JP2003020933A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JP2003020933A
JP2003020933A JP2001201939A JP2001201939A JP2003020933A JP 2003020933 A JP2003020933 A JP 2003020933A JP 2001201939 A JP2001201939 A JP 2001201939A JP 2001201939 A JP2001201939 A JP 2001201939A JP 2003020933 A JP2003020933 A JP 2003020933A
Authority
JP
Japan
Prior art keywords
amount
dpf
particulate
exhaust
air ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001201939A
Other languages
Japanese (ja)
Other versions
JP3778016B2 (en
Inventor
Atsushi Aoki
敦 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001201939A priority Critical patent/JP3778016B2/en
Publication of JP2003020933A publication Critical patent/JP2003020933A/en
Application granted granted Critical
Publication of JP3778016B2 publication Critical patent/JP3778016B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely prevent clogging of a DPF when providing the DPF for scavenging PM in exhaust in an exhaust passage of an engine. SOLUTION: In the case of a regeneration region (high load region) of the DPF (S3), PM accumulated amount W1 of the DPF is estimated from exhaust pressure Pexh on an upstream side of the DPF (S4). PM combustion amount V1 of the DPF is estimated from the PM accumulated amount W1 (S5). PM inflow amount V0 to flow into the DPF is estimated from the present excess air ratio λ0 (S6). The PM combustion amount V1 and the PM inflow amount V0 are compared (S7). In the case of V0>=V1, the excess air ratio is increased (S8).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、機関の排気通路に
排気中のパティキュレート(以下PMという)を捕集す
るパティキュレートフィルタ(一般にディーゼルパティ
キュレートフィルタと呼ばれるので、以下ではDPFと
いう)を備える内燃機関の排気浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention includes a particulate filter (generally referred to as a diesel particulate filter, henceforth referred to as DPF) for collecting particulate matter (hereinafter referred to as PM) in exhaust gas in an exhaust passage of an engine. The present invention relates to an exhaust emission control device for an internal combustion engine.

【0002】[0002]

【従来の技術】DPFは、排気中のPMを捕集し、DP
F中でPMを燃焼させることによりPMを除去するもの
である。DPF中でPMが燃焼するか否かは排気温度に
依存しており、排気温度が所定の温度以上のときしか燃
焼しない。よって、排気温度が前記所定の温度未満のと
きは、DPF中のPMが燃焼せず増加することにより、
DPFが目詰まりを起こしてしまうため、DPFに捕集
されたPM量(PM堆積量)が所定量を超えた場合は、
強制的に再生を行う必要がある。
2. Description of the Related Art A DPF collects PM in exhaust gas and
The PM is removed by burning the PM in F. Whether PM burns in the DPF depends on the exhaust temperature, and burns only when the exhaust temperature is equal to or higher than a predetermined temperature. Therefore, when the exhaust temperature is lower than the predetermined temperature, the PM in the DPF increases without burning,
Since the DPF will be clogged, if the amount of PM trapped in the DPF (PM accumulation amount) exceeds a predetermined amount,
It is necessary to force playback.

【0003】DPFを強制的に再生させる技術として
は、例えば、特開平11−280449号公報に開示さ
れる技術が知られている。
As a technique for forcibly regenerating the DPF, for example, a technique disclosed in Japanese Patent Laid-Open No. 11-280449 is known.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、排気温
度が前記所定の温度以上でDPF中のPMが燃焼してい
る場合であっても、機関から排出されてDPFに流入す
るPM量が過大なとき、すなわち、DPFに流入する単
位時間当たりのPM量(PM流入量)がDPF中で燃焼
する単位時間当たりのPM量(PM燃焼量)を超えてし
まうときは、DPF中のPM堆積量が増加し、結果とし
て目詰まりを起こしてしまうといった問題点があった。
However, even when the PM in the DPF is burning at the exhaust temperature above the predetermined temperature, when the amount of PM discharged from the engine and flowing into the DPF is too large. That is, when the PM amount per unit time flowing into the DPF (PM inflow amount) exceeds the PM amount per unit time burning in the DPF (PM combustion amount), the PM accumulation amount in the DPF increases. However, as a result, there is a problem that clogging occurs.

【0005】本発明は、このような従来の問題点に鑑
み、DPFの目詰まりを確実に防止することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of such conventional problems, and an object thereof is to reliably prevent clogging of a DPF.

【0006】[0006]

【課題を解決するための手段】このため、請求項1の発
明では、機関の排気通路に配置され、排気中のPMを捕
集するDPFと、前記DPFのPM燃焼量を推定するP
M燃焼量推定手段と、機関から排出されて前記DPFに
流入するPM流入量を推定するPM流入量推定手段と、
前記DPFが再生領域にあるか否かを判定する再生判定
手段と、前記再生領域にあり、且つ、前記PM燃焼量が
前記PM流入量より小さいときに、機関の空気過剰率を
大きくする空気過剰率制御手段と、を備えて、内燃機関
の排気浄化装置を構成する。
For this reason, in the invention of claim 1, the DPF arranged in the exhaust passage of the engine for collecting PM in the exhaust gas and the PPF for estimating the PM combustion amount of the DPF.
M combustion amount estimating means, PM inflow estimating means for estimating the PM inflow discharged from the engine and flowing into the DPF,
Regeneration determining means for determining whether the DPF is in the regeneration region, and excess air for increasing the excess air ratio of the engine when the DPF is in the regeneration region and the PM combustion amount is smaller than the PM inflow amount. And a rate control means to configure an exhaust gas purification device for an internal combustion engine.

【0007】ここでいう「PM流入量」とは、DPFに
流入する単位時間当たりのPM量であり、機関から排出
される単位時間あたりのPM量と等価である。また、
「PM燃焼量」とは、DPF中で燃焼する単位時間当た
りのPM量である。請求項2の発明では、前記PM燃焼
量推定手段は、前記DPFのPM堆積量から前記PM燃
焼量を推定することを特徴とする。
The "PM inflow amount" here is a PM amount flowing into the DPF per unit time, and is equivalent to a PM amount discharged from the engine per unit time. Also,
The “PM combustion amount” is the amount of PM burned in the DPF per unit time. According to a second aspect of the present invention, the PM combustion amount estimating means estimates the PM combustion amount from the PM accumulation amount of the DPF.

【0008】請求項3の発明では、前記PM燃焼量推定
手段は、前記DPF上流側の排気圧力に基づいて前記P
M燃焼量を推定することを特徴とする。この場合、DP
F上流側の排気圧力からPM燃焼量を直接推定してもよ
いし、DPF上流側の排気圧力からPM堆積量を求めて
このPM堆積量から推定してもよい。請求項4の発明で
は、前記DPF上流側の排気通路に配置され、排気中の
NOをNO2 に酸化する酸化触媒を備えることを特徴と
する。
In the third aspect of the present invention, the PM combustion amount estimating means determines the P based on the exhaust pressure on the upstream side of the DPF.
The feature is that the M combustion amount is estimated. In this case, DP
The PM combustion amount may be directly estimated from the exhaust pressure on the upstream side of F, or the PM deposition amount may be obtained from the exhaust pressure on the upstream side of the DPF and estimated from this PM deposition amount. According to the invention of claim 4, an oxidation catalyst is provided which is arranged in the exhaust passage on the upstream side of the DPF and oxidizes NO in the exhaust gas to NO2.

【0009】請求項5の発明では、前記DPFは、フィ
ルタ表面上に酸化触媒を担持することを特徴とする。
According to a fifth aspect of the present invention, the DPF carries an oxidation catalyst on the surface of the filter.

【0010】[0010]

【発明の効果】請求項1の発明によれば、DPFの再生
領域で、DPFにおけるPM燃焼量がPM流入量より小
さくなる場合に、空気過剰率を大きくするように補正す
ることで、機関から排出されるPM量、すなわちDPF
へのPM流入量を低減することができ、DPFにおける
PM燃焼量以上のPMが流入して、DPFが目詰まりを
起こすことを防止することが可能となる。
According to the invention of claim 1, when the PM combustion amount in the DPF is smaller than the PM inflow amount in the regeneration region of the DPF, the excess air ratio is corrected so as to increase the excess air ratio. Amount of PM emitted, that is, DPF
The PM inflow amount into the DPF can be reduced, and it is possible to prevent the DPF from being clogged due to inflow of PM in excess of the PM combustion amount in the DPF.

【0011】また、DPFの再生領域(主に高負荷領
域)でのみ空気過剰率の補正を行い、再生が起きない領
域(低負荷領域)では空気過剰率の補正を行わないの
で、低負荷時に空気過剰率が過大になり機関が停止する
ことを避けつつ、高負荷時にDPFにおけるPM燃焼量
以上のPMが機関より排出されてDPFが詰まることを
防止することが可能となる。
Further, since the excess air ratio is corrected only in the DPF regeneration region (mainly the high load region) and the excess air ratio is not corrected in the region where regeneration does not occur (low load region), at the time of low load. It is possible to prevent the engine from stopping due to an excessive air ratio, and prevent the engine from discharging more PM than the PM combustion amount in the DPF at the time of high load to block the DPF.

【0012】請求項2及び/又は請求項3の発明によれ
ば、簡便な方法でPM燃焼量を求め、制御の簡素化を図
ることができる。請求項4及び/又は請求項5の発明に
よれば、酸化機能により、排気中のNOがNO2 に酸化
され、このNO2 がDPF中のPMと反応することでP
Mを除去することができる。そして、ここでのPMとN
O2 との反応は、PMとO2 とが反応する温度(600
℃以上)より低い温度(例えば350℃)から起こるた
め、DPFの再生領域を中負荷側に広げることができ
る。
According to the invention of claim 2 and / or claim 3, the PM combustion amount can be obtained by a simple method, and the control can be simplified. According to the invention of claim 4 and / or claim 5, NO in the exhaust gas is oxidized to NO2 due to the oxidation function, and this NO2 reacts with PM in the DPF, so that P
M can be removed. And PM and N here
The reaction with O2 is the temperature at which PM reacts with O2 (600
Since it occurs from a temperature lower than (° C. or higher) (for example, 350 ° C.), the regeneration region of the DPF can be expanded to the medium load side.

【0013】[0013]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて説明する。図1は本発明の第1実施形態を示
す圧縮着火式内燃機関(ここではディーゼルエンジン)
のシステム図である。ディーゼルエンジン1において、
空気は、吸気通路2に介在させた吸気絞り弁3を経て、
各気筒の燃焼室内へ流入する。燃料は、高圧燃料ポンプ
4、コモンレール5及び各気筒の燃料噴射弁6を含んで
構成されるコモンレール式燃料噴射装置により、各気筒
の燃焼室内へ直接噴射される。各気筒の燃焼室内に流入
した空気と噴射された燃料はここで圧縮着火により燃焼
し、排気は排気通路7へ流出する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a compression ignition internal combustion engine (here, a diesel engine) showing a first embodiment of the present invention.
FIG. In the diesel engine 1,
Air passes through an intake throttle valve 3 interposed in the intake passage 2,
It flows into the combustion chamber of each cylinder. Fuel is directly injected into the combustion chamber of each cylinder by a common rail fuel injection device including a high-pressure fuel pump 4, a common rail 5, and a fuel injection valve 6 of each cylinder. The air that has flowed into the combustion chamber of each cylinder and the injected fuel burn here by compression ignition, and the exhaust gas flows out to the exhaust passage 7.

【0014】ここで、排気通路7には、その途中に、排
気中のPMを捕集するDPF8を配置してある。エンジ
ンコントロールユニット(以下ECUという)10に
は、エンジン1の制御のため、エンジン回転数Ne検出
用の回転数センサ11、アクセル開度APO検出用のア
クセル開度センサ12、吸気量Wair 検出用のエアフロ
ーメータ13、排気圧力Pexh 検出用の排圧センサ14
等から、信号が入力されている。
Here, in the exhaust passage 7, a DPF 8 for collecting PM in the exhaust is arranged in the middle thereof. An engine control unit (hereinafter referred to as ECU) 10 includes a rotation speed sensor 11 for detecting an engine rotation speed Ne, an accelerator opening sensor 12 for detecting an accelerator opening APO, and an intake air amount Wair for controlling the engine 1. Air flow meter 13, exhaust pressure sensor 14 for detecting exhaust pressure Pexh
Etc., the signal is input.

【0015】排圧センサ14は、排気通路7のDPF8
上流側に設けられ、DPF8のPM堆積量を推定するた
めに用いられる。ECU10は、これらの入力信号に基
づいて演算処理を行い、運転状態に応じて、コモンレー
ル式燃料噴射装置の燃料噴射弁6へ燃料噴射量及び噴射
時期の制御のための燃料噴射指令信号を出力し、また、
吸気絞り弁3へ開度指令信号を出力する。
The exhaust pressure sensor 14 is connected to the DPF 8 of the exhaust passage 7.
It is provided on the upstream side and is used for estimating the PM accumulation amount of the DPF 8. The ECU 10 performs arithmetic processing based on these input signals, and outputs a fuel injection command signal for controlling the fuel injection amount and injection timing to the fuel injection valve 6 of the common rail fuel injection device according to the operating state. ,Also,
An opening degree instruction signal is output to the intake throttle valve 3.

【0016】次に、上記の構成でのECU10による空
気過剰率の補正制御について、フローチャートにより説
明する。図2は空気過剰率補正制御ルーチンのフローチ
ャートであり、本ルーチンは所定時間毎に実行される。
S1では、エンジン回転数Ne、燃料噴射量Qf、吸気
量Wair 、排気圧力Pexh を読込む。ここで、燃料噴射
量Qfは、エンジン回転数Neとアクセル開度APOと
に対応させたマップを基に演算されるので、その演算値
を読込む。
Next, the correction control of the excess air ratio by the ECU 10 in the above configuration will be described with reference to a flowchart. FIG. 2 is a flow chart of the excess air ratio correction control routine, and this routine is executed every predetermined time.
At S1, the engine speed Ne, the fuel injection amount Qf, the intake air amount Wair, and the exhaust pressure Pexh are read. Here, since the fuel injection amount Qf is calculated based on a map corresponding to the engine speed Ne and the accelerator opening APO, the calculated value is read.

【0017】S2では、燃料噴射量Qfと吸気量Wair
とエンジン回転数Neとから、現在の空気過剰率λ0
を、 λ0=(Wair /Ne)/(Qf×14.7) により、演算する。S3では、図3のマップを参照し
て、エンジン回転数Neと燃料噴射量Qfとに基づき、
DPF8の再生領域(自己再生領域;高負荷領域)か否
かを判定する。
In S2, the fuel injection amount Qf and the intake air amount Wair
And the engine speed Ne, the current excess air ratio λ0
Is calculated by λ0 = (Wair / Ne) / (Qf × 14.7). In S3, referring to the map of FIG. 3, based on the engine speed Ne and the fuel injection amount Qf,
It is determined whether or not it is a regeneration area (self-regeneration area; high load area) of the DPF 8.

【0018】再生領域でない場合は、空気過剰率補正制
御は行わないので、本ルーチンを終了する。再生領域の
場合は、空気過剰率補正制御のため、S4へ進み、S4
では、DPF8でのPM堆積量が増大するほど、DPF
8上流側の排気圧力Pexh が増大することから、DPF
8上流側の排気圧力Pexh からPM堆積量W1を推定す
る。但し、排気圧力Pexh はエンジンの運転状態によっ
ても変化するので、現在の運転状態に対応するベース排
気圧力を考慮することは言うまでもない。
If it is not in the regeneration region, the excess air ratio correction control is not performed, so this routine is ended. In the case of the regeneration region, the process proceeds to S4 and S4 for the excess air ratio correction control.
Then, as the PM deposition amount in the DPF 8 increases, the DPF
8 Because the exhaust pressure Pexh on the upstream side increases, the DPF
8 The PM accumulation amount W1 is estimated from the exhaust pressure Pexh on the upstream side. However, since the exhaust pressure Pexh changes depending on the operating state of the engine, it goes without saying that the base exhaust pressure corresponding to the current operating state is taken into consideration.

【0019】次のS5では、図4のテーブルを参照し
て、DPF8でのPM堆積量W1から、DPF8での単
位時間当たりのPM燃焼量V1を推定する。この部分が
PM燃焼量推定手段に相当する。次のS6では、図5の
テーブルを参照して、現在の空気過剰率λ0から、DP
F8への単位時間当たりのPM流入量V0を推定する。
この部分がPM流入量推定手段に相当する。
In next step S5, the PM combustion amount V1 per unit time in the DPF 8 is estimated from the PM accumulation amount W1 in the DPF 8 with reference to the table of FIG. This portion corresponds to PM combustion amount estimation means. Next, in S6, referring to the table of FIG. 5, from the current excess air ratio λ0 to DP
The PM inflow amount V0 per unit time to F8 is estimated.
This portion corresponds to the PM inflow amount estimation means.

【0020】次のS7では、DPF8に流入するPMの
量(PM流入量V0)とDPF8で燃焼除去されるPM
の量(PM燃焼量V1)とを比較し、流入する量の方が
大きい場合(V0≧V1の場合)は、S8に進む。S8
では、図5のテーブルを参照して、空気過剰率をPM流
入量がPM燃焼量V1と等しくなる空気過剰率λ1を求
め、空気過剰率をλ1に制御することで、空気過剰率を
大きくする。この部分が空気過剰率制御手段に相当す
る。
In the next step S7, the amount of PM flowing into the DPF 8 (PM inflow amount V0) and the PM removed by combustion in the DPF 8
(PM combustion amount V1) is compared, and if the inflowing amount is larger (V0 ≧ V1), the process proceeds to S8. S8
Then, referring to the table of FIG. 5, the excess air ratio is increased to obtain the excess air ratio λ1 at which the PM inflow amount becomes equal to the PM combustion amount V1 and control the excess air ratio to λ1. . This portion corresponds to the excess air ratio control means.

【0021】一方、流入する量の方が小さい場合(V0
<V1の場合)は、空気過剰率補正制御は行わないの
で、本ルーチンを終了する。このように、空気過剰率を
λ1に制御することで、PM流入量がPM燃焼量と等し
くなるため、DPF8の目詰まりを防止できる。また、
S8において、空気過剰率をλ1より大きなλ2に制御
してもよく、この場合、PM流入量がPM燃焼量より小
さくなるため、DPF8の再生が行われることになる。
On the other hand, when the amount of inflow is smaller (V0
In the case of <V1, since the excess air ratio correction control is not performed, this routine is ended. As described above, by controlling the excess air ratio to λ1, the PM inflow amount becomes equal to the PM combustion amount, so that clogging of the DPF 8 can be prevented. Also,
In S8, the excess air ratio may be controlled to λ2 larger than λ1. In this case, since the PM inflow amount is smaller than the PM combustion amount, the DPF 8 is regenerated.

【0022】尚、前記S8での空気過剰率の制御は、燃
料噴射量の制御で行うものとする。本実施形態の場合、
再生領域は高負荷領域に特定されており、この領域では
吸気絞り弁3は全開に制御されているからである。従っ
て、燃料噴射量を減少補正して、空気過剰率を大きくす
る。この場合、燃料噴射量を減らすと、トルクも減って
しまうことが懸念されるが、空気過剰率をわずかに大き
くすればスモークの発生は激減するため、ここでの燃料
噴射量の減少量は微少であり、トルクが大幅に低下する
ことはない。
The control of the excess air ratio in S8 is performed by controlling the fuel injection amount. In the case of this embodiment,
This is because the regeneration region is specified as the high load region, and the intake throttle valve 3 is controlled to be fully open in this region. Therefore, the fuel injection amount is reduced and corrected to increase the excess air ratio. In this case, if the fuel injection amount is reduced, the torque may also decrease, but if the air excess ratio is made slightly larger, the generation of smoke is drastically reduced. Therefore, the decrease amount of the fuel injection amount here is very small. Therefore, the torque is not significantly reduced.

【0023】次に本発明の第2実施形態について説明す
る。図6は第2実施形態での内燃機関のシステム図であ
る。第1実施形態と異なる点は、排気通路7のDPF8
上流側に酸化触媒9を配置し、更にDPF8のフィルタ
表面に酸化触媒を担持させて酸化機能付きDPFとした
点である。この場合、酸化触媒9と、DPF8の酸化機
能(フィルタ上に担持された酸化触媒の有する機能)と
により、排気中のNOがNO2 に酸化され、このNO2
がDPF8中のPMと反応することでPMを除去するこ
とができる。
Next, a second embodiment of the present invention will be described. FIG. 6 is a system diagram of the internal combustion engine in the second embodiment. The difference from the first embodiment is that the DPF 8 in the exhaust passage 7 is
The point is that the oxidation catalyst 9 is arranged on the upstream side, and the oxidation catalyst is carried on the filter surface of the DPF 8 to form a DPF with an oxidation function. In this case, NO in the exhaust gas is oxidized to NO2 by the oxidation catalyst 9 and the oxidation function of the DPF 8 (the function of the oxidation catalyst carried on the filter), and this NO2
The PM can be removed by reacting with the PM in the DPF 8.

【0024】ここでのPMとNO2 との反応は、PMと
O2 との反応より低い温度(350℃)から起こるた
め、図7に示すように再生領域が中負荷側に広がること
になる。ここで、図7に示す連続再生領域がNO2 との
反応によってPMを除去できる領域である。第2実施形
態での空気過剰率の補正制御は、基本的には図2のフロ
ーによるが、次の点が異なる。
Since the reaction between PM and NO2 occurs here at a lower temperature (350 ° C.) than the reaction between PM and O2, the regeneration region spreads to the medium load side as shown in FIG. Here, the continuous regeneration region shown in FIG. 7 is a region where PM can be removed by the reaction with NO2. The correction control of the excess air ratio in the second embodiment is basically based on the flow of FIG. 2, but the following points are different.

【0025】S3では、再生領域か否かを判定するが、
第2実施形態では、図7のマップを参照して、エンジン
回転数Neと燃料噴射量Qfとに基づき、DPF8の再
生領域(自己再生領域+連続再生領域;中〜高負荷領
域)か否かを判定する。S8では、図5のテーブルを参
照して、空気過剰率をPM流入量がPM燃焼量V1と等
しくなる空気過剰率λ1を求め、空気過剰率をλ1に制
御することで、空気過剰率を大きくするが、第2実施形
態での空気過剰率の制御は次のように行う。
In S3, it is judged whether or not it is the reproduction area.
In the second embodiment, referring to the map of FIG. 7, whether or not the regeneration area (self-regeneration area + continuous regeneration area; medium to high load area) of the DPF 8 is determined based on the engine speed Ne and the fuel injection amount Qf. To judge. In S8, the excess air ratio is increased by obtaining the excess air ratio λ1 with which the PM inflow amount is equal to the PM combustion amount V1 by referring to the table of FIG. 5 and controlling the excess air ratio to λ1. However, the control of the excess air ratio in the second embodiment is performed as follows.

【0026】自己再生領域の場合は、高負荷領域であ
り、この領域では吸気絞り弁3は全開のため、燃料噴射
量のみで空気過剰率を制御する。連続再生領域の場合
は、中負荷領域であるので、吸気絞り弁3の開度制御
と、燃料噴射量の制御とで、空気過剰率を制御する。
In the case of the self-regeneration region, it is a high load region, and since the intake throttle valve 3 is fully opened in this region, the excess air ratio is controlled only by the fuel injection amount. In the case of the continuous regeneration region, since it is the medium load region, the excess air ratio is controlled by controlling the opening degree of the intake throttle valve 3 and controlling the fuel injection amount.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1実施形態を示す内燃機関のシス
テム図
FIG. 1 is a system diagram of an internal combustion engine showing a first embodiment of the present invention.

【図2】 空気過剰率補正制御のフローチャートFIG. 2 is a flowchart of excess air ratio correction control.

【図3】 再生領域判定用のマップFIG. 3 is a map for determining a reproduction area

【図4】 PM燃焼量推定用のテーブルFIG. 4 Table for estimating PM combustion amount

【図5】 PM流入量推定用のテーブルFIG. 5: Table for estimating PM inflow

【図6】 本発明の第2実施形態を示す内燃機関のシス
テム図
FIG. 6 is a system diagram of an internal combustion engine showing a second embodiment of the present invention.

【図7】 第2実施形態での再生領域判定用のマップFIG. 7 is a map for reproduction area determination in the second embodiment.

【符号の説明】[Explanation of symbols]

1 エンジン 2 吸気通路 3 吸気絞り弁 6 燃料噴射弁 7 排気通路 8 DPF 9 酸化触媒 10 ECU 11 回転数センサ 12 アクセル開度センサ 13 エアフローメータ 14 排圧センサ 1 engine 2 Intake passage 3 intake throttle valve 6 Fuel injection valve 7 exhaust passage 8 DPF 9 Oxidation catalyst 10 ECU 11 Speed sensor 12 Accelerator position sensor 13 Air flow meter 14 Exhaust pressure sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/24 F01N 3/24 E B01D 46/42 B // B01D 46/42 46/46 46/46 53/36 103C Fターム(参考) 3G090 AA01 BA01 DA00 DA03 DA09 DA18 3G091 AA02 AA18 AB02 AB13 BA07 CB07 HA15 4D019 AA01 BC07 CB04 CB09 4D048 AA06 AA14 AB01 CD05 DA01 DA02 DA03 DA07 DA08 DA20 4D058 JB41 MA44 MA52 NA01 PA04 SA08 TA06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) F01N 3/24 F01N 3/24 E B01D 46/42 B // B01D 46/42 46/46 46/46 53 / 36 103CF Term (reference) 3G090 AA01 BA01 DA00 DA03 DA09 DA18 3G091 AA02 AA18 AB02 AB13 BA07 CB07 HA15 4D019 AA01 BC07 CB04 CB09 4D048 AA06 AA14 AB01 CD05 DA01 DA01 4D04 MA08 DA41 MA44 DA08 MA04 DA01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】機関の排気通路に配置され、排気中のパテ
ィキュレートを捕集するパティキュレートフィルタと、 前記パティキュレートフィルタでのパティキュレート燃
焼量を推定するパティキュレート燃焼量推定手段と、 機関から排出されて前記パティキュレートフィルタに流
入するパティキュレート流入量を推定するパティキュレ
ート流入量推定手段と、 前記パティキュレートフィルタが再生領域にあるか否か
を判定する再生判定手段と、 前記再生領域にあり、且つ、前記パティキュレート燃焼
量が前記パティキュレート流入量より小さいときに、機
関の空気過剰率を大きくする空気過剰率制御手段と、 を備えたことを特徴とする内燃機関の排気浄化装置。
1. A particulate filter arranged in an exhaust passage of an engine for collecting particulates in exhaust gas; a particulate combustion amount estimating means for estimating a particulate combustion amount in the particulate filter; Particulate inflow amount estimation means for estimating the amount of particulate inflow that is discharged and flows into the particulate filter, regeneration determining means for determining whether or not the particulate filter is in the regeneration region, and there is in the regeneration region. An exhaust gas purification apparatus for an internal combustion engine, comprising: an excess air ratio control means for increasing an excess air ratio of the engine when the particulate combustion amount is smaller than the particulate inflow amount.
【請求項2】前記パティキュレート燃焼量推定手段は、
前記パティキュレートフィルタのパティキュレート堆積
量から前記パティキュレート燃焼量を推定することを特
徴とする請求項1記載の内燃機関の排気浄化装置。
2. The particulate combustion amount estimating means comprises:
The exhaust emission control device for an internal combustion engine according to claim 1, wherein the particulate combustion amount is estimated from the particulate accumulation amount of the particulate filter.
【請求項3】前記パティキュレート燃焼量推定手段は、
前記パティキュレートフィルタ上流側の排気圧力に基づ
いて前記パティキュレート燃焼量を推定することを特徴
とする請求項1記載の内燃機関の排気浄化装置。
3. The particulate combustion amount estimating means comprises:
The exhaust emission control device for an internal combustion engine according to claim 1, wherein the particulate combustion amount is estimated based on the exhaust pressure on the upstream side of the particulate filter.
【請求項4】前記パティキュレートフィルタ上流側の排
気通路に配置され、排気中のNOをNO2 に酸化する酸
化触媒を備えることを特徴とする請求項1〜請求項3の
いずれか1つに記載の内燃機関の排気浄化装置。
4. The oxidation catalyst, which is arranged in the exhaust passage upstream of the particulate filter and oxidizes NO in the exhaust gas into NO2, according to any one of claims 1 to 3. Exhaust gas purification device for internal combustion engine.
【請求項5】前記パティキュレートフィルタは、フィル
タ表面上に酸化触媒を担持することを特徴とする請求項
1〜請求項4のいずれか1つに記載の内燃機関の排気浄
化装置。
5. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the particulate filter carries an oxidation catalyst on the filter surface.
JP2001201939A 2001-07-03 2001-07-03 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP3778016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001201939A JP3778016B2 (en) 2001-07-03 2001-07-03 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001201939A JP3778016B2 (en) 2001-07-03 2001-07-03 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003020933A true JP2003020933A (en) 2003-01-24
JP3778016B2 JP3778016B2 (en) 2006-05-24

Family

ID=19038828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001201939A Expired - Fee Related JP3778016B2 (en) 2001-07-03 2001-07-03 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3778016B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1694104A1 (en) 2005-02-22 2006-08-23 Alps Electric Co., Ltd. Surface-mounting type electronic circuit unit
JP2008255906A (en) * 2007-04-05 2008-10-23 Toyota Motor Corp Exhaust emission control device for internal combustion engine
US7930922B2 (en) 2005-08-08 2011-04-26 Toyota Jidosha Kabushiki Kaisha Soot generation amount estimation apparatus for internal combustion engine
JP2011089454A (en) * 2009-10-21 2011-05-06 Yanmar Co Ltd Diesel engine
JP2012145115A (en) * 2012-02-20 2012-08-02 Yanmar Co Ltd Diesel engine
JP2012229702A (en) * 2012-08-03 2012-11-22 Yanmar Co Ltd Diesel engine
JP2014025478A (en) * 2013-09-30 2014-02-06 Yanmar Co Ltd Diesel engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1694104A1 (en) 2005-02-22 2006-08-23 Alps Electric Co., Ltd. Surface-mounting type electronic circuit unit
US7930922B2 (en) 2005-08-08 2011-04-26 Toyota Jidosha Kabushiki Kaisha Soot generation amount estimation apparatus for internal combustion engine
JP2008255906A (en) * 2007-04-05 2008-10-23 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2011089454A (en) * 2009-10-21 2011-05-06 Yanmar Co Ltd Diesel engine
CN102713177A (en) * 2009-10-21 2012-10-03 洋马株式会社 Diesel engine
US8915067B2 (en) 2009-10-21 2014-12-23 Yanmar Co., Ltd. Diesel engine
JP2012145115A (en) * 2012-02-20 2012-08-02 Yanmar Co Ltd Diesel engine
JP2012229702A (en) * 2012-08-03 2012-11-22 Yanmar Co Ltd Diesel engine
JP2014025478A (en) * 2013-09-30 2014-02-06 Yanmar Co Ltd Diesel engine

Also Published As

Publication number Publication date
JP3778016B2 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
US7162867B2 (en) Exhaust gas purifying device for internal combustion engine
US8171725B2 (en) Method of controlling exhaust gas purification system, and exhaust gas purification system
JP3988785B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP4673226B2 (en) Exhaust gas purification method and exhaust gas purification system
JP3979437B1 (en) Exhaust gas purification system control method and exhaust gas purification system
EP1350932B1 (en) Exhaust emission control system of a diesel engine and method therefore
EP1905991A1 (en) Control method of exhaust gas purification system and exhaust gas purification system
EP1400664B1 (en) Exhaust gas purifying method and exhaust gas purifying system
WO2007049406A1 (en) Control method of exhaust gas purification system and exhaust gas purification system
JP4506060B2 (en) Particulate filter regeneration control device
JP4267414B2 (en) Catalyst control device for internal combustion engine
JP2002227688A (en) Exhaust gas purifying device for diesel engine
KR100785751B1 (en) Exhaust purifying apparatus for internal combustion engine
JP4276472B2 (en) Catalyst deterioration determination device for internal combustion engine
JP2005240719A (en) Regeneration time detecting device for filter and regeneration control device for filter
JP4613787B2 (en) Exhaust gas purification device for internal combustion engine
JP2003020933A (en) Exhaust emission control device for internal combustion engine
JP2005163652A (en) Emission control device
WO2007010699A1 (en) Method of controlling exhaust gas purification system, and exhaust gas purification system
JP2004300973A (en) Regeneration start judgment method of dpf and exhaust emission control system having dpf
JP4292861B2 (en) Exhaust gas purification method and system
JP2003214144A (en) Particulate purification device
JP4403868B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP2005344617A (en) Exhaust emission control device of diesel engine
JP2003020932A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees