JP2679456B2 - Exhaust gas cleaning device for diesel engine - Google Patents

Exhaust gas cleaning device for diesel engine

Info

Publication number
JP2679456B2
JP2679456B2 JP3175233A JP17523391A JP2679456B2 JP 2679456 B2 JP2679456 B2 JP 2679456B2 JP 3175233 A JP3175233 A JP 3175233A JP 17523391 A JP17523391 A JP 17523391A JP 2679456 B2 JP2679456 B2 JP 2679456B2
Authority
JP
Japan
Prior art keywords
filter
exhaust
differential pressure
internal diffusion
particulates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3175233A
Other languages
Japanese (ja)
Other versions
JPH0518229A (en
Inventor
博通 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP3175233A priority Critical patent/JP2679456B2/en
Publication of JPH0518229A publication Critical patent/JPH0518229A/en
Application granted granted Critical
Publication of JP2679456B2 publication Critical patent/JP2679456B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、排気微粒子を捕集する
フィルタを備えた、ディーゼル機関の排気清浄化装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diesel engine exhaust gas cleaning device provided with a filter for collecting exhaust particulates.

【0002】[0002]

【従来の技術】ディーゼル機関の排気中にはカーボンな
どの排気微粒子が含有されており、これをそのまま大気
中に放出すると、環境汚染を招き好ましくない。これを
防ぐため、機関の排気通路にフィルタを設け、排気をこ
のフィルタに通過させて排気微粒子を捕集する方法が、
従来からよく知られている。この場合、排気微粒子はフ
ィルタの排気流入部付近に付着して徐々に堆積していく
が、その堆積量が増大すると、排気圧力が増大して機関
性能に悪影響を及ぼすので、捕集した排気微粒子を燃焼
などにより除去するフィルタの再生処理を定期的に行う
必要がある。
2. Description of the Related Art Exhaust particulates such as carbon are contained in the exhaust gas of a diesel engine, and it is not preferable to discharge the particulates into the atmosphere as they are because they cause environmental pollution. In order to prevent this, a method in which a filter is provided in the exhaust passage of the engine and exhaust gas is passed through this filter to collect exhaust particulates,
Well known from the past. In this case, the exhaust particulates adhere to the vicinity of the exhaust gas inflow part of the filter and gradually accumulate, but if the deposition amount increases, the exhaust pressure increases and the engine performance is adversely affected. It is necessary to periodically perform a regeneration process of a filter that removes by burning or the like.

【0003】フィルタの再生処理としては、フィルタの
直前に設けた電気ヒータにより排気微粒子を燃焼させる
もの、あるいは燃料噴射弁から噴射された燃料に点火し
て排気微粒子を燃焼させるものがある。排気微粒子を燃
焼させる時期の判断、すなわちフィルタの再生時期の判
断は、フィルタの上流側の排気圧力と同下流側の排気圧
力との差圧を測定し、この差圧が所定値以上となったと
きを再生時期とするなどの排気圧力を利用する方法があ
る(特開昭60−67713号公報参照)。
[0003] As a filter regeneration process, there is a process of burning exhaust particulates by an electric heater provided immediately before the filter, or a process of igniting fuel injected from a fuel injection valve to burn the exhaust particulates. To determine when to burn the exhaust particulates, that is, to determine when to regenerate the filter, the differential pressure between the exhaust pressure on the upstream side of the filter and the exhaust pressure on the downstream side of the filter was measured, and this differential pressure exceeded a prescribed value. There is a method of utilizing the exhaust pressure such as when the regeneration time is set (see Japanese Patent Laid-Open No. 60-67713).

【0004】[0004]

【発明が解決しようとする課題】ところで、フィルタの
排気流入部付近に堆積する排気微粒子が多くなると、運
転条件によっては堆積した排気微粒子がその付着部から
離脱し、フィルタ内部に拡散するという、いわゆる内部
拡散現象が発生する。内部拡散現象が発生すると、フィ
ルタ上流側の排気圧力が低下し、この結果フィルタの上
流側と下流側との排気圧力差が減少するが、このとき付
着している排気微粒子はフィルタの排気流入側表面から
均一に拡散するわけではなく、局所的には拡散せずにフ
ィルタ表面に排気微粒子が残っている部分が存在する。
なお、ここでの内部拡散現象とは、フィルタ表面に付着
している排気微粒子が内部に拡散する際に、排気中に含
まれるハイドロカーボンなどの可溶性有機物質(SO
F)の酸化によりこのSOFに吸着していた排気微粒子
の離脱なども含んでいる。
By the way, when the amount of exhaust particulates deposited near the exhaust gas inflow portion of the filter increases, the deposited exhaust particulates depart from the adhering portion and diffuse inside the filter depending on operating conditions. Internal diffusion phenomenon occurs. When the internal diffusion phenomenon occurs, the exhaust pressure on the upstream side of the filter decreases, and as a result, the exhaust pressure difference between the upstream side and the downstream side of the filter decreases, but the exhaust particulates adhering at this time are the exhaust inflow side of the filter. It does not diffuse uniformly from the surface, and there is a portion where exhaust particulates remain on the filter surface without locally diffusing.
The internal diffusion phenomenon here means that when exhaust particulates adhering to the surface of the filter diffuse inside, a soluble organic substance such as hydrocarbon (SO
It also includes the removal of exhaust particulates adsorbed on the SOF due to the oxidation of F).

【0005】図13は、フィルタの上流側と下流側との
排気圧力差Pの変動と、これに対応した排気微粒子(P
CT)の堆積重量とをそれぞれ示している。これによれ
ば、内部拡散発生時ではフィルタ上流側の排気圧力が急
激に低下することから、排気圧力差Pが急激に低下して
おり、また、排気微粒子の堆積重量は、内部拡散が発生
するごとに徐々に蓄積されていることがわかる。図14
及び図15は、フィルタFに付着した排気微粒子PCT
が、図中で左側から右側に排気が流れて拡散したときの
フィルタ内部の変化を断面図で示している。図14は、
排気微粒子PCTがフィルタFの排気流入側表面に堆積
した左側の状態(フィルタ前後差圧増大)から、その排
気微粒子PCTが内部に拡散した右側の状態(フィルタ
前後差圧低下)へ変化した様子を示し、さらに図15
は、上記内部拡散の繰り返しにより排気微粒子のフィル
タFへの内部拡散量が増大し、部分的な目詰まり部Gが
発生した左側の状態(フィルタ前後差圧増大)で拡散
し、この目詰まり部Gがさらに内部拡散して堆積量が徐
々に増大した右側の状態(フィルタ前後差圧低下)へ変
化した様子を示している。
FIG. 13 shows a variation in the exhaust pressure difference P between the upstream side and the downstream side of the filter and the corresponding exhaust particulates (P
(CT) deposition weight, respectively. According to this, when the internal diffusion occurs, the exhaust pressure on the upstream side of the filter sharply decreases, so the exhaust pressure difference P sharply decreases, and the accumulated weight of the exhaust particulates causes the internal diffusion. It can be seen that it is gradually accumulated for each. FIG.
15 and FIG. 15 show the exhaust particulate PCT attached to the filter F.
However, a cross-sectional view shows a change in the filter when exhaust gas flows from the left side to the right side in the figure and diffuses. FIG.
The state in which the exhaust particulate PCT is accumulated on the exhaust inflow side surface of the filter F (the differential pressure across the filter increases) and the exhaust particulate PCT diffuses inside (the differential pressure across the filter decreases) is shown. Shown in FIG.
Is increased in the amount of internal diffusion of exhaust particulates into the filter F by repeating the above internal diffusion, and diffuses in the left side state (increase in differential pressure across the filter) in which a partial clogging G is generated. It shows a state in which G further diffuses into the inside and changes to the right side state (decrease in differential pressure across the filter) where the deposition amount gradually increases.

【0006】このように、内部拡散が繰り返されると、
目詰まり部Gが発生するなど局所的に排気微粒子の堆積
部分が発生するので、上記従来例のように、単にフィル
タ前後の排気圧力差を検出して堆積量を判断する方法で
あると、排気微粒子の量を正確に判断することができな
いことになって、フィルタの再生時期の判断を誤ること
となる。このため、例えばフィルタの再生が遅れると、
捕集量が過大となって排気圧力の上昇を招き、運転性の
悪化を生じたり、燃焼不良を起こしてフィルタ寿命を低
下させるなどの問題が発生する。
In this way, when the internal diffusion is repeated,
Exhaust particulates are locally deposited such as a clogging G. Therefore, as in the above-described conventional example, a method of simply detecting the exhaust pressure difference before and after the filter to determine the deposition amount is used. Since the amount of fine particles cannot be accurately determined, the determination of the filter regeneration time is erroneous. So, for example, if filter regeneration is delayed,
The trapped amount becomes too large, which causes the exhaust pressure to rise, which deteriorates drivability and causes problems such as poor combustion and shortened filter life.

【0007】そこでこの発明は、フィルタに捕集された
排気微粒子を燃焼させてフィルタを再生する時期を的確
に掴むことを目的としている。
Therefore, an object of the present invention is to accurately grasp the time when the exhaust particulates collected by the filter are burned to regenerate the filter.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
に本発明は、図1に示すように、機関の排気通路1に設
けられ排気中の排気微粒子を捕集するフィルタ3と、こ
のフィルタ3に捕集された排気微粒子を燃焼させてフィ
ルタ3の再生を行う再生手段5と、前記フィルタ3の上
流側及び下流側の各排気通路相互間の差圧を検出する差
圧検出手段15と、前記機関の低負荷低回転領域におい
てあらかじめ設定した基準となる運転条件での前記フィ
ルタ3を通過する排気の流量係数を演算する流量係数演
算手段23と、この演算された流量係数に基づき前記機
関の高負荷又は高回転領域での前記フィルタ3の推定の
差圧を演算する推定差圧演算手段31と、前記差圧検出
手段15の検出する実際の差圧がこの演算された推定の
差圧よりも所定値以上小さくなったとき前記フィルタ3
に付着している排気微粒子がその付着部から離脱したと
判断する内部拡散判断手段33と、この内部拡散判断手
段の内部拡散判断に基づき前記再生手段5によるフィル
タ3の再生時期を判断する再生時期判断手段37とを有
する構成としてある。
In order to achieve the above object, the present invention is, as shown in FIG. 1, a filter 3 provided in an exhaust passage 1 of an engine for collecting exhaust particulates in exhaust gas, and this filter. Regenerating means 5 for regenerating the filter 3 by burning the exhaust particulate matter collected in the filter 3, and differential pressure detecting means 15 for detecting the differential pressure between the exhaust passages on the upstream and downstream sides of the filter 3. A flow coefficient calculating means 23 for calculating a flow coefficient of the exhaust gas passing through the filter 3 under a reference operating condition set in advance in a low load / low speed region of the engine, and the engine based on the calculated flow coefficient. Of the estimated differential pressure of the filter 3 and the actual differential pressure detected by the differential pressure detection means 15 are the estimated differential pressures calculated by the differential pressure detection means 15 and the estimated differential pressure calculation means 31. Predetermined value than The filter 3 when it on small
Internal diffusion determining means 33 for determining that the exhaust particulates adhering to the filter have separated from the adhered portion, and regeneration timing for determining the regeneration timing of the filter 3 by the regeneration means 5 based on the internal diffusion determination by the internal diffusion determining means. And a judging means 37.

【0009】[0009]

【作用】このように構成されたディーゼル機関の排気清
浄化装置によれば、機関の運転状態が、フィルタ3に付
着した排気微粒子が離脱しにくい低負荷低回転領域にお
いてあらかじめ設定された基準の運転条件になると、流
量係数演算手段23が、このときにフィルタ3を通過す
る排気の流量係数を演算する。そして、その後機関の運
転状態が変動して高負荷又は高回転状態になると、内部
拡散判断手段33は、推定差圧演算手段31が前記流量
係数に基づいて演算した推定の差圧と、差圧検出手段が
検出したこのときの実際の差圧とを比較し、実際の差圧
が推定の差圧よりも所定値以上小さくなったときに、フ
ィルタ3に付着している排気微粒子がその付着部から離
脱したと判断し、再生時期判断手段37は、この内部拡
散判断に基づきフィルタ3の再生時期と判断する。
According to the exhaust gas cleaning device for a diesel engine constructed as described above, the operating condition of the engine is the standard operation set in advance in the low load low rotation region where the exhaust particulates adhering to the filter 3 are difficult to separate. When the condition is met, the flow coefficient calculating means 23 calculates the flow coefficient of the exhaust gas passing through the filter 3 at this time. Then, when the operating state of the engine fluctuates thereafter and becomes a high load or a high rotation state, the internal diffusion determination means 33 causes the estimated differential pressure calculation means 31 to calculate the estimated differential pressure based on the flow coefficient and the differential pressure. The actual differential pressure detected at this time by the detection means is compared, and when the actual differential pressure becomes smaller than the estimated differential pressure by a predetermined value or more, the exhaust particulates adhering to the filter 3 adhere to the adhering portion. Therefore, the regeneration timing determining means 37 determines that it is the regeneration timing of the filter 3 based on this internal diffusion determination.

【0010】[0010]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図2は、本発明の一実施例によるディーゼ
ル機関の排気浄化装置を示す全体構成図である。ディー
ゼル機関の排気通路1には、多孔質のセラミックなどか
らなるフィルタ3が設けられている。このフィルタ3を
排気が通過することにより、排気中のカーボン粒子など
の排気微粒子が、フィルタ3に付着によって捕集され
る。
FIG. 2 is an overall configuration diagram showing an exhaust emission control device for a diesel engine according to an embodiment of the present invention. A filter 3 made of porous ceramic or the like is provided in the exhaust passage 1 of the diesel engine. As the exhaust gas passes through the filter 3, exhaust gas particles such as carbon particles in the exhaust gas are collected by being attached to the filter 3.

【0012】フィルタ3に捕集された排気微粒子が増大
し、フィルタ3が再生時期となった場合には、フィルタ
3の直前に設けられた再生手段としての電気ヒータ5が
通電されて排気微粒子が燃焼する。
When the amount of exhaust particulates collected by the filter 3 increases and the filter 3 reaches the regeneration time, an electric heater 5 as a regeneration means provided immediately before the filter 3 is energized to generate exhaust particulates. To burn.

【0013】フィルタ3の上流側の排気通路7には第1
の圧力センサ9が、またフィルタ3の下流側の排気通路
11には第2の圧力センサ13が、それぞれ設けられて
いる。これらの各圧力センサ9,13の検出値は、フィ
ルタ3の上流側の排気圧力と下流側の排気圧力との差圧
を検出する差圧検出手段としてのフィルタ前後差圧検出
回路15に入力される。
A first exhaust passage 7 is provided upstream of the filter 3.
Is provided in the exhaust passage 11 on the downstream side of the filter 3, and the second pressure sensor 13 is provided in the exhaust passage 11 on the downstream side of the filter 3. The detected values of these pressure sensors 9 and 13 are input to a filter front-rear differential pressure detection circuit 15 as a differential pressure detection unit that detects a differential pressure between the exhaust pressure on the upstream side of the filter 3 and the exhaust pressure on the downstream side of the filter 3. It

【0014】上記ディーゼル機関の運転条件を判定する
運転条件判定回路17は、機関回転数Neを検出する回
転センサ19、及び機関負荷Qを検出する負荷センサ2
1の検出信号を受け、機関回転数Ne及び機関負荷Qを
逐次流量係数演算手段としての流量係数演算回路23へ
出力する。基準運転条件設定回路25は、機関の低負荷
低回転領域において、運転頻度の高い基準の運転条件を
設定する。排気流量演算回路27は、上記回転センサ1
9、及び負荷センサ21の検出信号を受け、機関回転数
Ne及び機関負荷Qに基づき図3に示す排気流量マップ
から流量Qexhを検索する。
The operating condition judging circuit 17 for judging the operating condition of the diesel engine comprises a rotation sensor 19 for detecting the engine speed Ne and a load sensor 2 for detecting the engine load Q.
In response to the detection signal of 1, the engine speed Ne and the engine load Q are sequentially output to the flow coefficient calculation circuit 23 as the flow coefficient calculation means. The standard operating condition setting circuit 25 sets a standard operating condition with a high operating frequency in the low load and low engine speed region of the engine. The exhaust flow rate calculation circuit 27 is based on the rotation sensor 1 described above.
9 and the detection signal of the load sensor 21, the flow rate Qexh is searched from the exhaust flow rate map shown in FIG. 3 based on the engine speed Ne and the engine load Q.

【0015】流量係数演算回路23は、運転条件判定回
路17から入力された機関回転数Ne及び機関負荷Qが
基準運転条件設定回路25により設定された基準の運転
条件となったときに、フィルタ前後差圧検出回路15が
検出したフィルタ3の差圧Pと、排気流量演算回路27
が求めた排気流量Qexhとに基づき、排気が通過する
フィルタ3の流量係数Kを、
The flow coefficient calculating circuit 23 is provided before and after the filter when the engine speed Ne and the engine load Q input from the operating condition judging circuit 17 become the standard operating conditions set by the standard operating condition setting circuit 25. The differential pressure P of the filter 3 detected by the differential pressure detection circuit 15 and the exhaust flow rate calculation circuit 27
Based on the exhaust flow rate Qexh obtained by

【数1】 により演算する。この演算された流量係数Kは、フィル
タ3の排気流入部付近に付着した排気微粒子が離脱を起
こしていない状態での流量係数であり、流量係数記憶回
路29に入力され、ここに記憶される。
(Equation 1) Is calculated by The calculated flow coefficient K is a flow coefficient in a state where exhaust particulates adhering to the vicinity of the exhaust inflow portion of the filter 3 are not separated, and are input to the flow coefficient storage circuit 29 and stored therein.

【0016】推定差圧演算手段としての推定差圧演算回
路31は、流量係数記憶回路29に記憶された流量係数
Kと、排気流量演算回路27が求めた排気流量Qexh
とに基づき、基準の運転条件以外でのフィルタ3の上流
側排気圧力と下流側排気圧力との推定の差圧を逐次演算
して求める。内部拡散判断手段としての内部拡散判定回
路33は、図4に示すように、この推定差圧演算回路3
1が求めた推定差圧P_thと、フィルタ前後差圧検出
回路15が検出した実際の差圧Pとを逐次比較して、そ
の差△P=P_th−Pを求める。ここで、推定差圧P
_thと実際の差圧との差△Pが無い場合、又はその差
△Pが図5に示すマップに基づき排気流量Qexhによ
り求めた所定値RefPよりも小さい場合は、フィルタ
3に排気微粒子がほとんど堆積していない状態か、又は
フィルタ3に堆積した排気微粒子が僅かに微量ずつ拡散
している状態であるので、排気微粒子がある程度まとま
って付着部から離脱する内部拡散は発生していないと判
定される。フィルタ3に堆積した排気微粒子が僅かに微
量ずつ拡散している状態とは、排気中からフィルタ3に
徐々に堆積していく排気微粒子量と、排気流入部付近の
付着部からフィルタ3内部へ拡散し、また自己着火等に
よりフィルタ3から離脱していく排気微粒子量がほぼ等
しくなり、フィルタ3における排気微粒子の堆積と離脱
とがバランス良く保たれている、いわゆるフィルタ3が
自立している状態をいう。
The estimated differential pressure calculation circuit 31 as the estimated differential pressure calculation means has a flow rate coefficient K stored in the flow rate coefficient storage circuit 29 and the exhaust flow rate Qexh calculated by the exhaust flow rate calculation circuit 27.
Based on the above, the estimated differential pressure between the upstream side exhaust pressure and the downstream side exhaust pressure of the filter 3 under conditions other than the standard operating condition is sequentially calculated and obtained. As shown in FIG. 4, the internal diffusion determination circuit 33 serving as the internal diffusion determination means has the estimated differential pressure calculation circuit 3 as shown in FIG.
The estimated differential pressure P_th obtained by 1 and the actual differential pressure P detected by the differential pressure detection circuit 15 before and after the filter are sequentially compared to obtain the difference ΔP = P_th-P. Here, the estimated differential pressure P
When there is no difference ΔP between _th and the actual differential pressure, or when the difference ΔP is smaller than the predetermined value RefP obtained by the exhaust flow rate Qexh based on the map shown in FIG. 5, almost no exhaust particulate matter is present in the filter 3. Since the exhaust particles are not accumulated, or the exhaust particles accumulated on the filter 3 are slightly diffused, it is determined that the internal dispersion in which the exhaust particles are aggregated to some extent and separated from the adhering portion does not occur. It The state in which the exhaust particulates deposited on the filter 3 are slightly diffused in a slight amount means that the amount of the exhaust particulates gradually deposited from the exhaust gas on the filter 3 and the amount of the exhaust particulates diffused from the adhering portion near the exhaust inflow portion to the inside of the filter 3. In addition, the amount of exhaust particulates leaving the filter 3 due to self-ignition or the like becomes almost equal, and the so-called filter 3 is self-sustaining, in which the deposition and removal of the exhaust particulates in the filter 3 are well balanced. Say.

【0017】反対に、推定差圧P_thと実際の差圧P
との差△Pが所定値以上となった場合は、所定量以上の
排気微粒子がフィルタ3の排気流入部付近の付着部から
離脱してフィルタ3内部へ拡散した後であるので、内部
拡散が発生したと判定される。この内部拡散が発生する
状態について、更に詳しく説明すると、図6において
フィルタ3は、排気微粒子がほとんど付着していないフ
レッシュあるいは再生後の状態であり、このような状態
では実際の差圧Pと推定差圧P_thとはほぼ一致し、
かつ両方とも全体的に低い圧力となる。このような状態
のフィルタ3を排気が通過し、排気中の排気微粒子が徐
々にフィルタ3の排気流入部付近に付着してくると、図
6に示すように、実際の差圧P及び推定差圧P_th
が全体的に高圧となる。しかし、この状態においては、
未だ排気微粒子の付着量が所定量まで達していないた
め、排気流量が増大しても内部拡散は発生せず、実際の
差圧Pと推定差圧P_thとが大きく相異することもな
い。そして、図6に示すように、フィルタ3の排気流
入部付近に付着した排気微粒子量がさらに増加して所定
量に達した場合には、排気流量が少量であれば内部拡散
は発生せず、実際の差圧Pと推定差圧P_thとがほぼ
一致しているが、排気流量が増量すると、排気微粒子が
付着部から離脱してフィルタ3の内部へ拡散し始めるの
で、推定差圧P_thが排気流量の増量に伴い上昇する
のに対し、実際の差圧Pはある値以上には上昇しなくな
る。従って、推定差圧P_thと実際の差圧Pとの差△
Pが所定値以上となった場合は、所定量の排気微粒子が
フィルタ3の排気流入部付近の付着部から離脱してフィ
ルタ3内部へ拡散したと判定することができる。
On the contrary, the estimated differential pressure P_th and the actual differential pressure P
If the difference ΔP is more than a predetermined value, it means that the exhaust particles of a predetermined amount or more have separated from the adhering portion in the vicinity of the exhaust gas inflow portion of the filter 3 and diffused into the inside of the filter 3. It is determined that it has occurred. The state in which this internal diffusion occurs will be described in more detail. In FIG. 6, the filter 3 is in a fresh or regenerated state in which exhaust particulates are hardly adhered, and in such a state, it is estimated that the actual differential pressure P is obtained. It is almost the same as the differential pressure P_th,
And both are low pressure overall. When the exhaust gas passes through the filter 3 in such a state, and the exhaust particulates in the exhaust gas gradually adhere to the vicinity of the exhaust gas inflow portion of the filter 3, as shown in FIG. Pressure P_th
Becomes high pressure as a whole. However, in this state,
Since the amount of exhaust particulate adhered has not yet reached the predetermined amount, internal diffusion does not occur even when the exhaust flow rate increases, and the actual differential pressure P and the estimated differential pressure P_th do not differ greatly. Then, as shown in FIG. 6, when the amount of exhaust particulates adhering to the vicinity of the exhaust inflow portion of the filter 3 further increases and reaches a predetermined amount, internal diffusion does not occur if the exhaust flow rate is small, Although the actual differential pressure P and the estimated differential pressure P_th are substantially equal to each other, when the exhaust gas flow rate is increased, exhaust particulates are separated from the adhering portion and start diffusing into the filter 3, so that the estimated differential pressure P_th is exhausted. While it increases as the flow rate increases, the actual differential pressure P does not increase above a certain value. Therefore, the difference Δ between the estimated differential pressure P_th and the actual differential pressure P
When P is equal to or larger than the predetermined value, it can be determined that a predetermined amount of exhaust particulate has separated from the adhering portion of the filter 3 near the exhaust inflow portion and diffused into the filter 3.

【0018】内部拡散パターン分析回路35は、内部拡
散判定回路33が内部拡散を判定すると、内部拡散の回
数を記憶するとともに、この内部拡散によりフィルタ3
内部に拡散し、そのままフィルタ3内部に残留して堆積
する排気微粒子量を積算して堆積累積値PCTを求め
る。この堆積累積値PCTは、図7に示すように前回の
内部拡散時までの堆積累積値PCT-1に、前回の内部拡
散の後に新たに付着した排気微粒子量である付着堆積量
△PCTを加え、そこから内部拡散時にフィルタ3に残
留せず排気とともに持ち去られる排気微粒子量である拡
散除去量△Bを減じることにより求める(PCT=PC
-1+△PCT−△B)。ここで、内部拡散から次の内
部拡散までの間に新たにフィルタ3に付着した排気微粒
子の付着堆積量△PCTは、図8に示すマップに基づき
流量係数Kによって求めることができ、また、内部拡散
時に排気とともに持ち去られる排気微粒子の拡散除去量
△Bは、図9に示すマップに基づき、推定差圧P_th
と実際の差圧との差△P及び排気流量Qexhによって
求めることができる。
When the internal diffusion determination circuit 33 determines internal diffusion, the internal diffusion pattern analysis circuit 35 stores the number of times of internal diffusion, and the internal diffusion pattern analysis circuit 35 uses the internal diffusion to filter the filter 3.
The accumulated accumulation value PCT is obtained by integrating the amount of exhaust particulates that diffuse inside and remain inside the filter 3 as they are. As shown in FIG. 7, the accumulated accumulation value PCT is obtained by adding the accumulated accumulation value PCT- 1 up to the time of the previous internal diffusion, and the adhered accumulation amount ΔPCT which is the amount of exhaust particulate newly adhering after the previous internal diffusion. , Which is obtained by subtracting the diffusion removal amount ΔB, which is the amount of exhaust particulates not carried by the filter 3 during internal diffusion and carried away with the exhaust gas (PCT = PC
T -1 + ΔPCT-ΔB). Here, the deposition amount ΔPCT of the exhaust particulates newly attached to the filter 3 between the internal diffusion and the next internal diffusion can be obtained by the flow rate coefficient K based on the map shown in FIG. The diffusion removal amount ΔB of exhaust particulates carried away along with the exhaust during diffusion is estimated differential pressure P_th based on the map shown in FIG.
And the actual differential pressure can be obtained by the difference ΔP and the exhaust flow rate Qexh.

【0019】再生時期判断手段としての再生時期判定回
路37は、内部拡散パターン分析回路35が記憶した内
部拡散の回数が所定回数以上となったとき、又は内部拡
散パターン分析回路35が求めた堆積累積値PCTが所
定値以上となったとき、又はフィルタ前後差圧検出回路
15が検出したフィルタ3の差圧Pが所定値以上となっ
たときに、フィルタ3の再生時期と判定し、電気ヒータ
5に通電してフィルタ3に付着した排気微粒子を燃焼さ
せて除去する。
The regeneration timing determining circuit 37 as a regeneration timing determining means is used when the number of times of internal diffusion stored in the internal diffusion pattern analyzing circuit 35 reaches a predetermined number or more, or when the accumulated accumulation obtained by the internal diffusion pattern analyzing circuit 35. When the value PCT is equal to or higher than a predetermined value, or when the differential pressure P of the filter 3 detected by the differential pressure detection circuit 15 before and after the filter is equal to or higher than a predetermined value, it is determined that the regeneration time of the filter 3 is reached, and the electric heater 5 is activated. Is energized to burn and remove the exhaust particulates adhering to the filter 3.

【0020】次に、このように構成されたディーゼル機
関の排気清浄化装置における制御動作を、図10、図1
1及び図12に基づき説明する。
Next, the control operation in the exhaust gas purification device of the diesel engine configured as described above will be described with reference to FIGS.
1 and FIG. 12 will be described.

【0021】まず、回転センサ19により検出される機
関回転数Neを読み込み(ステップ101)、負荷セン
サ21により検出される機関負荷Qを読み込み(ステッ
プ103)、排気流量Qexhを図3に示すマップから
検索して求め、フィルタ前後差圧検出回路15が検出し
た差圧Pを読み込む(ステップ107)。そして、流量
係数演算回路23が、運転条件判定回路17から入力さ
れた運転条件信号が基準運転条件設定回路25に設定さ
れた基準の運転条件となっているかどうかを判断し(ス
テップ109)、基準の運転条件の場合には流量係数K
First, the engine speed Ne detected by the rotation sensor 19 is read (step 101), the engine load Q detected by the load sensor 21 is read (step 103), and the exhaust flow rate Qexh is read from the map shown in FIG. The differential pressure P detected by the search and the differential pressure detection circuit 15 before and after the filter is read (step 107). Then, the flow coefficient calculating circuit 23 determines whether the operating condition signal input from the operating condition determining circuit 17 is the reference operating condition set in the reference operating condition setting circuit 25 (step 109), and the reference is set. Flow rate coefficient K
To

【数2】 により演算し(ステップ111)、流量係数記憶回路2
9にて記憶する(ステップ113)。
(Equation 2) (Step 111), and the flow coefficient storage circuit 2
It is stored in step 9 (step 113).

【0022】ステップ109にて基準の運転条件ではな
いと判断された場合は、推定差圧演算回路31が推定差
圧P_thを演算する(ステップ115)。推定差圧P
_thの演算は、ステップ105にて検索して求めた排
気流量Qexhと、このとき流量係数記憶回路29に記
憶されている流量係数Kに基づき、P_th=(Qex
h/K)2 によって行う。推定差圧P_thの演算後、
内部拡散判定回路33が、推定差圧P_thとフィルタ
前後差圧検出回路15が検出したこのときの実際の差圧
Pとの差△Pとを求め、この差△Pが図5に示すマップ
から検索した所定の圧力RefP以上かどうかを判断す
る(ステップ117)。
If it is determined in step 109 that the operating condition is not the reference operating condition, the estimated differential pressure calculation circuit 31 calculates the estimated differential pressure P_th (step 115). Estimated differential pressure P
The calculation of _th is based on the exhaust flow rate Qexh obtained by the search in step 105 and the flow coefficient K stored in the flow coefficient storage circuit 29 at this time, and P_th = (Qex
h / K) 2 . After calculating the estimated differential pressure P_th,
The internal diffusion determination circuit 33 obtains a difference ΔP between the estimated differential pressure P_th and the actual differential pressure P at this time detected by the differential pressure detection circuit 15 before and after the filter, and the difference ΔP is obtained from the map shown in FIG. It is determined whether the pressure is equal to or higher than the predetermined pressure RefP retrieved (step 117).

【0023】実際の差圧Pが推定差圧P_thよりも小
さく、その差△Pが所定値RefP以上の場合は内部拡
散が発生したと判断し、内部拡散カウンタをインクリメ
ントし(ステップ119)、再生時期判定回路37が、
内部拡散カウンタが所定値以上となったかどうかを判断
して(ステップ121)、所定値以上であれば再生時期
と判定する(ステップ123)。また、ステップ121
にて内部拡散カウンタが所定値以上となっていないと判
断された場合は、図8に示すマップから付着堆積量△P
CTを読み込み(ステップ125)、図9に示すマップ
から拡散除去量△Bを読み込み(ステップ127)、堆
積累積値PCTをPCT=PCT-1+△PCT−△Bに
よって演算し(ステップ129)、堆積累積値PCTが
所定値以上かどうか判断して(ステップ131)、所定
値以上であれば再生時期と判定する(ステップ12
3)。また、ステップ117にて実際の差圧Pと推定差
圧P_thとの差△Pが所定値RefP未満と判断され
た場合、及びステップ131にて堆積累積値PCTが所
定値未満と判断された場合は、実際の差圧Pが所定値以
上かどうか判断し(ステップ133)、所定値以上であ
れば再生時期と判定する(ステップ123)。これは、
機関の運転状態が低負荷低回転であるときには、図3の
マップに示すように排気流量Qexhが少量となり、排
気流量Qexhが少量であれば、図6に示すようにフ
ィルタ3の排気流入部付近に付着した排気微粒子量が所
定値以上に達していても内部拡散が発生しにくいので、
このような低負荷低回転での運転が長時間連続して行わ
れた場合の再生時期を、実際の差圧Pのみによって判定
するためのものである。
When the actual differential pressure P is smaller than the estimated differential pressure P_th and the difference ΔP is equal to or larger than the predetermined value RefP, it is determined that internal diffusion has occurred, the internal diffusion counter is incremented (step 119), and reproduction is performed. The timing determination circuit 37
It is determined whether or not the internal diffusion counter is equal to or more than a predetermined value (step 121), and if it is equal to or more than the predetermined value, it is determined to be the reproduction time (step 123). Step 121
When it is determined that the internal diffusion counter has not reached the predetermined value or more, the amount of adhered deposition ΔP is determined from the map shown in FIG.
The CT is read (step 125), the diffusion removal amount ΔB is read from the map shown in FIG. 9 (step 127), and the accumulated deposition value PCT is calculated by PCT = PCT −1 + ΔPCT−ΔB (step 129). It is determined whether the accumulated accumulation value PCT is a predetermined value or more (step 131), and if it is the predetermined value or more, it is determined that the regeneration time is reached (step 12).
3). Further, when it is determined in step 117 that the difference ΔP between the actual differential pressure P and the estimated differential pressure P_th is less than the predetermined value RefP, and when it is determined in step 131 that the accumulated accumulation value PCT is less than the predetermined value. Determines whether the actual differential pressure P is equal to or higher than a predetermined value (step 133), and if it is equal to or higher than the predetermined value, it is determined to be the regeneration time (step 123). this is,
When the engine operating condition is low load and low rotation, the exhaust flow rate Qexh becomes small as shown in the map of FIG. 3, and when the exhaust flow rate Qexh is small, as shown in FIG. Even if the amount of exhaust particulate adhering to has reached a predetermined value or more, internal diffusion does not easily occur, so
This is for determining the regeneration timing when only such an operation at low load and low rotation is continuously performed for a long time based only on the actual differential pressure P.

【0024】ステップ123にて再生時期と判定された
場合は、フィルタ3の再生を行う。フィルタ3の再生動
作は、図12のフローチャートに示すように、再生時期
と判定されると(ステップ135)、電気ヒータ5に通
電してこれを加熱させ(ステップ137)、これにより
フィルタ3に付着した排気微粒子が燃焼して除去され、
フィルタ3の再生が終了したら(ステップ139)、内
部拡散パターン分析回路35における内部拡散の回数及
び堆積累積値PCTをクリアする(ステップ141)。
When it is judged at step 123 that the regeneration time has come, the filter 3 is regenerated. When the regeneration operation of the filter 3 is determined to be the regeneration time (step 135), the electric heater 5 is energized to heat the electric heater 5 (step 137) as shown in the flowchart of FIG. Exhaust particles are burned and removed,
When the regeneration of the filter 3 is completed (step 139), the number of internal diffusions and the accumulated accumulation value PCT in the internal diffusion pattern analysis circuit 35 are cleared (step 141).

【0025】このように、本実施例によれば、フィルタ
3の再生時期を、内部拡散が所定回数以上発生したと
き、又は排気微粒子の推定累積値PCTが所定値以上と
なったときとしたので、内部拡散が繰り返されることに
より発生する局所的な排気微粒子の堆積部分が残留して
も、フィルタ3の再生時期を的確に判断することができ
る。
As described above, according to the present embodiment, the regeneration time of the filter 3 is set to the time when the internal diffusion occurs a predetermined number of times or more, or the estimated cumulative value PCT of the exhaust particulates becomes the predetermined value or more. Even when the locally accumulated portion of exhaust gas particles generated by repeated internal diffusion remains, the regeneration timing of the filter 3 can be accurately determined.

【0026】なお、本実施例においては排気微粒子を付
着捕集するタイプのフィルタを用いているが、本発明は
このようなタイプのフィルタに限られるものではなく、
例えば触媒を担持したオープンハニカム構造のフィルタ
などのような内部拡散現象の発生の可能性のあるフィル
タに使用することによっても、フィルタの再生時期をよ
り的確に判断することが可能となる。
In this embodiment, a filter of the type that adheres and collects exhaust particulates is used, but the present invention is not limited to this type of filter,
For example, the regeneration time of the filter can be more accurately determined by using it in a filter that may cause an internal diffusion phenomenon, such as a filter having an open honeycomb structure supporting a catalyst.

【0027】[0027]

【発明の効果】以上説明してきたように、本発明によれ
ば機関の低負荷低回転域においてあらかじめ設定した基
準となる運転条件でのフィルタの流量係数を求め、この
流量係数に基づき演算した推定のフィルタ前後差圧より
も実際の差圧の方が所定値以上小さくなったとき、フィ
ルタに付着している排気微粒子がその付着部から離脱し
て内部拡散が発生したと判断し、これに基づきフィルタ
の再生時期を判断するようにしたので、内部拡散が繰り
返されることにより発生する局所的な排気微粒子の堆積
部分が残留しても、フィルタの再生時期の判断を的確に
行うことができる。
As described above, according to the present invention, the flow rate coefficient of the filter is obtained under the operating condition which is the reference set in advance in the low load and low speed range of the engine, and the estimation is performed based on this flow rate coefficient. When the actual differential pressure becomes smaller than the differential pressure before and after the filter by a predetermined value or more, it is determined that the exhaust particulates adhering to the filter have separated from the adhering part and internal diffusion has occurred. Since the regeneration time of the filter is determined, it is possible to accurately determine the regeneration time of the filter even if the locally accumulated portion of exhaust particulates caused by repeated internal diffusion remains.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のクレーム対応図である。FIG. 1 is a diagram corresponding to claims of the present invention.

【図2】本発明の一実施例によるディーゼル機関の排気
清浄化装置を示す全体構成図である。
FIG. 2 is an overall configuration diagram showing an exhaust gas purification device for a diesel engine according to an embodiment of the present invention.

【図3】機関回転数と機関負荷とによる排気流量特性図
である。
FIG. 3 is an exhaust flow characteristic diagram according to engine speed and engine load.

【図4】実際の差圧P及び推定差圧P_thと排気流量
との関係を示す説明図である。
FIG. 4 is an explanatory diagram showing a relationship between an actual differential pressure P and an estimated differential pressure P_th and an exhaust gas flow rate.

【図5】内部拡散発生の基準となる圧力差RefPと排
気流量との関係を示す図である。
FIG. 5 is a diagram showing a relationship between a pressure difference RefP that is a reference for generating internal diffusion and an exhaust flow rate.

【図6】排気微粒子の付着状態に対応したフィルタの差
圧と排気流量との関係を示す説明図である。
FIG. 6 is an explanatory diagram showing a relationship between a differential pressure of a filter and an exhaust gas flow rate corresponding to an adhered state of exhaust particulates.

【図7】フィルタの差圧と排気微粒子堆積重量との関係
を示す説明図である。
FIG. 7 is an explanatory diagram showing the relationship between the differential pressure of the filter and the exhaust particulate deposition weight.

【図8】内部拡散から次の内部拡散までの間に新たにフ
ィルタに付着した排気微粒子の付着堆積量△PCTと流
量係数との関係を示す説明図である。
FIG. 8 is an explanatory diagram showing the relationship between the deposition amount ΔPCT of exhaust particulate newly adhering to the filter between internal diffusion and the next internal diffusion and the flow coefficient.

【図9】内部拡散時に排気とともに持ち去られる排気微
粒子の拡散除去量△Bとフィルタの差圧との関係を示す
説明図である。
FIG. 9 is an explanatory diagram showing a relationship between the diffusion removal amount ΔB of exhaust particulates carried away with exhaust during internal diffusion and the differential pressure of the filter.

【図10】図2の排気清浄化装置における再生時期を判
断する制御動作を示すフローチャートである。
10 is a flowchart showing a control operation for determining a regeneration timing in the exhaust gas purification device of FIG.

【図11】図2の排気清浄化装置における再生時期を判
断する制御動作を示すフローチャートである。
FIG. 11 is a flowchart showing a control operation for determining a regeneration timing in the exhaust gas purification device of FIG.

【図12】再生操作の制御動作を示すフローチャートで
ある。
FIG. 12 is a flowchart showing a control operation of a reproduction operation.

【図13】従来例におけるフィルタ上流側と下流側の排
気圧力差Pの変動と、排気微粒子の堆積重量とをそれぞ
れ示す説明図である。
FIG. 13 is an explanatory diagram showing fluctuations in the exhaust pressure difference P between the upstream side and the downstream side of the filter and the accumulated weight of exhaust particulates in the conventional example.

【図14】フィルタの排気流入側表面に付着した排気微
粒子が内部拡散したときのフィルタ内部の変化を示す断
面図である。
FIG. 14 is a cross-sectional view showing changes in the inside of the filter when exhaust particulates attached to the surface of the filter on the exhaust inflow side diffuse internally.

【図15】排気微粒子が内部に拡散した後、さらに発生
した目詰まり部が内部に拡散したときのフィルタ内部を
示す断面図である。
FIG. 15 is a cross-sectional view showing the inside of the filter when the exhausted particles have diffused inward, and the further generated clogging part has diffused inward.

【符号の説明】[Explanation of symbols]

1 排気通路 3 フィルタ 5 電気ヒータ(再生手段) 15 フィルタ前後差圧検出回路(差圧検出手段) 23 流量係数演算回路(流量係数演算手段) 31 推定差圧演算回路(推定差圧演算手段) 33 内部拡散判定回路(内部拡散判断手段) 37 再生時期判定回路(再生時期判断手段) DESCRIPTION OF SYMBOLS 1 exhaust passage 3 filter 5 electric heater (regeneration means) 15 differential pressure detection circuit before and after filter (differential pressure detection means) 23 flow coefficient calculation circuit (flow coefficient calculation means) 31 estimated differential pressure calculation circuit (estimated differential pressure calculation means) 33 Internal diffusion determination circuit (internal diffusion determination means) 37 Reproduction timing determination circuit (reproduction timing determination means)

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−134317(JP,A) 特開 昭60−67713(JP,A) 特開 昭63−295815(JP,A) 特開 平1−142211(JP,A) 特開 平4−203414(JP,A) 特開 昭63−65113(JP,A) 特開 平1−253522(JP,A) 実開 昭63−138414(JP,U) 実開 平3−25810(JP,U) ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-59-134317 (JP, A) JP-A-60-67713 (JP, A) JP-A-63-295815 (JP, A) JP-A-1- 142211 (JP, A) JP-A-4-203414 (JP, A) JP-A-63-65113 (JP, A) JP-A-1-253522 (JP, A) Actual development Sho-63-138414 (JP, U) Actual Kaihei 3-25810 (JP, U)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 機関の排気通路に設けられ排気中の排気
微粒子を捕集するフィルタと、このフィルタに捕集され
た排気微粒子を燃焼させてフィルタの再生を行う再生手
段と、前記フィルタの上流側及び下流側の各排気通路相
互間の差圧を検出する差圧検出手段と、前記機関の低負
荷低回転領域においてあらかじめ設定した基準となる運
転条件での前記フィルタを通過する排気の流量係数を演
算する流量係数演算手段と、この演算された流量係数に
基づき前記機関の高負荷又は高回転領域での前記フィル
タの推定の差圧を演算する推定差圧演算手段と、前記差
圧検出手段の検出する実際の差圧がこの演算された推定
の差圧よりも所定値以上小さくなったとき前記フィルタ
に付着している排気微粒子がその付着部から離脱したと
判断する内部拡散判断手段と、この内部拡散判断手段の
内部拡散判断に基づき前記再生手段によるフィルタの再
生時期を判断する再生時期判断手段とを有することを特
徴とするディーゼル機関の排気清浄化装置。
1. A filter provided in an exhaust passage of an engine for collecting exhaust particulates in exhaust gas, a regeneration means for burning the exhaust particulates collected by the filter to regenerate the filter, and an upstream of the filter. Pressure detection means for detecting the pressure difference between the exhaust passages on the downstream side and the downstream side, and the flow rate coefficient of the exhaust gas passing through the filter under a reference operating condition set in advance in the low load and low rotation region of the engine. A flow rate coefficient calculating means for calculating the above, a presumed differential pressure calculating means for calculating an estimated differential pressure of the filter in a high load or high rotation region of the engine based on the calculated flow coefficient, and the differential pressure detecting means. When the actual differential pressure detected by the filter becomes smaller than this estimated differential pressure by a predetermined value or more, it is determined that the exhaust particulates adhering to the filter have separated from the adhering portion. An exhaust gas purification device for a diesel engine, comprising: disconnection means and regeneration timing determination means for determining regeneration timing of the filter by the regeneration means based on the internal diffusion determination of the internal diffusion determination means.
【請求項2】 内部拡散判断手段は、フィルタから離脱
した後の排気微粒子の堆積量に、新たに堆積する排気微
粒子量を加算し、この加算後の排気微粒子量が所定量以
上となったときに、排気微粒子がその付着部から離脱し
たと判断することを特徴とする請求項1記載のディーゼ
ル機関の排気清浄化装置。
2. The internal diffusion determination means adds the newly deposited amount of exhaust particulates to the deposited amount of exhaust particulates after having been separated from the filter, and when the amount of exhaust particulates after this addition becomes a predetermined amount or more. The exhaust gas purification device for a diesel engine according to claim 1, wherein it is determined that the exhaust particulate has separated from the adhered portion.
JP3175233A 1991-07-16 1991-07-16 Exhaust gas cleaning device for diesel engine Expired - Fee Related JP2679456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3175233A JP2679456B2 (en) 1991-07-16 1991-07-16 Exhaust gas cleaning device for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3175233A JP2679456B2 (en) 1991-07-16 1991-07-16 Exhaust gas cleaning device for diesel engine

Publications (2)

Publication Number Publication Date
JPH0518229A JPH0518229A (en) 1993-01-26
JP2679456B2 true JP2679456B2 (en) 1997-11-19

Family

ID=15992597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3175233A Expired - Fee Related JP2679456B2 (en) 1991-07-16 1991-07-16 Exhaust gas cleaning device for diesel engine

Country Status (1)

Country Link
JP (1) JP2679456B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111720192A (en) * 2019-03-21 2020-09-29 广州汽车集团股份有限公司 Vehicle, control method and control device of particle catcher and storage medium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2799504B1 (en) * 1999-10-08 2002-01-18 Renault METHOD AND DIAGNOSIS OF A COMBUSTION ENGINE EXHAUST SYSTEM
FR2877393B1 (en) * 2004-11-02 2006-12-22 Renault Sas DEVICE FOR ESTIMATING A QUANTITY OF PARTICLES PRESENT IN A PARTICLE FILTER OF A MOTOR VEHICLE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111720192A (en) * 2019-03-21 2020-09-29 广州汽车集团股份有限公司 Vehicle, control method and control device of particle catcher and storage medium

Also Published As

Publication number Publication date
JPH0518229A (en) 1993-01-26

Similar Documents

Publication Publication Date Title
JP3824979B2 (en) Filter control method and apparatus
JP4506539B2 (en) Exhaust gas purification device for internal combustion engine
JP3869333B2 (en) Exhaust gas purification device
JP4513593B2 (en) Exhaust gas purification device for internal combustion engine
JP3918649B2 (en) Exhaust gas purification device for internal combustion engine
JP3846309B2 (en) Exhaust purification device
JP6201577B2 (en) Diagnostic equipment
JP2003314249A (en) Exhaust-emission control device of internal combustion engine
WO2004016916A1 (en) Filter control device
JP2008190470A (en) Regeneration device for exhaust emission control filter
JP4363289B2 (en) Exhaust gas purification device for internal combustion engine
CN112282905B (en) DPF carbon loading capacity estimation method and device
JP2009144512A (en) Regeneration control device of exhaust emission control filter for internal combustion engine
KR20180101011A (en) Method for regeneration of gasoline particulate filter
JP3951618B2 (en) Diesel particulate filter device and regeneration control method thereof
JP2006063970A (en) Exhaust emission control device of internal combustion engine
JP4226007B2 (en) Exhaust gas purification device used for internal combustion engine and method for operating the exhaust gas purification device
JP3908204B2 (en) Filter control device
JP2679456B2 (en) Exhaust gas cleaning device for diesel engine
CN114508407B (en) Method and device for determining DPF removal
JP2004293413A (en) Exhaust emission control system
KR101240937B1 (en) Regeneration method and apparatus of diesel particulate filter
JPH1089048A (en) Exhaust fine particle purifying device
JP2004204821A (en) Method and apparatus for detecting amount of deposition of particulate material in continuous regeneration type trap filter
JPH0544438A (en) Exhaust gas purifying device for diesel engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees