressure characteristic caused by the temperature of the filter, the detected differential pressure is detected, A correction differential pressure is calculated by correction based on the filter temperature, and a filter regeneration process is performed based on the calculated correction differential pressure.
Therefore, an accurate corrected differential pressure can be obtained in consideration of the pressure loss characteristics and the temperature characteristics of the filter, whereby the filter regeneration process can be performed correctly.
[0025]
In the invention described in claim 3, the volume flow rate-differential pressure characteristic caused by the pressure loss of the filter is normalized to the differential pressure characteristic with respect to the volume flow rate-referenced differential pressure, and the differential pressure for the filter pressure loss is corrected. I have.
Therefore, by such a standardization, it is possible to correct the differential pressure with respect to the pressure loss of the filter with one characteristic regardless of the trapping amount.
[0026]
According to the fourth aspect of the present invention, the temperature of the filter is detected based on the average value of the exhaust gas temperature flowing into the filter and the exhaust gas temperature flowing out of the filter.
Therefore, it is possible to grasp the average temperature of the filter almost accurately, and appropriately carry out the inventions according to the first to third aspects.
[0027]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of an exhaust gas purification device for a diesel internal combustion engine, showing one embodiment of the present invention. However, FIG. 1 has a configuration in which only a portion relating to detection of a trapped amount (calculation of a corrected differential pressure) of an exhaust purification device provided in an exhaust system of a diesel engine is extracted.
[0028]
An air cleaner 2 is provided on the intake side of the diesel engine 1, and a hot-wire type flow sensor 3 for detecting the intake flow rate is provided in the middle of a flow path from the air cleaner 2 to the diesel engine 1.
The exhaust pipe 4 of the diesel engine 1 is provided with an exhaust purification device 5. The exhaust gas purification device 5 has a housing 6 connected to the exhaust pipe 4. A filter 7 made of a porous ceramic is provided in the housing 6, and fine particles contained in the exhaust gas are collected by passing the exhaust gas through the filter.
[0029]
In order to prevent the filter 7 from being clogged, the amount of collected fine particles of the filter 7 is detected, and when the collected amount reaches a certain value, the fine particles collected by the filter 7 are burned and regenerated by a heating device (not shown).
The exhaust gas purification device 5 includes a pressure sensor 8 for detecting the absolute pressure (pre-pressure) of the filter 7 on the diesel engine 1 side, and a pressure sensor 9 for detecting the absolute pressure (post-pressure) of the filter 7 on the exhaust side. Is provided. Further, a temperature sensor 10 for detecting the absolute temperature of the exhaust gas (inlet gas temperature) flowing from the diesel engine 1 to the filter 7 and a temperature sensor 11 for detecting the absolute temperature of the exhaust gas (outgas temperature) flowing out of the filter 7 are provided. Have been.
[0030]
Then, signals from the sensors are input to an electronic control unit (ECU) 12. A CPU 13 is provided in the ECU 12, and each sensor signal is finally input to the CPU 13. Further, the CPU 13 is provided with a trapping amount calculation unit 14 that calculates the trapping amount of the fine particles.
The calculation by the collection amount calculator 14 will be described in detail.
[0031]
First, the trapping amount calculation unit 14 calculates the volume flow rate V flowing into the filter 7 as the suction flow rate of the hot wire type flow sensor 3, the pre-pressure of the pressure sensor 8, the incoming gas temperature of the temperature sensor 10, and the outgoing temperature of the temperature sensor 11. It is determined from the average temperature using a known calculation method.
Further, the differential pressure (ΔP) of the filter 7 is obtained by subtracting the post-pressure from the pre-pressure of the pressure sensors 8 and 9. The filter temperature is obtained from the average temperature of the inlet gas temperature and the outlet gas temperature of the temperature sensors 10 and 11, so that the average temperature of the filter 7 can be grasped almost accurately. In this way, the collection amount calculation unit 14 obtains the volume flow rate, the differential pressure, and the filter temperature under certain operation conditions from the collection amount of certain fine particles.
[0032]
When the volume flow rate is obtained, a differential pressure correction value based on the filter characteristics is obtained. This is the portion of (Vstd / V) 1 / a in Equation 4. This differential pressure correction value is defined as in Equation 5.
[0033]
(Equation 5)
F = (Vstd / V) 1 / a
Here, F is a coefficient, which can be said to be a differential pressure correction value based on a filter characteristic using the volume flow rate of the exhaust gas flowing into the filter 7 as a parameter. However, since it is difficult for the CPU 13 to perform such an operation, the differential pressure correction value F is obtained from a two-dimensional map using the volume flow rate V as a parameter. The map is obtained from the filter characteristics.
[0034]
FIG. 6A shows the volume flow rate-differential pressure characteristic of the filter 7 measured under the trapping amount shown in FIG. Here, Vstd is the volume flow rate under the reference operation condition, and the differential pressure generated at that time is defined as ΔPstd. FIG. 6B shows a filter characteristic obtained by standardizing this characteristic under the reference operation condition ΔPstd. This normalized value is defined as Kp.
[0035]
Here, ΔP1 in Equation 3 is ΔPstd.
ΔP / ΔPstd = 1 / (Vstd / V) 1 / a . Further, since ΔP / ΔPstd = Kp, Kp = 1 / F is obtained from this and Expression 5. However, this filter characteristic does not depend on the collection amount. That is, the filter characteristics are dimensionless. Therefore, Equation 5 is performed as in Equation 6 in an actual operation.
[0036]
(Equation 6)
F = 1 / MAP (V)
Here, MAP (V) is a differential pressure correction value Kp obtained by using a function shown in FIG.
In the case where the above-mentioned standardization is not performed, it is necessary to prepare the map of FIG. 6A for each collection amount. The value can be obtained with one map.
[0037]
Further, the trapping amount calculation unit 14 calculates a temperature coefficient correction value of the filter characteristic from the filter temperature (the average temperature of the inlet gas temperature and the outlet gas temperature of the temperature sensors 10 and 11). This is the portion of 1+ (Tf−T0) × Kt in Equation 4.
The filter characteristics are those in the standard operation state, and the temperature is T0. When the filter temperature Tf is higher than this, that is, when Tf> T0, as described above, the actual filter characteristic value Kp becomes lower than the filter characteristic value in the ECU 12 under the reference operation condition, and the corrected differential pressure value ΔP1 Is a small value. Therefore, the error of the correction differential pressure ΔP1 caused by the change in the filter characteristics due to the temperature is corrected by the formula of 1+ (Tf−T0) × Kt. That is, when Tf> T0, 1+ (Tf−T0) × Kt becomes> 1, and the error of the correction differential pressure ΔP1 occurring on the minus side is corrected. When Tf <T0, the correction is made in the direction opposite to that described above.
[0038]
Therefore, the collection amount calculation unit 14 realizes the calculation of Equation 4 by calculating as shown in Equation 7.
[0039]
(Equation 7)
ΔP1 = ΔP / MAP (V) × (1+ (Tf−T0) × Kt)
Here, ΔP is the filter characteristic, and MAP (V) is a function using the passing volume flow rate V of the filter 7 as a parameter, and a differential pressure correction coefficient based on the filter characteristic under the filter temperature under the reference operation condition. , Tf represent the filter temperature, T0 represents the filter temperature under the reference operating condition, and Kt represents a coefficient for correcting the temperature characteristic of the filter characteristic.
[0040]
The calculation processing in the CPU 13 including the processing in the collection amount calculation section 14 described above will be described based on the flowchart shown in FIG.
First, in step 101, it is determined whether or not reproduction is being performed. If the reproduction control described below is not being performed, the process proceeds to step 102, and the sensor values from the sensors 3, 8 to 11 are fetched.
[0041]
In the next step 103, the differential pressure ΔP of the filter 7 is obtained by subtracting the post-pressure from the pre-pressure detected by the pressure sensors 8 and 9, respectively. In step 104, the suction flow rate of the hot wire flow sensor 3 and the pressure sensor 8 The volume flow rate V is determined from the pre-pressure and the average temperature of the incoming gas temperature of the temperature sensor 10 and the outgoing gas temperature of the temperature sensor 11. In step 105, the filter temperature Tf is determined from the average temperature of the incoming gas temperature and the outgoing gas temperature of the temperature sensors 10 and 11.
[0042]
Thereafter, in step 106, MAP (V) is obtained from the volume flow rate V by the function shown in FIG. 6B, and in step 107, a temperature correction value 1+ (Tf-T0) .times.Kt is calculated from the filter temperature Tf. I do. Then, the process proceeds to a step 108, wherein the corrected differential pressure ΔP1 is calculated by using the above equation (7). Note that the calculation processing of steps 102 to 108 corresponds to the processing of the collection amount calculation unit 14 described above.
[0043]
By comparing the corrected differential pressure ΔP1 with a set value, it is determined in step 109 whether or not the regeneration of the filter 7 is necessary. If this determination is YES, a reproduction control request flag is set in step 110. When this flag is set, in the regeneration control routine 200, known filter regeneration control, that is, a heating device and an air pump (not shown) are operated for a predetermined time to burn the particulates collected by the filter 7. While the reproduction control flag is not set, the reproduction control routine 200 performs no control.
[0044]
FIG. 3C shows a measurement result when the operating condition is changed with respect to the corrected differential pressure ΔP1 taking into account the temperature characteristics of the above-described filter characteristics. As is clear from this figure, the accuracy is considerably improved as compared with those shown in FIGS. 3 (a) and 3 (b).
Therefore, according to the present embodiment, the collection amount of the fine particles is accurately grasped, and the fine particles can be periodically burned in an appropriate amount, so that the durability of the filter 7 and the heating device can be improved.
[0045]
In the above-described embodiment, the case where the differential pressure correction and the correction based on the filter temperature are performed has been described. However, the correction based on only the filter temperature is sufficiently effective, and the invention can be recognized by using only this correction. .
Further, each step shown in the flowchart shown in FIG. 7 is configured as a function realizing means for realizing each function, and the functional realizing means enables not only the computer control described above but also a hard logic configuration to implement the present invention. It can constitute the invention.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of an exhaust gas purification device for a diesel internal combustion engine according to an embodiment of the present invention.
FIG. 2 is a graph showing a volume flow rate-differential pressure characteristic of a filter caused by a pressure loss of the filter.
3A and 3B are diagrams showing a change in a corrected differential pressure when an operating condition is changed, wherein FIG. 3A shows a case where filter characteristics are not considered, FIG. 3B shows a case where filter characteristics are considered, and FIG. This shows a case according to the embodiment.
FIG. 4 is a diagram showing changes in volume flow rate, filter temperature, and differential pressure under different operating conditions.
FIG. 5 is a graph showing a volume flow rate-differential pressure characteristic of a filter caused by a filter temperature.
6A and 6B are graphs showing filter characteristics. FIG. 6A shows a volume flow rate-differential pressure characteristic of a filter measured under a certain trapping amount, and FIG. 6B shows a volume flow rate-difference of a standardized filter. 9 shows pressure characteristics.
FIG. 7 is a flowchart illustrating a calculation process performed by a CPU, such as a collection amount calculation.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Diesel engine 2 Air cleaner 3 Hot wire type flow sensor 4 Exhaust pipe 5 Exhaust purification device 6 Housing 7 Filter 8, 9 Pressure sensor 10, 11 Temperature sensor 12 Electronic control unit (ECU)
13 Central Processing Unit (CPU)
14 Collection amount calculation unit

Claims (4)

ディーゼル内燃機関の排気系に設置されて排気ガスの微粒子を捕集し、かつ層流特性を有するフィルタを具備したディーゼル内燃機関の排気浄化装置であって、
前記フィルタを通過する排気ガスの体積流量と、前記フィルタの間の差圧とを求め、基準の体積流量に対する前記通過排気ガスの体積流量で前記差圧を補正した補正差圧を検出する捕集量検出手段を備え、この検出した補正差圧に基づいて前記フィルタの再生処理を行うようにしたディーゼル内燃機関の排気浄化装置において、
前記捕集量検出手段は、前記フィルタの温度を検出するフィルタ温度検出手段を有し、この検出したフィルタ温度と基準運転条件時のフィルタ温度とを用いた式で、前記検出したフィルタ温度が前記基準運転条件時のフィルタ温度より高いときに前記補正差圧を大きくし、前記検出したフィルタ温度が前記基準運転条件時のフィルタ温度より低いときに前記補正差圧を小さくするように、前記補正差圧を温度補正することを特徴とするディーゼル内燃機関の排気浄化装置。
An exhaust purification device for a diesel internal combustion engine, which is provided in an exhaust system of the diesel internal combustion engine, collects particulates of exhaust gas, and includes a filter having laminar flow characteristics,
A collecting method for obtaining a volume flow rate of the exhaust gas passing through the filter and a differential pressure between the filters, and detecting a corrected differential pressure obtained by correcting the differential pressure with the volume flow rate of the passing exhaust gas relative to a reference volume flow rate. An exhaust gas purification device for a diesel internal combustion engine, comprising an amount detection unit, configured to perform a regeneration process of the filter based on the detected corrected differential pressure.
The trapping amount detecting means has a filter temperature detecting means for detecting a temperature of the filter, and an equation using the detected filter temperature and the filter temperature under the standard operation condition, the detected filter temperature is the The correction differential pressure is increased when the filter temperature is higher than the filter temperature under the reference operation condition, and the correction differential pressure is decreased when the detected filter temperature is lower than the filter temperature under the reference operation condition. An exhaust purification device for a diesel internal combustion engine, wherein the pressure is temperature-corrected.
ディーゼル内燃機関の排気系に設置されて排気ガスの微粒子を捕集し、かつ層流特性を有するフィルタを具備したディーゼル内燃機関の排気浄化装置において、
前記フィルタを通過する体積流量を求める体積流量検出手段と、
前記フィルタの間の差圧を求める差圧検出手段と、
前記フィルタの温度を検出するフィルタ温度検出手段と、
前記フィルタの圧損に起因する体積流量−差圧特性および前記フィルタの温度に起因する体積流量−差圧特性に基づき、前記検出した差圧を、前記検出した体積流量およびフィルタ温度により補正して、補正差圧を演算する補正差圧演算手段を備え、
前記演算した補正差圧に基づいて前記フィルタの再生処理を行うようになっており、
前記補正差圧演算手段は、前記検出したフィルタ温度と基準運転条件時のフィルタ温度とを用いた式で、前記検出したフィルタ温度が前記基準運転条件時のフィルタ温度より高いときに前記検出した差圧を大きくし、前記検出したフィルタ温度が前記基準運転条件時のフィルタ温度より低いときに前記検出した差圧を小さくするように、前記検出した差圧を補正することを特徴とするディーゼル内燃機関の排気浄化装置。
In a diesel internal combustion engine exhaust purification device provided with a filter installed in an exhaust system of a diesel internal combustion engine to collect fine particles of exhaust gas, and having a laminar flow characteristic,
Volume flow detection means for determining the volume flow passing through the filter,
A differential pressure detecting means for obtaining a differential pressure between the filters,
Filter temperature detection means for detecting the temperature of the filter,
Based on the volume flow rate-differential pressure characteristic due to the pressure loss of the filter and the volume flow rate-differential pressure characteristic due to the temperature of the filter, the detected differential pressure is corrected by the detected volume flow rate and the filter temperature, A correction differential pressure calculating means for calculating a correction differential pressure,
The filter regeneration processing is performed based on the calculated corrected differential pressure ,
The correction differential pressure calculating means uses an equation using the detected filter temperature and the filter temperature under the standard operation condition, and calculates the detected difference when the detected filter temperature is higher than the filter temperature under the standard operation condition. A diesel internal combustion engine that corrects the detected differential pressure so as to increase the pressure and reduce the detected differential pressure when the detected filter temperature is lower than the filter temperature under the reference operating condition. Exhaust purification equipment.
前記補正差圧演算手段は、前記フィルタの圧損に起因する体積流量−差圧特性を、体積流量−基準の差圧に対する差圧特性に規格化して前記フィルタの圧損に対する前記差圧の補正を行うことを特徴とする請求項2に記載のディーゼル内燃機関の排気浄化装置。The correction differential pressure calculating means corrects the differential pressure with respect to the pressure loss of the filter by normalizing the volume flow rate-differential pressure characteristic due to the pressure loss of the filter into a differential pressure characteristic with respect to the volume flow rate-referenced differential pressure. The exhaust gas purifying apparatus for a diesel internal combustion engine according to claim 2, characterized in that: 前記フィルタ温度検出手段は、前記フィルタに流入する排気温度と流出する排気温度の平均値により前記フィルタの温度を検出することを特徴とする請求項1乃至3のいずれか1つに記載のディーゼル内燃機関の排気浄化装置。4. The diesel internal combustion engine according to claim 1, wherein the filter temperature detection unit detects the temperature of the filter based on an average value of an exhaust gas temperature flowing into the filter and an exhaust gas temperature flowing out of the filter. 5. Engine exhaust purification device.
JP24507994A 1994-10-11 1994-10-11 Exhaust purification system for diesel internal combustion engine Expired - Fee Related JP3598542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24507994A JP3598542B2 (en) 1994-10-11 1994-10-11 Exhaust purification system for diesel internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24507994A JP3598542B2 (en) 1994-10-11 1994-10-11 Exhaust purification system for diesel internal combustion engine

Publications (2)

Publication Number Publication Date
JPH08109818A JPH08109818A (en) 1996-04-30
JP3598542B2 true JP3598542B2 (en) 2004-12-08

Family

ID=17128291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24507994A Expired - Fee Related JP3598542B2 (en) 1994-10-11 1994-10-11 Exhaust purification system for diesel internal combustion engine

Country Status (1)

Country Link
JP (1) JP3598542B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6609372B2 (en) * 1998-04-15 2003-08-26 Caterpillar Inc Method and apparatus for controlling the temperature of an engine
JP2004316428A (en) * 2003-02-26 2004-11-11 Ngk Insulators Ltd Method and program for predicting soot deposition quantity on exhaust gas emission filter
DE102004001421A1 (en) * 2004-01-09 2005-08-04 Robert Bosch Gmbh Filter device, in particular for an exhaust system of an internal combustion engine
JP4525232B2 (en) * 2004-08-06 2010-08-18 日産自動車株式会社 Diesel engine exhaust aftertreatment system

Also Published As

Publication number Publication date
JPH08109818A (en) 1996-04-30

Similar Documents

Publication Publication Date Title
JP4244652B2 (en) Exhaust gas purification device for internal combustion engine
US8261540B2 (en) Particulate matter sensor and exhaust gas purification apparatus
JP3750664B2 (en) Engine exhaust purification system
JP3824979B2 (en) Filter control method and apparatus
KR100605836B1 (en) Filter control device
JP4513593B2 (en) Exhaust gas purification device for internal combustion engine
JP4470593B2 (en) Exhaust gas purification device for internal combustion engine
JP2007315275A (en) Exhaust gas purifying filter failure diagnosis device and method
JP2012502226A (en) Method for estimating soot loading in diesel particulate filters, engines and aftertreatment systems
JP2008157199A (en) Abnormality detection device of sensor
US7051519B2 (en) Exhaust gas cleaning device for internal combustion engine
JP2006503226A (en) Method for detecting particle filter accumulation
JP3598542B2 (en) Exhaust purification system for diesel internal combustion engine
WO2010021066A1 (en) Device and method for estimating exhaust particulate deposition amount
JP3908204B2 (en) Filter control device
JP3598573B2 (en) Exhaust particulate purification equipment
JP2006512537A (en) Exhaust gas purification device used for internal combustion engine and method for operating the exhaust gas purification device
JPH0726933A (en) Exhaust emission control device for internal combustion engine
JP2011179491A (en) Particle sensor and exhaust emission control device
JPH0260254B2 (en)
JPH04325707A (en) Exhaust gas purifying device for engine
JP4534955B2 (en) Exhaust gas purification device for internal combustion engine
JPH1089048A (en) Exhaust fine particle purifying device
JP2679456B2 (en) Exhaust gas cleaning device for diesel engine
JPS60108520A (en) Device for detecting trapping amount of fine particles in internal-combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040906

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees