JP2005053733A - Apparatus for reforming liquid hydrocarbon fuel - Google Patents

Apparatus for reforming liquid hydrocarbon fuel Download PDF

Info

Publication number
JP2005053733A
JP2005053733A JP2003285610A JP2003285610A JP2005053733A JP 2005053733 A JP2005053733 A JP 2005053733A JP 2003285610 A JP2003285610 A JP 2003285610A JP 2003285610 A JP2003285610 A JP 2003285610A JP 2005053733 A JP2005053733 A JP 2005053733A
Authority
JP
Japan
Prior art keywords
reaction chamber
fuel
liquid hydrocarbon
hydrocarbon fuel
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003285610A
Other languages
Japanese (ja)
Other versions
JP4319490B2 (en
Inventor
Yoshiji Tokita
義司 時田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2003285610A priority Critical patent/JP4319490B2/en
Publication of JP2005053733A publication Critical patent/JP2005053733A/en
Application granted granted Critical
Publication of JP4319490B2 publication Critical patent/JP4319490B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for well reforming a liquid hydrocarbon fuel. <P>SOLUTION: The apparatus is equipped with a combustion chamber 7 where a burner 3 is installed and a reaction chamber 9 filled with a reforming catalyst 10 which steam-reforms a liquid hydrocarbon fuel into a hydrogen-rich reformed gas. By forming a vaporizing part 11 at the upstream side of the reforming catalyst 10 in the reaction chamber 9, where the fuel and water are vaporized by heat of the combustion gas from the burner 3, and placing the reaction chamber 9 in the combustion chamber 7 so as to place the downstream side of the reaction chamber 9 at the upstream side along the flow of the combustion gas and the vaporizing part 11 at the downstream side along the flow of the combustion gas in the combustion chamber 7, the combustion gas heats the reaction chamber 9 filled with the reforming catalyst 10 from the downstream side to the upstream side and then the vaporizing part 11. As the fuel and the reformed gas in the middle of the reforming reaction flow to the downstream side, the temperature of the vaporizing part 11 and that of the reforming catalyst 10 are elevated, where the deposition of carbon from the liquid hydrocarbon fuel is prevented and the reforming reaction is well done without coking. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、液体炭化水素燃料を水素リッチな改質ガスに水蒸気改質する改質装置に関するものである。   The present invention relates to a reformer for steam reforming a liquid hydrocarbon fuel into a hydrogen-rich reformed gas.

従来より、この種の炭化水素燃料を水素リッチな改質ガスに水蒸気改質する改質装置においては、改質触媒が充填された反応室の上流側に気化部を形成し、反応室を加熱するバーナの燃焼ガスの熱によって気化部も加熱し、この気化部に原燃料と共に水を供給し、水を蒸発させて水蒸気改質反応に必要な水蒸気を発生させるようにしたものがあった。   Conventionally, in a reformer that steam-reforms this type of hydrocarbon fuel into a hydrogen-rich reformed gas, a vaporization section is formed upstream of the reaction chamber filled with the reforming catalyst, and the reaction chamber is heated. Some of the vaporizers were also heated by the heat of the combustion gas of the burner, and water was supplied to the vaporizers together with the raw fuel to evaporate the water and generate water vapor necessary for the steam reforming reaction.

この従来のものは、反応室は筒形状で胴部に改質触媒が充填され、筒の上部に気化部が形成されており、筒形状の反応室の下方に設けられたバーナで発生した燃焼ガスは、筒形状の反応室の内周、外周に沿うように流れて排出されるもので、燃焼ガスが先ず気化部付近を流通し最初に気化部を加熱し、その後に反応室の改質触媒の上流側から下流側へと順に加熱するように流れるものであった。
特開2001−10804号公報(図1)
In this conventional system, the reaction chamber has a cylindrical shape, the body is filled with a reforming catalyst, and a vaporization portion is formed at the upper portion of the cylinder. Combustion generated by a burner provided below the cylindrical reaction chamber The gas flows along the inner and outer circumferences of the cylindrical reaction chamber and is discharged. Combustion gas first circulates in the vicinity of the vaporization section and heats the vaporization section first, and then reforms the reaction chamber. It flowed so as to heat in order from the upstream side to the downstream side of the catalyst.
Japanese Patent Laid-Open No. 2001-10804 (FIG. 1)

ところが、この従来の改質装置は、原燃料の上流側を加熱する燃焼ガスの温度が最も高くなっているため、燃料組成中の炭素数の多い液体炭化水素燃料を原燃料として使用した場合、比較的低温の状態から急激に高温雰囲気中に液体炭化水素燃料を供給することになり、液体炭化水素燃料が熱分解を起こして炭素析出し、気化部および改質触媒の表面をコーキングしてしまうという問題があった。   However, since this conventional reformer has the highest temperature of the combustion gas that heats the upstream side of the raw fuel, when a liquid hydrocarbon fuel with a large number of carbons in the fuel composition is used as the raw fuel, Liquid hydrocarbon fuel is suddenly supplied from a relatively low temperature state into a high temperature atmosphere, and the liquid hydrocarbon fuel undergoes thermal decomposition and carbon deposition, resulting in coking of the vaporization part and the surface of the reforming catalyst. There was a problem.

そこで、本発明は上記課題を解決するため、請求項1では、バーナが設けられた燃焼室と、液体炭化水素燃料を水素リッチな改質ガスに水蒸気改質する改質触媒が充填された反応室とを備え、前記反応室内の改質触媒の上流側に燃料と水とを前記バーナからの燃焼ガスの熱により気化する気化部を形成し、前記反応室の下流側を燃焼ガスの流れ方向上流側に、かつ前記気化部を前記燃焼室の燃焼ガスの流れ方向下流側になるように、前記反応室を前記燃焼室内に配置したものである。   In order to solve the above problems, the present invention provides a combustion chamber provided with a burner and a reaction filled with a reforming catalyst for steam reforming a liquid hydrocarbon fuel into a hydrogen-rich reformed gas. And a vaporization part for vaporizing fuel and water by the heat of the combustion gas from the burner on the upstream side of the reforming catalyst in the reaction chamber, and the flow direction of the combustion gas on the downstream side of the reaction chamber The reaction chamber is disposed in the combustion chamber on the upstream side and the vaporizing portion on the downstream side in the combustion gas flow direction of the combustion chamber.

また、請求項2では、前記反応室で改質された改質ガスを外部に取り出す取出し管を、前記反応室内に反応室の下流側から上流側へ向けて設けたものである。   According to a second aspect of the present invention, an extraction pipe for taking out the reformed gas reformed in the reaction chamber is provided in the reaction chamber from the downstream side to the upstream side of the reaction chamber.

また、請求項3では、前記反応室の気化部に液体炭化水素燃料を供給する燃料供給口と水を供給する水供給口とを配置し、前記燃料供給口よりも前記水供給口を前記気化部内の上流側に配置したものである。   According to a third aspect of the present invention, a fuel supply port for supplying liquid hydrocarbon fuel and a water supply port for supplying water are arranged in the vaporization section of the reaction chamber, and the water supply port is more vaporized than the fuel supply port. It is arranged on the upstream side in the section.

また、請求項4では、前記燃料供給口と水供給口とを二重管で構成し、この二重管の内管を外管よりも突出させると共に、内管から燃料を、外管から水を供給するようにしたものである。   According to a fourth aspect of the present invention, the fuel supply port and the water supply port are constituted by a double pipe, the inner pipe of the double pipe projects beyond the outer pipe, and fuel is supplied from the inner pipe to the water from the outer pipe. Is to supply.

本発明の請求項1によれば、燃焼ガスは改質触媒が充填された反応室の下流側から上流側へと加熱した後に気化部を加熱するため、燃料および改質反応途中の改質ガスが下流側へと流れるに伴って気化部および反応室中の改質触媒の温度が上昇し、液体炭化水素燃料が気化および改質反応の進行に伴って徐々に温度上昇するので、液体炭化水素燃料が熱分解を起こして炭素析出することがなくなり、気化部および改質触媒の表面がコーキングされることなく良好な改質反応を行うことができる。   According to the first aspect of the present invention, the combustion gas is heated from the downstream side to the upstream side of the reaction chamber filled with the reforming catalyst, and then the vaporization section is heated. As the gas flows downstream, the temperature of the reforming catalyst in the vaporization section and the reaction chamber rises, and the liquid hydrocarbon fuel gradually rises in temperature as the vaporization and reforming reaction proceeds. The fuel is no longer thermally decomposed and carbon is deposited, and a good reforming reaction can be carried out without coking the vaporization part and the surface of the reforming catalyst.

また、請求項2によれば、水蒸気改質された高温の改質ガスは、取出し管内を温度の高い反応室の下流側から温度の低い反応室の上流側へと流れながら反応室内および充填物に放熱し、放熱された熱は改質反応および水と液体炭化水素燃料の気化に有効に利用されると共に、改質ガスの出口温度が低下して次工程に適した温度付近まで温度低下させることができる。   According to the second aspect of the present invention, the high-temperature reformed gas that has undergone steam reforming flows in the reaction chamber and the packing while flowing from the downstream side of the reaction chamber having a high temperature to the upstream side of the reaction chamber having a low temperature. The heat dissipated is effectively utilized for the reforming reaction and the vaporization of water and liquid hydrocarbon fuel, and the outlet temperature of the reformed gas is lowered to a temperature suitable for the next process. be able to.

また、請求項3によれば、反応室上流側の気化部に水を先に供給して水蒸気とし、水蒸気の存在下に燃料を供給することで燃料を炭素析出させることなく燃料単独で気化するよりも低い温度で確実に気化することができるものである。   According to the third aspect of the present invention, water is first supplied to the vaporization section on the upstream side of the reaction chamber to form water vapor, and the fuel is vaporized by fuel alone without carbon deposition by supplying the fuel in the presence of water vapor. It can be reliably vaporized at a lower temperature.

また、請求項4によれば、反応室上流側の気化部に二重管の外管から先に水を供給して水蒸気とし、二重管の内管から燃料を供給するので、反応室への水および燃料の供給管の接続構造をシンプルにすることができると共に、水蒸気の確実かつ均一な存在下に燃料を供給することができるので、燃料を炭素析出させることなく燃料単独で気化するよりも低い温度で確実に気化することができるものである。   According to the fourth aspect of the present invention, water is first supplied from the outer pipe of the double pipe to the vaporization section on the upstream side of the reaction chamber to form steam, and fuel is supplied from the inner pipe of the double pipe. The water and fuel supply pipe connection structure can be simplified and the fuel can be supplied in the presence of water vapor with certainty and uniformity. Can be reliably vaporized at a low temperature.

次に、本発明の一実施形態を図面に基づいて説明する。
図1に本発明の改質装置を用いた燃料電池発電システムのシステム系統図を示す。1は原燃料である液体炭化水素燃料(例えば灯油)から改質触媒の毒となる硫黄成分を取り除く脱硫器、2は脱硫器1で脱硫された液体炭化水素燃料と水とが導入されて水素リッチな改質ガスが生成される本発明の改質装置、3はこの改質装置2を改質触媒を改質反応に適する温度(ここでは500℃〜800℃程度)まで加熱する加熱手段としてのバーナ、4は改質装置2で生成された改質ガスに含まれるCOをCOとHに変換するシフト反応器、5はシフト反応器4で除去しきれなかったCOをCOに変換して除去するCO除去器、6は最終的に生成された水素リッチガス中の水素と空気中の酸素とを電気化学的に反応させて発電を行う燃料電池本体である。
Next, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a system diagram of a fuel cell power generation system using the reformer of the present invention. Reference numeral 1 denotes a desulfurizer that removes sulfur components that are poisons of the reforming catalyst from liquid hydrocarbon fuel (for example, kerosene) that is a raw fuel. The reformer 3 of the present invention that generates rich reformed gas serves as a heating means for heating the reformer 2 to a temperature suitable for the reforming reaction (here, about 500 ° C. to 800 ° C.). 4 is a shift reactor that converts CO contained in the reformed gas produced in the reformer 2 into CO 2 and H 2 , and 5 is CO 2 that cannot be completely removed by the shift reactor 4. A CO remover 6 that converts and removes is a fuel cell main body that generates electricity by electrochemically reacting hydrogen in the finally produced hydrogen-rich gas with oxygen in the air.

前記燃料電池本体6は、プロトン伝導性の固体高分子膜6aを介して燃料極6bと空気極6cが両面に配置された構造で、水素リッチガスが燃料極6bに供給されて水素がプロトンと電子に分解される一方、空気が空気極6cに供給されて酸素と固体高分子膜6a中を通過してきたプロトンと外部回路を流れてきた燃料極6bからの電子が反応して水を生成されることで水素リッチガスと空気から発電するものである。   The fuel cell main body 6 has a structure in which a fuel electrode 6b and an air electrode 6c are arranged on both sides via a proton conductive solid polymer membrane 6a, and hydrogen-rich gas is supplied to the fuel electrode 6b so that hydrogen is proton and electron. On the other hand, when air is supplied to the air electrode 6c, oxygen, protons passing through the solid polymer membrane 6a, and electrons from the fuel electrode 6b flowing through the external circuit react to generate water. Thus, power is generated from hydrogen-rich gas and air.

水素リッチガスは前記燃料極6bで水素が発電に供されるが、燃料極6bを通過して水素が一部残留したオフガスは改質装置2を加熱するバーナ3に燃料として供給されるものである。   The hydrogen-rich gas is used for power generation at the fuel electrode 6b, but the off-gas in which a part of hydrogen passes through the fuel electrode 6b is supplied as fuel to the burner 3 that heats the reformer 2. .

図2は本発明の改質装置を示すものである。7はバーナ3で発生した燃焼ガスが流通する燃焼室で、底部にバーナ3を備え、上部に排気口8が設けられていると共に、断熱材料で形成されている。   FIG. 2 shows the reformer of the present invention. 7 is a combustion chamber through which the combustion gas generated in the burner 3 circulates. The burner 3 is provided at the bottom, the exhaust port 8 is provided at the top, and is formed of a heat insulating material.

9は液体炭化水素燃料を水素リッチな改質ガスに改質する改質触媒10が充填された反応室で、有底筒状で燃焼室7内に垂下して設けられており、バーナ3で発生した燃焼ガスが反応室9の周囲を流れることにより燃焼ガスの熱を改質触媒10と反応室9内のガスが受熱し、改質触媒10の最下流部位が改質後の改質ガス中の水素組成量を多くするのに適した高い温度(ここでは約700〜800℃)まで加熱されるものである。   9 is a reaction chamber filled with a reforming catalyst 10 for reforming a liquid hydrocarbon fuel into a hydrogen-rich reformed gas. The reaction chamber 9 has a bottomed cylindrical shape and is suspended in the combustion chamber 7. As the generated combustion gas flows around the reaction chamber 9, the heat of the combustion gas is received by the reforming catalyst 10 and the gas in the reaction chamber 9, and the most downstream portion of the reforming catalyst 10 is the reformed gas after reforming. It is heated to a high temperature (here, about 700 to 800 ° C.) suitable for increasing the amount of hydrogen contained therein.

前記反応室9の改質触媒10が充填されている部位よりも上流側には、液体炭化水素燃料と水を燃焼ガスの熱により気化する気化部11が反応室9内に一体に形成されている。そして、燃焼室7の上流側で改質触媒10を加熱して少し温度低下した燃焼ガスが、この気化部11の周囲を流れることにより、気化部11が受熱して水および液体炭化水素燃料を気化するのに適した温度まで加熱されるものである。この気化部11には充填子としてのセラミックボール12が充填され、蓄熱して水と液体炭化水素燃料の気化を促進すると共に、水蒸気と気化した液体炭化水素燃料の混合を促進するものである。   A vaporizing section 11 for vaporizing liquid hydrocarbon fuel and water by the heat of combustion gas is integrally formed in the reaction chamber 9 upstream of the portion of the reaction chamber 9 filled with the reforming catalyst 10. Yes. And the combustion gas which heated the reforming catalyst 10 in the upstream of the combustion chamber 7 and the temperature fell a little flows around this vaporization part 11, and the vaporization part 11 receives heat and water and liquid hydrocarbon fuel are received. It is heated to a temperature suitable for vaporization. The vaporizing section 11 is filled with ceramic balls 12 as fillers, and accumulates heat to promote vaporization of water and liquid hydrocarbon fuel, and also promotes mixing of water vapor and vaporized liquid hydrocarbon fuel.

前記気化部11内には、液体炭化水素燃料を供給する燃料供給口13と水を供給する水供給口14が配置されているもので、水供給口14よりも燃料供給口13が下流側に配置され、水を先に供給して水蒸気とし、水蒸気の存在下に燃料を供給することで燃料を炭素析出させることなく、燃料単独で気化するよりも低い温度で確実に気化することができるものである。   A fuel supply port 13 for supplying liquid hydrocarbon fuel and a water supply port 14 for supplying water are disposed in the vaporization unit 11. The fuel supply port 13 is located downstream of the water supply port 14. Arranged and water can be vaporized at a lower temperature than vaporizing fuel alone without supplying carbon in the presence of water vapor and supplying fuel in the presence of water vapor without carbon deposition. It is.

ここで、前記燃料供給口13および水供給口14は内管15の開放端が外管16の開放端よりも突出した二重管17によって構成され、その内管15から燃料を、外管16から水を供給するようにし、二重管17の外管16からその下流の内管15開放端の周囲に均一に水が供給されて気化し、周囲に水蒸気が均一に存在する状態下に内管15から燃料が供給されるので、燃料と水蒸気とが均一に混ざり、燃料単独で気化するよりも低い温度で確実に気化することができると共に、反応室9へ水および燃料を供給する管を接続する構造をシンプルにすることができるものである。   Here, the fuel supply port 13 and the water supply port 14 are constituted by a double tube 17 in which the open end of the inner tube 15 protrudes from the open end of the outer tube 16, and fuel is supplied from the inner tube 15 to the outer tube 16. Water is supplied from the outer pipe 16 of the double pipe 17 to the periphery of the open end of the inner pipe 15 downstream of the double pipe 17 and vaporizes, so that the water vapor is uniformly present in the surroundings. Since the fuel is supplied from the pipe 15, the fuel and water vapor are uniformly mixed, and can be reliably vaporized at a temperature lower than that of the fuel alone, and a pipe for supplying water and fuel to the reaction chamber 9 is provided. The connecting structure can be simplified.

そして、反応室9に一体化して設けられた気化部11で気化した燃料と水蒸気が反応室9内の改質触媒10が充填された領域にシームレスに流れるので、気化した燃料と水蒸気が気化部11から改質触媒10に流れる間に冷却されることがなく、熱ロスがなく高効率であり、気化部11と反応室9とが一体化されているため構造がシンプルとなり、コンパクト化、低コスト化が可能となるものである。   Then, the fuel and water vapor vaporized in the vaporization section 11 provided integrally with the reaction chamber 9 flow seamlessly into the region filled with the reforming catalyst 10 in the reaction chamber 9, so that the vaporized fuel and water vapor are vaporized in the vaporization section. 11 is not cooled while flowing from the reforming catalyst 10 to the reforming catalyst 10, is highly efficient with no heat loss, and the structure is simplified because the vaporization section 11 and the reaction chamber 9 are integrated, making the structure compact and low. Cost reduction is possible.

また、バーナ3で発生した燃焼ガスは改質触媒10が充填された反応室9を加熱した後に気化部11を加熱するため、温度の高い上流側の燃焼ガスで改質触媒10の最下流部位が改質後の改質ガス中の水素組成量を多くするのに適した高い温度(ここでは約700〜800℃)に加熱され、少し温度低下した燃焼ガスにより改質触媒10の上流側部位が燃料を良好に改質可能な温度(ここでは約500℃)に加熱され、そしてさらに温度の低下した下流側の燃焼ガスで気化部11が比較的低い温度である燃料および水を気化するのに適した温度(ここでは約200〜400℃)に加熱されることとなる。   Further, since the combustion gas generated in the burner 3 heats the vaporization section 11 after heating the reaction chamber 9 filled with the reforming catalyst 10, the most downstream portion of the reforming catalyst 10 with the high-temperature upstream combustion gas. Is heated to a high temperature suitable for increasing the amount of hydrogen in the reformed gas after reforming (here, about 700 to 800 ° C.), and the upstream portion of the reforming catalyst 10 is heated by the combustion gas slightly lowered in temperature. Is heated to a temperature at which the fuel can be reformed satisfactorily (about 500 ° C. in this case), and the vaporizer 11 vaporizes the relatively low temperature fuel and water with the downstream combustion gas whose temperature has further decreased. It will be heated to a temperature suitable for this (here, about 200-400 ° C.).

そして、燃料および改質反応途中の改質ガスが下流側へと流れるに伴って気化部11および反応室9中の改質触媒10の温度が徐々に高温となっていくので、液体炭化水素燃料が急激に温度上昇されるようなことがなく、燃料の気化および改質反応の進行に伴って徐々に温度上昇するので、液体炭化水素燃料が熱分解を起こして炭素析出するようなことがなくなり、気化部11および改質触媒10の表面がコーキングされることがなく長期に渡り継続して良好な改質反応を行うことができる。   As the fuel and the reformed gas in the middle of the reforming reaction flow downstream, the temperature of the reforming catalyst 10 in the vaporizing section 11 and the reaction chamber 9 gradually increases, so that the liquid hydrocarbon fuel The temperature does not rise suddenly and gradually rises with the progress of fuel vaporization and reforming reaction, so that liquid hydrocarbon fuels do not undergo carbon decomposition due to thermal decomposition. In addition, the surfaces of the vaporization unit 11 and the reforming catalyst 10 are not coked, and a good reforming reaction can be performed continuously for a long time.

また、燃焼ガスの流れと気化および改質反応の流れを対向するようにしているので、気化部11および改質触媒10の良好な温度分布の維持が容易となり、排気する燃焼ガスの温度をムダにせず燃焼ガスの熱利用効率を高くすることができる。   In addition, since the flow of the combustion gas and the flow of the vaporization and reforming reaction are opposed to each other, it becomes easy to maintain a good temperature distribution of the vaporizing section 11 and the reforming catalyst 10, and the temperature of the exhausted combustion gas is reduced. Without this, the heat utilization efficiency of the combustion gas can be increased.

また、前記反応室9には、反応室9の下流側から上流側へ向けて改質触媒10により改質された改質ガスを取り出す取出し管18が設けられている。この取出し管18は反応室9内にストローのように設けられており、反応室9の上部から底部に向けて流れて改質された改質ガスは、反応室9の底部から反応室9内の流れ方向に逆流するように反応室9の上方に向けて取出し管18を流れ反応室9外へと流出される。   The reaction chamber 9 is provided with an extraction pipe 18 for taking out the reformed gas reformed by the reforming catalyst 10 from the downstream side to the upstream side of the reaction chamber 9. The take-out pipe 18 is provided in the reaction chamber 9 like a straw, and the reformed gas flowing and reformed from the top of the reaction chamber 9 toward the bottom of the reaction chamber 9 flows from the bottom of the reaction chamber 9 into the reaction chamber 9. Then, it flows through the take-out pipe 18 toward the upper side of the reaction chamber 9 so as to flow backward in the flow direction, and flows out of the reaction chamber 9.

このとき、改質後の改質ガス中の水素組成量を多くするのに適した高い温度(ここでは約700℃)に加熱された改質触媒10の最下流部位から改質ガスを取り出すことができるので、改質ガス中の水素組成量を多くすることができると共に、反応室9底部付近の水蒸気改質された高温の改質ガスは、温度の高い反応室9の底部から取出し管18内を流れて比較的温度の低い反応室9上部の気化部11へ放熱し、放熱された熱は改質反応および水と液体炭化水素燃料の気化に有効利用され、さらに、改質ガスの出口温度が低下して次工程に適した温度付近まで温度低下するものである。   At this time, the reformed gas is taken out from the most downstream portion of the reforming catalyst 10 heated to a high temperature (about 700 ° C. in this case) suitable for increasing the amount of hydrogen in the reformed gas after reforming. Therefore, the amount of hydrogen in the reformed gas can be increased, and the high-temperature reformed gas steam-reformed near the bottom of the reaction chamber 9 is taken out from the bottom of the reaction chamber 9 at a high temperature. The heat is dissipated to the vaporization section 11 at the upper part of the reaction chamber 9 having a relatively low temperature, and the dissipated heat is effectively used for the reforming reaction and the vaporization of water and liquid hydrocarbon fuel. The temperature is lowered to a temperature suitable for the next process.

また、気化部11内の取出し管18と二重管17の先端とを離間させて設けているため、二重管17から供給された燃料および水がセラミックボール13と取出し管18との隙間をぬって取出し管18に沿ってすぐに流れ出てしまうことを防止し、確実に気化、混合して改質反応を行わせることができる。   In addition, since the take-out pipe 18 in the vaporization section 11 and the tip of the double pipe 17 are provided apart from each other, the fuel and water supplied from the double pipe 17 allow a gap between the ceramic ball 13 and the take-out pipe 18 to pass. It is possible to prevent the liquid from flowing out along the take-out pipe 18 and to perform the reforming reaction by reliably vaporizing and mixing.

このように、反応室9の内部に取出し管18を設けることで、改質ガス中の水素組成量を多くすることができると共に、反応室9の底部の形状がシンプルとなり、熱制御が容易となり、改質ガスの余剰な熱を気化部11の加熱源として有効に用い、改質ガスそのものの出口温度も下げることができる。   Thus, by providing the take-out pipe 18 inside the reaction chamber 9, the amount of hydrogen in the reformed gas can be increased, the shape of the bottom of the reaction chamber 9 is simplified, and thermal control is facilitated. Further, the excess heat of the reformed gas can be effectively used as a heating source for the vaporizing unit 11, and the outlet temperature of the reformed gas itself can be lowered.

次に、図3は本発明の別の実施形態で、燃焼室7内に複数の反応室9を並列に設けたものである。このように、燃焼室7内に複数の反応室9を燃料および水のラインに対し並列に配置するだけの簡単な構成にて改質装置の改質処理能力を増大でき、しかも反応室9を共通化できるのでコストダウン可能なものである。   Next, FIG. 3 shows another embodiment of the present invention in which a plurality of reaction chambers 9 are provided in parallel in the combustion chamber 7. In this way, the reforming capacity of the reformer can be increased with a simple configuration in which a plurality of reaction chambers 9 are arranged in parallel in the combustion chamber 7 with respect to the fuel and water lines. The cost can be reduced because it can be shared.

以上のように本発明の実施形態を説明してきたが、本発明は上記の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で変形したものも含むものであり、燃料電池発電システム以外の用途でもよい。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and includes modifications that do not change the gist of the present invention. Applications other than the power generation system may be used.

本発明の液体炭化水素燃料改質装置を用いた燃料電池発電システムのシステム系統図。1 is a system diagram of a fuel cell power generation system using a liquid hydrocarbon fuel reformer of the present invention. 本発明の一実施形態を説明する断面図。Sectional drawing explaining one Embodiment of this invention. 本発明の他の一実施形態を説明する断面図。Sectional drawing explaining other one Embodiment of this invention.

符号の説明Explanation of symbols

2 改質装置
3 バーナ
7 燃焼室
8 排気口
9 反応室
10 改質触媒
11 気化部
13 燃料供給口
14 水供給口
15 内管
16 外管
17 二重管
18 取出し管
2 reformer 3 burner 7 combustion chamber 8 exhaust port 9 reaction chamber 10 reforming catalyst 11 vaporization unit 13 fuel supply port 14 water supply port 15 inner tube 16 outer tube 17 double tube 18 take-out tube

Claims (4)

バーナが設けられた燃焼室と、液体炭化水素燃料を水素リッチな改質ガスに水蒸気改質する改質触媒が充填された反応室とを備え、前記反応室内の改質触媒の上流側に燃料と水とを前記バーナからの燃焼ガスの熱により気化する気化部を形成し、前記反応室の下流側を燃焼ガスの流れ方向上流側に、かつ前記気化部を前記燃焼室の燃焼ガスの流れ方向下流側になるように、前記反応室を前記燃焼室内に配置したことを特徴とする液体炭化水素燃料改質装置。   A combustion chamber provided with a burner, and a reaction chamber filled with a reforming catalyst for steam reforming liquid hydrocarbon fuel into a hydrogen-rich reformed gas, and fuel upstream of the reforming catalyst in the reaction chamber And a water vaporization section are formed by the heat of the combustion gas from the burner, the downstream side of the reaction chamber is the upstream side in the flow direction of the combustion gas, and the vaporization section is the flow of the combustion gas in the combustion chamber A liquid hydrocarbon fuel reformer characterized in that the reaction chamber is arranged in the combustion chamber so as to be downstream in the direction. 前記反応室で改質された改質ガスを外部に取り出す取出し管を、前記反応室内に反応室の下流側から上流側へ向けて設けたことを特徴とする請求項1記載の液体炭化水素燃料改質装置。   2. The liquid hydrocarbon fuel according to claim 1, wherein an extraction pipe for taking out the reformed gas reformed in the reaction chamber is provided in the reaction chamber from the downstream side to the upstream side of the reaction chamber. Reformer. 前記反応室の気化部に液体炭化水素燃料を供給する燃料供給口と水を供給する水供給口とを配置し、前記燃料供給口よりも前記水供給口を前記気化部内の上流側に配置したことを特徴とする請求項2記載の液体炭化水素燃料改質装置。   A fuel supply port for supplying liquid hydrocarbon fuel and a water supply port for supplying water are disposed in the vaporization section of the reaction chamber, and the water supply port is disposed upstream of the fuel supply port in the vaporization section. The liquid hydrocarbon fuel reformer according to claim 2, wherein: 前記燃料供給口と水供給口とを二重管で構成し、この二重管の内管を外管よりも突出させると共に、内管から燃料を、外管から水を供給するようにしたことを特徴とする請求項3記載の液体炭化水素燃料改質装置。   The fuel supply port and the water supply port are constituted by a double pipe, the inner pipe of the double pipe protrudes from the outer pipe, and fuel is supplied from the inner pipe and water is supplied from the outer pipe. The liquid hydrocarbon fuel reformer according to claim 3.
JP2003285610A 2003-08-04 2003-08-04 Liquid hydrocarbon fuel reformer Expired - Fee Related JP4319490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003285610A JP4319490B2 (en) 2003-08-04 2003-08-04 Liquid hydrocarbon fuel reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003285610A JP4319490B2 (en) 2003-08-04 2003-08-04 Liquid hydrocarbon fuel reformer

Publications (2)

Publication Number Publication Date
JP2005053733A true JP2005053733A (en) 2005-03-03
JP4319490B2 JP4319490B2 (en) 2009-08-26

Family

ID=34365183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003285610A Expired - Fee Related JP4319490B2 (en) 2003-08-04 2003-08-04 Liquid hydrocarbon fuel reformer

Country Status (1)

Country Link
JP (1) JP4319490B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066876A (en) * 2005-08-01 2007-03-15 Casio Comput Co Ltd Power supply system, control method of power supply system and electronic equipment equipped with power supply system
JP2008001584A (en) * 2006-05-26 2008-01-10 Nippon Oil Corp Reformer and indirect internal reforming type solid oxide fuel cell
JP2008007359A (en) * 2006-06-28 2008-01-17 Nippon Oil Corp Reformer and indirect internal reforming type solid oxide fuel cell
JP2009087586A (en) * 2007-09-27 2009-04-23 Sanyo Electric Co Ltd Reforming device for fuel cell
JP2011216283A (en) * 2010-03-31 2011-10-27 Toto Ltd Fuel cell module
US11359116B2 (en) 2016-09-06 2022-06-14 Threebond Co., Ltd. Thermocurable electroconductive adhesive

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066876A (en) * 2005-08-01 2007-03-15 Casio Comput Co Ltd Power supply system, control method of power supply system and electronic equipment equipped with power supply system
JP2008001584A (en) * 2006-05-26 2008-01-10 Nippon Oil Corp Reformer and indirect internal reforming type solid oxide fuel cell
JP2008007359A (en) * 2006-06-28 2008-01-17 Nippon Oil Corp Reformer and indirect internal reforming type solid oxide fuel cell
JP2009087586A (en) * 2007-09-27 2009-04-23 Sanyo Electric Co Ltd Reforming device for fuel cell
JP2011216283A (en) * 2010-03-31 2011-10-27 Toto Ltd Fuel cell module
US11359116B2 (en) 2016-09-06 2022-06-14 Threebond Co., Ltd. Thermocurable electroconductive adhesive

Also Published As

Publication number Publication date
JP4319490B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
JP4979935B2 (en) Fuel reformer
JP4369685B2 (en) Operation method of fuel cell
JP5485666B2 (en) Fuel cell system
JP5866546B2 (en) Fuel cell system
JP4319490B2 (en) Liquid hydrocarbon fuel reformer
JP2009110970A (en) Fuel cell device
JP2005019036A (en) Fuel cell
US20070028522A1 (en) Fuel reformer
JP2003187849A (en) Solid polymer fuel cell power generator
JP2007200709A (en) Solid oxide fuel cell stack and its operation method
KR100821037B1 (en) Reformer for fuel cell and fuel cell using the same
JP2008159373A (en) Hydrogen manufacturing device and fuel cell electric power generation system
US8236260B2 (en) Fuel processor for fuel cell
JP2008019160A (en) Reformer burner
JP2004299939A (en) Fuel reformer, and fuel battery generator
JP6583752B2 (en) Fuel cell system
WO2005077822A1 (en) Fuel reforming apparatus and method for starting said fuel reforming apparatus
JP5125815B2 (en) Hydrogen production apparatus and fuel cell power generation system
JP5007077B2 (en) Reformer and indirect internal reforming type solid oxide fuel cell
JP2014107186A (en) Solid oxide fuel cell system
KR102449006B1 (en) Steam generation reformer
KR20120122319A (en) Integrated Reformer System for a Fuel Cell
JP4917790B2 (en) Operation control method for reformer for fuel cell
JP5461880B2 (en) Fuel cell reformer
KR100713991B1 (en) Fuel Cell Having an Evaporator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees