JP2005050827A - Process for manufacturing illumination light source and illumination light source - Google Patents

Process for manufacturing illumination light source and illumination light source Download PDF

Info

Publication number
JP2005050827A
JP2005050827A JP2004308095A JP2004308095A JP2005050827A JP 2005050827 A JP2005050827 A JP 2005050827A JP 2004308095 A JP2004308095 A JP 2004308095A JP 2004308095 A JP2004308095 A JP 2004308095A JP 2005050827 A JP2005050827 A JP 2005050827A
Authority
JP
Japan
Prior art keywords
resin
light source
light emitting
illumination light
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004308095A
Other languages
Japanese (ja)
Other versions
JP4432724B2 (en
Inventor
Masaru Sugimoto
勝 杉本
Hideyoshi Kimura
秀吉 木村
Eiji Shiohama
英二 塩浜
Jiro Hashizume
二郎 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2004308095A priority Critical patent/JP4432724B2/en
Publication of JP2005050827A publication Critical patent/JP2005050827A/en
Application granted granted Critical
Publication of JP4432724B2 publication Critical patent/JP4432724B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate the replacement of a lens section in a constitution that the lens section is arranged in front of a semiconductor light emitting device. <P>SOLUTION: A illumination light source includes a substrate 102 having a plurality of hollows, a plurality of semiconductor light emitting devices 200 disposed in the hollows of substrate 102 respectively and resins 309b and 309c for forming a plurality of individual fluorescent lenses arranged near opening's surfaces of the hollows in front of semiconductor light emitting devices 200 respectively. The individual fluorescent lens is constituted of a resin 309c forming a convex lens, and a resin 309b forming a transparent fluorescent layer arranged near opening's surfaces of the hollows, wherein the fluorescent layer is formed by supporting dispersed fluorescent material and laminating the fluorescent material on a surface in the rear of the convex lens. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体発光素子を用いた照明光源の製造方法および照明光源に関するものである。   The present invention relates to a method for manufacturing an illumination light source using a semiconductor light emitting element and an illumination light source.

従来、半導体発光素子により構成される光源が種々提案され、例えば、特開平5−152609号公報には、ステム上に載置される発光素子が、一般式GaAl1−XN(但し0≦X≦1である)で表される窒化ガリウム系化合物半導体よりなり、さらに樹脂モールド中に、窒化ガリウム系化合物半導体の発光により励起されて蛍光を発する蛍光染料、または蛍光顔料が添加されてなり、発光ピークが430nm付近、および370nm付近にある窒化ガリウム系化合物半導体材料よりなる発光素子を有するLEDの視感度を良くし、またその輝度を向上させることができる発光ダイオードが開示されている。 Conventionally, various light sources composed of semiconductor light emitting elements have been proposed. For example, in Japanese Patent Application Laid-Open No. 5-152609, a light emitting element placed on a stem is represented by a general formula Ga X Al 1-X N (however, 0 ≦ X ≦ 1), and a fluorescent dye or fluorescent pigment that emits fluorescence when excited by light emission of the gallium nitride compound semiconductor is added to the resin mold. There is disclosed a light emitting diode that can improve the visibility and improve the luminance of an LED having a light emitting element made of a gallium nitride compound semiconductor material whose emission peak is around 430 nm and around 370 nm.

また、特開平7−99345号公報には、発光チップの発光を発光観測面側に反射するカップの底部に発光チップが載置された発光素子全体を、カップ内部を充填する第一の樹脂と、その第一の樹脂を包囲する第二の樹脂とからなる樹脂で封止し、第一の樹脂には発光チップの発光波長を他の波長に変換する蛍光物質、または発光チップの発光波長を一部吸収するフィルター物質が含有され、変換された発光の集光をよくしてLEDの輝度を高め、また蛍光顔料を使用した際、波長の異なるLEDを近接して設置しても混色の起こらない発光ダイオードが開示されている。   Japanese Patent Application Laid-Open No. 7-99345 discloses a light emitting device in which the light emitting chip is mounted on the bottom of the cup that reflects the light emitted from the light emitting chip to the light emission observation surface side. The first resin is sealed with a resin made of a second resin surrounding the first resin, and the first resin has a fluorescent substance that converts the emission wavelength of the light-emitting chip to another wavelength, or the emission wavelength of the light-emitting chip. It contains a filter material that absorbs part of the light, improves the concentration of the converted light emission to increase the brightness of the LED, and when fluorescent pigments are used, even if LEDs with different wavelengths are placed close together, color mixing will not occur. No light emitting diode is disclosed.

さらに、特許第2927279号公報には、マウント・リードのカップ内に配置させた発光層が窒化ガリウム系化合物半導体であるLEDチップと、LEDチップと導電性ワイヤーを用いて電気的に接続させたインナー・リードと、LEDチップが発光した光によって励起され発光する蛍光体を含有する透明樹脂をカップ内に充填させたコーティング部材と、コーティング部材、LEDチップ、導電性ワイヤー及びマウント・リードとインナーリードの先端を被覆するモールド部材とを有し、LEDチップは、発光スペクトルが400nmから530nmの単色性ピーク波長を発光し、蛍光体は(RE1−x Sm)3(AlGa1−y12:Ceであり(ただし、0≦x≦1、0≦y≦1、REは、Y、Gdから選択される少なくとも1種である)、且つLEDチップからの光及び蛍光体からの光はモールド部材を透過することによって白色系が発光可能な発光ダイオードが記載されている。 Further, Japanese Patent No. 2927279 discloses an LED chip in which a light emitting layer disposed in a cup of a mount lead is a gallium nitride compound semiconductor, and an inner connected electrically using an LED chip and a conductive wire. A coating member in which a transparent resin containing a lead and a phosphor that emits light emitted by light emitted from the LED chip is filled in the cup, a coating member, an LED chip, a conductive wire, and a mount lead and an inner lead and a molding member covering the tip, LED chips, light emitting spectrum emits monochromatic peak wavelength of 530nm from 400 nm, the phosphor (RE 1-x Sm x) 3 (Al y Ga 1-y) 5 O 12: a Ce (However, 0 ≦ x ≦ 1,0 ≦ y ≦ 1, RE is, Y, is selected from Gd Is at least one), and light from the light and phosphor from the LED chip white have been described capable of emitting light emitting diode by passing through the mold member.

上記文献には、LEDチップの発光色を蛍光体で色変換させた発光ダイオードによって、1種類のLEDチップを用いて白色系など他の発光色を発光させることができるとの記載がある。具体的には、LEDチップからの発光を波長変換した発光ダイオードとして、青色系の発光ダイオードの発光と、その発光を吸収し黄色系を発光する蛍光体からの発光との混色により白色系が発光可能であると記載されている。つまり、蛍光体からの黄色系の発光と、蛍光体に吸収されなかった発光ダイオードからの青色系の発光との混色によって、白色系の発光が得られる。   In the above document, there is a description that a light emitting diode in which the light emission color of an LED chip is color-converted with a phosphor can emit other light emission colors such as a white color using one type of LED chip. Specifically, as a light emitting diode whose wavelength is converted from the light emitted from the LED chip, a white light is emitted by a mixture of light emitted from a blue light emitting diode and light emitted from a phosphor that absorbs the light emitted and emits yellow light. It is stated that it is possible. In other words, white light emission is obtained by a color mixture of yellow light emission from the phosphor and blue light emission from the light emitting diode that is not absorbed by the phosphor.

ここで、特許第2927279号公報に記載の発光ダイオードの具体構造を説明すると、従来と同様に樹脂部が砲弾形となる発光ダイオードは、図15に示すように、リードフレームであるマウント・リード1のカップ内にLEDチップ2をマウントし、ワイヤボンディングにより電性ワイヤー3でLEDチップ2の両電極をそれぞれマウント・リード1およびインナー・リード4に接続し、マウント・リード1のカップ(ステム)内にコーティング部5を設け、そしてLEDチップ2側を砲弾形のモールド部材6で覆う構造になっている。   Here, the specific structure of the light emitting diode described in Japanese Patent No. 2927279 will be described. As shown in FIG. 15, the light emitting diode having a bullet-shaped resin portion is mounted on a mount lead 1 as a lead frame. The LED chip 2 is mounted in the cup, and both electrodes of the LED chip 2 are connected to the mount lead 1 and the inner lead 4 by the electric wire 3 by wire bonding, respectively, in the cup (stem) of the mount lead 1 The coating portion 5 is provided on the LED chip 2 and the LED chip 2 side is covered with a bullet-shaped mold member 6.

また、チップ型の発光ダイオードは、図16に示すように、電極11を有する筐体12にLEDチップ13をマウントし、ワイヤボンディングにより電性ワイヤー14でLEDチップ13の各電極を筐体12の各電極11に接続し、筐体12内にモールド部材15を設ける構造になっている。   Further, as shown in FIG. 16, in the chip-type light emitting diode, an LED chip 13 is mounted on a housing 12 having an electrode 11, and each electrode of the LED chip 13 is connected to the housing 12 by an electric wire 14 by wire bonding. The mold member 15 is provided in the housing 12 so as to be connected to each electrode 11.

また、面状発光光源は、図17に示すように、線状光源を面状光源に変換するための導光板21などを用い、コの字形状の金属基板22にLEDチップ23を積載し、その中にフォトルミネセンスが含有されたコーティング部24を設ける構造になっている。   In addition, as shown in FIG. 17, the planar light source uses a light guide plate 21 or the like for converting a linear light source into a planar light source, and the LED chip 23 is mounted on a U-shaped metal substrate 22. It has a structure in which a coating portion 24 containing photoluminescence is provided.

さらに、LED表示器は、図18に示すように、筐体31、発光ダイオード32および充填材33などにより構成されている。現在、照明用として使用されているユニットも、これと同様に、LEDを印刷配線基板に複数個実装して構成される。
特開平5−152609号公報 特開平7−99345号公報 特許第2927279号公報
Furthermore, as shown in FIG. 18, the LED display is composed of a casing 31, a light emitting diode 32, a filler 33, and the like. The unit currently used for illumination is similarly configured by mounting a plurality of LEDs on a printed wiring board.
JP-A-5-152609 JP-A-7-99345 Japanese Patent No. 2927279

しかしながら、図15および図16に示す発光ダイオードでは、LEDチップがマウント・リードや筐体に実装されるので、発光ダイオードを基板上に実装する場合、2回実装しなければならず、コスト増の課題が生じる。   However, in the light emitting diode shown in FIGS. 15 and 16, since the LED chip is mounted on the mount lead or the housing, when the light emitting diode is mounted on the substrate, it must be mounted twice, which increases the cost. Challenges arise.

なお、カップ内に蛍光体(物質)を配置するためには、蛍光体を樹脂に含有させる必要がある。しかし、蛍光体を含有する樹脂は高エネルギーの青色光と素子近傍の高温に同時に晒されると劣化するので、光源としての寿命が短くなる。   In addition, in order to arrange | position a fluorescent substance (substance) in a cup, it is necessary to make fluorescent substance contain in resin. However, since the resin containing the phosphor deteriorates when exposed to high-energy blue light and a high temperature in the vicinity of the device at the same time, the lifetime as a light source is shortened.

また、マウント・リードのカップ内に、LEDチップの発光を変換するフォトルミネセンス蛍光体を含有するコーティング部を設ける場合、蛍光体の量の制御が困難になり、色のバラツキが生じやすくなる。例えば所望する発光色が白色である場合に蛍光体の量にバラツキが生じると、蛍光体から発せられる黄色系の光にバラツキが生じ、得られる発光色が高温度の青白い色調に変化したり、逆に低温度の黄色みがかった色調に変化したりする。このような色調のバラツキは、特に複数の光源を面状に設けた場合に、色むらとして容易に判別されてしまう。   Further, when a coating portion containing a photoluminescent phosphor that converts the light emission of the LED chip is provided in the cup of the mount lead, it becomes difficult to control the amount of the phosphor, and color variation tends to occur. For example, when the desired emission color is white and the amount of phosphor varies, the yellow light emitted from the phosphor varies, and the resulting emission color changes to a high-temperature pale color tone, Conversely, it changes to a yellowish hue at low temperature. Such color variation is easily determined as color unevenness, particularly when a plurality of light sources are provided in a planar shape.

本発明は、上記事情に鑑みてなされたものであり、半導体発光素子前方にレンズ部分を設ける構成においてそのレンズ部分の交換が容易となる照明光源の製造方法および照明光源を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an illumination light source manufacturing method and an illumination light source that facilitate replacement of the lens portion in a configuration in which a lens portion is provided in front of a semiconductor light emitting element. To do.

上記課題を解決するための請求項1記載の発明は、基板と、この基板に実装される半導体発光素子と、レンズ体とを備え、前記半導体発光素子の前方に蛍光体層を有する照明光源の製造方法であって、前記レンズ体と前記蛍光体層とを一体化してなる蛍光レンズ体を用意し、前記半導体発光素子の前方に前記蛍光レンズ体を配置することを特徴とする。この方法では、レンズ体と蛍光体層とが一体化しているので、レンズ体を蛍光体層とともに容易に交換することができる。   An invention according to claim 1 for solving the above-described problem is an illumination light source including a substrate, a semiconductor light emitting element mounted on the substrate, and a lens body, and having a phosphor layer in front of the semiconductor light emitting element. In the manufacturing method, a fluorescent lens body in which the lens body and the phosphor layer are integrated is prepared, and the fluorescent lens body is disposed in front of the semiconductor light emitting element. In this method, since the lens body and the phosphor layer are integrated, the lens body can be easily exchanged together with the phosphor layer.

請求項2記載の発明の照明光源は、基板と、この基板に実装される複数の半導体発光素子と、これら複数の半導体発光素子の前方にそれぞれ個別に配置される複数の個別蛍光レンズ体とを備えることを特徴とする。この構成では、個別蛍光レンズ体の交換を容易に行うことができる。   An illumination light source according to a second aspect of the present invention includes a substrate, a plurality of semiconductor light emitting elements mounted on the substrate, and a plurality of individual fluorescent lens bodies individually disposed in front of the plurality of semiconductor light emitting elements. It is characterized by providing. In this configuration, the individual fluorescent lens body can be easily replaced.

請求項3記載の発明は、請求項2記載の照明光源において、前記個別蛍光レンズ体は、レンズ体と、蛍光体を分散保持し前記レンズ体の後方に積層される透光性の蛍光体層とにより構成されることを特徴とする。この構成では、レンズ体に蛍光体層が積層されるので、レンズ体を蛍光体層とともに容易に交換することができる。   According to a third aspect of the present invention, in the illumination light source according to the second aspect, the individual fluorescent lens body includes a lens body, and a translucent phosphor layer that holds the phosphor in a dispersed manner and is laminated behind the lens body. It is comprised by these. In this configuration, since the phosphor layer is laminated on the lens body, the lens body can be easily exchanged together with the phosphor layer.

請求項4記載の発明は、請求項3記載の照明光源において、前記レンズ体はガラスによりなり、前記蛍光体層は、前記ガラスのレンズ体に焼成により積層されることを特徴とする。この構成では、レンズ体を蛍光体層とともに容易に交換することができる。   According to a fourth aspect of the present invention, in the illumination light source according to the third aspect, the lens body is made of glass, and the phosphor layer is laminated on the glass lens body by firing. In this configuration, the lens body can be easily exchanged together with the phosphor layer.

請求項5記載の発明は、請求項4記載の照明光源において、前記個別蛍光レンズ体の後方は、樹脂未封止の中空になっていることを特徴とする。この構成では、樹脂フリーとなるので、耐候性ないし寿命の向上を図ることができる。   According to a fifth aspect of the present invention, in the illumination light source according to the fourth aspect of the present invention, the rear side of the individual fluorescent lens body is a resin-unsealed hollow. In this structure, since it becomes resin-free, it can aim at an improvement in a weather resistance thru | or lifetime.

本発明によれば、コスト低減が可能になり、半導体発光素子前方にレンズ部分を設ける構成においてそのレンズ部分の交換が容易となる。   According to the present invention, the cost can be reduced, and the lens portion can be easily replaced in the configuration in which the lens portion is provided in front of the semiconductor light emitting element.

図1は本発明の第1実施形態に係る照明光源の断面構造を示す模式図で、この図を用いて以下に第1実施形態の説明を行う。ただし、図1は照明光源の断面構造の一部を示す。   FIG. 1 is a schematic diagram showing a cross-sectional structure of an illumination light source according to the first embodiment of the present invention. The first embodiment will be described below with reference to this figure. However, FIG. 1 shows a part of the sectional structure of the illumination light source.

図1の照明光源は、複数の光源が例えば線状またはマトリクス状に配置されて成り、基板100と、この基板100に実装される複数の半導体発光素子200と、各半導体発光素子200の領域に設けられる樹脂300とにより構成されている。   The illumination light source of FIG. 1 is formed by arranging a plurality of light sources in, for example, a linear shape or a matrix shape, and includes a substrate 100, a plurality of semiconductor light emitting elements 200 mounted on the substrate 100, and a region of each semiconductor light emitting element 200. It is comprised with the resin 300 provided.

基板100は、所望の回路が設けられる印刷配線基板であって、最小内径2mm程度で最大内径3mm程度の逆円錐台形状の窪みCavが複数(図1では1つのみ図示)上面側に形成された金属ベース100aを有し、この金属ベース100aの上面に絶縁層100bが一面に積層され、この絶縁層100bの上面の必要箇所に配線パターン導体100cが積層されて成る。ただし、図1の配線パターン導体100cにはボンディングパッドが設けられている。なお、複数の窪みCavは、基板100の製作前に金属ベース100aに予め形成される手順でもよく、あるいは後からプレス成形などで形成される手順でもよい。また、金属ベース100aは熱伝導の良いアルミや銅などにより形成される。   The substrate 100 is a printed wiring board on which a desired circuit is provided, and a plurality of inverted frustoconical recesses Cav having a minimum inner diameter of about 2 mm and a maximum inner diameter of about 3 mm (only one is shown in FIG. 1) are formed on the upper surface side. The insulating layer 100b is laminated on the upper surface of the metal base 100a, and the wiring pattern conductor 100c is laminated on a necessary portion of the upper surface of the insulating layer 100b. However, the wiring pattern conductor 100c in FIG. 1 is provided with a bonding pad. Note that the plurality of depressions Cav may be formed in advance on the metal base 100a before the substrate 100 is manufactured, or may be formed later by press molding or the like. In addition, the metal base 100a is formed of aluminum, copper, or the like with good thermal conductivity.

半導体発光素子200は、窒化ガリウム系化合物半導体より成る青色系のLED素子であり、ワイヤボンディングによるリード線Wで、対応する配線パターン導体100cにそれぞれ接続されるP,N電極を同一面(図では上面)に有するチップ状に形成されている。   The semiconductor light emitting element 200 is a blue LED element made of a gallium nitride compound semiconductor, and P and N electrodes respectively connected to the corresponding wiring pattern conductor 100c by the lead wire W by wire bonding (in the figure, the same surface). It is formed in a chip shape on the upper surface.

樹脂300は、透光性の樹脂により成り、半導体発光素子200からの青色系の光を吸収して黄色系の光を発する蛍光体(図示せず)を分散保持し、基板100の各窪みCavに充填されている。   The resin 300 is made of a translucent resin, and disperses and holds a phosphor (not shown) that absorbs blue light from the semiconductor light emitting element 200 and emits yellow light. Is filled.

次に、上記構成の照明光源の製造手順を説明する。まず、基板100を用意して、各窪みCav内の底面中央に半導体発光素子200を例えば透明樹脂で接着固定(マウント)する。このとき、必要あれば他の素子も実装されるのは言うまでもない。続いて、ワイヤボンディングによりリード線Wで、半導体発光素子200の各電極を対応する配線パターン導体100cに接続する。この後、樹脂300として、上記蛍光体を混合しながら透光性の樹脂を基板100の各窪みCavに充填する。このとき、樹脂300は、図1に示すように、基板100の上方に向けて盛り上がる凸レンズ状に形成される。   Next, a manufacturing procedure of the illumination light source having the above configuration will be described. First, the substrate 100 is prepared, and the semiconductor light emitting element 200 is bonded and fixed (mounted) with, for example, a transparent resin at the center of the bottom surface in each recess Cav. At this time, it goes without saying that other elements are mounted if necessary. Subsequently, each electrode of the semiconductor light emitting element 200 is connected to the corresponding wiring pattern conductor 100c by the lead wire W by wire bonding. Thereafter, a translucent resin is filled in each recess Cav of the substrate 100 as the resin 300 while mixing the phosphors. At this time, as shown in FIG. 1, the resin 300 is formed in a convex lens shape that rises upward from the substrate 100.

このように構成される照明光源では、半導体発光素子200が発光すると、青色系の光が蛍光体に吸収されて得られる黄色系の光と、蛍光体に吸収されなかった青色系の光との混色によって、白色系の発光が得られる。   In the illumination light source configured as described above, when the semiconductor light emitting element 200 emits light, the yellow light obtained by absorbing the blue light by the phosphor and the blue light not absorbed by the phosphor. White light emission is obtained by the color mixture.

以上、第1実施形態によれば、実装の回数が1回で済むので、コストの低減が可能になる。特に、基板100に設けられる半導体発光素子200が増加するにつれてコストダウンの効果はより一層大きくなる。   As described above, according to the first embodiment, since the number of times of mounting is one, the cost can be reduced. In particular, as the number of semiconductor light emitting elements 200 provided on the substrate 100 increases, the cost reduction effect becomes even greater.

また、LEDチップを実装したカップに蛍光体を設ける従来方式と比べて、蛍光体含有領域を非常に大きくすることができる。この場合、蛍光体含有領域に含まれる蛍光体の濃度を下げることができるので、蛍光体間の多重散乱によって蛍光体含有領域に光が滞在する時間が短くなり、光化学反応による蛍光体およびこれを含有する樹脂の劣化を好適に抑制することが可能となる。   Moreover, compared with the conventional system which provides a fluorescent substance in the cup which mounted the LED chip, a fluorescent substance containing area | region can be enlarged very much. In this case, since the concentration of the phosphor contained in the phosphor-containing region can be lowered, the time during which light stays in the phosphor-containing region due to multiple scattering between the phosphors is shortened, and the phosphor by photochemical reaction and this It becomes possible to suppress deterioration of resin to contain suitably.

なお、第1実施形態では、半導体発光素子は、ワイヤボンディングによるリード線で、対応する配線パターン導体にそれぞれ接続されるP,N電極を同一面に有するチップ状に形成される構造になっているが、これに限らず、ダイスボンディングによる搭載接合およびワイヤボンディングによるリード線で、対応する配線パターン導体に接続されるP,N電極をそれぞれ互いに反対方向を向く両面に有するチップ状に形成される構造でもよい。あるいは、ダイスボンディングによる搭載接合で、対応する配線パターン導体にそれぞれ接続されるP,N電極を両側に有するチップ状に形成される構造でもよい。これらいずれの構造でも基板に実装可能であり、上記効果を奏することができるのは言うまでもない。   In the first embodiment, the semiconductor light emitting element is a lead wire formed by wire bonding and has a structure formed in a chip shape having P and N electrodes respectively connected to corresponding wiring pattern conductors on the same surface. However, the structure is not limited to this, and is formed in a chip shape having P and N electrodes connected to corresponding wiring pattern conductors on both surfaces facing in opposite directions by mounting bonding by die bonding and lead wires by wire bonding, respectively. But you can. Or the structure formed in the chip | tip shape which has the P and N electrode respectively connected by the mounting bonding by die bonding to the corresponding wiring pattern conductor on both sides may be sufficient. It goes without saying that any of these structures can be mounted on a substrate, and the above effects can be achieved.

図2は本発明の第2実施形態に係る照明光源の断面構造を示す模式図で、この図を用いて以下に第2実施形態の説明を行う。ただし、図2は照明光源の断面構造の一部を示す。   FIG. 2 is a schematic diagram showing a cross-sectional structure of an illumination light source according to the second embodiment of the present invention, and the second embodiment will be described below with reference to this figure. However, FIG. 2 shows a part of a sectional structure of the illumination light source.

図2の照明光源は、複数の半導体発光素子200および樹脂300などを第1実施形態と同様に備えているほか、第1実施形態との相違点として基板101を備えている。   The illumination light source of FIG. 2 includes a plurality of semiconductor light emitting elements 200 and a resin 300 as in the first embodiment, and also includes a substrate 101 as a difference from the first embodiment.

この基板101は、第1実施形態と同様の印刷配線基板100と、この印刷配線基板100の上面に例えば接着剤などで取着され、印刷配線基板100の各窪みCavと連通するすり鉢型の孔H1が複数穿設された反射枠100dとにより構成されている。この反射枠100dは、樹脂または金属などにより成り、各孔H1の周壁は鏡面仕上げになっている。また、反射枠100dの各孔H1は、窪みCavと連通することから、最小内径が3mmになるので、最大内径はそれよりも大きくなる(例えば5〜10mm)。   The substrate 101 includes a printed wiring board 100 similar to that of the first embodiment, and a mortar-shaped hole that is attached to the upper surface of the printed wiring board 100 with, for example, an adhesive and communicates with each recess Cav of the printed wiring board 100. The reflecting frame 100d is formed with a plurality of H1 holes. The reflection frame 100d is made of resin or metal, and the peripheral wall of each hole H1 has a mirror finish. Moreover, since each hole H1 of the reflective frame 100d communicates with the depression Cav, the minimum inner diameter is 3 mm, so the maximum inner diameter is larger (for example, 5 to 10 mm).

以上、第2実施形態によれば、第1実施形態と同様の効果を奏することが可能になるほか、鏡面仕上げの孔H1を複数有する反射枠100dを印刷配線基板100に一体に設けて基板101を構成したので、光学的な特性を向上させることができる。   As described above, according to the second embodiment, the same effect as that of the first embodiment can be obtained, and the reflective frame 100d having a plurality of mirror-finished holes H1 is integrally provided on the printed wiring board 100 to provide the substrate 101. Thus, the optical characteristics can be improved.

図3は本発明の第3実施形態に係る照明光源の断面構造を示す模式図で、この図を用いて以下に第3実施形態の説明を行う。ただし、図3は照明光源の断面構造の一部を示す。   FIG. 3 is a schematic diagram showing a cross-sectional structure of an illumination light source according to the third embodiment of the present invention. The third embodiment will be described below with reference to this figure. However, FIG. 3 shows a part of the sectional structure of the illumination light source.

図3の照明光源は、複数の半導体発光素子200および樹脂300などを第2実施形態と同様に備えているほか、第2実施形態との相違点として基板102を備えている。   The illumination light source of FIG. 3 includes a plurality of semiconductor light emitting elements 200 and a resin 300 as in the second embodiment, and also includes a substrate 102 as a difference from the second embodiment.

この基板102は、窪みを形成するすり鉢型(最小内径2mm程度、最大内径3mm程度)の孔H2が複数穿設された反射枠102dが上面に一体に取着されて成る印刷配線基板により構成されている。この印刷配線基板自体は、熱伝導の良いアルミや銅などにより板状に形成される金属ベース102aを有し、この金属ベース102aの上面に絶縁層102bが一面に積層され、この絶縁層102bの上面の必要箇所に配線パターン導体102cが積層されて成り、所望の回路が設けられる。また、各孔H2の周壁は鏡面仕上げになっている。そして、基板102における印刷配線基板と各孔H2とにより構成される逆円錐台形状の窪み内の底面中央には、半導体発光素子200が実装され、各電極は、ワイヤボンディングによりリード線Wで、対応する配線パターン導体102cに接続されている。   This substrate 102 is constituted by a printed wiring board in which a reflecting frame 102d in which a plurality of holes H2 of a mortar type (minimum inner diameter of about 2 mm, maximum inner diameter of about 3 mm) forming a depression is formed is integrally attached to the upper surface. ing. The printed wiring board itself has a metal base 102a formed in a plate shape from aluminum, copper, or the like having good thermal conductivity, and an insulating layer 102b is laminated on the upper surface of the metal base 102a. A wiring pattern conductor 102c is laminated at a necessary position on the upper surface, and a desired circuit is provided. The peripheral wall of each hole H2 has a mirror finish. The semiconductor light emitting device 200 is mounted at the center of the bottom surface in the inverted frustoconical recess formed by the printed wiring board and each hole H2 in the substrate 102, and each electrode is a lead wire W by wire bonding, It is connected to the corresponding wiring pattern conductor 102c.

以上、第3実施形態によれば、第2実施形態と同様の効果を奏することが可能になるほか、基板102の印刷配線基板に対する複数の窪みの形成を省略することができるので、照明光源の製造が容易になる。   As described above, according to the third embodiment, the same effects as those of the second embodiment can be obtained, and the formation of a plurality of depressions on the printed wiring board of the substrate 102 can be omitted. Easy to manufacture.

なお、第3実施形態では、基板102は、金属ベースの印刷配線基板を有する構成になっているが、これに限らず、例えばガラスエポキシの印刷配線基板を有する構成でもよい。この構成の場合、絶縁層102bが不要になるのは言うまでもない。   In the third embodiment, the substrate 102 is configured to have a metal-based printed wiring board, but is not limited thereto, and may be configured to include, for example, a glass epoxy printed wiring board. Needless to say, the insulating layer 102b is unnecessary in this configuration.

図4は本発明の第4実施形態に係る照明光源の断面構造を示す模式図で、この図を用いて以下に第4実施形態の説明を行う。ただし、図4は照明光源の断面構造の一部を示す。   FIG. 4 is a schematic diagram showing a cross-sectional structure of an illumination light source according to the fourth embodiment of the present invention. The fourth embodiment will be described below with reference to this figure. However, FIG. 4 shows a part of the sectional structure of the illumination light source.

図4の照明光源は、基板102および複数の半導体発光素子200などを第3実施形態と同様に備えているほか、第3実施形態との相違点として樹脂301を備えている。   The illumination light source of FIG. 4 includes a substrate 102 and a plurality of semiconductor light emitting elements 200 as in the third embodiment, and also includes a resin 301 as a difference from the third embodiment.

この樹脂301は、透光性の樹脂により成り、半導体発光素子200からの青色系の光を吸収して黄色系の光を発する蛍光体(図示せず)を分散保持し、当該樹脂301内の蛍光体は、同じ窪み内に実装される半導体発光素子200の近傍領域の濃度が他の領域のそれよりも低くなっている。ここで、このように濃度を不均一にする方法を説明すると、透光性の樹脂の粘度を小さくし、成形時に上下逆向きに放置すれば、蛍光体が透光性の樹脂内を沈降するのでその濃度が不均一になる。あるいは、蛍光体の濃度の異なる樹脂を用意し、成形を2回行えば、または流し込みを2回に分けて行えば、その濃度が不均一になる。ただし、後者の場合には粘度の高い樹脂を用いる。   The resin 301 is made of a translucent resin, and disperses and holds a phosphor (not shown) that absorbs blue light from the semiconductor light emitting element 200 and emits yellow light. In the phosphor, the concentration in the vicinity of the semiconductor light emitting device 200 mounted in the same recess is lower than that in other regions. Here, how to make the concentration non-uniform in this way will be explained. If the viscosity of the translucent resin is reduced and left in the upside down direction during molding, the phosphor settles in the translucent resin. Therefore, the density becomes non-uniform. Alternatively, if resins having different phosphor concentrations are prepared and molding is performed twice, or if pouring is performed twice, the concentration becomes non-uniform. However, in the latter case, a resin having a high viscosity is used.

次に、上記照明光源の製造手順の一例を説明する。まず、基板102を用意して、各窪み内の底面中央に半導体発光素子200を実装する。続いて、ワイヤボンディングによりリード線Wで、半導体発光素子200の各電極を対応する配線パターン導体102cに接続する。この後、樹脂301として、基板102の各窪みに対して、まず蛍光体の濃度の低い樹脂を充填し、続いて蛍光体の濃度の高い樹脂を充填する。このとき、図4に示すように、基板102の上方に向けて凸レンズ状に盛り上がるように樹脂301を充填する。   Next, an example of the manufacturing procedure of the illumination light source will be described. First, the substrate 102 is prepared, and the semiconductor light emitting element 200 is mounted at the center of the bottom surface in each recess. Subsequently, each electrode of the semiconductor light emitting element 200 is connected to the corresponding wiring pattern conductor 102c by the lead wire W by wire bonding. Thereafter, as the resin 301, first, a resin having a low phosphor concentration is filled in each depression of the substrate 102, and then a resin having a high phosphor concentration is filled. At this time, as shown in FIG. 4, the resin 301 is filled so as to rise up in a convex lens shape toward the upper side of the substrate 102.

以上、第4実施形態によれば、第3実施形態と同様の効果を奏することが可能になるほか、樹脂301内の蛍光体は、同じ窪み内に実装される半導体発光素子200の近傍領域の濃度が他の領域のそれよりも低くなっているので、樹脂301が高エネルギーの青色光と素子近傍の高温に同時に晒されることによる劣化を抑制することができ、この結果、光源としての寿命を延ばすことが可能になる。   As described above, according to the fourth embodiment, it is possible to obtain the same effect as that of the third embodiment, and the phosphor in the resin 301 is in the vicinity of the semiconductor light emitting element 200 mounted in the same recess. Since the concentration is lower than that of other regions, it is possible to suppress deterioration due to simultaneous exposure of the resin 301 to high-energy blue light and high temperatures in the vicinity of the element. As a result, the lifetime as a light source can be reduced. It can be extended.

図5は本発明の第5実施形態に係る照明光源の断面構造を示す模式図で、この図を用いて以下に第5実施形態の説明を行う。ただし、図5は照明光源の断面構造の一部を示す。   FIG. 5 is a schematic diagram showing a cross-sectional structure of an illumination light source according to the fifth embodiment of the present invention. The fifth embodiment will be described below with reference to this figure. However, FIG. 5 shows a part of the sectional structure of the illumination light source.

図5の照明光源は、基板102および複数の半導体発光素子200などを第4実施形態と同様に備えているほか、第4実施形態との相違点として樹脂302を備えている。   The illumination light source of FIG. 5 includes a substrate 102 and a plurality of semiconductor light emitting elements 200 as in the fourth embodiment, and also includes a resin 302 as a difference from the fourth embodiment.

この樹脂302は、透光性の樹脂により成り、半導体発光素子200からの青色系の光を吸収して黄色系の光を発する蛍光体(図示せず)を分散保持するもので、具体的には、窪みに凸レンズ状に充填される透光性の樹脂302aと、この樹脂302a上に積層され上記蛍光体を分散保持する透光性の樹脂302bとを有する構造になっている。この樹脂302bは、例えば塗布またはスプレーなどにより設けられる。   This resin 302 is made of a translucent resin, and disperses and holds a phosphor (not shown) that absorbs blue light from the semiconductor light emitting element 200 and emits yellow light. Has a structure having a translucent resin 302a filled in a concave lens shape and a translucent resin 302b laminated on the resin 302a to disperse and hold the phosphor. This resin 302b is provided by coating or spraying, for example.

以上、第5実施形態によれば、第3実施形態と同様の効果を奏することが可能になるほか、樹脂302が樹脂302aおよび樹脂302bにより成るので、樹脂302における樹脂302bが高エネルギーの青色光と素子近傍の高温に同時に晒されることがないので、第4実施形態より好適に光源としての寿命を延ばすことが可能になる。   As described above, according to the fifth embodiment, the same effect as that of the third embodiment can be obtained, and since the resin 302 is made of the resin 302a and the resin 302b, the resin 302b in the resin 302 has high energy blue light. Therefore, it is possible to prolong the life as a light source more suitably than in the fourth embodiment.

また、積極的に色調を微調整することが可能になる。すなわち、発光の色調は蛍光体の量で決定され、量が多いほど、黄色の光の成分が多くなって色温度が低くなる一方、量が少ないほど、青色の光の成分が多くなって色温度が高くなるので、第5実施形態の構造を採用すれば、後から蛍光体層としての樹脂302bを最上層に積層することができることにより、工程の最後で色調を決定することが可能になる。この結果、在庫調整などを行いやすくなる。   In addition, it is possible to positively finely adjust the color tone. That is, the color tone of light emission is determined by the amount of phosphor. The higher the amount, the more yellow light component and the lower the color temperature, while the smaller the amount, the more blue light component and the color. Since the temperature becomes higher, if the structure of the fifth embodiment is adopted, the resin 302b as the phosphor layer can be laminated on the uppermost layer later, so that the color tone can be determined at the end of the process. . As a result, it becomes easier to adjust inventory.

さらに、蛍光体層としての樹脂302bを広い面積に亘って積層することができるので、均一度などの光学的な特性を向上させることが可能になる。   Furthermore, since the resin 302b as the phosphor layer can be laminated over a wide area, it is possible to improve optical characteristics such as uniformity.

図6は本発明の第6実施形態に係る照明光源の断面構造を示す模式図で、この図を用いて以下に第6実施形態の説明を行う。ただし、図6は照明光源の断面構造の一部を示す。   FIG. 6 is a schematic diagram showing a cross-sectional structure of an illumination light source according to the sixth embodiment of the present invention. The sixth embodiment will be described below with reference to this figure. However, FIG. 6 shows a part of a sectional structure of the illumination light source.

図6の照明光源は、基板102および複数の半導体発光素子200などを第5実施形態と同様に備えているほか、第5実施形態との相違点として樹脂303を備えている。   The illumination light source of FIG. 6 includes a substrate 102 and a plurality of semiconductor light emitting elements 200 as in the fifth embodiment, and also includes a resin 303 as a difference from the fifth embodiment.

この樹脂303は、透光性の樹脂により成り、半導体発光素子200からの青色系の光を吸収して黄色系の光を発する蛍光体(図示せず)を分散保持するもので、具体的には、基板102の各窪みに凸レンズ状に充填される透光性の樹脂303aと、この樹脂303a上に積層され上記蛍光体を分散保持する透光性の樹脂303bとを有する構造になっている。ただし、樹脂303bは、第5実施形態と異なり、基板102の最上層一面に積層される。基板102上には複数の半導体発光素子200が実装されており、これら半導体発光素子200が離れて見たときに例えば面状光源として発光すればよいので、樹脂303bを最上層の一面に積層することができる。   This resin 303 is made of a translucent resin, and disperses and holds a phosphor (not shown) that absorbs blue light from the semiconductor light emitting element 200 and emits yellow light. Has a structure having a translucent resin 303a filled in a convex lens shape in each depression of the substrate 102, and a translucent resin 303b laminated on the resin 303a to disperse and hold the phosphor. . However, unlike the fifth embodiment, the resin 303b is laminated on the uppermost layer of the substrate 102. A plurality of semiconductor light emitting elements 200 are mounted on the substrate 102. When these semiconductor light emitting elements 200 are viewed from a distance, for example, light may be emitted as a planar light source. Therefore, the resin 303b is stacked on one surface of the uppermost layer. be able to.

以上、第6実施形態によれば、第5実施形態と同様の効果を奏することが可能になるほか、樹脂303bを最上層の一面に積層するので、第5実施形態よりも工程を簡単にすることができる。   As described above, according to the sixth embodiment, the same effect as that of the fifth embodiment can be obtained, and the resin 303b is laminated on one surface of the uppermost layer, so that the process is simplified as compared with the fifth embodiment. be able to.

図7は本発明の第7実施形態に係る照明光源の断面構造を示す模式図で、この図を用いて以下に第7実施形態の説明を行う。ただし、図7は照明光源の断面構造の一部を示す。   FIG. 7 is a schematic diagram showing a cross-sectional structure of an illumination light source according to the seventh embodiment of the present invention. The seventh embodiment will be described below with reference to FIG. However, FIG. 7 shows a part of the sectional structure of the illumination light source.

図7の照明光源は、基板102および複数の半導体発光素子200などを第6実施形態と同様に備えているほか、第6実施形態との相違点として樹脂304を備えている。   The illumination light source of FIG. 7 includes a substrate 102 and a plurality of semiconductor light emitting elements 200 as in the sixth embodiment, and also includes a resin 304 as a difference from the sixth embodiment.

この樹脂304は、透光性の樹脂により成り、半導体発光素子200からの青色系の光を吸収して黄色系の光を発する蛍光体(図示せず)を分散保持するもので、具体的には、基板102の各窪み内全体に充填される透光性の樹脂304aと、この樹脂304a上に凸レンズ状に積層され上記蛍光体を分散保持する透光性の樹脂304bとを有する構造になっている。ただし、樹脂304bは、基板102の最上層一面に積層される。   This resin 304 is made of a translucent resin, and disperses and holds a phosphor (not shown) that absorbs blue light from the semiconductor light emitting element 200 and emits yellow light. Has a structure having a translucent resin 304a filled in the entire depressions of the substrate 102 and a translucent resin 304b which is laminated on the resin 304a in a convex lens shape and holds the phosphors in a dispersed manner. ing. However, the resin 304 b is laminated on the entire top layer of the substrate 102.

以上、第7実施形態によれば、第6実施形態と同様の効果を奏することが可能になる。   As described above, according to the seventh embodiment, it is possible to achieve the same effect as that of the sixth embodiment.

図8は本発明の第8実施形態に係る照明光源の断面構造を示す模式図で、この図を用いて以下に第8実施形態の説明を行う。ただし、図8は照明光源の断面構造の一部を示す。   FIG. 8 is a schematic diagram showing a cross-sectional structure of an illumination light source according to the eighth embodiment of the present invention. The eighth embodiment will be described below with reference to this figure. However, FIG. 8 shows a part of a sectional structure of the illumination light source.

図8の照明光源は、基板102および複数の半導体発光素子200などを第7実施形態と同様に備えているほか、第7実施形態との相違点として樹脂305を備えている。   The illumination light source of FIG. 8 includes a substrate 102 and a plurality of semiconductor light emitting elements 200 as in the seventh embodiment, and also includes a resin 305 as a difference from the seventh embodiment.

この樹脂305は、透光性の樹脂により成り、半導体発光素子200からの青色系の光を吸収して黄色系の光を発する蛍光体(図示せず)を分散保持するもので、具体的には、基板102の各窪み内全体に充填される透光性の樹脂305aと、この樹脂305a上に凸レンズ状に積層され上記蛍光体を分散保持する透光性の樹脂305bと、この樹脂305b上に積層される透光性の樹脂305cとを有する構造になっている。ただし、樹脂305b,305cは、基板102の最上層一面に順次積層される。   The resin 305 is made of a light-transmitting resin, and disperses and holds a phosphor (not shown) that absorbs blue light from the semiconductor light emitting element 200 and emits yellow light. Includes a translucent resin 305a that fills the entire depressions of the substrate 102, a translucent resin 305b that is laminated on the resin 305a in a convex lens shape and that holds the phosphor in a dispersed manner, and the resin 305b And a translucent resin 305c laminated on the substrate. However, the resins 305b and 305c are sequentially laminated on the uppermost layer of the substrate 102.

以上、第8実施形態によれば、第7実施形態と同様の効果を奏することが可能になるほか、樹脂305cの積層により蛍光体層としての樹脂305bを保護したので、蛍光体層が直接外部に露出することがなく、水分との反応などで蛍光体層が劣化するのを防止することができる。   As described above, according to the eighth embodiment, the same effect as that of the seventh embodiment can be obtained, and since the resin 305b as the phosphor layer is protected by the lamination of the resin 305c, the phosphor layer is directly connected to the outside. It is possible to prevent the phosphor layer from being deteriorated due to reaction with moisture or the like.

図9は本発明の第9実施形態に係る照明光源の断面構造を示す模式図で、この図を用いて以下に第9実施形態の説明を行う。ただし、図9は照明光源の断面構造の一部を示す。   FIG. 9 is a schematic view showing a cross-sectional structure of an illumination light source according to the ninth embodiment of the present invention. The ninth embodiment will be described below with reference to this drawing. However, FIG. 9 shows a part of a sectional structure of the illumination light source.

図9の照明光源は、基板102および複数の半導体発光素子200などを第5実施形態と同様に備えているほか、第5実施形態との相違点として樹脂306を備えている。   The illumination light source of FIG. 9 includes a substrate 102, a plurality of semiconductor light emitting elements 200, and the like as in the fifth embodiment, and also includes a resin 306 as a difference from the fifth embodiment.

この樹脂306は、透光性の樹脂により成り、半導体発光素子200からの青色系の光を吸収して黄色系の光を発する蛍光体(図示せず)を分散保持するもので、具体的には、基板102の各窪みに凸レンズ状に充填される透光性の樹脂306aと、この樹脂306a上に均一な厚みで積層され上記蛍光体を分散保持する透光性の樹脂306bと、この樹脂306b上に積層される透光性の樹脂306cとを有する構造になっている。ただし、樹脂306b,306cは、基板102の各窪みに個別に設けられる。   The resin 306 is made of a light-transmitting resin, and disperses and holds a phosphor (not shown) that absorbs blue light from the semiconductor light emitting element 200 and emits yellow light. Includes a translucent resin 306a filled in each depression of the substrate 102 in the form of a convex lens, a translucent resin 306b that is laminated on the resin 306a with a uniform thickness and holds the phosphor in a dispersed manner, and the resin It has a structure having a light-transmitting resin 306c laminated on 306b. However, the resins 306b and 306c are individually provided in each recess of the substrate 102.

以上、第9実施形態によれば、第5実施形態と同様の効果を奏することが可能になるほか、樹脂306cの積層により蛍光体層としての樹脂306bを保護したので、蛍光体層が直接外部に露出することがなく、水分との反応などで蛍光体層が劣化するのを防止することができる。また、樹脂306cの部分的な厚みを調整することで、照射角度の制御が可能になる。さらに、樹脂306bの厚みを均一にしたので、光学的な特性が向上する。   As described above, according to the ninth embodiment, the same effect as that of the fifth embodiment can be obtained, and the resin 306b as the phosphor layer is protected by the lamination of the resin 306c. It is possible to prevent the phosphor layer from being deteriorated due to reaction with moisture or the like. Further, the irradiation angle can be controlled by adjusting the partial thickness of the resin 306c. Furthermore, since the thickness of the resin 306b is made uniform, the optical characteristics are improved.

また、樹脂306aに柔軟性のあるシリコーン樹脂などを使用すれば、樹脂の熱膨張や振動などによる素子およびリード線Wの破損を防止することができる。   If a flexible silicone resin or the like is used for the resin 306a, damage to the element and the lead wire W due to thermal expansion or vibration of the resin can be prevented.

図10は本発明の第10実施形態に係る照明光源の断面構造を示す模式図で、この図を用いて以下に第10実施形態の説明を行う。ただし、図10は照明光源の断面構造の一部を示す。   FIG. 10 is a schematic view showing a cross-sectional structure of an illumination light source according to the tenth embodiment of the present invention. The tenth embodiment will be described below with reference to this figure. However, FIG. 10 shows a part of the sectional structure of the illumination light source.

図10の照明光源は、基板100および複数の半導体発光素子200などを第1実施形態と同様に備えているほか、第1実施形態との相違点として樹脂307を備えている。   The illumination light source of FIG. 10 includes a substrate 100, a plurality of semiconductor light emitting elements 200, and the like as in the first embodiment, and also includes a resin 307 as a difference from the first embodiment.

この樹脂307は、透光性の樹脂により成り、半導体発光素子200からの青色系の光を吸収して黄色系の光を発する蛍光体(図示せず)を分散保持するもので、具体的には、基板100の各窪みCavに凸レンズ状に充填される透光性の樹脂307aと、この樹脂307a上に均一な厚みで積層され上記蛍光体を分散保持する透光性の樹脂307bと、この樹脂307b上に積層される透光性の樹脂307cとを有する構造になっている。ただし、樹脂307b,307cは、基板100の各窪みCavに個別に設けられる。また、樹脂307aには柔軟性を有するシリコーン樹脂が使用され、樹脂307cには耐候性を有するエポキシ樹脂が使用される。   This resin 307 is made of a translucent resin, and disperses and holds a phosphor (not shown) that absorbs blue light from the semiconductor light emitting element 200 and emits yellow light. Specifically, Includes a translucent resin 307a that fills each recess Cav of the substrate 100 in the form of a convex lens, a translucent resin 307b that is laminated on the resin 307a with a uniform thickness and holds the phosphor in a dispersed manner, The light-transmitting resin 307c laminated on the resin 307b has a structure. However, the resins 307 b and 307 c are individually provided in each recess Cav of the substrate 100. In addition, a flexible silicone resin is used for the resin 307a, and an epoxy resin having weather resistance is used for the resin 307c.

以上、第10実施形態によれば、第1実施形態と同様の効果を奏することが可能になるほか、樹脂307が樹脂307a、樹脂307bおよび樹脂307cにより成るので、樹脂307における樹脂307bが高エネルギーの青色光と素子近傍の高温に同時に晒されることがないので、好適に光源としての寿命を延ばすことが可能になる。   As described above, according to the tenth embodiment, the same effects as those of the first embodiment can be obtained, and since the resin 307 is made of the resin 307a, the resin 307b, and the resin 307c, the resin 307b in the resin 307 has high energy. Therefore, the lifetime of the light source can be preferably extended.

また、樹脂307cの積層により蛍光体層としての樹脂307bを保護したので、蛍光体層が直接外部に露出することがなく、水分との反応などで蛍光体層が劣化するのを防止することができる。また、樹脂307bの厚みを均一にしたので、光学的な特性が向上する。   Further, since the resin 307b as the phosphor layer is protected by the lamination of the resin 307c, the phosphor layer is not directly exposed to the outside, and it is possible to prevent the phosphor layer from being deteriorated due to a reaction with moisture or the like. it can. Moreover, since the thickness of the resin 307b is made uniform, the optical characteristics are improved.

さらに、樹脂307aにシリコーン樹脂を使用したので、素子などに加わる応力(ストレス)を低減することができ、また樹脂307cにエポキシ樹脂を使用したので、蛍光体層の劣化を防止することができる。   Further, since a silicone resin is used for the resin 307a, stress applied to the element or the like can be reduced, and since an epoxy resin is used for the resin 307c, deterioration of the phosphor layer can be prevented.

図11は本発明の第11実施形態に係る照明光源の断面構造を示す模式図で、この図を用いて以下に第11実施形態の説明を行う。ただし、図11は照明光源の断面構造の一部を示す。   FIG. 11 is a schematic diagram showing a cross-sectional structure of an illumination light source according to an eleventh embodiment of the present invention. The eleventh embodiment will be described below with reference to this figure. However, FIG. 11 shows a part of the sectional structure of the illumination light source.

図11の照明光源は、基板100および複数の半導体発光素子200などを第10実施形態と同様に備えているほか、第10実施形態との相違点として樹脂308を備えている。   The illumination light source of FIG. 11 includes a substrate 100, a plurality of semiconductor light emitting elements 200, and the like as in the tenth embodiment, and also includes a resin 308 as a difference from the tenth embodiment.

この樹脂308は、透光性の樹脂により成り、半導体発光素子200からの青色系の光を吸収して黄色系の光を発する蛍光体(図示せず)を分散保持するもので、具体的には、基板100の各窪みCav内全体に充填される透光性の樹脂308aと、この樹脂308a上に均一な厚みの板状に積層され上記蛍光体を分散保持する透光性の樹脂308bと、この樹脂308b上に凸レンズ状に積層される透光性の樹脂308cとを有する構造になっている。ただし、樹脂308b,308cは、基板100の各窪みCavに個別に設けられる。また、樹脂308aにはエポキシ樹脂でもよいが柔軟性を有するシリコーン樹脂が使用され、樹脂308cには耐候性を有するエポキシ樹脂が使用される。さらに、樹脂308bは予め板状に形成される。   This resin 308 is made of a light-transmitting resin, and disperses and holds a phosphor (not shown) that absorbs blue light from the semiconductor light emitting element 200 and emits yellow light. Includes a translucent resin 308a that fills the entire cavity Cav of the substrate 100, and a translucent resin 308b that is laminated on the resin 308a in a plate shape with a uniform thickness and that disperses and holds the phosphor. The resin 308b has a translucent resin 308c laminated in a convex lens shape. However, the resins 308 b and 308 c are individually provided in each recess Cav of the substrate 100. The resin 308a may be an epoxy resin, but a flexible silicone resin is used, and the resin 308c is a weather resistant epoxy resin. Furthermore, the resin 308b is formed in a plate shape in advance.

次に、上記構成の照明光源の製造手順を説明する。まず、基板100を用意して、各窪みCav内の底面中央に半導体発光素子200を実装する。続いて、ワイヤボンディングによりリード線Wで、半導体発光素子200の各電極を対応する配線パターン導体100cに接続する。この後、樹脂308として、基板100の各窪みに対して、まず樹脂308aを充填し、樹脂308bを載置し、続いて樹脂308cを凸レンズ状に積層する。   Next, a manufacturing procedure of the illumination light source having the above configuration will be described. First, the substrate 100 is prepared, and the semiconductor light emitting element 200 is mounted at the center of the bottom surface in each recess Cav. Subsequently, each electrode of the semiconductor light emitting element 200 is connected to the corresponding wiring pattern conductor 100c by the lead wire W by wire bonding. Thereafter, as the resin 308, the resin 308a is first filled in each recess of the substrate 100, the resin 308b is placed, and then the resin 308c is laminated in a convex lens shape.

以上、第11実施形態によれば、第10実施形態と同様の効果を奏することが可能になるほか、樹脂308bに含有される蛍光体の濃度を一定にすれば、樹脂308bの厚みを制御するだけで、蛍光体の量的制御を非常に容易に行える。これにより、蛍光体の量を全体的に均一にすることができるとともに、蛍光体の量を所定の一定値に調整することができるので、色のバラツキ防止が可能になる。   As described above, according to the eleventh embodiment, the same effect as that of the tenth embodiment can be obtained, and the thickness of the resin 308b can be controlled by making the concentration of the phosphor contained in the resin 308b constant. It is very easy to quantitatively control the phosphor. As a result, the amount of the phosphor can be made uniform as a whole, and the amount of the phosphor can be adjusted to a predetermined constant value, so that variation in color can be prevented.

図12は本発明の第12実施形態に係る照明光源の断面構造を示す模式図で、この図を用いて以下に第12実施形態の説明を行う。ただし、図12は照明光源の断面構造の一部を示す。   FIG. 12 is a schematic diagram showing a cross-sectional structure of an illumination light source according to the twelfth embodiment of the present invention. The twelfth embodiment will be described below with reference to this figure. However, FIG. 12 shows a part of a sectional structure of the illumination light source.

図12の照明光源は、基板100および複数の半導体発光素子200などを第1実施形態と同様に備えているほか、第1実施形態との相違点として樹脂310を備えている。   The illumination light source of FIG. 12 includes a substrate 100, a plurality of semiconductor light emitting elements 200, and the like as in the first embodiment, and also includes a resin 310 as a difference from the first embodiment.

この樹脂310は、透光性の樹脂により成り、半導体発光素子200からの青色系の光を吸収して黄色系の光を発する蛍光体(図示せず)を分散保持するもので、具体的には、基板100の各窪みCav内全体に充填される透光性の樹脂310aと、この樹脂310a上に凸レンズ状に積層され上記蛍光体を分散保持する透光性の樹脂310bとを有する構造になっている。ただし、樹脂310aにはシリコーン樹脂が使用され、樹脂310bにはエポキシ樹脂が使用される。   The resin 310 is made of a light-transmitting resin, and disperses and holds a phosphor (not shown) that absorbs blue light from the semiconductor light emitting element 200 and emits yellow light. Has a structure having a translucent resin 310a filled in the entire cavity Cav of the substrate 100, and a translucent resin 310b that is laminated on the resin 310a in a convex lens shape to disperse and hold the phosphor. It has become. However, a silicone resin is used for the resin 310a, and an epoxy resin is used for the resin 310b.

この構成では、従来のカップに素子を充填したものと比べて、蛍光体含有樹脂の量が非常に多くなる。従来のカップでは樹脂の直径は高々1mmであるが、第12実施形態では、樹脂310bの直径は3mm以上になるので、10倍程度の容量になるから、蛍光体の含有濃度を10分の1程度に抑えることができる。そして、蛍光体の含有濃度が低いと、高エネルギー光の滞留時間が短くなり、樹脂の局所的着色劣化の度合いが低くなる。また、蛍光体を含有する樹脂は、半導体発光素子200からの光の強度に比例して劣化しやすくなる反面、高温となる半導体発光素子200から離れるに従って指数関数的に劣化し難くなるので、青色光が蛍光体に散乱されて滞在する領域も10倍の体積になり、さらに間に樹脂310aが介在し、上記含有濃度の低さも加わることにより、蛍光体を含有する樹脂は非常に劣化し難くなる。   In this configuration, the amount of the phosphor-containing resin is greatly increased as compared with the conventional cup filled with the element. In the conventional cup, the diameter of the resin is 1 mm at most, but in the twelfth embodiment, the diameter of the resin 310b is 3 mm or more, so the capacity is about 10 times, so the phosphor concentration is reduced to 1/10. It can be suppressed to the extent. And if the content density | concentration of fluorescent substance is low, the residence time of high energy light will become short, and the degree of local coloring deterioration of resin will become low. In addition, the resin containing the phosphor is likely to deteriorate in proportion to the intensity of light from the semiconductor light emitting device 200, but is less likely to deteriorate exponentially as the temperature increases from the semiconductor light emitting device 200. The region where the light is scattered and stays in the phosphor is also 10 times the volume, and further, the resin 310a is interposed between them, and the low concentration of the above is added, so that the resin containing the phosphor is hardly deteriorated. Become.

以上、第12実施形態によれば、第1実施形態と同様の効果を奏することが可能になるほか、上述の如く、樹脂310bが高エネルギーの青色光と素子近傍の高温に同時に晒されることがないので、好適に光源としての寿命を延ばすことが可能になる。   As described above, according to the twelfth embodiment, the same effect as that of the first embodiment can be obtained, and as described above, the resin 310b can be simultaneously exposed to the high energy blue light and the high temperature in the vicinity of the element. Therefore, it is possible to suitably extend the life as a light source.

また、各光源が基板100上に直接形成されているので、光学系に広めの領域を割り当てることができ、上記の如く各実装領域を大きくしても配光制御が可能になる。   Since each light source is directly formed on the substrate 100, a wider area can be allocated to the optical system, and light distribution control can be performed even if each mounting area is enlarged as described above.

さらに、樹脂310aにシリコーン樹脂を使用したので、素子などに加わる応力を低減することができ、また樹脂310bにエポキシ樹脂を使用したので、蛍光体層の劣化を防止することができる。   Furthermore, since a silicone resin is used for the resin 310a, stress applied to the element can be reduced, and since an epoxy resin is used for the resin 310b, deterioration of the phosphor layer can be prevented.

図13は本発明の第13実施形態に係る照明光源の断面構造を示す模式図、図14は図13に示す照明光源の製造手順の説明図で、これらの図を用いて以下に第13実施形態の説明を行う。ただし、図13は照明光源の断面構造の一部を示す。   FIG. 13 is a schematic diagram showing a cross-sectional structure of an illumination light source according to a thirteenth embodiment of the present invention, and FIG. 14 is an explanatory diagram of the manufacturing procedure of the illumination light source shown in FIG. The form will be described. However, FIG. 13 shows a part of the sectional structure of the illumination light source.

第13実施形態の照明光源は、図7〜図12の各実施形態に適用可能なものであり、図13の例では、基板102および複数の半導体発光素子200などを例えば第8実施形態と同様に備えているほか、第13実施形態の特徴として、樹脂309を備えている。   The illumination light source of the thirteenth embodiment is applicable to each of the embodiments of FIGS. 7 to 12. In the example of FIG. 13, the substrate 102 and the plurality of semiconductor light emitting elements 200 are the same as those of the eighth embodiment, for example. The resin 309 is provided as a feature of the thirteenth embodiment.

この樹脂309は、透光性の樹脂により成り、半導体発光素子200からの青色系の光を吸収して黄色系の光を発する蛍光体(図示せず)を分散保持するもので、具体的には、基板102の各窪み内のほぼ全体に充填される透光性の樹脂309aと、この樹脂309a上に均一な厚みの板状に積層され上記蛍光体を分散保持する透光性の樹脂309bと、この樹脂309b上に凸レンズ状に積層される透光性の樹脂309cとを有する構造になっている。ただし、樹脂309b,309cは、図14(b)に示すように予め一体に形成され、基板102の各窪みに個別に設けられる。   This resin 309 is made of a translucent resin, and disperses and holds a phosphor (not shown) that absorbs blue light from the semiconductor light emitting element 200 and emits yellow light. Is a translucent resin 309a which is filled almost entirely in each recess of the substrate 102, and a translucent resin 309b which is laminated on the resin 309a in a plate shape with a uniform thickness and holds the phosphors in a dispersed manner. And a translucent resin 309c laminated in a convex lens shape on the resin 309b. However, the resins 309b and 309c are integrally formed in advance as shown in FIG. 14B, and are individually provided in each recess of the substrate 102.

次に、上記構成の照明光源の製造手順を説明する。まず、基板102を用意して、各窪み内の底面中央に半導体発光素子200を実装する。続いて、ワイヤボンディングによりリード線Wで、半導体発光素子200の各電極を対応する配線パターン導体102cに接続する。この後、樹脂309として、基板102の各窪みに対して、まず樹脂309aを充填し(図14(a)参照)、続いて一体に形成された樹脂309b,309cを樹脂309a上に積層する。   Next, a manufacturing procedure of the illumination light source having the above configuration will be described. First, the substrate 102 is prepared, and the semiconductor light emitting element 200 is mounted at the center of the bottom surface in each recess. Subsequently, each electrode of the semiconductor light emitting element 200 is connected to the corresponding wiring pattern conductor 102c by the lead wire W by wire bonding. Thereafter, the resin 309 is filled with the resin 309a as the resin 309 (see FIG. 14A), and then the integrally formed resins 309b and 309c are laminated on the resin 309a.

以上、第13実施形態によれば、実装の回数が1回で済むので、コストの低減が可能になるほか、個別に設けられる樹脂309b,309cの交換を容易に行うことができる。   As described above, according to the thirteenth embodiment, since the number of times of mounting is only one, the cost can be reduced and the separately provided resins 309b and 309c can be easily replaced.

以上、上記各実施形態で説明したように、蛍光体を含有する樹脂およびレンズ状の樹脂により、工程数削減および構造の均質化が可能になる。また、半導体発光素子200の周辺部に柔軟性を有する樹脂を用いることにより、素子の劣化および樹脂の着色を減らし、光源の寿命を延ばすことができる。さらに、素子を実装したカップに蛍光体を充填する場合に比べて、蛍光体を含有する樹脂を非常に大きくでき、また金属ベースや反射枠により放熱が良くなるので、蛍光体および樹脂が劣化し難く、光源の光束減退寿命が長くなる。   As described above, as described in the above embodiments, the number of steps can be reduced and the structure can be homogenized by the resin containing the phosphor and the lens-like resin. Further, by using a resin having flexibility in the peripheral portion of the semiconductor light emitting element 200, deterioration of the element and coloring of the resin can be reduced, and the life of the light source can be extended. In addition, the phosphor containing resin can be made very large compared to the case where the cup in which the element is mounted is filled with the phosphor, and the heat dissipation is improved by the metal base and the reflection frame, so that the phosphor and the resin are deteriorated. It is difficult, and the luminous flux decay life of the light source is prolonged.

なお、第13実施形態では、樹脂309b,309cは、予め一体に形成されるが、これに限らず、樹脂309cと同形状のガラス部材を使用し、このガラス部材と樹脂309bとを予め一体に形成するようにしてもよい。この場合、蛍光体を樹脂に含有させなくてもよく、焼成が可能である。つまり、蛍光体を分散保持する蛍光体層を、樹脂309cに代わるガラス部材の凸レンズ体に焼成により積層するようにしてもよい。   In the thirteenth embodiment, the resins 309b and 309c are integrally formed in advance. However, the present invention is not limited to this, and a glass member having the same shape as the resin 309c is used, and the glass member and the resin 309b are integrated in advance. You may make it form. In this case, the phosphor does not need to be contained in the resin and can be fired. That is, the phosphor layer for dispersing and holding the phosphor may be laminated on the convex lens body of the glass member instead of the resin 309c by firing.

また、第13実施形態では、樹脂309は、樹脂309a,309b,309cにより構成されるが、樹脂309b,309cが一体に形成されることから、下側に位置する樹脂309aを省略しても構わない。この場合も、第13実施形態と同様の効果が得られるほか、樹脂フリーとなるので、耐候性ないし寿命の向上を図ることができる。   In the thirteenth embodiment, the resin 309 is composed of the resins 309a, 309b, and 309c. However, since the resins 309b and 309c are integrally formed, the lower resin 309a may be omitted. Absent. In this case as well, the same effects as those of the thirteenth embodiment can be obtained, and since the resin is free, the weather resistance or the life can be improved.

本発明の第1実施形態に係る照明光源の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the illumination light source which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る照明光源の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the illumination light source which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る照明光源の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the illumination light source which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る照明光源の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the illumination light source which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る照明光源の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the illumination light source which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る照明光源の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the illumination light source which concerns on 6th Embodiment of this invention. 本発明の第7実施形態に係る照明光源の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the illumination light source which concerns on 7th Embodiment of this invention. 本発明の第8実施形態に係る照明光源の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the illumination light source which concerns on 8th Embodiment of this invention. 本発明の第9実施形態に係る照明光源の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the illumination light source which concerns on 9th Embodiment of this invention. 本発明の第10実施形態に係る照明光源の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the illumination light source which concerns on 10th Embodiment of this invention. 本発明の第11実施形態に係る照明光源の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the illumination light source which concerns on 11th Embodiment of this invention. 本発明の第12実施形態に係る照明光源の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the illumination light source which concerns on 12th Embodiment of this invention. 本発明の第13実施形態に係る照明光源の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the illumination light source which concerns on 13th Embodiment of this invention. 図13に示す照明光源の製造手順の説明図である。It is explanatory drawing of the manufacture procedure of the illumination light source shown in FIG. 従来の発光ダイオードの断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the conventional light emitting diode. 従来の発光ダイオードの断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the conventional light emitting diode. 従来の面状発光光源の断面構造を示す模式図である。It is a schematic diagram which shows the cross-sectional structure of the conventional planar light emission source. 従来のLED表示器を示す模式図である。It is a schematic diagram which shows the conventional LED display.

符号の説明Explanation of symbols

100〜102 基板
200 半導体発光素子
300〜310 樹脂
100 to 102 Substrate 200 Semiconductor light emitting element 300 to 310 Resin

Claims (5)

基板と、この基板に実装される半導体発光素子と、レンズ体とを備え、前記半導体発光素子の前方に蛍光体層を有する照明光源の製造方法であって、
前記レンズ体と前記蛍光体層とを一体化してなる蛍光レンズ体を用意し、
前記半導体発光素子の前方に前記蛍光レンズ体を配置する
ことを特徴とする照明光源の製造方法。
A manufacturing method of an illumination light source comprising a substrate, a semiconductor light emitting element mounted on the substrate, and a lens body, and having a phosphor layer in front of the semiconductor light emitting element,
Preparing a fluorescent lens body formed by integrating the lens body and the phosphor layer;
The method for manufacturing an illumination light source, wherein the fluorescent lens body is disposed in front of the semiconductor light emitting element.
基板と、
この基板に実装される複数の半導体発光素子と、
これら複数の半導体発光素子の前方にそれぞれ個別に配置される複数の個別蛍光レンズ体と
を備えることを特徴とする照明光源。
A substrate,
A plurality of semiconductor light emitting devices mounted on the substrate;
An illumination light source comprising: a plurality of individual fluorescent lens bodies individually disposed in front of the plurality of semiconductor light emitting elements.
前記個別蛍光レンズ体は、レンズ体と、蛍光体を分散保持し前記レンズ体の後方に積層される透光性の蛍光体層とにより構成されることを特徴とする請求項2記載の照明光源。 3. The illumination light source according to claim 2, wherein the individual fluorescent lens body includes a lens body and a translucent phosphor layer that holds the phosphor in a dispersed manner and is laminated behind the lens body. . 前記レンズ体はガラスによりなり、
前記蛍光体層は、前記ガラスのレンズ体に焼成により積層される
ことを特徴とする請求項3記載の照明光源。
The lens body is made of glass,
The illumination light source according to claim 3, wherein the phosphor layer is laminated on the glass lens body by firing.
前記個別蛍光レンズ体の後方は、樹脂未封止の中空になっていることを特徴とする請求項4記載の照明光源。 The illumination light source according to claim 4, wherein the rear side of the individual fluorescent lens body is hollow without resin sealing.
JP2004308095A 2004-10-22 2004-10-22 Illumination light source manufacturing method and illumination light source Expired - Lifetime JP4432724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004308095A JP4432724B2 (en) 2004-10-22 2004-10-22 Illumination light source manufacturing method and illumination light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004308095A JP4432724B2 (en) 2004-10-22 2004-10-22 Illumination light source manufacturing method and illumination light source

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP32833499A Division JP2001148514A (en) 1999-11-18 1999-11-18 Illuminating light source

Publications (2)

Publication Number Publication Date
JP2005050827A true JP2005050827A (en) 2005-02-24
JP4432724B2 JP4432724B2 (en) 2010-03-17

Family

ID=34270378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004308095A Expired - Lifetime JP4432724B2 (en) 2004-10-22 2004-10-22 Illumination light source manufacturing method and illumination light source

Country Status (1)

Country Link
JP (1) JP4432724B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100649704B1 (en) 2005-09-05 2006-11-27 삼성전기주식회사 Light emitting diode package and method for manufacturing the same
JP2007005372A (en) * 2005-06-21 2007-01-11 Rohm Co Ltd Display panel apparatus employing light-emitting diode
JP2007059852A (en) * 2005-07-25 2007-03-08 Matsushita Electric Works Ltd Light emitting device
JP2007059857A (en) * 2005-07-25 2007-03-08 Matsushita Electric Ind Co Ltd Light emitting module and projection version display device
JP2007088092A (en) * 2005-09-20 2007-04-05 Matsushita Electric Works Ltd Light-emitting device
JP2007088091A (en) * 2005-09-20 2007-04-05 Matsushita Electric Works Ltd Light-emitting device
JP2007116129A (en) * 2005-09-20 2007-05-10 Matsushita Electric Works Ltd Light emitting device
JP2007116122A (en) * 2005-09-20 2007-05-10 Matsushita Electric Works Ltd Light emitting device
JP2007116127A (en) * 2005-09-20 2007-05-10 Matsushita Electric Works Ltd Light emitting device
JP2007123891A (en) * 2005-10-27 2007-05-17 Lg Innotek Co Ltd Light emitting diode package and method for manufacturing the same
WO2007140660A1 (en) * 2006-06-08 2007-12-13 Hong-Yuan Technology Co., Ltd. Light emitting system, light emitting device and the method of manufacturing the same
JP2008021973A (en) * 2006-06-13 2008-01-31 Nichia Chem Ind Ltd Light emitting device
JP2008124500A (en) * 2005-07-25 2008-05-29 Matsushita Electric Works Ltd Light-emitting device
WO2008105527A1 (en) * 2007-03-01 2008-09-04 Nec Lighting, Ltd. Led device and illuminating apparatus
EP1996856A1 (en) * 2006-03-17 2008-12-03 DAE Shin Led Co. Ltd. Led module for illumination
WO2009008636A2 (en) 2007-07-06 2009-01-15 Lg Innotek Co., Ltd Light emitting device package
WO2010028575A1 (en) * 2008-09-10 2010-03-18 和谐光电科技(泉州)有限公司 Packaging process of white led
JP2011077559A (en) * 2011-01-18 2011-04-14 Rohm Co Ltd Display panel apparatus employing light-emitting diode
CN102468403A (en) * 2010-11-18 2012-05-23 展晶科技(深圳)有限公司 Light-emitting diode encapsulating structure
JP2012134505A (en) * 2004-11-15 2012-07-12 Philips Lumileds Lightng Co Llc Overmolded lens over led die
JP2012138425A (en) * 2010-12-24 2012-07-19 Asahi Rubber Inc Resin lens, led device with lens and method of manufacturing led device with lens
JP2012256953A (en) * 2007-02-22 2012-12-27 Sharp Corp Surface mount type light emitting diode and manufacturing method of the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927642A (en) * 1995-07-13 1997-01-28 Clarion Co Ltd Lighting device
JPH10190065A (en) * 1996-12-27 1998-07-21 Nichia Chem Ind Ltd Light emitting device and led display using the same
JPH1187778A (en) * 1997-09-02 1999-03-30 Toshiba Corp Semiconductor light emitting element, semiconductor light emitting device and manufacture thereof
JPH11204841A (en) * 1998-01-13 1999-07-30 Nichia Chem Ind Ltd Photo-semiconductor device and its manufacture
JP2003124525A (en) * 2001-10-09 2003-04-25 Agilent Technologies Japan Ltd Light emitting diode and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927642A (en) * 1995-07-13 1997-01-28 Clarion Co Ltd Lighting device
JPH10190065A (en) * 1996-12-27 1998-07-21 Nichia Chem Ind Ltd Light emitting device and led display using the same
JPH1187778A (en) * 1997-09-02 1999-03-30 Toshiba Corp Semiconductor light emitting element, semiconductor light emitting device and manufacture thereof
JPH11204841A (en) * 1998-01-13 1999-07-30 Nichia Chem Ind Ltd Photo-semiconductor device and its manufacture
JP2003124525A (en) * 2001-10-09 2003-04-25 Agilent Technologies Japan Ltd Light emitting diode and its manufacturing method

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9081167B2 (en) 2004-11-15 2015-07-14 Koninklijke Philips N.V. Lens compression molded over LED die
JP2012134505A (en) * 2004-11-15 2012-07-12 Philips Lumileds Lightng Co Llc Overmolded lens over led die
JP2007005372A (en) * 2005-06-21 2007-01-11 Rohm Co Ltd Display panel apparatus employing light-emitting diode
JP4727314B2 (en) * 2005-06-21 2011-07-20 ローム株式会社 Display panel device using light emitting diode
JP2007059852A (en) * 2005-07-25 2007-03-08 Matsushita Electric Works Ltd Light emitting device
JP2007059857A (en) * 2005-07-25 2007-03-08 Matsushita Electric Ind Co Ltd Light emitting module and projection version display device
JP2008124500A (en) * 2005-07-25 2008-05-29 Matsushita Electric Works Ltd Light-emitting device
KR100649704B1 (en) 2005-09-05 2006-11-27 삼성전기주식회사 Light emitting diode package and method for manufacturing the same
JP2007116127A (en) * 2005-09-20 2007-05-10 Matsushita Electric Works Ltd Light emitting device
JP2007088092A (en) * 2005-09-20 2007-04-05 Matsushita Electric Works Ltd Light-emitting device
JP2007116129A (en) * 2005-09-20 2007-05-10 Matsushita Electric Works Ltd Light emitting device
JP4556815B2 (en) * 2005-09-20 2010-10-06 パナソニック電工株式会社 Light emitting device
JP2007116122A (en) * 2005-09-20 2007-05-10 Matsushita Electric Works Ltd Light emitting device
JP2007088091A (en) * 2005-09-20 2007-04-05 Matsushita Electric Works Ltd Light-emitting device
US9054283B2 (en) 2005-10-27 2015-06-09 Lg Innotek Co., Ltd. Light emitting diode package and method of manufacturing the same
US9012947B2 (en) 2005-10-27 2015-04-21 Lg Innotek Co., Ltd. Light emitting diode package and method of manufacturing the same
US8963188B2 (en) 2005-10-27 2015-02-24 Lg Innotek Co., Ltd. Light emitting diode package and method of manufacturing the same
JP2007123891A (en) * 2005-10-27 2007-05-17 Lg Innotek Co Ltd Light emitting diode package and method for manufacturing the same
EP1996856A1 (en) * 2006-03-17 2008-12-03 DAE Shin Led Co. Ltd. Led module for illumination
EP1996856A4 (en) * 2006-03-17 2009-08-12 Dae Shin Led Co Ltd Led module for illumination
WO2007140660A1 (en) * 2006-06-08 2007-12-13 Hong-Yuan Technology Co., Ltd. Light emitting system, light emitting device and the method of manufacturing the same
JP2008021973A (en) * 2006-06-13 2008-01-31 Nichia Chem Ind Ltd Light emitting device
JP2012256953A (en) * 2007-02-22 2012-12-27 Sharp Corp Surface mount type light emitting diode and manufacturing method of the same
WO2008105527A1 (en) * 2007-03-01 2008-09-04 Nec Lighting, Ltd. Led device and illuminating apparatus
US8610255B2 (en) 2007-07-06 2013-12-17 Lg Innotek Co., Ltd. Light emitting device package
US8890297B2 (en) 2007-07-06 2014-11-18 Lg Innotek Co., Ltd. Light emitting device package
JP2010532929A (en) * 2007-07-06 2010-10-14 エルジー イノテック カンパニー リミテッド Light emitting device package
WO2009008636A3 (en) * 2007-07-06 2009-03-05 Lg Innotek Co Ltd Light emitting device package
WO2009008636A2 (en) 2007-07-06 2009-01-15 Lg Innotek Co., Ltd Light emitting device package
US9368697B2 (en) 2007-07-06 2016-06-14 Lg Innotek Co., Ltd. Light emitting device package
WO2010028575A1 (en) * 2008-09-10 2010-03-18 和谐光电科技(泉州)有限公司 Packaging process of white led
CN102468403A (en) * 2010-11-18 2012-05-23 展晶科技(深圳)有限公司 Light-emitting diode encapsulating structure
JP2012138425A (en) * 2010-12-24 2012-07-19 Asahi Rubber Inc Resin lens, led device with lens and method of manufacturing led device with lens
JP2011077559A (en) * 2011-01-18 2011-04-14 Rohm Co Ltd Display panel apparatus employing light-emitting diode

Also Published As

Publication number Publication date
JP4432724B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
JP4432724B2 (en) Illumination light source manufacturing method and illumination light source
JP4989936B2 (en) Lighting device
JP2001148514A (en) Illuminating light source
JP3640153B2 (en) Illumination light source
JP5089212B2 (en) LIGHT EMITTING DEVICE, LED LAMP USING THE SAME, AND METHOD FOR MANUFACTURING LIGHT EMITTING DEVICE
EP2027412B1 (en) Lighting device
US8115385B2 (en) Multi-chip packaged LED light source
US8884315B2 (en) Semiconductor light emitting device and method of manufacturing the same
US7518150B2 (en) White light source and illumination apparatus using the same
JP5181505B2 (en) Light emitting device
US20110089815A1 (en) Light-emitting device
EP2334147B1 (en) Illumination device
JP2008235824A5 (en)
JP2009065137A (en) Light-emitting device
EP2197048A1 (en) Light-emitting device
KR20130119908A (en) Light-emitting diode
JP2016167518A (en) Light emission device and luminaire
JP2007258620A (en) Light emitting device
JP2007116117A (en) Light emitting device
JP5194675B2 (en) Light emitting device
JP2007288138A (en) Light emitting device
JP2008218998A (en) Light emitting device
JP2018129492A (en) Light-emitting device, and illuminating device
CN110291632B (en) LED unit
JP2007043074A (en) Luminaire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R151 Written notification of patent or utility model registration

Ref document number: 4432724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

EXPY Cancellation because of completion of term