JP5125815B2 - Hydrogen production apparatus and fuel cell power generation system - Google Patents
Hydrogen production apparatus and fuel cell power generation system Download PDFInfo
- Publication number
- JP5125815B2 JP5125815B2 JP2008172998A JP2008172998A JP5125815B2 JP 5125815 B2 JP5125815 B2 JP 5125815B2 JP 2008172998 A JP2008172998 A JP 2008172998A JP 2008172998 A JP2008172998 A JP 2008172998A JP 5125815 B2 JP5125815 B2 JP 5125815B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- combustion
- fuel
- cylinder
- passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000001257 hydrogen Substances 0.000 title claims description 44
- 229910052739 hydrogen Inorganic materials 0.000 title claims description 44
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims description 42
- 239000000446 fuel Substances 0.000 title claims description 38
- 238000004519 manufacturing process Methods 0.000 title claims description 28
- 238000010248 power generation Methods 0.000 title claims description 6
- 239000007789 gas Substances 0.000 claims description 132
- 238000002485 combustion reaction Methods 0.000 claims description 81
- 238000010438 heat treatment Methods 0.000 claims description 49
- 239000002737 fuel gas Substances 0.000 claims description 45
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 37
- 238000002407 reforming Methods 0.000 claims description 26
- 239000004215 Carbon black (E152) Substances 0.000 claims description 14
- 229930195733 hydrocarbon Natural products 0.000 claims description 14
- 150000002430 hydrocarbons Chemical class 0.000 claims description 14
- 238000000629 steam reforming Methods 0.000 claims description 8
- 239000011810 insulating material Substances 0.000 claims description 5
- 230000005611 electricity Effects 0.000 claims description 3
- 150000002431 hydrogen Chemical class 0.000 claims description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 9
- 229910002091 carbon monoxide Inorganic materials 0.000 description 9
- 238000009833 condensation Methods 0.000 description 7
- 230000005494 condensation Effects 0.000 description 7
- 238000005192 partition Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000006057 reforming reaction Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Fuel Cell (AREA)
Description
本発明は、都市ガスやLPG等の炭化水素系燃料を水蒸気改質して水素を含む改質ガスを製造する水素製造装置及び燃料電池発電システムに関するものである。
The present invention relates to a hydrogen production apparatus and a fuel cell power generation system for producing a reformed gas containing hydrogen by steam reforming a hydrocarbon-based fuel such as city gas or LPG.
燃料電池発電システムは、水素を含む改質ガスを製造する水素製造装置と、製造された水素を含む改質ガスを利用して発電する燃料電池とで主に構成されている。 The fuel cell power generation system mainly includes a hydrogen production apparatus that produces a reformed gas containing hydrogen and a fuel cell that generates electric power using the produced reformed gas containing hydrogen.
水素製造装置は、都市ガスやLPG等の炭化水素系燃料と水を用いた水蒸気改質反応によって、水素、メタン、一酸化炭素(10%程度含有)、二酸化炭素、水蒸気を成分とする改質ガスを生成する改質部と、この改質部を加熱するためのバーナなどの加熱手段を備え、必要に応じて、燃料電池に対して被毒作用のある一酸化炭素を除去する一酸化炭素除去部から構成されている。 Hydrogen production equipment is reformed with hydrogen, methane, carbon monoxide (contains about 10%), carbon dioxide, and steam by steam reforming reaction using city gas, LPG and other hydrocarbon fuels and water. A carbon monoxide having a reforming section for generating a gas and a heating means such as a burner for heating the reforming section, and removing carbon monoxide having a poisoning action on the fuel cell, if necessary. It consists of a removal unit.
そして水素製造装置で製造された改質ガスは燃料電池のアノードに供給され、燃料電池はこの改質ガス中の水素と空気中の酸素を電気化学的に反応させて発電をするようになっている。 The reformed gas produced by the hydrogen production apparatus is supplied to the anode of the fuel cell, and the fuel cell generates electricity by electrochemically reacting hydrogen in the reformed gas and oxygen in the air. Yes.
ここで、燃料電池に供給された改質ガスのうち、燃料電池で消費されなかった水素を含む改質ガスはオフガスとして排出されるが、このオフガスは水素製造装置に返送され、加熱手段の燃料ガスとして使用される。 Here, of the reformed gas supplied to the fuel cell, the reformed gas containing hydrogen that has not been consumed by the fuel cell is discharged as off-gas, but this off-gas is returned to the hydrogen production apparatus and is used as fuel for the heating means. Used as gas.
このオフガスには通常、残留水素のほかに飽和状態にある水蒸気が含まれている。そしてオフガスに含まれるこの水蒸気が凝縮して水滴となって加熱手段に達すると、水滴を蒸発させるための蒸発潜熱分の熱量が消費されるために、改質部を加熱する温度が低下して水素製造装置の熱効率の低下を招くおそれがある。加えて、加熱手段の燃焼状態が不安定になって、排出される一酸化炭素量の増大や、ガス圧力の変動、火炎の失火などの問題を起こす可能性がある。 This off-gas usually contains saturated water vapor in addition to residual hydrogen. When this water vapor contained in the off-gas condenses into water droplets and reaches the heating means, the amount of heat for evaporation latent heat for evaporating the water droplets is consumed, so the temperature for heating the reforming section decreases. There is a possibility that the thermal efficiency of the hydrogen production apparatus is lowered. In addition, the combustion state of the heating means may become unstable, which may cause problems such as an increase in the amount of carbon monoxide discharged, fluctuations in gas pressure, and misfire of the flame.
そこで、オフガスから水蒸気を凝縮分離し、水滴が加熱手段に達することを防ぐように、燃料電池から排出されたオフガスを加熱手段に供給する前に熱交換部に通して冷却することによって、水蒸気を凝縮してオフガスから分離する構成、および水蒸気を凝縮分離した後、オフガスを加熱することによって水滴が生成されることを一層防止する構成が提案されている(例えば、特許文献1および2参照)。
しかしながら、特許文献1の構成では、熱交換部を通過したオフガスの水蒸気が、依然として冷却後の温度に対して飽和状態にあり、熱交換部と加熱手段との間の経路を流れるオフガスの外部雰囲気への放熱等によってその温度が下がれば、飽和状態にある水蒸気が凝縮して水滴が再び発生するおそれがある。 However, in the configuration of Patent Document 1, the off-gas water vapor that has passed through the heat exchange section is still saturated with respect to the temperature after cooling, and the external atmosphere of the off-gas that flows through the path between the heat exchange section and the heating means If the temperature decreases due to heat dissipation to the water, the water vapor in saturation may condense and water droplets may be generated again.
また、特許文献2の構成では、オフガスを加熱するために専用の熱交換器用いるので、構成が複雑な上、さらに水蒸気を分離した後の加熱部から加熱手段への経路で断熱が不十分であったり局所的に放熱があったりすると、冷却されてしまい、水蒸気の凝縮が発生することがある。 Further, in the configuration of Patent Document 2, since a dedicated heat exchanger is used to heat off-gas, the configuration is complicated, and further, heat insulation is insufficient in the path from the heating unit to the heating means after separating the water vapor. If it is present or if heat is locally dissipated, it will be cooled and condensation of water vapor may occur.
本発明は上記の点に鑑みてなされたものであり、オフガスに含まれる水蒸気の凝縮を確実に防ぐことができる水素製造装置を提供することを目的とするものである。 The present invention has been made in view of the above points, and an object of the present invention is to provide a hydrogen production apparatus that can reliably prevent condensation of water vapor contained in off-gas.
上記課題を解決するために、本発明の水素製造装置は、外筒と、前記外筒の内側に配置される内筒と、前記内筒の内側に配置される燃焼筒と、前記外筒及び前記内筒の間に形成され、炭化水素系燃料と水とから水蒸気改質反応によって水素を含む改質ガスを生成する改質部と、前記燃焼筒の内側に配置され、改質ガスが供給される燃料電池から返送されるオフガスを燃焼して前記改質部を加熱する加熱手段と、前記燃焼筒の内側に形成され、燃焼空気を前記加熱手段に供給する燃焼空気供給通路と、前記燃焼筒の内側に形成され、オフガスを前記加熱手段に供給する燃料ガス供給通路と、前記内筒及び前記燃焼筒の間に形成され、前記オフガスが燃焼して発生する排気ガスが通過する排気ガス通路と、を備え、前記加熱手段は、オフガスの燃焼が下向きで、前記改質部より上方に配置され、前記燃焼空気供給通路は、前記加熱手段の上方から燃焼空気を供給するよう構成され、前記燃料ガス供給通路は、前記加熱手段の上方からオフガスを供給するよう構成され、前記燃料ガス供給通路と前記排気ガス通路の一部とが前記燃焼筒を介して接触するように配置され、前記燃料ガス供給管内のオフガスの流れと前記排気ガス通路内の排気ガスの流れとが対向する方向に流れる配置とするものである。
In order to solve the above-described problems, a hydrogen production apparatus according to the present invention includes an outer cylinder, an inner cylinder arranged inside the outer cylinder, a combustion cylinder arranged inside the inner cylinder, the outer cylinder, A reformer formed between the inner cylinder and generating a reformed gas containing hydrogen from a hydrocarbon fuel and water by a steam reforming reaction, and disposed inside the combustion cylinder and supplied with the reformed gas A heating unit that burns off-gas returned from the fuel cell to heat the reforming unit, a combustion air supply passage that is formed inside the combustion cylinder and supplies combustion air to the heating unit, and the combustion is formed inside the cylinder, and the fuel gas supply passage for supplying the off gas to the heating means, is formed between the inner cylinder and the combustion cylinder, an exhaust gas passage through which exhaust gas passes, wherein the off-gas generated by burning When, wherein the heating means, the off-gas combustion Is disposed above the reforming section, the combustion air supply passage is configured to supply combustion air from above the heating means, and the fuel gas supply passage is off-gas from above the heating means. The fuel gas supply passage and a part of the exhaust gas passage are in contact with each other via the combustion cylinder, and the flow of off-gas in the fuel gas supply pipe and the exhaust gas passage It is set as the arrangement | positioning which flows into the direction which opposes the flow of exhaust gas .
本発明によれば、燃料ガス供給管を通過するオフガスを安定して加熱することにより、水蒸気の凝縮を防ぎ凝縮水が加熱手段に達することを確実に防ぐことができるとともに、排気ガス中の熱量を有効に活用できるものである。 According to the present invention, by stably heating the off gas passing through the fuel gas supply pipe, condensation of water vapor can be prevented and condensation water can be reliably prevented from reaching the heating means, and the amount of heat in the exhaust gas. Can be used effectively.
第1の発明は、外筒と、前記外筒の内側に配置される内筒と、前記内筒の内側に配置さ
れる燃焼筒と、前記外筒及び前記内筒の間に形成され、炭化水素系燃料と水とから水蒸気改質反応によって水素を含む改質ガスを生成する改質部と、前記燃焼筒の内側に配置され、改質ガスが供給される燃料電池から返送されるオフガスを燃焼して前記改質部を加熱する加熱手段と、前記燃焼筒の内側に形成され、燃焼空気を前記加熱手段に供給する燃焼空気供給通路と、前記燃焼筒の内側に形成され、オフガスを前記加熱手段に供給する燃料ガス供給通路と、前記内筒及び前記燃焼筒の間に形成され、前記オフガスが燃焼して発生する排気ガスが通過する排気ガス通路と、を備え、前記加熱手段は、オフガスの燃焼が下向きで、前記改質部より上方に配置され、前記燃焼空気供給通路は、前記加熱手段の上方から燃焼空気を供給するよう構成され、前記燃料ガス供給通路は、前記加熱手段の上方からオフガスを供給するよう構成され、前記燃料ガス供給通路と前記排気ガス通路の一部とが前記燃焼筒を介して接触するように配置され、前記燃料ガス供給管内のオフガスの流れと前記排気ガス通路内の排気ガスの流れとが対向する方向に流れる配置としたことを特徴とする水素製造装置である。
The first invention includes an outer cylinder, an inner cylinder arranged inside the outer cylinder, and an inner cylinder arranged inside the inner cylinder.
A combustion cylinder, a reforming section that is formed between the outer cylinder and the inner cylinder and generates a reformed gas containing hydrogen from a hydrocarbon fuel and water by a steam reforming reaction, and an inner side of the combustion cylinder And a heating means for heating the reforming part by burning off-gas returned from a fuel cell supplied with reformed gas, and supplying combustion air to the heating means formed inside the combustion cylinder a combustion air supply passage which is formed inside the combustion cylinder, a fuel gas supply passage for supplying the off gas to the heating means, is formed between the inner cylinder and the combustion cylinder, generating the off-gas is burned comprising an exhaust gas passage exhaust gas passes, wherein the heating means is the combustion of the off gas is downward, is disposed above the reforming section, the combustion air supply passage, combustion from above the heating means It is necessary to supply air. Is, the fuel gas supply passage, wherein configured to supply the off-gas from above the heating means, a portion of the exhaust gas passage and the fuel gas supply passage is arranged in contact through the combustion cylinder The hydrogen production apparatus is characterized in that the flow of the off gas in the fuel gas supply pipe and the flow of the exhaust gas in the exhaust gas passage flow in opposite directions .
この発明によれば、燃料ガス供給管を通過するオフガスを加熱し確実にオフガスの温度を露点以上に高めることによりオフガスに含まれる水蒸気の凝縮を確実に防ぐことができるものである。 According to this invention, it is possible to reliably prevent condensation of water vapor contained in the offgas by heating the offgas passing through the fuel gas supply pipe and reliably increasing the temperature of the offgas above the dew point.
この発明によれば、加熱部を水素製造装置の中央部に配置できるためコンパクトな構成が可能であるとともに、水素製造装置からの放熱を抑えることができる。
According to this invention, since a heating part can be arrange | positioned in the center part of a hydrogen production apparatus, while being able to make a compact structure, the heat radiation from a hydrogen production apparatus can be suppressed .
この発明によれば、オフガスと排気ガスが対向して流れる事により排気ガスからオフガスへの熱交換の効率が高まることにより安定してオフガスに含まれる水蒸気の凝縮を確実に防ぐことができるものである。
また第2の発明は、第1の発明において、前記燃焼筒の内側に配置され、前記燃料ガス供給通路と前記燃焼空気供給通路との間に配置された断熱材を備えたものである。
この発明によれば、排気ガス通路から燃料ガス供給管への熱交換の効率を高めることにより安定してオフガスに含まれる水蒸気の凝縮を確実に防ぐことができるものである。
According to the present invention, the off-gas and the exhaust gas flow facing each other to increase the efficiency of heat exchange from the exhaust gas to the off-gas, thereby stably preventing the water vapor contained in the off-gas from condensing. is there.
According to a second aspect of the present invention, in the first aspect of the invention, a heat insulating material is provided inside the combustion cylinder and disposed between the fuel gas supply passage and the combustion air supply passage.
According to the present invention, it is possible to reliably prevent condensation of water vapor contained in the off-gas stably by increasing the efficiency of heat exchange from the exhaust gas passage to the fuel gas supply pipe.
また第3の発明は、第1又は2の発明において、燃料ガス供給管と排気ガス通路との接触する箇所の下端が改質部の上端より上方に配置したことを特徴とするものである。
The third invention is characterized in that, in the first or second invention, the lower end of the portion where the fuel gas supply pipe and the exhaust gas passage come into contact is arranged above the upper end of the reforming section.
この発明によれば、加熱部で発生したエネルギーは排気ガス通路より改質部と熱交換した後、燃料ガス供給管と熱交換する事により改質部1に必要な熱量を確実に伝えるとともに、オフガスの過加熱を防ぐ、あるいは熱量の有効活用ができるものである。 According to the present invention, the energy generated in the heating unit is exchanged heat with the reforming unit through the exhaust gas passage, and then is exchanged with the fuel gas supply pipe to reliably transfer the necessary amount of heat to the reforming unit 1, It can prevent overheating of off-gas, or can effectively use the amount of heat.
また第4の発明は、第1〜3のいずれか1つの発明において、燃料ガス供給管と排気ガス通路との接触箇所近傍の空間に熱伝導率が高い伝熱部材を充填配置したことを特徴とするものである。
According to a fourth invention, in any one of the first to third inventions, a space near the contact portion between the fuel gas supply pipe and the exhaust gas passage is filled with a heat transfer member having a high thermal conductivity. It is a feature.
この発明によれば、排気ガス通路から燃料ガス供給管への熱交換の効率を高めることにより安定してオフガスに含まれる水蒸気の凝縮を確実に防ぐことができるものである。 According to the present invention, it is possible to reliably prevent condensation of water vapor contained in the off-gas stably by increasing the efficiency of heat exchange from the exhaust gas passage to the fuel gas supply pipe.
また第5の発明は、第1〜4のいずれか1つの発明の水素製造装置と、改質ガス及び空気を反応させて発電する燃料電池と、を備えた燃料電池発電システムである。
A fifth invention is a fuel cell power generation system including the hydrogen production apparatus according to any one of the first to fourth inventions , and a fuel cell that generates electricity by reacting the reformed gas and air .
以下、本発明を実施の形態を説明するが、この実施の形態によって本発明が限定されるものではない。 Hereinafter, although an embodiment of the present invention is described, the present invention is not limited to this embodiment.
図1は本発明の実施の形態の一例を示し、水素製造装置8は軸方向が縦の内筒9と外筒10を同心円状に配置した二重筒で全体を形成し、さらに内筒9の内側に同心円状に燃焼筒11を配置して設けてある。 FIG. 1 shows an example of an embodiment of the present invention. A hydrogen production apparatus 8 is formed as a whole by a double cylinder in which an inner cylinder 9 and an outer cylinder 10 that are longitudinal in the axial direction are arranged concentrically. The combustion cylinder 11 is disposed concentrically on the inside.
燃焼筒11の下部内には、燃焼筒11内を上下に仕切るように燃焼板12が設けてある。燃焼板12の中央は上方へ凸屈曲した燃焼部13として形成してあり、燃焼部13の中央部に上側から貫通して、先端にノズル口を有する燃焼ノズル14が取り付けてある。 A combustion plate 12 is provided in the lower part of the combustion cylinder 11 so as to partition the inside of the combustion cylinder 11 vertically. The center of the combustion plate 12 is formed as a combustion part 13 that is convexly bent upward, and a combustion nozzle 14 that penetrates the center part of the combustion part 13 from above and has a nozzle port at the tip is attached.
燃焼部13には上下に貫通して形成される複数の燃焼空気供給口15が形成してある。燃焼ノズル14には燃焼部13より上側において燃料ガス供給管4が接続してあり、また送風ファン16に接続した燃焼空気供給管17が燃焼部13の上側において燃焼筒11内に差し込んである。燃焼空気供給管17の下端は空気吐出口として開口させてある。 The combustion unit 13 has a plurality of combustion air supply ports 15 formed so as to penetrate vertically. A fuel gas supply pipe 4 is connected to the combustion nozzle 14 above the combustion section 13, and a combustion air supply pipe 17 connected to the blower fan 16 is inserted into the combustion cylinder 11 above the combustion section 13. The lower end of the combustion air supply pipe 17 is opened as an air discharge port.
上記の燃焼空気供給口15を有する燃焼部13と燃焼ノズル14によってバーナなどの加熱手段3が形成される。そして燃料ガス供給管4から加熱手段3に供給された燃料ガスは、燃焼ノズル14の下端のノズル口から燃焼部13の下方へ噴出され、また送風ファン16から燃焼空気供給管17を通して供給された空気は空気吐出口から吐出された後に、燃焼空気供給口15を通過して燃焼部13の下方へ供給され(燃焼用の空気の流れを図1に細破線矢印で示す)、この燃料ガスと空気とが混合されて、燃焼部13から下方へ炎が噴出する燃焼が行なわれる。 The combustion means 13 having the combustion air supply port 15 and the combustion nozzle 14 form a heating means 3 such as a burner. The fuel gas supplied from the fuel gas supply pipe 4 to the heating means 3 is ejected from the nozzle port at the lower end of the combustion nozzle 14 to the lower side of the combustion section 13 and supplied from the blower fan 16 through the combustion air supply pipe 17. After the air is discharged from the air discharge port, it passes through the combustion air supply port 15 and is supplied to the lower portion of the combustion unit 13 (the flow of combustion air is indicated by thin broken arrows in FIG. 1). Combustion in which flame is jetted downward from the combustion section 13 is performed by mixing with air.
この燃焼は凸屈曲した形状の燃焼部13の下面凹部内の全体で火炎が生じるように行なわれる。燃焼筒11と内筒9の間には排気ガス通路5が形成してあり、加熱手段3の燃焼部13での燃焼によって発生した高温の排気ガスは、燃焼筒11の下端の開口からこの排気ガス通路5を通過した後に排出されるようになっている(燃焼ガスの流れを図1に一点鎖線矢印で示す)。 This combustion is performed so that a flame is generated in the entire bottom surface recess of the combustion section 13 having a convex and bent shape. An exhaust gas passage 5 is formed between the combustion cylinder 11 and the inner cylinder 9, and high-temperature exhaust gas generated by combustion in the combustion unit 13 of the heating means 3 is exhausted from the opening at the lower end of the combustion cylinder 11. The gas is discharged after passing through the gas passage 5 (the flow of the combustion gas is indicated by a one-dot chain line arrow in FIG. 1).
一方、上記の内筒9と外筒10の間の上下は閉塞してあり、この内筒9と外筒10の間の閉塞された空間内はこれらと同心円の仕切り筒18で内外に仕切ってある。 On the other hand, the upper and lower sides between the inner cylinder 9 and the outer cylinder 10 are closed, and the closed space between the inner cylinder 9 and the outer cylinder 10 is divided into the inside and the outside by a concentric partition cylinder 18. is there.
仕切り筒18は上部が小径筒部18a、下部が大径筒部18bとして形成してあり、大径筒部18bと内筒9との間に改質触媒を充填して改質部1が形成してある。また小径筒部18aと外筒10の間には一酸化炭素除去触媒を充填して一酸化炭素除去部19が形成してある。また、内筒9と小径筒部18aの間の空間部は導入流路20として形成されるものであり、大径筒部18bと外筒10の間の空間部は移行流路21として形成されるものである。 The partition cylinder 18 is formed with a small diameter cylindrical portion 18a at the top and a large diameter cylindrical portion 18b at the bottom, and the reforming catalyst 1 is filled between the large diameter cylindrical portion 18b and the inner cylinder 9 to form the reforming section 1. It is. A carbon monoxide removal catalyst 19 is filled between the small diameter cylinder portion 18a and the outer cylinder 10 to form a carbon monoxide removal portion 19. The space between the inner cylinder 9 and the small diameter cylinder portion 18a is formed as the introduction flow path 20, and the space between the large diameter cylinder section 18b and the outer cylinder 10 is formed as the transition flow path 21. Is.
導入流路20には原料供給部22と水供給部23が接続してあり、原料供給部22から都市ガスやLPG等の炭化水素系燃料が、水供給部23から水が、混合された状態で導入流路20に供給されるようになっている。 A raw material supply unit 22 and a water supply unit 23 are connected to the introduction flow path 20, and a hydrocarbon-based fuel such as city gas or LPG is mixed from the raw material supply unit 22 and water is mixed from the water supply unit 23. Is supplied to the introduction channel 20.
このように炭化水素系燃料と水が導入流路20に供給されると、排気ガス通路5を流れる高温の排気ガスによる加熱によって、炭化水素系燃料と水蒸気との混合ガスが生成される。この混合ガスは改質部1に供給され、炭化水素系燃料と水が水蒸気改質反応して水素を含む改質ガスが生成される。 When the hydrocarbon fuel and water are supplied to the introduction flow path 20 in this way, a mixed gas of hydrocarbon fuel and water vapor is generated by heating with the high-temperature exhaust gas flowing through the exhaust gas passage 5. This mixed gas is supplied to the reforming unit 1, and a hydrocarbon-based fuel and water undergo a steam reforming reaction to generate a reformed gas containing hydrogen.
水蒸気改質反応は吸熱反応であるので、上記のように加熱手段3の燃焼部13での燃焼で発生した高温の排気ガスを排気ガス通路5に通し、改質部1を加熱して600〜700℃程度の改質反応温度に維持する。 Since the steam reforming reaction is an endothermic reaction, the high-temperature exhaust gas generated by the combustion in the combustion section 13 of the heating means 3 as described above is passed through the exhaust gas passage 5 to heat the reforming section 1 to 600 to The reforming reaction temperature is maintained at about 700 ° C.
改質部1で生成された改質ガスは、移行流路21を通して一酸化炭素除去部19に供給され、改質ガス中の一酸化炭素が除去される。このように一酸化炭素が除去された改質ガスは、燃料電池2に送り出される(図1に混合ガス及び改質ガスの流れを実線矢印で示す)。 The reformed gas generated in the reforming unit 1 is supplied to the carbon monoxide removing unit 19 through the transfer channel 21, and the carbon monoxide in the reformed gas is removed. The reformed gas from which carbon monoxide has been removed in this way is sent to the fuel cell 2 (the flow of the mixed gas and the reformed gas is indicated by solid arrows in FIG. 1).
燃料電池2はアノード24とカソード25を備えて形成され、上記のように水素製造装置8で製造された改質ガスはアノード24に供給される。このようにアノード24に改質ガスが供給されると、カソード25に供給される空気中の酸素と改質ガス中の水素とが電気化学的反応をして発電する。 The fuel cell 2 is formed with an anode 24 and a cathode 25, and the reformed gas produced by the hydrogen production device 8 as described above is supplied to the anode 24. When the reformed gas is thus supplied to the anode 24, oxygen in the air supplied to the cathode 25 and hydrogen in the reformed gas undergo an electrochemical reaction to generate power.
燃料電池2のアノード24からは発電に消費されなかった水素を含む改質ガスがオフガスとして排出されるが、アノード24には上記の燃料ガス供給管4が接続してあり、アノード24から排出されたオフガスは燃料ガス供給管4を通して水素製造装置8に返送されるようにしてある。 The reformed gas containing hydrogen that has not been consumed for power generation is discharged from the anode 24 of the fuel cell 2 as off-gas. The fuel gas supply pipe 4 is connected to the anode 24 and is discharged from the anode 24. The off gas is returned to the hydrogen production apparatus 8 through the fuel gas supply pipe 4.
そしてオフガスは燃料ガス供給管4を通して加熱手段3の燃焼ノズル14に供給され、オフガスを燃焼ガスとして加熱手段3の燃焼部13で燃焼されるものである(オフガスの流れを太破線矢印で示す)。 The off gas is supplied to the combustion nozzle 14 of the heating means 3 through the fuel gas supply pipe 4, and burned in the combustion section 13 of the heating means 3 using the off gas as the combustion gas (the flow of the off gas is indicated by a thick broken line arrow). .
なお、燃料ガス供給管4には原料供給部22から炭化水素系燃料も供給されるようになっており、水素製造装置8の運転立ち上げ時や、オフガスの返送量が不足するときには、炭化水素系燃料を燃料ガスとして加熱手段3で燃焼されるものである。 The fuel gas supply pipe 4 is also supplied with a hydrocarbon-based fuel from the raw material supply unit 22. When the hydrogen production apparatus 8 is started up or when the amount of returned offgas is insufficient, the hydrocarbon gas is supplied. The system fuel is burned by the heating means 3 using fuel gas.
本発明において、燃料ガス供給管4と排気ガス通路5はそれぞれその内部に流れるオフガス及び排気ガスが対向する方向に流れる様に接触するとともに、その接触部の下端は改質部1の上端より上方に配置されている。 In the present invention, the fuel gas supply pipe 4 and the exhaust gas passage 5 are in contact with each other so that the off-gas and the exhaust gas flowing inside each of the fuel gas supply pipe 4 and the exhaust gas passage 5 face each other. Is arranged.
オフガスには燃料電池2で消費されなかった残留水素の他に飽和状態にある水蒸気が含まれているが、排気ガス通路5の熱により燃料ガス供給管4が加熱される事によりオフガス内の水蒸気が凝縮する温度に低下することを防いでいる。 The off gas contains water vapor in a saturated state in addition to residual hydrogen that has not been consumed in the fuel cell 2, and the water vapor in the off gas is heated by heating the fuel gas supply pipe 4 with the heat of the exhaust gas passage 5. Prevents the temperature from condensing.
従って、水蒸気が凝縮し凝縮水が加熱手段3の燃焼ノズル14に達して失火が起こったり、燃焼ノズル14から噴出されるオフガスの圧力変動が起こったりすることを防ぐことができるものであり、加熱手段3を安定して燃焼させることができる。 Accordingly, it is possible to prevent the water vapor from condensing and the condensed water from reaching the combustion nozzle 14 of the heating means 3 to cause misfire or pressure fluctuation of off-gas ejected from the combustion nozzle 14. The means 3 can be stably burned.
また改質部1では炭化水素系燃料と水が排気ガス通路5を流れる高温の排気ガスにより加熱され、炭化水素系燃料と水蒸気との混合ガスが生成されるが、燃料ガス供給管4と排気ガス通路5の接触部の下端が改質部1の上端より上方に配置することにより改質部に必要な熱量が燃料ガス供給管4に奪はれることが無く、安定した改質反応をさせることができる。 In the reforming section 1, the hydrocarbon fuel and water are heated by the high-temperature exhaust gas flowing through the exhaust gas passage 5, and a mixed gas of hydrocarbon fuel and water vapor is generated. By disposing the lower end of the contact portion of the gas passage 5 above the upper end of the reforming portion 1, the amount of heat required for the reforming portion is not lost to the fuel gas supply pipe 4, and a stable reforming reaction is performed. be able to.
また改質部1の上端より上方の排気ガス通路5を流れる排気ガスの温度は400℃以下に低下しており、燃料ガス供給管4内のオフガスを過加熱しオフガスの燃焼速度が上昇することに起因する燃焼部13の不安定を防ぎ加熱手段3を安定して燃焼させることができ、結果として水素製造装置8を安定して運転することができるものである。 Further, the temperature of the exhaust gas flowing through the exhaust gas passage 5 above the upper end of the reforming unit 1 is lowered to 400 ° C. or lower, and the offgas in the fuel gas supply pipe 4 is overheated to increase the offgas combustion rate. The instability of the combustion unit 13 due to the above can be prevented and the heating means 3 can be stably burned, and as a result, the hydrogen production apparatus 8 can be stably operated.
更に改質部1で利用されなかった熱をオフガスの加熱に利用でき水素製造装置8の効率も高めることができるものである。 Furthermore, the heat not used in the reforming unit 1 can be used for off-gas heating, and the efficiency of the hydrogen production apparatus 8 can be increased.
図2は燃料ガス供給管4と排気ガス通路5が接触配置されている箇所の断面図であり、本発明において排気ガス通路5の内側に燃料ガス供給管4が接触し配置されている。また燃料ガス供給管4と排気ガス通路5の接触部近傍に伝熱部材6が充填されるとともに伝熱部材6が充填されていない側の燃料ガス供給管4の外側には断熱材7が配置されている。 FIG. 2 is a cross-sectional view of a location where the fuel gas supply pipe 4 and the exhaust gas passage 5 are in contact with each other. In the present invention, the fuel gas supply pipe 4 is placed in contact with the inside of the exhaust gas passage 5. Further, the heat transfer member 6 is filled in the vicinity of the contact portion between the fuel gas supply pipe 4 and the exhaust gas passage 5, and a heat insulating material 7 is disposed outside the fuel gas supply pipe 4 on the side not filled with the heat transfer member 6. Has been.
伝熱部材6を配置することにより排気ガス通路5から燃料ガス供給管4への熱伝達を高めるとともに、組み立て等のバラツキにより燃料ガス供給管4と排気ガス通路5との接触が不安定になった場合でも安定した熱伝達が可能である。また燃料ガス供給管4の外側には断熱材7を配置することによりの燃料ガス供給管4が燃焼空気通過部26により冷却されることを防ぐことができる。 By disposing the heat transfer member 6, heat transfer from the exhaust gas passage 5 to the fuel gas supply pipe 4 is enhanced, and contact between the fuel gas supply pipe 4 and the exhaust gas passage 5 becomes unstable due to variations in assembly or the like. Stable heat transfer is possible. Further, it is possible to prevent the fuel gas supply pipe 4 from being cooled by the combustion air passage portion 26 by disposing the heat insulating material 7 outside the fuel gas supply pipe 4.
本発明は、都市ガスやLPG等の炭化水素系燃料を水蒸気改質して水素を含む改質ガスを製造する水素製造装置およびそれを組み込んだ燃料電池システムに利用することが可能である。 INDUSTRIAL APPLICABILITY The present invention can be used for a hydrogen production apparatus that produces a reformed gas containing hydrogen by steam reforming a hydrocarbon-based fuel such as city gas or LPG, and a fuel cell system incorporating the hydrogen production apparatus.
1 改質部
2 燃料電池
3 加熱手段
4 燃料ガス供給管
5 排気ガス通路
6 伝熱部材
7 断熱材
8 水素製造装置
DESCRIPTION OF SYMBOLS 1 Reforming part 2 Fuel cell 3 Heating means 4 Fuel gas supply pipe 5 Exhaust gas passage 6 Heat transfer member 7 Heat insulating material 8 Hydrogen production apparatus
Claims (5)
前記外筒の内側に配置される内筒と、
前記内筒の内側に配置される燃焼筒と、
前記外筒及び前記内筒の間に形成され、炭化水素系燃料と水とから水蒸気改質反応によって水素を含む改質ガスを生成する改質部と、
前記燃焼筒の内側に配置され、改質ガスが供給される燃料電池から返送されるオフガスを燃焼して前記改質部を加熱する加熱手段と、
前記燃焼筒の内側に形成され、燃焼空気を前記加熱手段に供給する燃焼空気供給通路と、
前記燃焼筒の内側に形成され、オフガスを前記加熱手段に供給する燃料ガス供給通路と、
前記内筒及び前記燃焼筒の間に形成され、前記オフガスが燃焼して発生する排気ガスが通過する排気ガス通路と、
を備え、
前記加熱手段は、オフガスの燃焼が下向きで、前記改質部より上方に配置され、
前記燃焼空気供給通路は、前記加熱手段の上方から燃焼空気を供給するよう構成され、
前記燃料ガス供給通路は、前記加熱手段の上方からオフガスを供給するよう構成され、
前記燃料ガス供給通路と前記排気ガス通路の一部とが前記燃焼筒を介して接触するように配置され、
前記燃料ガス供給管内のオフガスの流れと前記排気ガス通路内の排気ガスの流れとが対向する方向に流れる配置としたことを特徴とする水素製造装置。 An outer cylinder,
An inner cylinder disposed inside the outer cylinder;
A combustion cylinder disposed inside the inner cylinder;
A reforming section that is formed between the outer cylinder and the inner cylinder and generates a reformed gas containing hydrogen by a steam reforming reaction from a hydrocarbon-based fuel and water;
A heating means that is disposed inside the combustion cylinder and burns off-gas returned from a fuel cell supplied with reformed gas to heat the reforming unit;
A combustion air supply passage formed inside the combustion cylinder and supplying combustion air to the heating means;
Is formed inside the combustion cylinder, a fuel gas supply passage for supplying the off gas to the heating means,
An exhaust gas passage formed between the inner cylinder and the combustion cylinder, through which exhaust gas generated by combustion of the off gas passes ,
Equipped with a,
The heating means is disposed above the reforming unit with the off-gas combustion facing downward.
The combustion air supply passage is configured to supply combustion air from above the heating means,
The fuel gas supply passage is configured to supply off gas from above the heating means,
The fuel gas supply passage and a part of the exhaust gas passage are arranged so as to contact each other through the combustion cylinder ,
An apparatus for producing hydrogen , wherein an off-gas flow in the fuel gas supply pipe and an exhaust gas flow in the exhaust gas passage flow in opposite directions .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008172998A JP5125815B2 (en) | 2008-07-02 | 2008-07-02 | Hydrogen production apparatus and fuel cell power generation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008172998A JP5125815B2 (en) | 2008-07-02 | 2008-07-02 | Hydrogen production apparatus and fuel cell power generation system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010013302A JP2010013302A (en) | 2010-01-21 |
JP5125815B2 true JP5125815B2 (en) | 2013-01-23 |
Family
ID=41699781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008172998A Expired - Fee Related JP5125815B2 (en) | 2008-07-02 | 2008-07-02 | Hydrogen production apparatus and fuel cell power generation system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5125815B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112011104930T8 (en) | 2011-02-21 | 2014-03-13 | Toyota Jidosha Kabushiki Kaisha | Control equipment for vehicle drive system |
JP6387521B2 (en) * | 2014-08-05 | 2018-09-12 | パナソニックIpマネジメント株式会社 | Hydrogen generator and fuel cell system using the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04322739A (en) * | 1991-04-22 | 1992-11-12 | Fuji Electric Co Ltd | Fuel reformer for fuel cell |
JP3362947B2 (en) * | 1994-02-28 | 2003-01-07 | 大阪瓦斯株式会社 | Fuel cell generator |
JP4090234B2 (en) * | 2001-11-22 | 2008-05-28 | 大阪瓦斯株式会社 | Hydrogen-containing gas generator |
-
2008
- 2008-07-02 JP JP2008172998A patent/JP5125815B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010013302A (en) | 2010-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4906242B2 (en) | How to shut down the fuel cell | |
JP4979935B2 (en) | Fuel reformer | |
JP6280470B2 (en) | Fuel cell module | |
JP5485666B2 (en) | Fuel cell system | |
JP6280431B2 (en) | Fuel cell module | |
JP2006331678A (en) | Fuel cell system | |
KR20190093052A (en) | Preferential oxidation reactor with internal heat exchange structure and fuel cell system using the same | |
JP5125815B2 (en) | Hydrogen production apparatus and fuel cell power generation system | |
JPWO2012091029A1 (en) | Fuel cell system | |
JP2007080761A (en) | Fuel cell and its starting method | |
JP2012243413A (en) | Fuel cell module and fuel cell system | |
JP4210912B2 (en) | Fuel reformer and fuel cell power generator | |
JP2010024075A (en) | Combustion device and fuel reforming apparatus | |
JP2011096388A (en) | Fuel cell module | |
JP2008159373A (en) | Hydrogen manufacturing device and fuel cell electric power generation system | |
JP2008135351A (en) | Power generating device | |
JP2011113918A (en) | Fuel cell system | |
JP6043885B1 (en) | Fuel cell system | |
JP4319490B2 (en) | Liquid hydrocarbon fuel reformer | |
KR101316042B1 (en) | Integrated Reformer System for a Fuel Cell | |
JP2007073358A (en) | Fuel heat exchanger and fuel cell | |
JP5007077B2 (en) | Reformer and indirect internal reforming type solid oxide fuel cell | |
JP2006059549A (en) | Fuel cell power generator | |
JP2005285593A (en) | Method for operating fuel cell generator | |
JP2009076275A (en) | Fuel cell module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100311 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20100413 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120508 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120706 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121002 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121015 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5125815 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151109 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |