JP5461880B2 - Fuel cell reformer - Google Patents

Fuel cell reformer Download PDF

Info

Publication number
JP5461880B2
JP5461880B2 JP2009110057A JP2009110057A JP5461880B2 JP 5461880 B2 JP5461880 B2 JP 5461880B2 JP 2009110057 A JP2009110057 A JP 2009110057A JP 2009110057 A JP2009110057 A JP 2009110057A JP 5461880 B2 JP5461880 B2 JP 5461880B2
Authority
JP
Japan
Prior art keywords
unit
reforming
water
vaporization
reformed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009110057A
Other languages
Japanese (ja)
Other versions
JP2010257914A (en
Inventor
昭 藤生
正天 門脇
琢也 梶田
嘉孝 原
佳展 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2009110057A priority Critical patent/JP5461880B2/en
Priority to PCT/JP2010/001568 priority patent/WO2010125730A1/en
Publication of JP2010257914A publication Critical patent/JP2010257914A/en
Application granted granted Critical
Publication of JP5461880B2 publication Critical patent/JP5461880B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0827Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、原燃料を改質して燃料電池で使用される改質ガスを生成する燃料電池用改質装置に関する。   The present invention relates to a reformer for a fuel cell that reforms raw fuel to generate a reformed gas used in a fuel cell.

近年、エネルギー変換効率が高く、かつ、発電反応により有害物質を発生しない燃料電池が注目を浴びている。こうした燃料電池の一つとして、固体高分子形燃料電池が知られている。   In recent years, fuel cells that have high energy conversion efficiency and do not generate harmful substances due to power generation reactions have attracted attention. As one of such fuel cells, a polymer electrolyte fuel cell is known.

固体高分子形燃料電池は、電解質膜である固体高分子膜を燃料極と空気極との間に配した基本構造を有し、燃料極に水素を含む燃料ガス、空気極に酸素を含む酸化剤ガスを供給し、以下の電気化学反応により発電する装置である。   A polymer electrolyte fuel cell has a basic structure in which a polymer electrolyte membrane, which is an electrolyte membrane, is disposed between a fuel electrode and an air electrode. The fuel electrode contains hydrogen and the air electrode contains oxygen. It is a device that supplies the agent gas and generates power by the following electrochemical reaction.

燃料極:H→2H+2e・・・・(1)
空気極:1/2O+2H+2e→HO・・・・(2)
実用的には、固体高分子形燃料電池の燃料となる水素は、比較的容易かつ安価に入手可能な天然ガス、ナフサ等の炭化水素系ガスまたはメタノール等のアルコール類の原燃料ガスと水蒸気とを混合して、改質部で改質することで得る手法が採用されている。改質により得られた水素ガスは燃料電池の燃料極に供給され、発電に用いられる。
The fuel electrode: H 2 → 2H + + 2e - ···· (1)
Cathode: 1 / 2O 2 + 2H + + 2e - → H 2 O ···· (2)
Practically, hydrogen used as a fuel for a polymer electrolyte fuel cell is a natural gas, a hydrocarbon gas such as naphtha, or a raw fuel gas of alcohols such as methanol and water vapor, which can be obtained relatively easily and inexpensively. The technique obtained by mixing and reforming in the reforming section is employed. Hydrogen gas obtained by reforming is supplied to the fuel electrode of the fuel cell and used for power generation.

図1は、従来の燃料電池システムの構成を示す概略図である。従来、燃料電池システム300では、まず、原燃料(天然ガスやLPGなどの炭化水素系ガス)が脱硫部310に供給され、原燃料から硫黄成分が除去される。   FIG. 1 is a schematic diagram showing the configuration of a conventional fuel cell system. Conventionally, in the fuel cell system 300, first, raw fuel (hydrocarbon gas such as natural gas or LPG) is supplied to the desulfurization unit 310, and sulfur components are removed from the raw fuel.

硫黄成分が除去された原燃料は改質部320に供給される。改質部320は、バーナー322で熱した触媒に原燃料を通すことにより原燃料を水蒸気改質し、改質ガスを生成する。   The raw fuel from which the sulfur component has been removed is supplied to the reforming unit 320. The reforming unit 320 steam-reforms the raw fuel by passing the raw fuel through the catalyst heated by the burner 322 to generate a reformed gas.

改質部320の起動時には、改質部320を昇温するために、バーナー322に原燃料の一部が供給される。燃料電池400が安定的に運転できるようになると、バーナー322への原燃料の供給を停止し、燃料電池400から排出される電池オフガスをバーナー322に供給することにより、改質部320の昇温が図られる。バーナー322の燃焼により生じる排ガスは、気化部330において改質水と熱交換した後、燃料電池システム300から外部へ排出される。また、バーナー322には、空気が供給され、バーナー322の燃焼に用いられる。   When starting up the reforming unit 320, a part of the raw fuel is supplied to the burner 322 in order to raise the temperature of the reforming unit 320. When the fuel cell 400 can be stably operated, the supply of the raw fuel to the burner 322 is stopped, and the battery off gas discharged from the fuel cell 400 is supplied to the burner 322, whereby the temperature of the reforming unit 320 is increased. Is planned. Exhaust gas generated by the combustion of the burner 322 is exhausted from the fuel cell system 300 to the outside after exchanging heat with the reforming water in the vaporization section 330. In addition, air is supplied to the burner 322 and used for combustion of the burner 322.

改質部320によって生成された改質ガスは、熱交換部340で原燃料に加えられる前の改質水(水蒸気)と熱交換した後、CO変成部350に供給される。CO変成部350では、シフト反応により一酸化炭素が水素に変成される。これにより、水素濃度が高められるとともに、CO濃度が低減される。   The reformed gas generated by the reforming unit 320 exchanges heat with reformed water (steam) before being added to the raw fuel in the heat exchanging unit 340 and then supplied to the CO converting unit 350. In the CO conversion unit 350, carbon monoxide is converted to hydrogen by a shift reaction. Thereby, the hydrogen concentration is increased and the CO concentration is reduced.

CO変成部350によりCO濃度が低減された改質ガスは、熱交換部342で気化部330で気化された水蒸気と熱交換した後、CO除去部360に供給される。CO除去部360では、CO選択酸化触媒を用いたCO酸化反応によりCO濃度がさらに低減される。なお、CO変成部350によりCO濃度が低減された改質ガスには、CO酸化反応に必要な空気が供給される。   The reformed gas whose CO concentration has been reduced by the CO conversion unit 350 is heat-exchanged with the water vapor evaporated by the vaporization unit 330 by the heat exchange unit 342 and then supplied to the CO removal unit 360. In the CO removal unit 360, the CO concentration is further reduced by the CO oxidation reaction using the CO selective oxidation catalyst. Note that air necessary for the CO oxidation reaction is supplied to the reformed gas whose CO concentration has been reduced by the CO conversion unit 350.

CO除去部360によりCO濃度がさらに低減された改質ガスは、熱交換部344で水蒸気と熱交換した後、燃料電池400の燃料極に供給される。燃料電池400の空気極には酸化剤として空気が供給され、水素と酸素による電気化学反応により発電が行われる。   The reformed gas whose CO concentration is further reduced by the CO removing unit 360 is heat-exchanged with water vapor by the heat exchanging unit 344 and then supplied to the fuel electrode of the fuel cell 400. Air is supplied as an oxidant to the air electrode of the fuel cell 400, and power is generated by an electrochemical reaction between hydrogen and oxygen.

改質部320における改質反応に必要な水蒸気は、燃料電池システム300の外部から供給された改質水から生成される。具体的には、外部から供給された液体の改質水は、気化部330において、バーナー322からの排ガスと熱交換することにより気化し、水蒸気となる。気化部330により生成した水蒸気は、熱交換部342、CO除去部360、熱交換部344の順で改質ガスと熱交換した後、CO変成部350、熱交換部340の順で改質ガスとさらに熱交換したのち、脱硫された原燃料に混合される。   The water vapor necessary for the reforming reaction in the reforming unit 320 is generated from the reformed water supplied from the outside of the fuel cell system 300. Specifically, the liquid reforming water supplied from the outside is vaporized by exchanging heat with the exhaust gas from the burner 322 in the vaporizing section 330 to become water vapor. The steam generated by the vaporization unit 330 is heat-exchanged with the reformed gas in the order of the heat exchange unit 342, the CO removal unit 360, and the heat exchange unit 344, and then the reformed gas in the order of the CO conversion unit 350 and the heat exchange unit 340. After further heat exchange, it is mixed with the desulfurized raw fuel.

特開2007−326724JP2007-326724

従来の燃料電池システムでは、空気比や原燃料の量の変動に起因してバーナーからの排ガスの熱量が変化すると、気化部における改質水の気化ポイントが変動する。これにより、水蒸気の圧力変動や流量変動等が生じるため、改質部における改質反応の制御が困難となる。また、気化部で気化された水蒸気が改質部に導かれる間に、水蒸気の乾き度が変化しやすいため、水蒸気の圧力変動が生じやすくなる要因となっていた。   In the conventional fuel cell system, when the calorific value of the exhaust gas from the burner changes due to fluctuations in the air ratio or the amount of raw fuel, the vaporization point of the reformed water in the vaporization section varies. As a result, fluctuations in the pressure or flow rate of the water vapor occur, making it difficult to control the reforming reaction in the reforming section. In addition, while the steam vaporized in the vaporization section is guided to the reforming section, the dryness of the steam is likely to change.

本発明はこうした課題に鑑みてなされたものであり、その目的は、原燃料の改質に用いられる水蒸気の圧力変動を抑制し、ロバスト性を向上させ、改質部における改質反応の安定性の向上を図ることができる技術の提供にある。   The present invention has been made in view of these problems, and its purpose is to suppress fluctuations in the pressure of water vapor used for reforming raw fuel, improve robustness, and stability of the reforming reaction in the reforming section. It is in the provision of the technology which can aim at improvement.

本発明のある態様は、燃料電池用改質装置である。当該燃料電池用改質装置は、原燃料を水蒸気改質により改質する改質部と、改質部で生成した改質ガスのCO濃度を低減するCO低減部と、改質部の加熱に用いられる燃焼手段から排出される排ガスの熱を用いて、改質部で生成した改質ガスと気化前の改質水との間で熱交換させることにより、前記改質水を加熱する気化前熱交換部と、気化前熱交換部を経由した改質水を気化させる気化部と、を備え、気化部で生じた水蒸気が原燃料とともに改質部に供給されることを特徴とする。   One embodiment of the present invention is a reformer for a fuel cell. The fuel cell reformer includes a reforming unit that reforms raw fuel by steam reforming, a CO reduction unit that reduces the CO concentration of reformed gas generated in the reforming unit, and heating of the reforming unit. Before the vaporization of heating the reformed water by heat exchange between the reformed gas generated in the reforming unit and the reformed water before vaporization using the heat of the exhaust gas discharged from the combustion means used A heat exchange part and a vaporization part for vaporizing the reformed water that has passed through the pre-vaporization heat exchange part are provided, and water vapor generated in the vaporization part is supplied to the reforming part together with the raw fuel.

この態様によれば、気化前熱交換部において改質ガスと熱交換することにより予め昇温された改質水が気化部に供給される。この結果、改質触媒を加熱するための燃焼手段からの排ガスの熱量の変化の影響が低減され、気化部にける気化ポイントが安定し、ロバスト性が向上する。   According to this aspect, the reforming water heated in advance by exchanging heat with the reformed gas in the pre-vaporization heat exchange section is supplied to the vaporization section. As a result, the influence of the change in the amount of heat of the exhaust gas from the combustion means for heating the reforming catalyst is reduced, the vaporization point in the vaporization section is stabilized, and the robustness is improved.

上記態様の燃料電池用改質装置において気化前熱交換部は、CO低減部に設けられていてもよい。また、CO低減部は、シフト反応により改質ガスのCO濃度を低減するCO変成部であってもよい。また、気化部に供給される改質水の圧力を減圧する減圧部をさらに備えてもよい。   In the fuel cell reforming apparatus of the above aspect, the pre-vaporization heat exchange section may be provided in the CO reduction section. The CO reduction unit may be a CO conversion unit that reduces the CO concentration of the reformed gas by a shift reaction. Moreover, you may further provide the pressure reduction part which pressure-reduces the pressure of the reforming water supplied to a vaporization part.

本発明によれば、原燃料の改質に用いられる水蒸気の圧力変動を抑制し、ロバスト性を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the pressure fluctuation of the water vapor | steam used for the reforming | reformation of raw fuel can be suppressed, and robustness can be improved.

従来の燃料電池システムの構成を示す概略図である。It is the schematic which shows the structure of the conventional fuel cell system. 実施の形態に係る燃料電池用改質装置を含む燃料電池システムの構成を示す概略図である。It is the schematic which shows the structure of the fuel cell system containing the reformer for fuel cells which concerns on embodiment. 燃料電池用改質装置のより詳細な構成を示す図である。It is a figure which shows the more detailed structure of the reformer for fuel cells.

以下、本発明の実施の形態を図面を参照して説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.

図2は、実施の形態に係る燃料電池用改質装置10を含む燃料電池システム100の構成を示す概略図である。   FIG. 2 is a schematic diagram showing a configuration of a fuel cell system 100 including the fuel cell reforming apparatus 10 according to the embodiment.

燃料電池用改質装置10は、脱硫部20、改質部30、バーナー32、CO変成部60、熱交換部50、52、CO除去部70および気化部40を含む。   The fuel cell reforming apparatus 10 includes a desulfurization unit 20, a reforming unit 30, a burner 32, a CO conversion unit 60, heat exchange units 50 and 52, a CO removal unit 70, and a vaporization unit 40.

まず、原燃料(天然ガスやLPGなどの炭化水素系ガス)が脱硫部20に供給され、原燃料から硫黄成分が除去される。これにより、硫黄成分が改質部30や燃料電池12に含まれる触媒に対して触媒毒として作用し、硫黄被毒により燃料電池用改質装置10の改質性能や燃料電池12の発電性能が低下することが抑制される。脱硫部20は、たとえば、触媒の存在化で硫黄成分を含む原燃料と水素とを反応させて硫黄成分を除去する、いわゆる水素化脱硫方式、またはゼオライト等の硫黄成分を吸着させる吸着方式により原燃料の脱硫を行う。   First, raw fuel (hydrocarbon gas such as natural gas or LPG) is supplied to the desulfurization section 20, and sulfur components are removed from the raw fuel. Thus, the sulfur component acts as a catalyst poison for the catalyst contained in the reforming unit 30 and the fuel cell 12, and the reforming performance of the fuel cell reforming device 10 and the power generation performance of the fuel cell 12 are affected by sulfur poisoning. Decrease is suppressed. For example, the desulfurization unit 20 uses a so-called hydrodesulfurization method in which a raw fuel containing a sulfur component reacts with hydrogen in the presence of a catalyst to remove the sulfur component, or an adsorption method in which a sulfur component such as zeolite is adsorbed. Desulfurize the fuel.

硫黄成分が除去された原燃料は改質部30に供給される。改質部30は、たとえば、アルミナ等の担体にルテニウム(Ru)などの金属触媒が担持された改質触媒からなる触媒層を有する。改質部30において、バーナー32で熱した改質触媒下で原燃料が水蒸気改質され、水素(燃料)を約80%含有する改質ガスが生成する。なお、水蒸気改質時の反応温度は、たとえば約650℃〜700℃の範囲である。   The raw fuel from which the sulfur component has been removed is supplied to the reforming unit 30. For example, the reforming unit 30 has a catalyst layer made of a reforming catalyst in which a metal catalyst such as ruthenium (Ru) is supported on a carrier such as alumina. In the reforming unit 30, the raw fuel is steam reformed under the reforming catalyst heated by the burner 32, and a reformed gas containing about 80% of hydrogen (fuel) is generated. The reaction temperature during steam reforming is, for example, in the range of about 650 ° C to 700 ° C.

改質部30の起動時には、改質部30を昇温するために、バーナー32に原燃料の一部が供給される。燃料電池12が安定的に運転できるようになると、バーナー32への原燃料の供給を停止し、燃料電池12から排出される電池オフガスをバーナー32に供給することにより、改質部30の昇温が図られる。バーナー32の燃焼により生じる排ガスは、気化部40において改質水と熱交換した後、燃料電池システム100から外部へ排出される。また、バーナー32には、空気が供給され、バーナー32の燃焼に用いられる。   When starting up the reforming unit 30, a part of the raw fuel is supplied to the burner 32 in order to raise the temperature of the reforming unit 30. When the fuel cell 12 can be stably operated, the supply of the raw fuel to the burner 32 is stopped, and the battery off gas discharged from the fuel cell 12 is supplied to the burner 32, whereby the temperature of the reforming unit 30 is increased. Is planned. The exhaust gas generated by the combustion of the burner 32 is discharged from the fuel cell system 100 to the outside after exchanging heat with the reforming water in the vaporization section 40. Further, air is supplied to the burner 32 and used for combustion of the burner 32.

改質部30によって生成された改質ガスは、熱交換部50を通過する際に気化部40を経由した水蒸気と熱交換した後、CO変成部60に供給される。CO変成部60は、たとえば、酸化銅や酸化亜鉛のペレットからなるCu−Zn系の触媒からなる触媒層を有し、CO変成部60において、シフト反応により一酸化炭素が水素に変成される。これにより、改質ガスの水素濃度が高められるとともに、CO濃度が0.5%以下に低減される。なお、CO選択酸化反応は、たとえば、約70℃〜180℃の範囲で行われる。   The reformed gas generated by the reforming unit 30 exchanges heat with water vapor that has passed through the vaporization unit 40 when passing through the heat exchange unit 50, and is then supplied to the CO conversion unit 60. The CO conversion unit 60 includes, for example, a catalyst layer made of a Cu—Zn-based catalyst made of copper oxide or zinc oxide pellets. In the CO conversion unit 60, carbon monoxide is converted to hydrogen by a shift reaction. Thereby, the hydrogen concentration of the reformed gas is increased and the CO concentration is reduced to 0.5% or less. In addition, CO selective oxidation reaction is performed in the range of about 70 to 180 degreeC, for example.

CO変成部60によりCO濃度が低減された改質ガスは、熱交換部52を通過する際に改質水と熱交換した後、CO除去部70に供給される。CO除去部70は、たとえば、アルミナ等の担体にRuを担持したCO選択酸化触媒からなる触媒層を有し、CO選択酸化触媒を用いたCO酸化反応により改質ガスのCO濃度が10ppm程度にまで低減される。なお、CO変成部60によりCO濃度が低減された改質ガスには、CO酸化反応に必要な空気が供給される。   The reformed gas whose CO concentration has been reduced by the CO converting unit 60 is supplied to the CO removing unit 70 after exchanging heat with the reforming water when passing through the heat exchanging unit 52. The CO removal unit 70 has, for example, a catalyst layer made of a CO selective oxidation catalyst in which Ru is supported on a carrier such as alumina, and the CO concentration of the reformed gas is about 10 ppm by the CO oxidation reaction using the CO selective oxidation catalyst. Reduced to. Note that air necessary for the CO oxidation reaction is supplied to the reformed gas whose CO concentration has been reduced by the CO conversion unit 60.

CO除去部70によりCO濃度がさらに低減された改質ガスは、燃料電池12の燃料極に供給される。燃料電池12は、たとえば、固体高分子形燃料電池であり、燃料極と空気極との間に固体高分子電解質膜が設けられた膜電極接合体(単セル)が複数積層された積層体を有する。燃料電池12の空気極には酸化剤として空気が供給され、水素と酸素による電気化学反応により発電が行われる。なお、CO変成部60およびCO除去部70は、改質ガスに含まれるCO濃度の低減に寄与するCO低減部の一例である。   The reformed gas whose CO concentration is further reduced by the CO removing unit 70 is supplied to the fuel electrode of the fuel cell 12. The fuel cell 12 is, for example, a solid polymer fuel cell, and is a laminate in which a plurality of membrane electrode assemblies (single cells) each having a solid polymer electrolyte membrane provided between a fuel electrode and an air electrode are laminated. Have. Air is supplied to the air electrode of the fuel cell 12 as an oxidant, and power is generated by an electrochemical reaction between hydrogen and oxygen. The CO conversion unit 60 and the CO removal unit 70 are examples of a CO reduction unit that contributes to a reduction in the concentration of CO contained in the reformed gas.

改質部30における改質反応に必要な水蒸気は、燃料電池システム100の外部から供給された改質水から生成される。改質水は、逆浸透膜とイオン交換樹脂等を備えた水処理装置(図示せず)により上水を処理することにより生成される。水処理装置により上水の導電率が低下するとともに、有機物の混入が抑制される。改質水の供給量は、改質水供給ポンプ90の出力を調整することで適宜制御される。   The steam necessary for the reforming reaction in the reforming unit 30 is generated from the reformed water supplied from the outside of the fuel cell system 100. The reformed water is generated by treating the clean water with a water treatment device (not shown) provided with a reverse osmosis membrane and an ion exchange resin. The water treatment device reduces the conductivity of clean water and suppresses the mixing of organic substances. The supply amount of the reforming water is appropriately controlled by adjusting the output of the reforming water supply pump 90.

外部から供給された液体の改質水は、熱交換部52、CO変成部60の順で、改質ガスと熱交換することにより昇温した後、気化部40に供給される。改質水は、CO変成部60において改質ガスと熱交換する際に蒸発し始める。さらに、気化部40において、バーナー32からの排ガスと熱交換することにより気化が完了する。気化部40で気化された水蒸気は、原燃料とともに改質部30に供給される。なお、熱交換部52およびCO変成部60における熱交換は、改質水の気化が完了する前に改質ガスと熱交換を行う「気化前熱交換部」の一例である。   The liquid reforming water supplied from outside is heated up by heat exchange with the reformed gas in the order of the heat exchange unit 52 and the CO conversion unit 60, and then supplied to the vaporization unit 40. The reformed water starts to evaporate when heat is exchanged with the reformed gas in the CO shift section 60. Further, vaporization is completed by exchanging heat with the exhaust gas from the burner 32 in the vaporization section 40. The water vapor evaporated in the vaporization unit 40 is supplied to the reforming unit 30 together with the raw fuel. The heat exchange in the heat exchange unit 52 and the CO conversion unit 60 is an example of a “pre-vaporization heat exchange unit” that performs heat exchange with the reformed gas before vaporization of the reformed water is completed.

以上説明した燃料電池用改質装置10の構成によれば、熱交換部52およびCO変成部60において改質ガスと熱交換することにより予め昇温された改質水が気化部40に供給されるため、バーナー32からの排ガスの熱量の変化の影響が低減され、気化部40にける気化ポイントが安定し、ロバスト性が向上する。   According to the configuration of the fuel cell reforming apparatus 10 described above, the reforming water heated in advance by exchanging heat with the reformed gas in the heat exchanging unit 52 and the CO converting unit 60 is supplied to the vaporizing unit 40. Therefore, the influence of the change in the calorific value of the exhaust gas from the burner 32 is reduced, the vaporization point in the vaporization unit 40 is stabilized, and the robustness is improved.

改質水が気化部40に供給される経路、本実施の形態では、熱交換部52とCO変成部60との間に、改質水の圧力を減圧する減圧部80が設けられている。減圧部80は、たとえば、オリフィス、キャピラリーである。   In the present embodiment, a decompression unit 80 for reducing the pressure of the reforming water is provided between the heat exchange unit 52 and the CO conversion unit 60 in the path through which the reforming water is supplied to the vaporization unit 40. The decompression unit 80 is, for example, an orifice or a capillary.

減圧部80により減圧を行うことにより、改質水が蒸発したときの乾き度を上昇させることができる。これにより、バーナー32からの排ガスの熱量に影響されずに、乾き度の高い(100%以上)水蒸気を安定的に得ることができ、水蒸気の圧力変動を抑制することができる。また、CO変成部60の冷却に乾き度が100%以下の水蒸気が使用されることにより、水蒸気の温度の変化が抑制され、CO変成部60の温度を安定させる効果も生じる。なお、減圧部80を通過する前の改質水の圧力および温度は、たとえば、それぞれ150kPa、20℃である。また、減圧部80を通過し、気化部40に導入される前の改質水の圧力、温度、乾き度は、たとえば、それぞれ130kPa、106℃、99%である。   By performing decompression by the decompression unit 80, it is possible to increase the degree of dryness when the reforming water evaporates. Thereby, it is possible to stably obtain water vapor having a high dryness (100% or more) without being influenced by the amount of heat of the exhaust gas from the burner 32, and to suppress the pressure fluctuation of the water vapor. In addition, the use of water vapor having a dryness of 100% or less for cooling the CO conversion unit 60 suppresses a change in the temperature of the water vapor, thereby producing an effect of stabilizing the temperature of the CO conversion unit 60. The pressure and temperature of the reforming water before passing through the decompression unit 80 are, for example, 150 kPa and 20 ° C., respectively. Further, the pressure, temperature, and dryness of the reformed water that has passed through the decompression unit 80 and before being introduced into the vaporization unit 40 are, for example, 130 kPa, 106 ° C., and 99%, respectively.

図3は、燃料電池用改質装置10のより詳細な構成を示す図である。燃料電池用改質装置10は、改質ユニット210、熱交換部52およびCO除去部70を含む。   FIG. 3 is a diagram showing a more detailed configuration of the fuel cell reforming apparatus 10. The fuel cell reforming apparatus 10 includes a reforming unit 210, a heat exchanging unit 52, and a CO removing unit 70.

改質ユニット210は、多重塔体状に一体化された改質部30およびCO変成部60と、バーナー32とを含む。   The reforming unit 210 includes a reforming unit 30 and a CO conversion unit 60 that are integrated in a multi-column shape, and a burner 32.

バーナー32は、空気取入口34から取り入れた空気と燃料取入口36から取り入れた原燃料(または電池オフガス)とを混合して燃焼させる。バーナー32で原燃料ガス等が燃焼することによって、1200〜1300℃の高温の排ガス(燃焼排ガス)が発生する。   The burner 32 mixes and burns the air taken in from the air intake 34 and the raw fuel (or cell off gas) taken in from the fuel intake 36. When the raw fuel gas or the like is burned in the burner 32, high-temperature exhaust gas (combustion exhaust gas) of 1200 to 1300 ° C. is generated.

バーナー32の上方に、バーナー32からの排ガスを上方へ導く円筒状の燃焼筒220が設けられている。燃焼筒220の外側には、改質部(改質反応塔)30が設けられている。燃焼筒220と改質部30との間に排ガス流路222が形成されている。バーナー32からの排ガスは、燃焼筒220の上方で折り返し、排ガス流路222に導かれる。排ガス流路222は、改質部30の下部で上方に折り返し、改質部30の外側を通り、改質ユニット210の上部に設けられた排ガス室226に通じている。排ガスは、排ガス室226を経由して改質ユニット210の外部に排出される。   A cylindrical combustion cylinder 220 is provided above the burner 32 to guide the exhaust gas from the burner 32 upward. A reforming section (reforming reaction tower) 30 is provided outside the combustion cylinder 220. An exhaust gas flow path 222 is formed between the combustion cylinder 220 and the reforming unit 30. The exhaust gas from the burner 32 is turned up above the combustion cylinder 220 and guided to the exhaust gas passage 222. The exhaust gas flow path 222 is folded upward at the lower part of the reforming unit 30, passes through the outside of the reforming unit 30, and communicates with the exhaust gas chamber 226 provided at the upper part of the reforming unit 210. The exhaust gas is discharged outside the reforming unit 210 through the exhaust gas chamber 226.

原燃料と水蒸気が混合された混合ガスは、原燃料供給路260を経由して改質ユニット210の外部から改質部30に供給される。   The mixed gas in which the raw fuel and water vapor are mixed is supplied to the reforming unit 30 from the outside of the reforming unit 210 via the raw fuel supply path 260.

改質部30は、排ガス流路222を介して燃焼筒220の外側に設けられている。改質部30は、二重構造になっており、触媒層230が設けられた内側流路232と、内側流路232の外側に設けられた外側流路234とを有する。内側流路232の下部と、外側流路234の下部とが連通されており、内側流路232において生成した改質ガスは、外側流路234を通って改質ユニット210の上部に設けられた改質ガス室240に導かれる。   The reforming unit 30 is provided outside the combustion cylinder 220 via the exhaust gas passage 222. The reforming unit 30 has a double structure, and includes an inner channel 232 provided with the catalyst layer 230 and an outer channel 234 provided outside the inner channel 232. The lower part of the inner flow path 232 and the lower part of the outer flow path 234 are communicated, and the reformed gas generated in the inner flow path 232 passes through the outer flow path 234 and is provided in the upper part of the reforming unit 210. It is guided to the reformed gas chamber 240.

改質部30およびバーナー32の外側には、断熱部材250を介して、CO変成部60が設けられている。改質ガス室240とCO変成部60とは配管242により接続されており、改質ガス室240から改質ガスがCO変成部60に供給される。   A CO conversion unit 60 is provided outside the reforming unit 30 and the burner 32 via a heat insulating member 250. The reformed gas chamber 240 and the CO conversion unit 60 are connected by a pipe 242, and the reformed gas is supplied from the reformed gas chamber 240 to the CO conversion unit 60.

CO変成部60は、二重構造になっており、内側流路62と、内側流路62の外側に設けられ、触媒層64が設けられた外側流路66とを有する。内側流路62の下部と、外側流路66の下部とが連通されており、内側流路62を通過した改質ガスは、外側流路66に導かれる。外側流路66に設けられた触媒層64によりシフト反応が進行し、改質ガスのCO濃度が低減される。   The CO conversion unit 60 has a double structure, and includes an inner flow path 62 and an outer flow path 66 provided outside the inner flow path 62 and provided with a catalyst layer 64. A lower portion of the inner flow path 62 and a lower portion of the outer flow path 66 are communicated, and the reformed gas that has passed through the inner flow path 62 is guided to the outer flow path 66. The shift reaction proceeds by the catalyst layer 64 provided in the outer flow path 66, and the CO concentration of the reformed gas is reduced.

CO濃度が低減された改質ガスは、改質ユニット210の外部に送られ、熱交換部52を経由して、CO除去部70に供給される。CO濃度が低減された改質ガスには、CO変成部60の下流側において空気取入口68を経由して空気が加えられる。   The reformed gas having a reduced CO concentration is sent to the outside of the reforming unit 210 and supplied to the CO removing unit 70 via the heat exchange unit 52. Air is added to the reformed gas having a reduced CO concentration via the air intake 68 on the downstream side of the CO shift section 60.

改質水は、熱交換部52において改質ガスと熱交換することにより昇温された後、減圧部80により減圧される。減圧部80により減圧された改質水は、CO変成部60の周囲に設けられた螺旋状の配管を通過する際に、CO変成部60を通過する改質ガスと熱交換し、蒸発し始める。   The reformed water is heated by exchanging heat with the reformed gas in the heat exchanging section 52 and then depressurized by the decompression section 80. The reformed water decompressed by the decompression unit 80 exchanges heat with the reformed gas passing through the CO transforming unit 60 and starts to evaporate when passing through the spiral pipe provided around the CO transforming unit 60. .

CO変成部60において昇温された改質水は、排ガス室226に設けられた気化部40において排ガスと熱交換することにより気化が完了し、乾き度が100%以上の水蒸気となる。気化部40で生成した水蒸気は、改質ガス室240に設けられた熱交換部50において改質ガスと熱交換した後、原燃料に加えられ、改質部30において原燃料の改質に用いられる。   The reformed water whose temperature has been raised in the CO conversion unit 60 is vaporized by exchanging heat with the exhaust gas in the vaporization unit 40 provided in the exhaust gas chamber 226, and becomes a water vapor having a dryness of 100% or more. The water vapor generated in the vaporization section 40 is added to the raw fuel after heat exchange with the reformed gas in the heat exchange section 50 provided in the reformed gas chamber 240, and used for reforming the raw fuel in the reforming section 30. It is done.

本発明は、上述の各実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。   The present invention is not limited to the above-described embodiments, and various modifications such as design changes can be added based on the knowledge of those skilled in the art. The form can also be included in the scope of the present invention.

例えば、上述の実施の形態では、減圧部80はCO変成部60で熱交換する前の改質水の減圧に用いられているが、減圧部80はCO変成部60で熱交換した後の改質水が通る経路に設けられていてもよい。   For example, in the above-described embodiment, the decompression unit 80 is used for decompressing the reformed water before heat exchange at the CO conversion unit 60, but the decompression unit 80 is modified after heat exchange at the CO conversion unit 60. You may be provided in the path | route along which quality water passes.

また、気化部40で気化される前の改質水をCO除去部70で熱交換させることにより昇温させてもよい。   Alternatively, the temperature of the reformed water before being vaporized by the vaporization unit 40 may be increased by causing the CO removal unit 70 to exchange heat.

10 燃料電池用改質装置、12 燃料電池、20 脱硫部、30 改質部、32 バーナー、34 空気取入口、36 燃料取入口、40 気化部、50 熱交換部、52 熱交換部、60 CO変成部、62 内側流路、 64 触媒層、66 外側流路、68 空気取入口、70 CO除去部、80 減圧部、100 燃料電池システム、210 改質ユニット、220 燃焼筒、222 排ガス流路、226 排ガス室、230 触媒層、232 内側流路、234 外側流路、240 改質ガス室、250 断熱部材、260 原燃料供給路 DESCRIPTION OF SYMBOLS 10 Fuel cell reformer, 12 Fuel cell, 20 Desulfurization section, 30 Reforming section, 32 Burner, 34 Air intake, 36 Fuel intake, 40 Vaporization section, 50 Heat exchange section, 52 Heat exchange section, 60 CO Metamorphic section, 62 inner flow path, 64 catalyst layer, 66 outer flow path, 68 air intake, 70 CO removal section, 80 decompression section, 100 fuel cell system, 210 reforming unit, 220 combustion cylinder, 222 exhaust gas flow path, 226 Exhaust gas chamber, 230 catalyst layer, 232 inner flow path, 234 outer flow path, 240 reformed gas chamber, 250 heat insulating member, 260 raw fuel supply path

Claims (1)

原燃料を水蒸気改質により改質する改質部と、
シフト反応により、改質部で生成した改質ガスのCO濃度を低減するCO変成部としてのCO低減部と、
前記改質部で生成した改質ガスと気化前の改質水との間で熱交換させることにより、前記改質水を加熱する気化前熱交換部と、
前記改質部の加熱に用いられる燃焼手段から排出される排ガスの熱を用いて、前記気化前熱交換部を経由した改質水を気化させる気化部と、
を備え、
前記気化部で生じた水蒸気が前記原燃料とともに前記改質部に供給され、
前記気化前熱交換部は、前記CO低減部に設けられ、
改質水の経路における前記CO低減部よりも上流側に設けられ、前記気化部に供給される改質水の圧力を減圧する減圧部と、
改質水の経路における前記減圧部よりも上流側に設けられ、前記CO低減部を経由した改質ガスと改質水との間で熱交換させることにより、前記改質水を加熱する熱交換部とをさらに備えることを特徴とする燃料電池用改質装置。
A reforming section for reforming raw fuel by steam reforming;
A CO reduction unit as a CO conversion unit that reduces the CO concentration of the reformed gas generated in the reforming unit by a shift reaction;
Heat exchange between the reformed gas generated in the reforming section and the reformed water before vaporization to heat the reformed water; and
A vaporization unit that vaporizes the reformed water that has passed through the pre-vaporization heat exchange unit using heat of exhaust gas discharged from the combustion means used for heating the reforming unit;
With
Water vapor generated in the vaporization unit is supplied to the reforming unit together with the raw fuel,
The pre-vaporization heat exchange unit is provided in the CO reduction unit,
A depressurization unit provided on the upstream side of the CO reduction unit in the path of the reforming water and depressurizing the pressure of the reforming water supplied to the vaporization unit ;
Heat exchange for heating the reformed water by exchanging heat between the reformed gas and the reformed water that is provided upstream of the decompression unit in the path of the reformed water and passes through the CO reducing unit. the reformer, characterized in that it further comprises a part.
JP2009110057A 2009-04-28 2009-04-28 Fuel cell reformer Expired - Fee Related JP5461880B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009110057A JP5461880B2 (en) 2009-04-28 2009-04-28 Fuel cell reformer
PCT/JP2010/001568 WO2010125730A1 (en) 2009-04-28 2010-03-05 Reformer for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009110057A JP5461880B2 (en) 2009-04-28 2009-04-28 Fuel cell reformer

Publications (2)

Publication Number Publication Date
JP2010257914A JP2010257914A (en) 2010-11-11
JP5461880B2 true JP5461880B2 (en) 2014-04-02

Family

ID=43031890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009110057A Expired - Fee Related JP5461880B2 (en) 2009-04-28 2009-04-28 Fuel cell reformer

Country Status (2)

Country Link
JP (1) JP5461880B2 (en)
WO (1) WO2010125730A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157877A (en) * 2001-09-04 2003-05-30 Toyota Motor Corp Gasification control of reforming raw material in fuel reforming device
JP2003282114A (en) * 2002-03-26 2003-10-03 Fuji Electric Co Ltd Stopping method of fuel cell power generating device
JP2004292260A (en) * 2003-03-27 2004-10-21 Nissan Motor Co Ltd Catalytic reactor for fuel reforming
JP4381833B2 (en) * 2004-01-27 2009-12-09 新日本石油株式会社 Hydrogen production apparatus and fuel cell system
JP2005294207A (en) * 2004-04-05 2005-10-20 Babcock Hitachi Kk Fuel cell system

Also Published As

Publication number Publication date
JP2010257914A (en) 2010-11-11
WO2010125730A1 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP4911927B2 (en) Solid oxide fuel cell system
JP5121533B2 (en) Hydrogen production apparatus and fuel cell system using the same
KR101077929B1 (en) Fuel Processing Method for Solid Oxide Fuel Cell System
KR20130004320A (en) Hydrogen generator and fuel cell power generation system
JP2004284875A (en) Hydrogen production system, and fuel cell system
JP5272183B2 (en) Fuel cell reformer
KR100718106B1 (en) Startup method of fuel cell system
JP2005255896A (en) Desulfurizer, desulfurization system, hydrogen manufacturing apparatus, and fuel cell system
JP2007331985A (en) Hydrogen generator and fuel cell power generation system using the same
JP5347330B2 (en) Hydrogen generator
JP4902165B2 (en) Fuel cell reformer and fuel cell system comprising the fuel cell reformer
JP2007157407A (en) Fuel reforming system
JP5161621B2 (en) Fuel cell reformer
JP2007200709A (en) Solid oxide fuel cell stack and its operation method
JP5461880B2 (en) Fuel cell reformer
JP2008130266A (en) Circulation method of condensed water in fuel cell system
JP3734966B2 (en) Hydrogen generator
JP2016184550A (en) Gas manufacturing apparatus
JP5086144B2 (en) Hydrogen production apparatus and method for stopping fuel cell system
JP5466871B2 (en) Fuel cell reformer
JP2005053733A (en) Apparatus for reforming liquid hydrocarbon fuel
JP2003303610A (en) Fuel cell system and its operating method and auto- thermal reforming device
JP2016184549A (en) Gas production device
JP6516393B1 (en) Hydrogen generator and hydrogen filling device
JP2007200702A (en) Solid oxide fuel cell and its operating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees