JP2005039284A - 半導体発光素子とそれを用いた発光装置 - Google Patents

半導体発光素子とそれを用いた発光装置 Download PDF

Info

Publication number
JP2005039284A
JP2005039284A JP2004222629A JP2004222629A JP2005039284A JP 2005039284 A JP2005039284 A JP 2005039284A JP 2004222629 A JP2004222629 A JP 2004222629A JP 2004222629 A JP2004222629 A JP 2004222629A JP 2005039284 A JP2005039284 A JP 2005039284A
Authority
JP
Japan
Prior art keywords
light emitting
electrode
light
layer
emitting structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004222629A
Other languages
English (en)
Other versions
JP4581540B2 (ja
JP2005039284A5 (ja
Inventor
Daisuke Sanga
大輔 三賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2004222629A priority Critical patent/JP4581540B2/ja
Publication of JP2005039284A publication Critical patent/JP2005039284A/ja
Publication of JP2005039284A5 publication Critical patent/JP2005039284A5/ja
Application granted granted Critical
Publication of JP4581540B2 publication Critical patent/JP4581540B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

【課題】 本発明は、各電極の方向31,32と電極層の開口部形状を特定することで発光特性向上させる。
【解決手段】 第1,2導電型層1,2とその間に発光層3を有する素子101において、該第1、2導電型層に設けられた電極ではさまれた発光構造部が、第1と2を有し、第二発光構造部は、一部だけ第1、2電極ではさまれた領域を有する。
また、だい1,2電極にはさまれた発光構造部は、複数有して、それぞれ長さがことなる。さらに、第二発光構造部は、発光素子の端部に配置される。
【選択図】 図1

Description

本発明は半導体で形成された発光素子に係り、具体的には、は、発光層とそれに接合する第1,2導電型層と、各導電型層に設けられた電極とを有する発光素子に関し、特に、各導電型層、発光層に、半導体、特に窒化物半導体を用い、発光層とそれを挟む第1,2導電型層を有する半導体素子構造体の同一面側に、前記正負一対の電極が設けられた発光素子に係り、特に窒化物半導体を用いた窒化物半導体発光素子(LED)の構造に関し、またそれを用いた発光装置に関する。
半導体層の積層構造体の素子の同一面側に、正負一対の電極を設ける発光素子についてさまざまな開発がなされている。特に、高効率、高出力の発光素子とするために、窒化物半導体発光素子においては、n型層/活性層(発光層)/p型層を形成して、p型層上に、電極層とその上の台座部用のパッド電極とを備え、さらに、電極層を透光性として、様々な電極構造、引いては素子構造が提案されている。特に、発光素子の大面積化に際して、第1,2電極をどのように配置して、発光素子構造とするかについて、様々な構造が提案されている。
特開2002−175985号公報 特開2003−345480号公報
上記従来技術において、各導電型層の電極を、互いに対向させて延伸させ、その延伸部に挟まれた発光構造部を発光させる際に、均一な電流注入を実現して、各発光構造部内で均一な発光、また複数の発光構造部間で均一な発光を実現すること、なおかつ発光素子の動作電圧を低減させることは困難であった。
なぜなら、各発光構造部は、通常接続されて連続した構造を有し、対向延伸部以外の発光構造部、たとえば、発光構造部の一端周縁を電極延伸部が囲む領域などを、各対向深部の発光構造部間に介在させて、1つの連続した発光素子としているため、このような電極間に囲まれる形態が一定ではなく、電極間距離が変化する発光素子となる。このため、電極間の短い箇所に電流が集中したり、一方の電極が囲み、他方の電極延伸部の端部となるような発光構造部の一端で電流密度が対向延伸部とで異なったり、長く延伸、配線された電極の基点となる外部接続用のパッド部からの延伸距離の違いによる電流密度の変化の影響があったり、するため、理想通りの均一な電流注入、発光が困難な課題がある。
さらに、以上のような電極間距離の不均一、電極の対向形態の多様性、基点からの延伸距離の変化、により、一部領域に電流集中など、電流密度が不均一になる傾向を押さえるために、電極間距離を十分に広くすることで、このような差違を電極間距離に比して小さくすることができ、その影響を小さくできるが、一方で、電極間距離を大きくすると、素子の動作電圧を増大させる一因になる。
本発明は、上記課題に鑑みなされたものであって、上述した発光構造部を囲み、挟む電極の距離、形態の変化および電極基点からの延伸距離による発光不均一、並びに、動作電圧上昇を改善して、複数の発光構造部をつなぎ合わせて、均一で高効率な発光を実現し、動作電圧上昇を抑えた大面積の発光素子が得られる。
本発明の発光素子は、同一面側に第1,2電極をそれぞれ第1,2導電型層に設けられて、該面内で発光層を備えた発光構造が、第1,2電極の各延伸電極部で挟まれた第1発光構造部と、一部の領域だけ前記第1,2電極で挟まれ、残部が第1,2電極で挟まれずに、その構成辺などが電極から露出された第2発光構造部と、を有するものである。この第2発光構造部のように、一部だけしか第1,2電極に挟まれない構造部を有することで、この領域が電極間を流れる電流において、一種の遊びとして機能すると考えられ、面内で電極間で挟まれない発光構造部の余剰領域を有することで、電極間に配された発光構造部(第1発光構造部)で、好適な電流均一性が得られる傾向にあり、優れた効率での発光が可能となる。すなわち、上述したような電極間距離、電極で挟まれる形態の差違、電極基点からの延伸距離の変化がある場合でも、上記余剰領域を有する第2発光構造部でもって、一部に電流が集中する現象を緩和する傾向にあり、その影響による不均一な発光、発光効率の低下を防ぎ、好適な発光素子を得ることができる。
本発明の発光素子は、発光構造部として、互いに対向して、好ましくはほぼ平行、若しくは電極間距離をほぼ一定として、延伸する延伸電極部で挟まれた発光構造部を、第1発光構造部として、有することで、該第1発光構造部において、他の領域の発光構造部よりも比較的均一な発光を実現できる。このような第1発光構造部を複数有して、発光素子を構成することで、大面積でも高効率の発光素子が得られる。
また、上記発光構造部が、その一端において、一方の電極に囲まれるような領域を有すること、たとえば上記対向延伸部の第1発光構造部において、その一端が電極延伸部に囲まれ、他方の延伸電極部の端部を囲むように配置された構造を有する場合、上記課題にある電極間距離、その電極で挟まれる形態の変化が大きな箇所となるため、上記第2発光構造部が好適に機能して、特性に優れた発光素子が得られる。
上記第2発光構造部において、その電極形態が、一方の電極は、発光構造部の一部に沿って延伸する延伸電極部であり、他方の電極がその発光構造部にまで延在する電極端部とが設けられた構造とすることで、上述した電極間で挟まれず、余剰な領域を好適に形成できる。さらにその電極形態の具体例としては、たとえば、対向する1組の辺を有する発光構造部の形状において、その1組の一辺に沿って電極延伸部が設けられ、他方の辺は電極から開口されて、露出された電極構造とすることができる。好ましくは、電極で挟まれる領域をそれ以外の領域より小さくした第2発光構造部とすることで、上述した機能が発揮される傾向にあり、好ましい。また、このような延伸電極部が、第2発光構造部、その一端を囲まないように配置すること、たとえば、該第2発光構造部の面積を2等分する線の区画された一方の領域に前記第1,2電極を配して、他方の領域に電極を設けず、電極露出部、電極非形成部とすること、により、比較的電流集中を緩和して、上記条件を満たすことができ好ましい。
上記対向延伸部により形成される第1発光構造部を複数有する発光素子において、その第1発光構造部の面積、長手方向若しくは延伸電極部の延伸方向の長さ、が異なるような構造とすることで、上記課題がより深刻化する一方で、上記第2発光構造部の機能が好適に発現される傾向にあり、好ましい。
上述したように、発光構造部は複数有して、互いに発光構造部で接続された構造、すなわち連接する発光構造部とすることで、上述した課題がより顕在化するが、上記本発明の第2発光構造部を有することで、好適な発光特性の発光素子を得ることができる。
本発明の発光素子は、第1,2導電型層に設けられた第1,2電極間に電流が流れることで、素子動作部としり、上述した発光構造部となるが、一方の導電型層に電極が設けられずに形成された構造物、具体的には、発光構造部と同様に、少なくとも一方の導電型層が電極形成面内で分離された構造であって、凹凸構造を、前記発光構造部と電極、特に発光構造部上に設けられた電極(第2電極)と異なる電極(第1電極)、との間に設けることで、発光構造部から発せられた光を好適に電極形成面に垂直な方向に取り出すことができる。また、そのような凹凸部を、複数の発光構造部で構成される発光素子の素子動作部の外側に配置することで、素子外部に向かう光も好適に電極形成面に垂直な方向に光を取り出すことができる。具体的な凹凸部の形態としては、第1導電型層、発光層、第2導電型層が積層された構造において、下方の第1導電型層を露出させる構造において、発光構造部と同様に、第2導電型層を分離して形成する。
また、このように複数の発光構造部を複数連続して設けた発光素子構造において、第2の発光構造部をその一端に設けることで、上述した効果が好適に得られる傾向にあり、端部に配置しない場合に比べて好ましい。さらに好ましくは、複数の第1発光部を間に有して、それを挟むようにその外側、たとえば一方向に発光構造部が配列された構造ではその両端部、に設けられるとよい。
実施形態8に説明するように、上記発光素子構造において、その発光構造部の一部を分離した凹凸部6を、発光構造部に沿うように、発光素子(素子構造部57)の外周縁部分、素子構造部57内の発光構造部間、発光構造部と第1電極との間に設けることで、発光構造部から好適な光取り出しが可能となり、発光素子の指向性に優れたものとなる。具体的には、本発明の開口部を有する下部電極21により、電極形成面に垂直な縦方向の指向性が高まり、更に開口部21b以外の被覆された電極部21aにより発光素子内部に反射される光も多くなるが、その発光構造部に沿って設けられた凹凸部6により、縦方向の光の取り出しが高まり、発光素子の指向性が向上し、発光効率が高まる。また、このような、凹凸部は、発光構造部の切り込み部、食い込み部を設けて凹凸部6の拡張部6x−1,6y−1形成すると、その効果を高められ、好ましい。
以上の発光素子を用いた発光装置に適用することで、大面積の光源とすることができ、さらに、光変換部材により様々な発光色の発光装置とでき好ましい。
また、上記発光素子は、それを用いた発光装置として、下記に示すような発光装置に好適に用いられる。
前記発光素子100が載置される載置部202を有する発光装置200であって、前記載置部202に、発光素子100が支持基板104上に実装されて、載置されていることを特徴とする発光装置。
前記発光素子100を用いた発光装置200であって、発光装置200には、発光素子100から光の一部を、それとは異なる波長の光に変換する光変換部材221(106)を有することを特徴とする発光装置200。
前記光変換部材221(106)が、Alを含み、かつY、Lu、Sc、La、Gd、Tb、Eu及びSmから選択された少なくとも一つの元素と、Ga及びInから選択された一つの元素とを含むアルミニウム・ガーネット系蛍光体であって、さらに希土類元素から選択された少なくとも一つの元素を含有するアルミニウム・ガーネット系蛍光体を有することを特徴とする発光装置200である。
前記光変換部材221(106)が、(Re1−x(Al1−yGa12(0<x<1、0≦y≦1、但し、Reは、Y,Gd,La,Lu,Tb,Smからなる群より選択される少なくとも一種の元素であり,RはCe又はCeとPrである)であらわされる蛍光体を有することを特徴とする発光装置200である。
前記光変換部材221(106)が、Nを含み、かつBe、Mg、Ca、Sr、Ba、及びZnから選択された少なくとも一つの元素と、C、Si、Ge、Sn、Ti、Zr、及びHfから選択された少なくとも一つの元素とを含み、希土類元素から選択された少なくとも一つの元素で付活された窒化物系蛍光体を有する発光装置200である。
前記窒化物系蛍光体が、一般式LSiNα:Eu若しくはLSiβ:Eu(Lは、Sr若しくはCa、又は、Sr及びCa、のいずれか。)で表されることを特徴とする発光装置である。但しα=(2/3)X+(4/3)Y、β=(2/3)X+(4/3)Y−(2/3)Z。(ここで、本明細書中で、2/3Xなどの表記は、変数Xと分数の分子「2」との積を分母3で割る分数であることを示す)
本発明の発光素子では、その複数ある発光構造部の1つとして、電極間に一部だけ挟まれる(第2)発光構造部を有することで、他の(第1)発光構造部、特に複数の(第1)発光構造部に好適に均一な電流注入、発光が可能となり、その際に素子動作電圧の上昇も抑えることができる。
以下、図面を参照しながら、本発明に係る実施の形態の発光素子について説明する。
(実施形態1)
図1は、本発明の1実施形態を説明する模式平面図であり、本発明の基本的な構造を説明するものである。また、図17は本発明の実施形態に用いられる素子積層構造の一例を説明する模式断面図である。
図からわかるように、いくつかの発光構造部は、互いに対向して、ほぼ平行に延伸する延伸電極部、で挟まれた第1発光構造部を複数有し、各第1発光構造部は、囲み電極領域の発光構造部で連結されており、該発光構造部の終端に、第2発光構造部を有した構造である。第2発光構造部は、1辺に沿う延伸電極部(第1電極)と、発光構造部上の電極端部とが設けられており、両電極間で挟まれる領域は、第2発光構造部の一部、約半分となっている。
本発明に係る実施形態1の発光素子の具体例としては、図17において、基板4上に下地層5を介して、それぞれ窒化物半導体からなるn型層の第1導電型層1、活性層の発光層3及びp型層の第2導電型層2がその順に積層されて素子の積層構造101を形成してなり、第1導電型層1のn側電極10は、台座部11と電極延伸部12を有する構造とし、第2導電型層2のp側電極20は、図1,2,5〜9などに示すように、電流拡散導体(電流拡散層)として機能する透光性のp側オーミック接触用の下部電極21と、そのp側下部電極21の上に、前記p側電極20の台座部22pとそこから延伸する延伸部22a〜22xを有する上部電極22を備える。また、第1,2電極10,20は、同一面側に形成されてその電極形成面内において好適に、両電極の対向する端部が、一方の電極の対向端部若しくは電極延伸部の対向端部が、他方の電極の対向端部若しくは電極延伸部の対向端部に対応して、好ましくは、互いに発光構造部51を挟んで、発光構造部の対向する端部に沿って併設され、具体的にはほぼ並行、若しくはほぼ等間隔に対向して設けられる。また、第1電極10は、第1導電型層1の露出部1sの一部領域に電極形成部52として設けられ、それに面内で分離された発光構造部51として、発光層3を第1,2導電型層1,2で挟む構造が形成される領域に、第2導電型層2の露出部2sの一部電極形成部53に第2電極20、下部電極21が形成される。このとき、第1電極10は、第1導電型層1の露出部1sに設けられ、電極形成部52と発光構造部51とを介在して設けられた第1導電型層1の一部が電流拡散導体13として機能し、他方、第2導電型層2側では、上述の通り、オーミック用電極が拡散導体23として機能する。
本実施形態の具体的な素子構造では、図17に示すように、まず、サファイア基板4上に、100ÅのアンドープAlGaNのバッファ層と0.5μmアンドープGaN層とからなる下地層5を介して、第1導電型層のn型窒化物半導体層1を形成する、SiドープGaNのコンタクト層(41000Å)、アンドープGaN層(3000Å)、SiドープGaN層(300Å)、アンドープGaN層(500Å)、アンドープGaN(40Å)/InGaN(20Å)10ペアからなる多層膜を順に成長させる。
次に、n型層1の上に、窒化物半導体の活性層(発光層)3を構成する、アンドープGaN層(250Å)と、アンドープInGaN(30Å)/GaN(265Å)6ペアからなる層を成長させる。
続いて、活性層3の上に、第2導電型層のp型窒化物半導体層2を構成する、Mgドープ(ドープ量:5×1019cm−3)AlGaN(40Å)/InGaN(25Å)5ペアからなる多層膜、アンドープAlGaN層(2800Å)、Mgドープ(ドープ量:1×1020cm−3)GaNのコンタクト層(1200Å)を積層させる。
このようにして積層、形成した素子構造101を、前記n側コンタクト層の一部が露出する深さ(層1a)までエッチングして、露出面1sの一部をn側電極形成部52とし、このとき、残し膜厚部分のn側コンタクト層1aが第1導電型層1側の電流拡散導体13として機能する。また、露出部1sの電極形成部52を形成することにより設けられた第1,2導電型層とそれに挟まれた発光層3の発光構造部51のp側コンタクト層表面2sをp側電極形成面53とし、ITO膜をオーミック用の下部電極21としてほぼ全面に形成し、更にその上に第2電極20の台座部22p及び延伸部22a(1次延伸部)などが形成された上部電極22を設ける。また、n側電極10形成面1sには、オーミック用電極層を含む第1電極10として台座部11pと端部40aが形成される。このとき、第1電極10と第2電極20の上部電極22は、同じ電極構造のW(20nm)とPt(200nm)とAu(700nm)を順に同一工程で積層して形成する。この場合、p側電極20の透光性電極21は、第2導電型層2側の電流拡散媒体23と、またオーミック接触用電極を主に担うことになる。
そして、このような発光素子構造の一部構造を模式的に説明する図1において、各電極の延伸部12,22が、互いに対向配置された領域と、一方の延伸電極端部12x(22z)を他方の電極の延伸部22a(12a)が囲む領域とが、形成されており、各領域において、電極間に挟まれて発光構造部51として、それぞれ発光構造部51α、51xを有している。また、その発光素子の端部付近には、発光構造部51の端部領域として、第2発光構造部51βを有し、該第2発光構造部は、一方の電極12bがその発光構造部に沿うように1辺に延伸して形成され、他方の電極は、その延伸部22b−2が、その1辺に隣接した1辺に沿うように延伸して形成されている。このとき、第2発光構造部51βでは、一部領域が第1,2電極に挟まれた領域51yと、その領域を除いた残余の領域(余剰部)51zとを有した発光構造部と成っている。
このように発光素子構造は、発光構造部51として、様々な形態、特に電極配置と発光構造部形状による形態、で構成されるものであり、特に互いに対向して、ほぼ平行、若しくは等間隔に延伸した延伸電極部12b,22bに挟まれた第1発光構造部51α、と上記一部だけが電極間に挟まれた領域として形成された第2発光構造部51βとを有する基本構成と成っている。また、図1に見るように、各発光構造部51α,βは、上記一方の電極端部を他方の電極が囲む周縁電極の発光構造部51xにより連結されて、第1,2の発光構造部が連接されている。このような発光素子構造の他に、電極形成面内で分離された複数の発光構造部を各電極により配線されて、互いに電気的に接続された構造でもよい。
本発明の特徴部である第2発光構造部51β、図2,5〜9では発光構造部51a,f、では、発光構造部の一部領域が第1,2電極に挟まれた領域51yとなっており、残部の領域51zは、電極間に挟まれずに、電極から露出した側面で挟まれた領域として形成され、本発明では、このような第2発光構造部51βにより、上述したような複雑な電極構造(発光構造部)の形態、引いては発光素子構造において、電流が一部に集中したり、電圧分布が偏ったりして、その発光が均一でなく、発光構造部における発光効率の低下を招いて、発光素子特性の悪化していたものを軽減することができるようになる。これは、上記原因となっている電流分布、電圧差において、発光構造部間での相違、各発光構造部内での偏りなどが発生する場合に、上記第2発光構造部51β、特にその余剰部51zがあることで、その部分51zを電流が拡散して、迂回する領域として、余剰な拡散領域を供与し、その結果、他の発光構造部(第1発光構造部51α)における上記問題を解決していると考えられる。
(実施形態2)
図2は、各電極の基点となるパッド部を素子構造の矩形の対角線方向に対向は位置させて、その基点からいくつかの延伸電極部を有する構造である。
詳細な素子構造は、本発明に係る実施形態2として、図2に示すように、第1,2の電極10,20が、互いに対向して延伸する領域(発光構造部51)を有し、特に複数(発光構造部51a〜j)有しており、また、これら発光構造部51はそれぞれ電極延伸部12b,22bで挟まれて形成され、この挟まれた領域51a〜jにおいて下部電極層21が設けられる。このような発光構造部51は、それを挟む延伸部12b,22b(2次延伸部)を形成するために、すなわち、各延伸部12b−1〜−5(22b−5)間、両電極の延伸部12bと22b間に間隔を設けるように、延伸部の間に介在して延伸する1次延伸部12a,22aが設けられる。すなわち、各電極の台座部11,22pを基点として、各発光構造部51a〜jの幅方向若しくは長手方向に交叉する方向、上記両電極の対向延伸部12b,22bの延伸方向に交叉する方向に、延伸して設けられ、その1次延伸部12a,22aの任意の点を基点として、延伸させることで対向配置される2次延伸部12b,22bに連結される。また、対向して並行する延伸部間(12aと22b、22bと12b、12bと22a)の発光構造部51a〜cの他に、該延伸部の端部12z(22z)において、それを囲む他方電極20(10)の周縁電極部22x(12x)との間にあり、各発光構造部51a〜c間を連結する周縁電極部22x(12x)の発光構造部51x(51x−1,51x−2)が設けられている。また、上記実施形態1(図1)と同様に、台座部11,22pの対向部の電極端部40x,30xにおいて、他方電極20,10の対向部(延伸部22,12)の電極端部30a,bとの距離が電極位置により大きく異なる部分を有している。
図5に示す発光素子100では、各発光構造部51a〜fを挟む各電極の延伸部(2次延伸部)12b,22bは、互いに等間隔で、ほぼ平行に直進する、すなわち延伸部の延伸方向(31,41)、その対向端部の方向(32,42)がほぼ直線状である延伸部で構成されている。このように、図5に観られるほぼ平行に直進する対向部では、その対向部における電極端部の延伸方向がほぼ平行で、それに傾斜する方向に軸方向を設けて周期的に配列された開口部21bが複数設けられた下部電極層21が形成される。
また、図5の発光素子は、更に、一方電極10(20)の延伸部12(22)の端部12z(22z)を囲むように設けられる他方電極の台座部の端部、各発光構造部51a〜jを挟む延伸部の基点となる1次延伸部の端部により、周縁電極部22x(12x)が設けられ、その延伸端部12z(22z)と周縁電極部22x(12x)に挟まれた発光構造部51xが設けられている。この発光構造部51zは、並行する延伸部12と22に挟まれる各発光構造部51a〜jを連結させるように設けられる。このような連結部の発光構造部51xにおける両電極10,20の対向配置、特に一方の延伸端部12z(22z)と周縁電極部22x(12x)との配置関係は、一方の電極延伸部が2方向に延伸して他方電極(延伸端部12z,22z)を囲み、両電極間に発光構造部51zが設けられる。更に、その領域51xにおいて、延伸部(周縁電極)12x(22x)は、他方電極を囲んで互いに異なる方向に延伸し、且つ、複雑な対向部の電極端部(周縁部12x,22x、台座部の対向する端部)が設けられる。
発光構造部は、互いに対向する発光構造部(第1)を複数有し、各第1発光構造部は、囲み電極領域で連結されて、1つの発光構造部を形成し、また、発光構造部の両端には、第2発光構造部を配した構造である。この発光素子構造では、上記実施形態1では第1発光構造部がほぼ同一形状、同一面積であるのに比して、各第1発光構造部の面積、長手方向の長さが異なる構造となっている。
図5の発光素子構造は、図2における発光素子構造の一部変形例を示し、また各電極部、発光構造部について、識別する符号を付したものである。具体的には、図5−bは、図2において、電極端部の形状を四角形上からラウンド形状としたものであり、図5−aは、図2において、第1,2電極を反転させたものであり、第2発光構造部において、第1電極の電極端部と第2電極の延伸電極が設けられた構造となっている。
ここで、図5(a),(b)の各例では、それぞれ、発光構造部51の数、間隔(幅)が異なり、また、延伸部12a,b(22a,b)の形状が異なる例である。具体的には、図9(c)には、上記実施形態1と同様に、正負電極10,20(22)間に挟まれないで、電極(延伸部22)よりも素子の外側に発光構造部51zを有している。図5(a)と(b)とでは、第1,2電極10,20の延伸部形状をほぼ反対としたものである。また上記実施形態1と同様に、一方の電極10(20)の電極周縁部12x(22x)と他方電極20(10)の延伸部の延伸端部22z(12z)とに挟まれた発光構造部51xが、並行延伸部間の各発光構造部51a〜j間を連結するように配置されている。この周縁電極部における発光構造部51xについては、上述の通りである。ここで、図5において、発光構造部51b〜eは、第1発光構造部51αであり、51a,fは、第2発光構造部51βである。
その他に、図2〜9に見られる素子構造の特徴としては、一方の電極のパッド部から、他方の電極のパッド部に伸びる電極延伸部が、それに第1発光構造部を挟んで対向配置される他方電極の延伸部よりも幅広な電極であり、また、一方の電極の電極延伸部の端部とそれに対向する電極パッド部との距離が、他方の電極とのそれと異なり、前記パッド部間で延伸する電極とそれと異なる電極のパッド部との距離が、他方よりも短く配置されている。また、各延伸電極部は、1次電極から2次電極に延伸しているが、その電極(延伸電極)間の角度が大きい方が、それに対向する(囲み電極領域において)他方電極の端部との距離が小さい。このような構造とすることで、上述した課題に挙げられた電流不均一などが改善される傾向にあり、好ましい。
具体的には、各電極の台座部11,22pを、矩形状発光素子(素子動作部57)で、その構成辺よりも長い距離で対向するように、好ましくは図に見られるように、対角線上に対向配置されている。これにより、上述した併行して対向する電極延伸部とそれに挟まれた領域51α(51b〜e)の長さを長くとることができ、他の発光構造部(第2発光構造部51β、周縁電極部51x)に比べて、発光効率に優れた領域を長い領域で形成できるため、優れた発光素子が得られる。その他に、矩形状発光素子で、互いに対向する辺にほぼ並行に対向した台座部を設けて、その台座部間、それに隣接する領域に発光構造部51αを設ける構造とすることもできる。
しかし、このように、発光素子の構成辺に傾斜した対向する台座部、発光構造部の長手方向をとることにより、図示するように、各発光構造部51b〜eの面積、長さ、さらにはその形状が異なるような素子構造となり、上述した電流集中、電位差などにより発光効率が低下する素子構造と成りやすいが、上述した第2発光構造部51βを有していることで、電気特性、引いては発光特性に優れた発光素子となる。
台座部間の電極延伸部12a−2を他の延伸部12b,22、特に対向する第2電極の延伸部22b−2,3よりも幅広な電極としていることで、他の発光構造部より長い、好ましくは、発光素子内で最も長い発光構造部51c,dにおいて、優先的に電流注入が実現され、全体の発光効率、出力を高める構造としている。これに組み合わせて、発光構造部51c,dを、他の発光構造部51b,eよりも幅広としていることで、よりその効果を高めることができる。
また、パッド部11,22p間の電極延伸部12a−2の長さより、それに対向する電極延伸部22b−2,3よりも長くすることで、上記大きな発光構造部51c,dの発光を優れたものとでき、一方で、その延伸部の端部12z−2と、それを台座部22pとその周縁電極部(発光構造部51x−1を囲む電極)との距離を、それに対向する電極の端部22z−2,3と台座部11との距離より短くすることで、各周縁電極部51xでの発光特性を向上させている。
また、その周縁電極の発光構造部51xにおいて、屈曲して延伸する電極の角度が、大きい方と、周縁電極に対向する他方電極の端部12z,22zとの距離を、小さい角度のそれより大きくとることで、電極の囲み形状による電流集中、電位差の課題を解決し、好適な発光特性の発光素子とできる。
(実施形態3)
図3,4は、図2における素子構造、具体的には、発光構造部の一端に配置された(第2)発光構造部における電極構造、形状を変化させた形態であり、この電極構造の違いによる電流密度分布(左側が低電流密度、右側が高電流密度)を示すものである。
図3では、図3−aが、該当発光構造部において、第1電極が隣り合う2辺に沿うように電極延伸部が設けられ、他方の第2電極は、第1電極の延伸部端部付近に配置された構造であり、図3−bでは、図3−aの2辺の一方の延伸電極部が無い構造であり、図3−cは、図3−aで一方の延伸電極部を除去して、発光構造部を拡張したものである。図から明らかなように、図3−a、bでは、第2電極のパッド部から延伸電極部の半分付近の領域まで、極めて高密度な領域となり、また、各電流密度も高密度側に偏った傾向が見られ、飽和して十分な発光効率とならない傾向にあり、一方で、図3−cでは広範囲にわたって電流委都度分布を示しており、好適な電流分布となっている。また、各出力、電位差は、それぞれ、1.36,1.363,1.382と0.236,0.233,0.256であり、図3−bがもっとも優れた発光出力であることがわかる。
また、図4は、図3と第1,2電極を反転させた構造であり、すなわち、第2発光構造部において、電極端部を発光構造部上の第2電極とし、電極延伸部を第1電極としたものであり、各図4−a,b,cは、上記図3−c,b,aと同様でな電極形状の違いであり、各出力、電位差は、それぞれ1.374,1.384,1.268と0.219,0.226,0.263である。また、その電流分布と分布図からわかるように、図3とは反対の分布図を示しているが、第2発光構造部において、飽和せずに低電流密度領域が図4−aで形成されており、密度分布の偏りが緩和されて、比較的広い電流密度に分布していることがわかる。図3−bとc、図4−cとaの違いは、第2発光構造部において、電極間に挟まれる領域が、発光構造部に占める割合の違いであり、前者は半分以上で、後者は半分以下となっており、半分以下とする方がよい結果が得られている。
(その他の実施形態[実施形態4])
図7,8は、図2の変形例である図5−bにおいて、発光素子に、上記凹凸部をそれぞれ、素子動作部の外側、外側と各発光構造部においてそれに沿うように、第1電極と発光構造部との間に、非動作部として設けられている。詳しくは後述の実施形態8にて説明する。また、図7,8では、図5−b一部符号を省略しており、図2についても図5−bの一部符号を省略している。
図6の発光素子は、それぞれ図5−b,aの下部電極層21の構造を変えた変形例であり、この下部電極21cは、上部電極の延伸部から枝状に伸びたストライプ状電極で形成されている。このストライプ方向は、図から分かるように、他方の電極に向かって伸びており、更に、台座電極11,22pで、第2電極から第1電極に向かうような方向に傾斜している。このような開口部を有するストライプ状の電極は、後述する開口部21bを有する下部電極と同様に、開口部から好適に光取り出しが成される。
図9は、図5において、下部電極層21を開口部21bと形成部21aとを有する電極構造としたものであり、後述するように、開口部21bにおいて光取り出しに優れた発光素子とできる。
(第2電極20の上部電極22と下部電極層21の関係と、第1電極10との関係)
本発明の特徴部である第2電極20の下部電極層21における開口部21bの周期構造と、上部電極22の延伸部12aとの関係など、第1,2電極20との対向関係(対向電極間35)などについて詳細に説明する。これらは、上述したかく実施形態の素子構造、電極構造、延伸部構造に適用できる。
本発明の発光素子100は、図17,13などに示すように、素子の積層構造101に、素子動作部57として、第1導電型層1の露出部1sに電極形成部52と、発光構造部51が、電極形成面側に好ましくはそれぞれ分離されて設けられ、図1〜9に示すように、発光構造部51の第2導電型層2の露出部2sを覆って、第2電極20の下部電極層21が形成され、その上に電気的に接続された上部電極22が設けられる。この上部電極22には、少なくとも延伸部22aが設けられて、少なくとも異なる2方向に延伸方向32(32a,32b)を、若しくは第1電極10との対向する電極の端部30(30a,30b)の延伸方向31(31a,31b)でもって、形成されている。
このとき、図9に示すように、互いに直交せずに90°方向から傾斜した少なくとも2軸33(33a,33b)の周期構造で2次元配列された開口部21b、開口部21b間に介在する形成部21a(経路34)を有している。この周期構造の軸33と、上記延伸方向32(31)とが、傾斜して互いに異なる方向とすることで、上部電極22の延伸部により線上、若しくは、第1電極10に対向して、対向する電極端部30が第1電極10の対向する端部40若しくはその延伸方向41に並行して、又は第1電極10の延伸部12の延伸方向42に並行して、形成されることで、面内に1次的に電流拡散が実施され、続いて、その下方で、上部電極22(延伸部12a)と発光構造部51(第2導電型層2)との間に設けられた層状の下部電極21により面内に広げられる際に、並行する第1電極(端部40、延伸部42)と上部電極22の延伸部12aとの間の発光構造部51a〜jにおいて、延伸部12aの延伸方向32、若しくは対向する電極端部30の延伸方向に傾斜して異なる方向に開口部21bが配列され、その開口部21b間に経路34(形成部21a)が設けられることで、電極間35に挟まれた発光構造部51a〜jにおいて、上記延伸方向32(31)とは異なる方向への面内の電流拡散が実現される。これにより、面内への電流拡散が好適なものとなり、また、開口部21bにより好適な光取出し、発光が可能となる素子100が得られる。
図9のような周期構造の開口部21b、形成部21aは、両電極10,20(延伸部)間における発光構造部51a〜jのほぼ全面に形成される形態が好ましいが、部分的に周期構造開口部が設けられ、他の部分が開口部を有さない電極21部とすること、他の部分が構造部51露出部とすることも可能である。
また、発光構造部51の上を覆って形成され、構造部51面内に電流拡散させる下部電極21、上部電極22とについては、上下関係は、例えば、線上の延伸部22とその上を覆って下部電極21が設けられる形態とすることもできる。すなわち、上部電極がそれよりも幅広、大面積の下部電極に電気的に接続されて両者の働きでもって、構造部51面内に電流拡散される構造を有することであり、好ましくは、台座部22pが一部に設けられた上部電極22の下方に下部電極が設けられることで、まず延伸部22a,bによる電流拡散から始まり好ましい。
このように、第1段階として上部電極の延伸部22(12)及びその延伸方向32、電極端部30の延伸方向31に電流拡散されて、それに電気的に接続された下部電極層21により拡散される。また台座部は図1〜9に観るように、延伸部よりも幅広な形状としても良く、パッド部として機能するように延伸部の幅を広くしてその任意の位置を台座部としても良く、図10などに示すように、ワイヤーボンディングされずに、電極形成面で基体104などに実装される場合には特に台座部の形状を他の部分(延伸部)と異なるような形状としなくても良い。
また、上部電極22と下部電極21との関係は、上述したように、上部電極において部分的な領域に好適に電流が拡散・供給される配線電極としての役目を果たせばよいため、好ましくは下部電極21よりもシート抵抗が小さくなるように上部電極22(延伸部22a,b)が設けられる。具体的には、下部電極21よりも大きな膜厚で上部電極22(延伸部22a,b)が形成され、特に下部電極21の形成部21aが透光性である場合には好ましい。また、下部電極21の形成部21aが透光性である場合には、上部電極22(延伸部22a,b)よりも透過率が高くなるように形成されることで、各電極の機能、電流拡散と光取出しをそれぞれ異なるものとでき、好適な電極構造が得られ好ましい。また、後述するように、透光性電極の上に別途反射膜を設ける場合についても透光性の形成部21aと同様の条件が好ましい。他方、電極形成部21aを反射性の電極とする場合には、上述した関係にとらわれず、適宜各特性の電極21,22を形成すると良い。
(本発明の発光素子100)
以上説明した各実施形態において、その実施形態(発光素子100)の各構成について以下に詳しく、説明するが、本発明は上記実施形態及びその構成について組み合わせて適用することもできる。また、上記実施形態及びそれを説明する各図面、並びに後述する各構成の説明及びその図面の符号は共通しており、また一部誇張して描画されているものもある。
(素子構造体101)
本発明の発光素子100に用いられる素子構造体101は、図17,13の断面図などに示すように、基板4上に、第1導電型層1、活性層(発光層3)、第2導電型層2が順に積層された積層構造体101でもよく、第1,2導電型層1,2が横方向に接合されていてもよく、これらを組み合わせたもの、例えば断面が折れ線(連続直線)状、山形、谷形などの様々な面が複合された接合面、でもよい。
具体的には、本発明の発光素子100は、素子構造体101として、図17,13に示すように、素子構造体101は、基板4上に、第1導電型層1、発光層(活性層)3、第2導電型層2が順に積層された積層構造101を有するものであり、このとき、電極形成面内において、発光構造部51は、図に示すように積層方向に第1,2導電型層が発光層を挟む構造の他、上述したとおり、第1,2導電型層が横方向に接合されていてもよく、またこれらを組み合わせた縦、横の複雑な複合接合面を形成したものでもよい。また、発光素子構造として、MIS構造、p−n接合構造、ホモ接合構造、ヘテロ接合構造(ダブルヘテロ構造)、PIN構造などを用いることができ、またユニポーラ素子にも適用できるが、好ましくは、第1,2導電型層が互いに異なる導電型層となるp−n接合構造などのn型、p型層で活性層を挟む構造を用いることが好ましい。
素子構造体100を構成する積層構造の半導体材料は、InAlGaP系材料、InP系材料、AlGaAs系材料、これらの混晶材料でもよく、GaN系窒化物半導体材料でもよい。GaN系窒化物半導体材料として具体的には、GaN、AlN、もしくはInN、又はこれらの混晶であるIII−V族窒化物半導体(InαAlβGa1−α−βN、0≦α、0≦β、α+β≦1)で表され、またこれに加えて、III族元素として一部若しくは全部にBを用いたり、V族元素としてNの一部をP、As、Sbで置換したりした混晶でもよい。以下、窒化物半導体を用いて説明するが、他の材料系にも適用される。
発光層としては、InGaN系材料を用いることができ、ワイドバンドギャップの発光層により、緑色、青色の可視光域から紫色、それより短波長の紫外域に発光するものが得られる。
各実施形態では、第1,2導電型層1,2を、n型層、p型層としているが、この逆でも良い。また、半導体積層構造101の成長方法として具体的にはMOVPE(有機金属気相成長法)、HVPE(ハライド気相成長法)、MBE(分子線エピタキシー法)、MOCVD(有機金属化学気相成長法)があり、好ましくはMOCVD,MBEである。
本発明の半導体積層構造101の成長方法に用いる基板、特にエピタキシャル成長用の基板10としては、窒化物半導体と異なる材料の異種基板として、例えば、C面、R面、及びA面のいずれかを主面とするサファイア、スピネル(MgAl)のような絶縁性基板、SiC(6H、4H、3Cを含む)、ZnS、ZnO、GaAs、Si、及び窒化物半導体と格子整合する酸化物基板等、窒化物半導体を成長させることが可能で従来から知られており、窒化物半導体と異なる基板材料を用いることができ、好ましくはサファイア、スピネルであり、また異種基板以外として、GaN、AlNなどの窒化物半導体基板なども用いることができる。他の半導体材料においては従来知られた同じ材料系の基板、若しくはSiなどの異種基板を用いることができる。
(半導体積層構造101)
発光素子100を形成する半導体積層構造101としては、例えば図17,13に示すように、上記基板4上に下地層5などを介して成長され、このとき、下地層5を素子構造101として動作部に含めても良いが、通常素子構造の成長用のみ形成されて素子として機能しない非動作部として設けられる。下地層は、特に異種基板を用いた場合、結晶核形成、核成長層として、低温成長バッファ層を用い、好適な条件はAlGa1−xN(0≦x≦1)を低温(200〜900℃)で成長させるものであり、続いて高温で層成長させて、膜厚50Å〜0.1μm程度(単結晶、高温成長層)で形成する。また、ELO(Epitaxial Lateral Overgrowth)として知られるように、基板上、若しくは下地層上に、島状部(凸部、マスク開口部)などの成長部を他の領域に比べて優先的、若しくは選択的に成長させて、各選択成長部が横方向に成長して接合、会合することで層を形成するような成長層を下地層5若しくは、素子積層構造101に用いることもでき、これにより結晶性、特に結晶欠陥を低減させた素子構造とできる。
窒化物半導体に用いるドーパントとして、n型不純物としては、Si、Ge、Sn、S、O、Ti、Zr等のIV族、若しくはVI族元素を用いることができ、好ましくはSi、Ge、Snを、さらに最も好ましくはSiを用いる。また、p型不純物としては、特に限定されないが、Be、Zn、Mn、Cr、Mg、Caなどが挙げられ、好ましくはMgが用いられる。これら、アクセプター、ドナーの各ドーパントを添加することにより、各導電型の窒化物半導体層を形成し、後述する各導電型層を構成する。また、窒化物半導体は不純物をドープしない無添加層であってもn型層として用いることができ、さらにAlGaAsなどの他の材料系にはそれに適したドーパント用いる。本発明における第1導電型層、第2導電型層には、部分的にアンドープの層、半絶縁性の層が積層されていても良く、電流阻止層のよう逆導電型の埋込層に、各導電型層内に部分的に寄生な素子部分を形成していても良い。
(第1導電型層1)
上記実施形態の素子構造で示すように、第1導電型層1として、各導電型のドーパントを含有させ、電極形成面内及び活性層へのキャリアの供給、拡散を実現するような層構造を形成すると良く、特に電極形成部52から発光構造部51にキャリアを面内に拡散して供給する電流拡散導体13(コンタクト層)には、他の領域より高濃度にドープされることが好ましい。また、このような電荷供給・面内拡散層(コンタクト層及びその近傍層)の他に、上記実施形態で示すように、積層方向において発光層へ電荷を移動・供給させる介在層、若しくは第2導電型のキャリアを発光層に閉じこめるクラッド層などを、コンタクト層とは別に設けることが好ましい。このような発光層3と面内拡散層(領域)のコンタクト層との間に設ける層として、窒化物半導体素子の場合には、面内拡散層(領域)より低濃度ドーパント量若しくはアンドープの低不純物濃度層(アンドープ層)、及び/又は多層膜層を設けることが好ましい。これは、低不純物層でもって、高不純物層(面内拡散層)による結晶性悪化を回復させてその上に成長させるクラッド層、発光層の結晶性を良好にし、駆動時にあっては高濃度層に隣接して低濃度層が設けられることで面内拡散を促進させ、また、耐圧性も向上させることができる。多層膜層は、少なくとも2種の層を交互に積層させたような周期構造で形成すること、具体的には、Inを含む窒化物半導体層とそれとは異なる組成の層の周期構造、好ましくはInGa1−xN/InGa1−yN(0≦x<y<1)で構成することで、発光層、特にInを含む窒化物半導体層、好ましくはそれを井戸層として複数用いた場合において、その結晶性を向上させることができる。このような多層膜としては、組成が異なる層による周期構造の他、組成傾斜構造、また、これらの構造において不純物濃度を変調させた構造、膜厚を変動させた構造なども採用でき、好ましくは、20nm以下の膜厚の層を積層した構造、さらに好ましくは10nm以下の膜厚の層を積層した構造で形成することが、上記結晶性に有利となる。
(発光層[活性層)3)
本発明の素子構造101としては、第1,2導電型層との間に、発光層を設けて、発光層で発光させる素子構造とすることが好ましく、特に窒化物半導体においてはInを含む窒化物半導体を発光層に用いたものが、紫外域から可視光(赤色光)の領域において好適な発光効率が得られ好ましく、特にInGaN層を用いること、特にInの混晶比を変化させて所望の発光波長を得ることが好ましい。このほかの窒化物半導体材料として、GaN,AlGaNなどのInGaNよりも高バンドギャップの材料を用いて、紫外域において使用する発光素子としても良い。
さらに好ましい発光層としては、量子井戸構造の活性層を用いることであり、井戸層が1つの単一量子井戸構造、さらに好ましくは、複数の井戸層が障壁層を介して積層した構造の多重量子井戸構造を採用することが好ましい。井戸層については上記発光層と同様に、好ましくはInGaN層を用いることであり、障壁層として、井戸層よりバンドギャップエネルギーが大きくなるような層として、例えばInGaN、GaN、AlGaNを設けることが好ましい。このとき、井戸層、障壁層の膜厚としては、30nm以下、好ましくは20nm以下、さらに井戸層において好ましくは10nm以下とすることで、量子効率に優れた発光層が得られる。また、井戸層、障壁層に、各導電型層のドーパントがドープされていても良く、障壁層は、井戸層間に一層以上設けても良い。
(第2導電型層2)
第2導電型層2としては、キャリアを発光層に閉じこめるクラッド層、電極が形成されるコンタクト層を、設けることが好ましく、この時両層を別々に設けてコンタクト層をクラッド層よりも発光層より遠くに設け、高濃度にドーパントをドープすることが好ましい。窒化物半導体においては、クラッド層として好ましくはAlを含む窒化物半導体、さらに好ましくはAlGaN層を用いることが好ましく、さらに発光層に近接して、好ましくは接して形成されることで発光層の効率を高めることができ好ましい。さらに、コンタクト層とクラッド層との間にそれらの層より低不純物濃度の層を介在させることで、耐圧性に優れた素子とでき、またコンタクト層を高濃度にドープしても結晶性を改善できるため好ましい。コンタクト層は、図17,13に示すように、電極形成面内で発光部51として設けられるため、その面内でキャリアを拡散させる層としても機能しうるが、本発明では、電極20を設けて、該面内の一部に延伸する上部電極22と、それよりも面積の大きな、断面幅広な層状の下部電極21により面内での電流拡散導層、拡散導体として機能させることで、窒化物半導体における低い移動度のp型キャリアの拡散を補助し、また、コンタクト層の膜厚を他の層(クラッド層、介在低濃度層)よりも小さくして、且つ他の層よりも高濃度に不純物ドープすることで、高キャリア濃度の層を形成して、電極から良好な電荷注入を実現でき好ましい。
(電流拡散導体13)
このように本発明の積層構造101において、電流拡散導体13は、素子構造体内(第1導電型層内13)に設けられても、素子構造体上(の電極21)に設けられる形態でもよい。具体的には、図13などに示すように、第1導電型層1においては、露出電極形成面52に第1の電極10が設けられ、該第1電極10が設けられた第1導電型層10内を横方向に電流拡散する拡散導体13として機能し、他方、第2導電型層2側には、延伸電極に電気的に接合するオーミック接触用の電極21でもって、面内において、一部に設けられた電極延伸部から、電流を面内に広く拡散させる拡散導体として機能する。第2導電型層2内に拡散層を設けても良く、第1導電型層上に、外部(電極)の拡散導体を設けても良い。
(発光素子面内構造)
本発明において、発光素子構造101の電極形成面内の構造としては、図17,13に示すように、発光層3とそれを挟む第1,2導電型層1,2が形成された発光構造部51と、第1導電型層1側電極形成部52とを、面内で一部が重なる構造よりも分離して設けることが好ましい。本発明の発光素子は、素子構造部57に発光構造部51と電極形成部52が設けられた構造であり、素子構造部57は電流拡散導体13(第1導電型層1)上に形成され、1つの素子構造部57内で1つの発光構造部51(図1〜9)とする形態でも良く、1つの素子構造部57内で複数の発光構造部51が形成されるような発光構造部51の集積構造を形成しても良く、1つの素子構造57に対して少なくとも1対の発光構造部51と電極形成部52が形成されれば良く、さらに、素子構造部57を複数集積して集積型の発光素子100とすることもできる。
電極の形成形態としては、図1〜9に示すように、双方の電極の少なくとも一方が、延伸部、湾曲・屈曲する延伸部、台座部、を備えていてもよく、好ましくは第1導電型層2側に湾曲する延伸部22y、屈曲・湾曲する複合電極端部を有する周縁電極部22x(12x)を設けて、その電極(一方の台座部若しくは延伸端部12z[22z])間の発光構造部51を形成してそれを覆う下部電極層21で電流拡散させ、図1〜9に示すように両方の電極に設けることもできる。また、図14(a)に示すように、複数の台座部が延伸方向に離間されて配置されていてもよく、延伸部が断続的に延伸していてもよく、この場合素子外部の例えば実装基体104、貼り合わせ用の転写基板9側の電極で分離された台座部が電気的に接続されて、全体として延伸電極として機能する。
各電極の配線形態としては、各電極は素子構造体内に電流供給できるように、オーミック接触されたオーミック接触部を有することが好ましく、該オーミック接触部に一致して電極(延伸部、台座部)が形成されていることが好ましい。他の形態としては、離間して配置されたオーミック接触部に対して、それらを導通するように、配線用として電極が設けられてもよい。また、このような配線用電極は、後述する素子実装基体側に設けられてもよい。
電極形成部52としては、電極形成可能なように、第1導電型層1の露出部52(1s)に設けられ、該露出部は、図17に示すように、第1導電型層1、発光層3、第2導電型層2を順に積層した積層構造101において、第2導電型層2、発光層3の面内の一部、若しくはそれに加えて第1導電型層1の深さ方向の一部を除去して、露出させた露出部1sを電極形成部52とする他、図13(b)に示すように、分離溝52aを形成して、その溝52aを介して発光構造部51に離間させて、露出部1eから第2導電型層露出部に跨って電極10を形成して、電極形成部52を面内に設ける構造とすることもでき、また図13(a)に示すように、形成した第1導電型層1−1の面内一部を、除去若しくはマスクして、面内一部に発光構造部51として、発光層3、第2導電型層2、若しくはそれに加えて第1導電型層の一部2−3を積層成長させた構造を面内の一部(発光構造部)に形成する構造とすることもできる。このとき、電極10のボンディング位置である電極形成部52は、積層方向において、電極20と同等とすることも、それよりも高い位置とすることもできる。また、このとき、電極形成部52は、発光構造部51とは面内で分離されて形成されるので、電極形成部52の領域は非発光領域となり、発光構造部51と電極形成部52とに面内で重なって、下部に設けられた第1導電型層の一部領域の拡散部13などにより、電極10から発光構造部51にキャリアが面内拡散され供給される。
このように素子構造体の電極形成位置は、各導電型層に設けられた電極形成面の上に設けられ、上記素子構造体の形状・形態に依存するため、図に示すような第2導電型層、発光層を一部除去して露出させた第1導電型層を電極形成面として、基板上において、発光層の上方、下方にそれぞれ第2電極、第1電極の形成面が設けられる形態がある。その他に同一面側に両方の電極を形成すれば、他の電極形成面の形態もとりうる。
(第1電極10)
また、第1電極10は、第1導電型層1の露出部1sの少なくとも一部に電極形成領域52として形成され、発光構造部51と面内で分離されて設けられ、オーミック接触用として第1導電型層1内に電流注入する。第1導電型層1の露出部1sは、図1〜9に示すように、発光構造部51を囲むように素子構造部101の端部に設けられていても良く、図13に示すように基板4を素子端部で露出(露出部4s)させて、第1導電型層1の側面1Cを傾斜させて、光反射部、取出し部として機能させることができ、この場合、発光構造部51の側面51Cよりも、傾斜側面における電極形成面、基板面の法線方向に対する角度を、大きくすることで、第1導電型層1内を横方向に伝搬する光を効率的に取出すことができ好ましい。また、露出部1sは、素子動作部57内において、発光構造部51に対して、第1電極10から露出させて設けること(51C)で、光取り出し溝として機能させることもでき、またそのような電極10から露出された領域において凸部、例えば、電流注入されない非発光構造部(電極形成部52など、又は素子非動作部58)として凸部を設けると、反射機能、光取り出し端部に寄与する。
第1電極10の延伸部12は、上述したように発光構造部57内に、パッド部11から延伸して形成され、発光構造部51に電流拡散、注入する機能を有する。上記第1導電型層1内の面内拡散層13、第2導電型層2内及び第2電極20(下部電極層21)の面内拡散、具体的にはシート抵抗を適宜調整することで、第1電極、第2電極間隔を調整して、所望の拡散状態、発光構造部51の幅の発光素子とできる。
第1電極10は、パッド部11、延伸電極部12とも同じ電極構造としても良く、別々に、例えば、オーミック接触用の電極として電極10の形状で形成して、パッド部11にのみパッド電極を形成する構造として、形成しても良い。また、図1〜9におけるパッド部11、22pは、図17に示すように、基板上の素子構造表面を覆う絶縁膜61の開口部を示すものであり、上記実施形態に示すように、パッド部11、延伸部12を同一構造として形成している。
また、図1〜9に示す形態において、第1,2電極10,20が互いに延伸部を有し、その延伸部が互いに対向して並行する発光構造部51a〜jを有する形態において、パッド部11は、延伸電極部12の端部に形成されると、上記形成領域52と発光領域51(下部電極層21)との配置を好適なものとでき好ましい。
(第2電極20)
下部電極21は、上述したように、発光構造部51内で第2導電型層2の露出部2sのほぼ全面に形成されることで、発光構造部51において面内に電流拡散させる拡散層として機能させることができる。第2導電型層2内に電流拡散層を設ける場合には、面内に拡散させる電極21が不要となるが、素子構造として困難な場合が多いため、素子構造内の電流拡散層と電極拡散層の両方を用いることもできる。窒化物半導体においてはp型層における面内拡散が不十分となる場合が多いため、外部と接続させるパッド部22pと、そこから延伸させて発光構造部51に電流を拡散させる第2電極20の上部電極22延伸部22a(22b)と、第2電極20を面内に拡散するように延伸部22a(22b)それよりも広い電極形成面を有する下部電極21を設けることが良い。
下部電極21は、上述したように透光性電極として設けることが好ましく、図10,11,13(b)に示すように、基板4側を光り取り出し面とする場合には、透光性電極の上に、又は透光性の絶縁膜などを介して反射膜を設けたり、透光性電極層の上に反射性電極層を設けた電極構造としたり、反射性電極とすることができる。光取り出し面を基板4側、第2導電型層2とする場合のいずれでも、図9のように第2電極20の下部電極層21に開口部を設けて透光性電極とすること、若しくは下部電極層21の形成部21aも透光性電極であることが好ましい。
第1,2電極10,20の電極材料、特にp型窒化物半導体層用の下部電極21の材料としては、ニッケル(Ni)、白金(Pt)パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)、オスミウム(Os)、イリジウム(Ir)、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、コバルト(Co)、鉄(Fe)、マンガン(Mn)、モリブデン(Mo)、クロム(Cr)、タングステン(W)、ランタン(La)、銅(Cu)、銀(Ag)、イットリウム(Y)よりなる群から選択された少なくとも一種を含む金属、合金、積層構造、さらには、それらの化合物、例えば、導電性の酸化物、窒化物などがあり、導電性の金属酸化物(酸化物半導体)も、錫をドーピングした厚さ50Å〜10μmの酸化インジウム(Indium Tin Oxide;ITO)、ZnO、In、またはSnOが挙げられ、透光性に有利なことから好適に用いられる。酸化物半導体材料の場合には、各導電型層1,2とその電極10、20との中間的な機能を有する形態となり、導電型層1,2と金属酸化物の導電性を同じとしてもよく、異なる導電型の酸化物半導体層を電極とする場合には、素子構造101との間に何らかの介在層(逆導電型層、酸化物半導体、金属層)を更に介して使用してもよく、また拡散導体21として機能することからも、第1導電型層1側の拡散導体13として、このような半導体層、電極材料を用いても良い。下部電極21が、金属層の場合には、透光性が確保される薄膜で形成することができ、また、本発明の開口部21bを有する下部電極層21の場合には、下部電極21の反射性の大きい金属、例えばAl,Ag,Rh、を用いることができる。
第2電極20は、上述したように、第1電極と同様に、パッド部22p、延伸電極部22a(22b)として形成することができ、その時、第1電極10、特に電極端部30、延伸電極部12との間、若しくはそれを挟むように形成し、好ましくは両電極10,20が互いに交互に対向して配置されることで、好適な発光領域51が形成されて、その両電極、電極端部、延伸部間に挟まれた発光構造部51において、下部電極層21が設けられて均一な発光が得られる。
さらにまた、図13(b)に示すように、パッド部22pを複数設ける形態でも良く、好ましくは、延伸電極部22aとして機能するように、配列方向22aでもって配列されることが好ましい。このとき、図に示すような1列状に配置されるほか、第1,2電極間35(発光構造部51a〜f)において、ジグザグ状、2列など複数列、延伸電極部22aに近似されるような配列であれば良い。分離された延伸部12aとして形成される場合には、素子100側で、さらにそれらを電気的に接続する配線を備えても良いが、好適には、図10に示すように、積層基体104側の電極114で互いに電極を接続することで、構造を簡略化でき、発光素子100の機能を高めることができ好ましい。
ここで、図14は第2電極20とその下部電極21、上部電極22(延伸部22a)の実施形態を説明するものであり、上述したとおり、パッド部22pを列状22a(点線部)に配列して延伸電極部22aとしてもよく(図13−a)、素子構造部101の開口部6に対応させた電極開口部21bと、電極形成部21aとで下部電極21を形成しても良く(図14−b)、図14(d)に示すように、下部電極21を一部開口21bさせて、開口部21b(第2導電型層2表面)と電極21の表面上に跨る電極22αとして、延伸部22a(台座部22p)を形成することもでき、酸化物などの化合物電極の場合には、第2電極の接着性を向上させることができる。また、このような開口部21bを充填する第2電極22αの形態としては、図14(e)に示すように、第2導電型層2に凹部6を設けて開口させて、下部電極開口部21bと共に、第2電極20を開口部21bと電極21上に跨って形成する電極22α(上部電極台座部22p−1,−2)とすることもできる。
また、第2電極の電極21は、発光構造部51に設けられるため、光取出し、反射が有効となるように、透光性、反射性を好適に機能するには、透光性(光透過率)の大きい電極(形成部21a)とするか(光吸収の小さい電極材料)若しくはその透過率(吸収率)を調整して、及び/又は透過性を決める開口部21bの面積比(開口部面積の総和/電極形成[53]面積)、開口率、分布状態を調整して、とすることがいずれの光取出し方向においても有用である。
また、図14(a)に示すように電極形成部2sの光取り出し面を凹凸部6とする方法、図14(c)、(e)に示すように、電極23開口部20bに対応して、第2導電型層2にも凹部6aを設けて、凸部上面6c(電極材料界面)と凹部底面6a(保護膜、絶縁膜材料界面)とでもって、異なる材料間の界面で凹凸部6が形成されて、好適な光取出し、反射に寄与し、また、側面6bの傾斜角を大きくすることにより、側面での反射が強まり、光取出し効率が向上する。このような凹凸部6は、素子構造101の端面、側面、露出面、界面(層間、基板面、金属形成面、絶縁膜などの膜形成面)のいずれに形成しても良く、例えば図16に示すように図中矢印に伝搬する光を散乱、方向制御して取出し効率を高める目的で、基板4に凹凸加工6を施して、その上に素子構造101を積層させることで、基板4と素子構造の半導体との間で凹凸界面を形成させること、除去部7により基板4を除去して露出した下地層5(第1導電型層1)の除去面に凹凸界面6を形成することもできる。このような凹凸面6を形成することが、本発明の発光素子において、光取出しが向上し、出力が向上し、好ましい。
ここで、凹凸部6の形状、前記周期構造の下部電極21の開口部21b(形成部20a)の形状としては、面内で、ドット状、格子状、ハニカム状、枝状、矩形状、多角形状、円形状など様々な形状の凸部(上面)若しくは開口部20b及び、又は凹部(底面)若しくは形成部21aとすることができ、その大きさとしては、少なくとも光に対して反射、散乱、取出しするように、λ/(4n){nは凹凸部の界面を構成する材料の屈折率、λは発光層の発光波長}以上の大きさとすることであり、具体的には開口部、凸部、凹部の間隔、1辺の長さ(矩形状、多角形状)、直径(ドット状、円形状)を、1〜10μmとすることであり、好ましくは2〜5μmの大きさとすることである。断面の形状としては特に限定されないが、ほぼ垂直な凹部側面としても、傾斜面(メサ状、逆メサ状)となっていても良い。また、本発明において反射膜は、反射機能を持たせる素子の端面、露出面、基板との界面に形成して、所望(例えば基板4側)の光取出しを実現させるものである。具体的には、凹凸部6と同様に、素子の露出面である第1,2導電型層露出面1s(52)、2s(53)、電極開口部20bの他、各半導体層(第1,2導電型層、発光構造部51)の側面51C、例えば分離溝52aの側面(図13)、曲面の発光部側面51Cなど、さらに基板面に設けることができ、側面などでは傾斜面として所望の方向への反射光を得ることができ、さらに上述したように、他の金属層(例えば電極)に反射性を持たせることもでき、さらに上記凹凸部6の各面6a〜cにも用いることができる。また、反射膜の材料としては、金属膜、酸化物膜(絶縁膜)、多層膜反射膜(DBR)などを用いることができ、可視光、特に発光層がInxGa1−xN(0≦x≦1)であるような場合にはAl,Agが高反射膜材料として機能し、その他、形成位置、形成部分(素子の端部)の材料、発光波長などにより、それに適した材料が選択される。
ここで、第1電極10と第2電極20、若しくは、第1電極10と、第2電極20及び上部電極22(台座部22p、延伸部22a)とを同一構造、材料の電極として、同時に形成することもできる。具体的には、露出部2s側から順に、Ti/Au、Ti/Alなどのように、第1導電型層とのオーミック用と密着用としてのTi層(第1層)とパッド用のパッド層(第2層)として金、Al、白金族の構成、また、オーミック用の第1層(例えば、W、Mo、Tiが第1導電型層とのオーミック接触に好ましい)と、パッド用の第2層との間にバリア層として、高融点金属層(W、Mo、白金族)を設ける構造、例えばW/Pt/Au、Ti/Rh(第2層a)/Pt(第2層b)/Au、が用いられ、特に第1電極(オーミック接触用)として好適に用いられる。特に、反射性、バリア性に優れるRhを第2層に用いると、光取出し効率が向上して好ましい。また、第2導電型層2のオーミック用の電極23としては、露出部2s側から順に、Ni/Au、Co/Auの他、ITOなどの導電性酸化物、白金族元素の金属、Rh/Ir、Pt/Pdなどが好適に用いられる。
特に、下部電極21(形成部21a)として、好ましくは、Ni/Au(透光性電極材料)であり、Rh/Ir(反射性電極材料)である。
(下部電極21の開口部21b)
下部電極21に開口部21b(図9)並びにストライプ状開口部(図6)、形成部21a(経路34)を設ける方法としては、化学的エッチング、RIEなどの物理的エッチングなど、通常知られた方法をとることができる。また、図示しないが、第2導電型層2の上にフォトリソグラフィー技術などにより所望形状のマスクを形成して、その上に電極層21を設けて、マスクをその上の電極部分とともに除去して、マスク形成部を電極開口部21として形成するようなリフトオフの方法とできることもいうまでもない。このような電極開口部21b(形成部21a)の形成方法としては、例えば上述したように、電極21を構成する材料について適したエッチャント(エッチング溶液)がある場合、例えばNi/Auなど、には図7に示す方法が好適に用いられ、また上述したように、白金族元素及び複数の白金族元素を有する電極、例えば上記Rh/Ir、の場合には、好適なエッチャントがない場合には、上記リフトオフにより形成すると良い。また、エッチング溶液については、電極材料、構造などにより適宜選択される。
実施形態5.
実施形態5では、上記実施形態1〜4などの発光素子100を、その電極形成面で積層基体104に、実装、接合した素子積層体103であって、その模式断面図を図10に示す。発光素子100を素子積層体103として、他の形態として、上述したように素子側で分離された第1電極10(パッド部11)を、図10に示すように基体104側電極112で互いに接続し、分離された第2電極20(パッド部21)も同様に基体104側で互いに電気的に接続されて、実装、接合されても良い。基体104側電極112は、発光素子100側電極10,20(21)に対応して、互いに絶縁膜111などで絶縁分離されて設けられ、外部接続用の電極113が設けられている。基体104に素子部115を設けても良く、ここでは、図10の等価回路(b)に示すように、電流、静電保護素子(素子構造部115)として、p型層(第1導電型層)115a、n型層(第2導電型層)115bを設けている。ここでは、素子部115を基体104に1つだけ設けているが、2つ以上設けて外部(素子100、実装基体201)の電極、基体104側配線などで接続される形態などでも良く、また、保護素子は、基体104上、発光装置200内(載置部222)に実装して、発光素子にワイヤー接続、配線接続されても良い。
発光素子100側電極10,20と、基体104の電極112とは接合層114を介して接合しているが、素子100側電極の一部と、若しくは基体104側電極112の一部と、を接合層の一部としても良く、パッド部11、22pに代えて接合層を形成しても良い。
また、基体104は、素子構造115を有しない通常のサブマウントでも良い。基体104と外部とは、接続用の電極113でワイヤー接続されても良く、基体104の素子構造部の電極、若しくは内部、外部を導通する電極層を、実装面側に形成して、電極113、接合層114として設けても良い。
(支持基板9)
本発明の発光素子構造100において、素子積層構造101の形成時に用いた成長用基板1を除去すること形態としても良く、具体的には、図13(b)、図15(b)に示すように、基板4、若しくは基板4と積層構造101との間に設けられた介在層5の一部若しくは全部、又はそれらに加えて、第1導電型層1の一部を除去領域7として、除去することも可能であり、すなわち、素子積層構造部101以外で不要な領域を除去することが可能である。具体的には、図13(b)に示すように、サブマウントなどの素子積層基体への接着・実装、図15(b)に示すように、支持基板17に貼り合わせた状態で、研磨・研削除去、基板1上の一部積層部を、化学的な方法(エッチャント)による潮解、融解、レーザ照射(レーザアブレーション)による分解で、除去部7と素子積層構造部101とを分離させる方法、機械的な研磨・外力を加えて面内、素子構造内において基板1と素子積層構造部101との間での応力、歪による層破壊などによる剥離などの方法、及び、それらの方法の組合せにより除去することができる。
好ましくは、支持基板9に、接合層8などを介して貼り合わせることによる転写でもって、基板1などの除去部7として除去することが好ましい。このとき、支持基板7の材料としては、その目的により種々の材料を用いることができ、素子の放熱性を高めるためには、放熱用の基板として、AlN、BN、SiC、GaAs、Si、C(ダイヤモンド)が好適に用いられる。その他の材料としては、Si、SiC、GaAs、GaP、InP、ZnSe、ZnS、ZnO等の半導体から成る半導体基板、又は、金属単体基板、又は相互に非固溶あるいは固溶限界の小さい2種以上の金属の複合体から成る金属基板を用いることができ、金属材料として具体的にはAg,Cu,Au,Pt等の高導電性金属から選択された1種以上の金属と、W,Mo,Cr,Ni等の高硬度の金属から選択された1種以上の金属と、から成るものを用いることができる。さらに、金属基板としては、Cu−WあるいはCu−Moの複合体を用いることが好ましい。基板による発光素子の光の吸収・損失、素子構造101との接着性(素子構造101と基板9若しくは実装部材料203との間の熱膨張係数差など)を考慮して、支持基板9の材料、及び接着方法が選択され、基板9側から光を取出す場合には、透光性材料を選択し、また銀ペーストなどの透光性の接着層8若しくは接着層を介さない接着方法により、光損失が少なくなるような構造とし、また、除去部7側を光り取出し方向とする場合には、接着層8若しくは基板9、又は積層構造101の一部に、Al、Agなどの反射膜を設けるなどして、外部取出し効率を高めると良い。また、図15(b)に示すように、半導体層積層順序が転写により逆転する場合に本発明は、図中矢印にて示すように第1,2導電型層1,2を逆転させて本発明における素子構造とすることはいうまでもない。
(接合層8、接合層114、接着部材204)
支持基板9と素子構造101との接着、素子構造101(100)と積層基体103との接着、発光素子100、支持基板9、積層基体103と発光装置200の実装基体201(収納部202)との接着、接合において、接合層8、(114)、接着部材204を用いることができる。その材料、構造としては、Agペースト、カーボンペースト、ITOペーストのような混合、複合組成物(有機物)、半田材料の他、発光素子100からの放熱性を考慮して、耐熱性に優れた材料、構造として、Au、Sn、Pd、In等の金属若しくはその積層体並びに合金などが、本発明の大面積、大電流駆動で高発熱性の素子に効果的である。第1及び第2の共晶形成層の組合せは、Au−Sn、Sn−Pd、又はIn−Pdが好ましい。さらに好ましくは、第1の共晶形成層にSnを、そして第2の共晶形成層にAuを用いる組合せである。そのほかに、金属バンプ、Au−Au接合などの金属金属接合なども用いることができる。
またこのような接合層は、下地側(基板4、素子構造101表面、支持基板9、実装基体201、積層基体101)に、密着性の良い層のメタライジング層などを介したり、上記発光素子の光反射のために反射層などを介したりして、共晶膜、共晶多層膜、合金膜などの接着膜(接合層)を形成したり、その表面側に酸化防止の表面保護膜を設けても良く、また、接着側の実装側にもメタライジング層(密着性の層)、表面保護層、接着膜(接合層)を形成して、両者が接着・接合されても良い。
具体例としては、図12に示すように、発光素子100の基板(サファイア)10と実装部202の底面(例えばAgメッキの表面被膜)に接合層204としては、基板側から順に、Al(0.2μm、反射層)/W(0.2μm)/Pt(0.2μm)と、その上にAu(0.3μm)/Sn(0.2μm)を7対とその表面にAu(10nm)層を形成して、実装部202側にもAu層を形成して、加熱して圧着して接着層204により発光素子100を接着する。図15において、素子構造101を支持基板17に貼り合わせる接合層8の具体例として、第2導電型層(p型層)のp側電極の上に、Ni−Pt−Au−Sn−Auの多層膜を、膜厚0.2μm−0.3μm−0.3μm−3.0μm−0.1μm 膜厚が200μmで、Cu30%とW70%の複合体から成る金属基板17を用い、その金属基板の表面に、Tiから成る密着層、Ptから成るバリア層、そしてAuから成る第2の共晶形成層を、この順で、膜厚0.2μm−0.3μm−1.2μmに形成して、加熱して圧着する。
(素子積層体103)
本発明において、上記発光素子を発光装置200に実装する場合に、図10,11に示すように、ヒートシンク、サブマウントなどの積層基体104に、発光素子100を実装して、素子の実装積層体として、素子積層体103を形成しても良い。このとき、発光素子100を積層実装する基体104の材料としては、上記支持基板と同様であり、その目的、例えば、放熱性、光取出し構造、を考慮して選択される。また、このような素子積層体103は、発光素子100との接合面に対向する面側を実装側として、発光装置200の実装部202に接合される。
本発明の積層基体104には、発光素子100の電極形成面側に対向して接合する場合には、発光素子100側の電極10,20(21)に対応して、基体104側に電極構造112a,bが設けられ、発光素子100の電極形成面と対向する面側(基板4)に対向して基体104に接合する場合には、基体104側電極は不要であり、接合用の接着層などが設けられるが、発光素子100とワイヤー接続用の電極を設けても良い。基体104側電極112は、図に示すように、発光素子100との接合面側にのみ設けられていても良く、接合面に対向する実装面側にまで回り込む実装側電極、実装面側に設けられた基体素子104の電極114、基体104に貫通孔、ビアホールを設けて発光素子100の接合面側から実装面側に連通、連結若しくは電気的に接合させた実装面側電極が設けられても良い。
また、図では1つの発光素子101を1つの積層基体104に実装しているが、発光素子101を複数集積して1つの積層基体104に、基体104側配線電極により並列、直列、両者混合で接続させ、実装した積層体103としても良く、1つの発光素子101に対し複数の積層基体104を、例えば異なる機能の素子を基体としても良く、またこれらの組合せでも良く、さらに、発光素子101、積層基体(素子)103を縦方向に、いずれかを複数積層した素子積層体103を形成しても良い。
発光素子100は、図11に示すように、被覆膜105で覆われていても良く、その組成物としては、SiO、Al、MSiO(なお、Mとしては、Zn、Ca、Mg、Ba、Sr、Zr、Y、Sn、Pb、などが挙げられる。)などの透光性無機部材であり、蛍光体(光変換部材106)を含有させたものも好適に用いられる。これらの透光性無機部材により蛍光体同士が結着され、さらに蛍光体は層状にLED100や支持体104上に堆積され結着される。このほかに被覆層としては、素子構造100を被覆する絶縁保護膜の他、反射膜(Al、Agなどの金属反射膜)を設けても良く、その他の反射膜材料としてはDBRなどを形成しても良い。
(光変換部材106,層231)
光変換部材106、若しくは発光装置200内の光変換層231は、発光素子100の光を一部吸収して、異なる波長の光を発光するものであり、蛍光体を含有したものを用いることができる。このような光変換部材106、光変換層231は、上記のように発光素子100一部若しくは全体、又はそれに加えて積層基体104の一部に被覆して、被覆膜105として形成されてもよい。蛍光体のバインダーとしては、少なくともSi、Al、Ga、Ti、Ge、P、B、Zr、Y、Sn、Pb、あるいはアルカリ土類金属の群から選択される1種以上の元素を含む酸化物及び水酸化物は、少なくともSi、Al、Ga、Ti、Ge、P、B、Zr、Y、Sn、Pb、あるいはアルカリ土類金属の群から選択される1種以上の元素を含む有機金属化合物(好ましくはさらに酸素を含む)により生成される。ここで、有機金属化合物には、アルキル基,アリール基を含む化合物等が含まれる。このような有機金属化合物として、例えば金属アルコキシド、金属ジケトナート、金属ジケトナート錯体、カルボン酸金属塩等が挙げられる。
また、図12に示すように、発光装置200の封止部材230の一部として設けられても良く、図に示すように発光素子100に離間して、封止部材230a上、若しくは230bとの間に設けられた層231として形成されても良く、封止部材230内に分散して光変換部材を含有して、封止部材230を光変換層231としても良く、装置基体220、実装基体201、凹部収納部202内に沈降層として設けられても良い。
本発明の光変換部材に用いられる蛍光体は、発光素子から放出された可視光や紫外光を他の発光波長に変換するためのものであり、素子構造101の半導体発光層から発光された光で励起されて発光する蛍光体などで、蛍光体として紫外光、可視光により励起されて所定の色の光を発生する蛍光体も用いることができる。
具体的な蛍光体としては、銅で付活された硫化カドミ亜鉛やセリウムで付活されたイットリウム・アルミニウム・ガーネット系蛍光体(以下、「YAG系蛍光体」と呼ぶ。)が挙げられる。特に、高輝度且つ長時間の使用時においては(Re1−xSm(Al1−yGa12:Ce(0≦x<1、0≦y≦1、但し、Reは、Y,Gd,Laからなる群より選択される少なくとも一種の元素である。)などが好ましい。この蛍光体は、ガーネット構造のため、熱、光及び水分に強く、励起スペクトルのピークが470nm付近などにさせることができる。また、発光ピークも530nm付近にあり720nmまで裾を引くブロードな発光スペクトルを持たせることができる。本発明において、蛍光体は、2種類以上の蛍光体を混合させてもよい。即ち、Al、Ga、Y、La及びGdやSmの含有量が異なる2種類以上の(Re1−xSm(Al1−yGa12:Ce蛍光体を混合させてRGBの波長成分を増やすことができる。半導体発光素子の発光波長には、バラツキが生ずるものがあるため2種類以上の蛍光体を混合調整させて所望の白色系の混色光などを得ることができる。具体的には、発光素子の発光波長に合わせて色度点の異なる蛍光体の量を調整し含有させることでその蛍光体間と発光素子で結ばれる色度図上の任意の点を発光させることができる。蛍光体は、発光装置の表面上において一層からなる被覆層105、光変換部層221、部材106中に二種類以上存在してもよいし、二層からなるコーティング層中にそれぞれ一種類あるいは二種類以上存在してもよい。このようにすると、異なる蛍光体からの光の混色による白色光が得られる。この場合、各蛍光物質から発光される光をより良く混色しかつ色ムラを減少させるために、各蛍光体の平均粒径及び形状は類似していることが好ましい。YAG系蛍光体に代表されるアルミニウム・ガーネット系蛍光体と、赤色系の光を発光可能な蛍光体、特に窒化物系蛍光体とを組み合わせたものを使用することもできる。これらのYAG系蛍光体および窒化物系蛍光体は、混合して被覆層中に含有させてもよいし、複数の層から構成される被覆層中に別々に含有させてもよい。以下、それぞれの蛍光体について詳細に説明していく。
本実施の形態に用いられるアルミニウム・ガーネット系蛍光体とは、Alを含み、かつY、Lu、Sc、La、Gd、Tb、Eu及びSmから選択された少なくとも一つの元素と、Ga及びInから選択された一つの元素とを含み、希土類元素から選択された少なくとも一つの元素で付活された蛍光体であり、LEDチップ101から発光された可視光や紫外線で励起されて発光する蛍光体である。例えば、上述したYAG系蛍光体の他、Tb2.95Ce0.05Al12、Y2.90Ce0.05Tb0.05Al12、Y2.94Ce0.05Pr0.01Al12、Y2.90Ce0.05Pr0.05Al12等が挙げられる。これらのうち、特に本実施の形態において、Yを含み、かつCeあるいはPrで付活され組成の異なる2種類以上のイットリウム・アルミニウム酸化物系蛍光体が利用される。
発光層に窒化物系化合物半導体を用いた発光素子から発光した青色系の光と、青色光を吸収させるためボディーカラーが黄色である蛍光体から発光する緑色系及び赤色系の光と、或いは、黄色系の光であってより緑色系及びより赤色系の光を混色表示させると所望の白色系発光色表示を行うことができる。発光装置はこの混色を起こさせるために蛍光体の粉体やバルクをエポキシ樹脂、アクリル樹脂或いはシリコーン樹脂などの各種樹脂や酸化珪素、酸化アルミニウムなどの透光性無機物中に含有させることもできる。このように蛍光体が含有されたものは、LEDチップからの光が透過する程度に薄く形成させたドット状のものや層状ものなど用途に応じて種々用いることができる。蛍光体と透光性無機物との比率や塗布、充填量を種々調整すること及び発光素子の発光波長を選択することにより白色を含め電球色など任意の色調を提供させることができる。
また、2種類以上の蛍光体をそれぞれ発光素子からの入射光に対して順に配置させることによって効率よく発光可能な発光装置とすることができる。即ち、反射部材を有する発光素子上には、長波長側に吸収波長があり長波長に発光可能な蛍光体が含有された色変換部材と、それよりも長波長側に吸収波長がありより長波長に発光可能な色変換部材とを積層などさせることで反射光を有効利用することができる。また、発光ピーク波長λも510nm付近にあり700nm付近まで裾を引くブロードな発光スペクトルを持つ。一方、セリウムで付活されたイットリウム・アルミニウム酸化物系蛍光体である赤色系が発光可能なYAG系蛍光体でも、ガーネット構造であり熱、光及び水分に強く、励起吸収スペクトルのピーク波長が420nmから470nm付近にさせることができる。また、発光ピーク波長λpが600nm付近にあり750nm付近まで裾を引くブロードな発光スペクトルを持つ。
ガーネット構造を持ったYAG系蛍光体の組成の内、Alの一部をGaで置換することで発光スペクトルが短波長側にシフトし、また組成のYの一部をGd及び/又はLaで置換することで、発光スペクトルが長波長側へシフトする。このように組成を変化することで発光色を連続的に調節することが可能である。したがって、長波長側の強度がGdの組成比で連続的に変えられるなど窒化物半導体の青色系発光を利用して白色系発光に変換するための理想条件を備えている。
(窒化物系蛍光体)
本発明で使用される蛍光体は、Nを含み、かつBe、Mg、Ca、Sr、Ba、及びZnから選択された少なくとも一つの元素と、C、Si、Ge、Sn、Ti、Zr、及びHfから選択された少なくとも一つの元素とを含み、希土類元素から選択された少なくとも一つの元素で付活された窒化物系蛍光体も用いることができる。また、本実施の形態に用いられる窒化物系蛍光体としては、LEDチップ101から発光された可視光、紫外線、及びYAG系蛍光体からの発光を吸収することによって励起され発光する蛍光体をいう。例えば、Ca−Ge−N:Eu,Z系、Sr−Ge−N:Eu,Z系、Sr−Ca−Ge−N:Eu,Z系、Ca−Ge−O−N:Eu,Z系、Sr−Ge−O−N:Eu,Z系、Sr−Ca−Ge−O−N:Eu,Z系、Ba−Si−N:Eu,Z系、Sr−Ba−Si−N:Eu,Z系、Ba−Si−O−N:Eu,Z系、Sr−Ba−Si−O−N:Eu,Z系、Ca−Si−C−N:Eu,Z系、Sr−Si−C−N:Eu,Z系、Sr−Ca−Si−C−N:Eu,Z系、Ca−Si−C−O−N:Eu,Z系、Sr−Si−C−O−N:Eu,Z系、Sr−Ca−Si−C−O−N:Eu,Z系、Mg−Si−N:Eu,Z系、Mg−Ca−Sr−Si−N:Eu,Z系、Sr−Mg−Si−N:Eu,Z系、Mg−Si−O−N:Eu,Z系、Mg−Ca−Sr−Si−O−N:Eu,Z系、Sr−Mg−Si−O−N:Eu,Z系、Ca−Zn−Si−C−N:Eu,Z系、Sr−Zn−Si−C−N:Eu,Z系、Sr−Ca−Zn−Si−C−N:Eu,Z系、Ca−Zn−Si−C−O−N:Eu,Z系、Sr−Zn−Si−C−O−N:Eu,Z系、Sr−Ca−Zn−Si−C−O−N:Eu,Z系、Mg−Zn−Si−N:Eu,Z系、Mg−Ca−Zn−Sr−Si−N:Eu,Z系、Sr−Zn−Mg−Si−N:Eu,Z系、Mg−Zn−Si−O−N:Eu,Z系、Mg−Ca−Zn−Sr−Si−O−N:Eu,Z系、Sr−Mg−Zn−Si−O−N:Eu,Z系、Ca−Zn−Si−Sn−C−N:Eu,Z系、Sr−Zn−Si−Sn−C−N:Eu,Z系、Sr−Ca−Zn−Si−Sn−C−N:Eu,Z系、Ca−Zn−Si−Sn−C−O−N:Eu,Z系、Sr−Zn−Si−Sn−C−O−N:Eu,Z系、Sr−Ca−Zn−Si−Sn−C−O−N:Eu,Z系、Mg−Zn−Si−Sn−N:Eu,Z系、Mg−Ca−Zn−Sr−Si−Sn−N:Eu,Z系、Sr−Zn−Mg−Si−Sn−N:Eu,Z系、Mg−Zn−Si−Sn−O−N:Eu,Z系、Mg−Ca−Zn−Sr−Si−Sn−O−N:Eu,Z系、Sr−Mg−Zn−Si−Sn−O−N:Eu,Z系など種々の組合せの蛍光体を製造することができる。希土類元素であるZは、Y、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Luのうち少なくとも1種以上が含有されていることが好ましいが、Sc、Sm、Tm、Ybが含有されていてもよい。これらの希土類元素は、単体の他、酸化物、イミド、アミド等の状態で原料中に混合する。希土類元素は、主に安定な3価の電子配置を有するが、Yb、Sm等は2価、Ce、Pr、Tb等は4価の電子配置を有する。酸化物の希土類元素を用いた場合、酸素の関与が蛍光体の発光特性に影響を及ぼす。つまり酸素を含有することにより発光輝度の低下を生じる場合もある。その反面、残光を短くするなどの利点もある。但し、Mnを用いた場合は、MnとOとのフラックス効果により粒径を大きくし、発光輝度の向上を図ることができる。本発明に係る蛍光体は、Mnが添加されたSr−Ca−Si−N:Eu、Ca−Si−N:Eu、Sr−Si−N:Eu、Sr−Ca−Si−O−N:Eu、Ca−Si−O−N:Eu、Sr−Si−O−N:Eu系シリコンナイトライドである。この蛍光体の基本構成元素は、一般式LSi(2/3X+4/3Y):Eu若しくはLSiOzN(2/3X+4/3Y−2/3Z):Eu(Lは、Sr、Ca、SrとCaのいずれか。)で表される。一般式中、X及びYは、X=2、Y=5又は、X=1、Y=7であることが好ましいが、任意のものも使用できる。具体的には、基本構成元素は、Mnが添加された(SrCa1−XSi:Eu、SrSi:Eu、CaSi:Eu、SrCa1−XSi10:Eu、SrSi10:Eu、CaSi10:Euで表される蛍光体を使用することが好ましいが、この蛍光体の組成中には、Mg、Sr、Ca、Ba、Zn、B、Al、Cu、Mn、Cr及びNiからなる群より選ばれる少なくとも1種以上が含有されていてもよい。但し、本発明は、この実施の形態及び実施例に限定されない。
Lは、Sr、Ca、SrとCaのいずれかである。SrとCaは、所望により配合比を変えることができる。
蛍光体の組成にSiを用いることにより安価で結晶性の良好な蛍光体を提供することができる。発光中心に希土類元素であるユウロピウムEuを用いる。ユウロピウムは、主に2価と3価のエネルギー準位を持つ。具体的な組成としては、SrSi:Eu,Pr、BaSi:Eu,Pr、MgSi:Eu,Pr、ZnSi:Eu,Pr、SrSi10:Eu,Pr、BaSi10:Eu,Ce、MgSi10:Eu,Ce、ZnSi10:Eu,Ce、SrGe:Eu,Ce、BaGe:Eu,Pr、MgGe:Eu,Pr、ZnGe:Eu,Pr、SrGe10:Eu,Ce、BaGe10:Eu,Pr、MgGe10:Eu,Pr、ZnGe10:Eu,Ce、Sr1.8Ca0.2Si:Eu,Pr、Ba1.8Ca0.2Si:Eu,Ce、Mg1.8Ca0.2Si:Eu,Pr、Zn1.8Ca0.2Si:Eu,Ce、Sr0.8Ca0.2Si10:Eu,La、Ba0.8Ca0.2Si10:Eu,La、Mg0.8Ca0.2Si10:Eu,Nd、Zn0.8Ca0.2Si10:Eu,Nd、Sr0.8Ca0.2Ge10:Eu,Tb、Ba0.8Ca0.2Ge10:Eu,Tb、Mg0.8Ca0.2Ge10:Eu,Pr、Zn0.8Ca0.2Ge10:Eu,Pr、Sr0.8Ca0.2SiGeN10:Eu,Pr、Ba0.8Ca0.2SiGeN10:Eu,Pr、Mg0.8Ca0.2SiGeN10:Eu,Y、Zn0.8Ca0.2SiGeN10:Eu,Y、SrSi:Pr、BaSi:Pr、SrSi:Tb、BaGe10:Ceなどが製造できるがこれに限定されない。
窒化物系蛍光体は、LEDチップ100によって発光された青色光の一部を吸収して黄から赤色領域の光を発光する。窒化物系蛍光体をYAG系蛍光体と共に上記の構成を有する発光装置200に使用して、LEDチップ100により発光された青色光と、窒化物系蛍光体による黄色から赤色光とが混色により暖色系の白色系の混色光を発光する発光装置を提供する。窒化物系蛍光体の他に加える蛍光体には、セリウムで付活されたイットリウム・アルミニウム酸化物蛍光物質が含有されていることが好ましい。前記イットリウム・アルミニウム酸化物蛍光物質を含有することにより、所望の色度に調節することができるからである。セリウムで付活されたイットリウム・アルミニウム酸化物蛍光物質は、LEDチップ101により発光された青色光の一部を吸収して黄色領域の光を発光する。ここで、LEDチップ100により発光された青色光と、イットリウム・アルミニウム酸化物蛍光物質の黄色光とが混色により青白い白色に発光する。従って、このイットリウム・アルミニウム酸化物蛍光物質と赤色発光する蛍光体とを、透光性を有するコーティング部材105中に一緒に混合し、LEDチップ100により発光された青色光とを組み合わせることにより白色系の混色光を発光する発光装置を提供することができる。特に好ましいのは、色度が色度図における黒体放射の軌跡上に位置する白色の発光装置である。但し、所望の色温度の発光装置を提供するため、イットリウム・アルミニウム酸化物蛍光物質の蛍光体量と、赤色発光の蛍光体量を適宜変更することもできる。この白色系の混色光を発光する発光装置は、特殊演色評価数R9の改善を図っている。従来の青色発光素子とセリウムで付活されたイットリウム・アルミニウム酸化物蛍光物質との組合せのみの白色系発光装置は、色温度Tcp=4600K付近において特殊演色評価数R9がほぼ0に近く、赤み成分が不足していた。そのため特殊演色評価数R9を高めることが解決課題となっていたが、本発明において赤色発光の蛍光体をイットリウム・アルミニウム酸化物蛍光物質と共に用いることにより、色温度Tcp=4600K付近において特殊演色評価数R9を40付近まで高めることができる。
(発光装置200)
図11は、本発明において、発光素子100及びその積層体103を実装基体201に実装した発光装置200であり、本発明の実施形態6に係る。発光装置200は、装置基体220により、リード部210が固定され、リード部の一方をマウント・リード210として、実装基体201として機能し、その収納部(凹部)202内に発光素子100(積層体104)が接合層114(接着層204)を介して実装され、凹部(開口部225)側面を反射部203とし、且つ、基体201は、放熱部205として機能させて外部放熱器に接続しても良い。また、装置基体2020には、光取出し部223に開口して(開口部225)、テラス部222が基体201外部に設けられ、保護素子などの他の素子を実装しても良く、凹部202、基体220開口部には、透光性の封止部材230で封止され、また凹部202外部にも反射部203が設けられている。また、リード電極210は、基体220内部の内部リード211と、それを基体220外部に延在させた外部リード212により、外部と接続される。発光素子100(積層体103)は、各リード210に、ワイヤー250接続、電気的接合204により電気的に接続される。
実施形態7として、図11に示すように、リード210と絶縁分離された実装基体210に発光素子100を接着部材204により実装した発光装置200であり、発光素子100の収納基体201には反射部203を備え、放熱部205として外部放熱体に接続しても良く、発光素子100は各内部リード211にワイヤー250接続され、リード210は外部に延在して外部に電気的に接続される。このように、実装基体201とリード210とを分離することで、熱設計に優れた発光装置とできる。また、発光装置には、光透過性の封止部材230で凹部202、基体220の反射部221、テラス部222を封止して、形成され、該封止部材230に光学的に光学レンズ部を接続して、若しくは光学レンズの形状に封止部材230を成形して、所望の光学系(レンズ)を設けることで、所望の指向性の発光を得ることができる。
パッケージ220の凹部内表面221、222は、エンボス加工させて接着面積を増やしたり、プラズマ処理してモールド部材230との密着性を向上させたりすることもできる。また、パッケージ220の凹部は、図に示すようにその側面が開口方向に向かって広くなる形状(テーパー形状)を有していることが好ましい。このようにすると、発光素子から出光した光は凹部の側面221に反射してパッケージ正面に向かうため、光取出し効率が向上するなどの効果がある。パッケージ220は、外部電極212と一体的に形成させてもよく、パッケージ220が複数に分かれ、はめ込みなどにより組み合わせて構成させてもよい。このようなパッケージ220は、インサート成形などにより比較的簡単に形成することができる。パッケージ材料としてポリカーボネート樹脂、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、ABS樹脂、エポキシ樹脂、フェノール樹脂、アクリル樹脂、PBT樹脂等の樹脂やセラミック、金属などを用いることができる。紫外線を含む光を発光するLEDチップを用いた発光装置を高出力で使用する場合、樹脂が紫外線によって劣化し、樹脂の黄変などによる発光効率低下や、機械的強度の低下による発光装置の寿命の低下などが生じることが考えられる。そこで、パッケージ材料として金属を使用することは、紫外線を含む光を発光するLEDチップを高出力で使用した場合でも樹脂のようにパッケージが劣化することがないためより好ましい。
また、パッケージ220を暗色系に着色させる着色剤としては種々の染料や顔料が好適に用いられる。具体的には、Cr、MnO、Feやカーボンブラックなどが好適に挙げられる。
LEDチップ100とパッケージ220との接着は熱硬化性樹脂などによって行うこともできる。具体的には、エポキシ樹脂、アクリル樹脂やイミド樹脂などが挙げられる。
外部電極212としては、銅やリン青銅板表面に銀、パラジュウム或いは金などの金属メッキや半田メッキなどを施したものが好適に用いられる。ガラスエポキシ樹脂やセラミックなどの装置基体220上などに設けられた外部電極212としては、銅箔やタングステン層を形成させることができる。
導電性ワイヤー250の直径は、好ましくは、Φ10μm以上、Φ70μm以下である。このような導電性ワイヤー250として具体的には、金、銅、白金、アルミニウム等の金属及びそれらの合金を用いた導電性ワイヤーが挙げられる。このような導電性ワイヤー250は、各LEDチップ100の電極と、インナー・リード及びマウント・リードなどと、をワイヤーボンディング機器によって容易に接続させることができる。
モールド部材230は、発光装置の使用用途に応じてLEDチップ100、導電性ワイヤー250、蛍光体が含有されたコーティング層221、105などを外部から保護するため、あるいは光取出し効率を向上させるために設けることができる。モールド部材230は、各種樹脂や硝子(ガラス)などを用いて形成させることができる。モールド部材230の具体的材料としては、主としてエポキシ樹脂、ユリア樹脂、シリコーン樹脂、フッ素樹脂などの耐候性に優れた透明樹脂や硝子などが好適に用いられる。また、モールド部材に拡散剤を含有させることによってLEDチップ100からの指向性を緩和させ視野角を増やすこともできる。このような、モールド部材230は、コーティング層の結着剤、バインダーと同じ材料を用いても良いし異なる材料としても良い。
なお、金属パッケージを使用して、窒素ガスなどと共にLEDチップ100を気密封止する場合は、モールド部材230は本発明に必須の構成部材ではない。また、紫外線を発光するLEDチップを使用して発光装置を形成する場合であっても、フッ素樹脂等のように紫外線に強い樹脂をモールド部材として使用することができる。
また、他の発光装置200として、金属製の基体220に実装部201(凹部202)若しくはリードの一方にマウントリードを設けて発光素子100(積層体103)を実装して、基体220に絶縁分離したリード210を設けて、窓部を備えたキャップとなる封止体(金属製など)で、窒素などの不活性ガス、酸素若しくはそれらの混合ガスで気密封止したもの、COBのように、金属製などの基板上の1つ若しくは複数の凹部収納部202に発光素子100を直接実装し、また各収納部にレンズなどの光学部材を設けたものなどがある。
発光素子100(積層体103)の実装形態として、1つの収納部202(実装基体201)に複数の素子100(103)を集積実装したもの、発光素子100(103)を実装した基体201を複数設けて(基体201に複数の収納部202設けて)1つの装置基体220で成形したもの、などを挙げることができ、所望の特性に応じて設計することができる。
実施形態8.(図7,8,17)
本発明の実施形態8としては、上記実施形態1〜4の発光素子において、光取り出し、光反射として機能する光機能性の凹凸部6を、電極形成面内に有するものであり、具体的には、図7,8,17に示すように、発光素子構造部の側面に沿って、若しくは外側に凹凸部6x、6yを設けるものである。ここで、図7及び8の発光素子100は、図5−b(9−b)の発光素子構造において、凹凸部6を設けた変形例であり、下部電極21の開口部は省略している。以下に、これら発光素子内に設けられた凹凸部6について詳しく説明する。図17は、上記凹凸部6を説明するもので、図8において、AA断面の構造を模式的に示すものである。
図7,8,17において、凹凸部6xは、発光素子内部であって、その発光構造部51の外側、より詳しくは、図17の断面図に示すように、非電流注入部58(非素子動作部)となる領域で、発光素子の面内における外縁、外周部分に設けられている。一方で、凹凸部6yは、図17の断面図に見るように、素子動作部(電流注入部)57内部において、第1電極10と発光構造部51との間に設けられ、より具体的には、発光素子(素子動作部57)内部において、1つまたは複数設けられた発光構造部51の側面に沿って、第1電極10と発光構造部51との間に設けられる。
凹凸部6xは、主に発光素子外部へ横方向に出射される光、特に発光構造部51の側面51Cからの横方向への光を、反射して、縦方向、即ち、電極形成面にほぼ垂直な方向へ取り出すことができ、発光素子の光の指向性において、電極形成面に垂直な成分を増大させる。これは、発光素子の指向性において、横方向への光は、発光装置などに実装した際に、指向性の制御のため効率的に利用することが困難な傾向にあり、これを改善できて、効率的な発光の取り出しが可能となる。特に、発光素子の面積が大きくなると、縦方向の光と、横方向の光が指向角で離れて、それぞれ低角度、高角度に分布する偏りが大きくなる傾向にあり、高角度の発光は、発光装置の反射板において効率的に取り出すことがさらに困難なものとなる。
一方で、素子動作部57内に設けられる凹凸部6yは、上記凹凸部6xの作用に加えて、そこに隣接して設けられた第1電極10などに横方向に光が吸収されたり、隣接する別の発光構造部に取り込まれたりして、発光素子外部への光取り出し損失が大きくなっていたものを、その発光素子内の各発光構造部51、第1電極10と発光構造部51との間に凹凸部6yが設けられることで、このような損失を低減させて、効率的に光は縦方向に取り出すことができる。特に図7(図17)に示すように、複数の発光構造部51a〜f(〜j)を有し、更にその形状、配列が複雑な場合、例えば図7に示すように周縁電極の発光構造部51xと電極が併行して対向配置された発光構造部51a〜fとで構成されたような複雑な発光構造部の構成、さらには、該対向配置の発光構造部51a〜fがその大きさ、長手方向の長さが異なる構造部を有するようなもの、であると、上記光取り出し時の損失も大きくなる傾向にあり、それを光機能性の凹凸部6yを有することを改善できる。また、上述したように、横方向、特に指向角において高角度の狭い角度範囲において、大きな光強度を有するような指向角の偏りを有するような発光素子において、発光素子内部57で、それを段階的に改善することから、指向角の偏りを軽減して、好適な指向性の発光素子を得ることができる。このとき好ましくは、図8に示すように、発光素子の動作部57内部において、発光構造部51を囲むようにその周縁部に設けること、また発光構造部51に併設された第1電極10を囲むようにその周縁部に設けることが好ましく、更に好ましくは、ほぼ全ての周縁部に凹凸部6yを設けることである。特に好ましくは、図8において、ある発光構造部51、例えば51c、が他の発光構造部、例えば51a,d、で挟まれるような発光素子構造を有する場合において、発光構造部側面51Cが隣接する発光構造部で囲まれる傾向にあるため、それを改善できる。最も好ましくは、図8に見るように、上記凹凸部6x,yで、発光構造部51の側面をほぼ全周で囲むように設けることであり、第1電極10についても同様に、そのほぼ全周を囲むように設けることである。また、ここでは、上述した第1導電型層1の電極面1sを露出させる際に、発光構造部の一部に電極を設けないで、電流注入用の電極(例えば22p)に接続されずに、発光構造部から分離して、凹凸部6を形成することができる。このように作製された図20に見るような凹凸部6は、製造上有利である。この凹凸部6の断面形状、その凸部の長さ、凹部の深さ、凹部の形成位置は、このような電極露出面1sに限定されずに、これは、電極形成面より深い導電型層1内を横方向に伝搬する光をも取り出す作用によるものである。このとき、導電型層を貫通する深さ、例えば下地層5に達する深さで、すなわち、部分的に素子非動作部を設ける深さで、凹凸部6を形成するとさらに良く、更に好ましくは、基板が露出される深さで形成されることでより、これにより、基板上に設けられ、光が横方向に伝搬する経路となる電極面より下の導電型層、及び下地層を分断でき、その伝搬する光を効率的に取り出すことができるためである。このとき、導電型層を一部、若しくは全部除く深さで、凹凸部6を設ける場合には、素子構造部57内で設けると、電流拡散経路を遮断するため、その電流拡散経路となる領域を電極形成面内で確保する必要がある。具体的には、凹凸部6yを、断続的、断片的に複数の領域に分けて設け、該分断された領域を電流拡散経路として残すことで、この問題を回避できる。
また、図17の断面図において、上記凹凸部6は、上述したように反射機能の他に、凹凸部6が光学的に接続された第1導電型層1(電極形成面より下方)で伝搬する光を、該凹凸部6に伝搬して取り出す、光伝搬媒質としての機能も作用することができる。
このような凹凸部6の平面形状及びその配列は、上述したように様々な形状とでき、図7,8では円形状で三角配置された構造となっている。好ましくは、面内横方向で様々な方向へ出射する光を遮るように、面内の発光素子側面、発光構造部側面から出射する全方向に対して、凸部が設けられるようにすることであり、具体的には、図7,8に見るように、発光構造部側面に沿う方向に列状に周期的に配列された凸部を、2列以上、発光構造部に沿って設けることであり、好ましくは3列以上である。さらに、その凸部の面内形状は、様々な方向からの光に対して好適な反射面となるように、好ましくはほぼ円形、ほぼ楕円形状などであり、他には凸部側面で発光構造部に向いた側面を曲面上とすることである。
上述した凹凸部6x,yの変形例として、切り込み部、食い込み部6x−1、6y−1を有するものであり、その6x−1、y−1の領域に置いて、凹凸部が、発光構造部51の内側に食い込み、切り込むように、凹凸部6x,6yが拡張されて形成させる。このような拡張部6x−1,6y−1は、以下のような利点がある。発光構造部51の面積が減少する代わりに、切り込み部、食い込み部が設けられることで、その発光構造部側面が、切り込み部が内平坦な側面に比べて、複雑な側面が形成され、比較的側面に低い角度で進入する光の伝搬に対して、発光構造部外部への光の取り出しに寄与することができる。具体的には、電極形成面内で、切り込み部、食い込み部により側面が波状などの凹凸が形成されて、その側面の数を増やすことで、その光取り出し効果を高めることができる。また、凹凸部6y−1で、面内で、第1電極10から第2電極(延伸部)に向かって食い込む、切り欠くような凹凸部6y−1は、発光構造部51内で、第1電極方向への電流拡散を妨げずに、その電流拡散で発光した部分に隣接する切り込み部、食い込み部で効率的に光を外部に取り出すことができる。このような凹凸部6y−1では、台座電極11p,22p間で、発光構造部51を分断するように、内部に深く切り込み、食い込まれていても良く、凹凸部6x−1と同様に、発光構造部51を分断しない程度に浅く切り込み、食い込まれる構造6y−1でも良い。一方で、凹凸部6x−1は、この6y−1とは異なり、第1,2電極が対向する配置において、その対向する領域から第2電極、特に第2電極の上部電極22、台座部22pの背面側に、該第2電極に近づくように切り込み、食い込まれる形状が好ましい。なぜなら、このような第1,2電極間に挟まれた領域は、そこから外側、具体的にはその対向方向で外側の領域の発光構造部51より電流密度、発光強度が高い傾向にあり、従ってその第2電極外側領域の発光構造部51は発光効率が比較的低いものとなるため、発光構造部として残すよりも、上記凹凸部6の拡張部6x−1として、食い込み、切り込む形状とすることで、発光素子全体の発光効率が高くなる。
本発明の半導体発光素子は、上記実施例の窒化物半導体だけでなく、他の半導体材料にもてきようでき、発光構造部を複数配置して、様々な発光素子構造として、比較的面積の大きな発光素子を得ることができる。また、このような発光素子を用いた発光装置、さらには、蛍光体のように、発光素子の光の少なくとも一部を変換して、異なる光を発光する光変換部材を用いた発光装置にも利用できる。このような発光装置は、液晶などのバックライト、イルミネーションの光源、照明の光源、LEDユニットのような表示装置、複数の発光装置を集積した集合ランプ、さらには車などの灯具にも適用できる。
本発明に係る一実施形態を説明する模式上面図。 本発明に係る一実施形態を説明する模式上面図。 本発明に係るいくつかの実施形態とその電流密度分布を説明する模式上面図。 本発明に係るいくつかの実施形態とその電流密度分布をを説明する模式上面図。 本発明に係るいくつかの実施形態を説明する模式上面図。 本発明に係るいくつかの実施形態を説明する模式上面図。 本発明に係る一実施形態を説明する模式上面図。 本発明に係る一実施形態を説明する模式断面図。 本発明に係るいくつかの実施形態を説明する模式断面図。 本発明に係る一実施形態を説明する模式断面図。 本発明に係る一実施形態を説明する模式断面図。 本発明に係る一実施形態を説明する模式断面図。 本発明に係る一実施形態を説明する模式断面図。 本発明に係る一実施形態を説明する模式断面図。 本発明に係る一実施形態を説明する模式断面図。 本発明に係る一実施形態を説明する模式断面図。 本発明において、図8のAA断面図における凹凸部6の形態、一実施形態の発光素子積層構造を説明する模式断面図。
符号の説明
1…第1導電型層(n型層){1C…側面、1s…第1導電型層側露出部}、3…発光層(活性層)、2…第2導電型層(p型層){2s…第2導電型層露出部}、5…下地層(バッファ層)、6…凹凸部(基板){6a…凹凸部底面、6b…側面、6c…凸部上面}、7…除去部(不要部)、8…接合層、9…支持基板(転写用){9x…支持基板電極}、4…基板{4s…基板露出部}、
10…第1の電極(n側電極)、11…オーミック接触用電極(第1の電極){11p…台座部(基点部)}、12…第1の電極延伸部{12a…1次延伸部、12b…2次延伸部、12x…周縁電極部、12y…湾曲・屈曲延伸部、12z…延伸端部}、13…電流拡散導体(第1導電型層側)、
20…第2の電極(p側電極)、21…下部電極(電流拡散層、電流拡散導体、第2の電極オーミック接触用){21a…電極形成部、21b…電極開口部、21p…台座部領域}、22…上部電極{22p…上部電極台座部(基点部)、第2の電極延伸部、22a…1次延伸部、22b…2次延伸部、22x…周縁電極部、22y…湾曲・屈曲延伸部、22z…延伸端部、22α…電極充填部}、
60…マスク、61…保護膜(絶縁膜)、
30…電極端部(第2電極、上部電極){30x…台座部対向部の端部}、31…延伸方向、32…延伸電極部延伸方向、33…電極開口部基準軸(第2電極、下部電極){33a…第1軸、33b…第2軸、33c…第3軸}、34…経路方向(電極形成部の連結部:第2電極、下部電極){34a…第1経路方向、34b…第2経路方向、34c…第3経路方向、34x…第1分岐路(三方向以上)、34y…第2分岐路(三方向以上)、34z…直角分岐路(比較例)}、35…(第1,2(上部)電極)対向電極間、35x…台座部間、36…経路(第1,2電極間)、
40…電極端部(第1電極){40x…台座部対向部の端部(第1電極)}、41…延伸方向(第1電極)、42…延伸電極部延伸方向(第1電極)、
51…発光構造部{51C…発光構造部側面(光取出し・反射面)、51x…周縁電極の発光構造部、51z…余剰部}、52…第1導電型層側電極形成部{52a…分離溝}、53…第2導電型層側電極形成部、57…素子動作部(電流注入部)、58…素子非動作部(非電流注入部)
100…発光素子構造体(素子チップ)、101…素子積層構造、
103…素子積層体、104…積層基体、111…絶縁膜、112…電極(発光素子接合部)、113…ボンディング電極部(外部接続用)、114…接合層、115…素子構造部{115a…第1導電型部、115b…第2導電型部}、100…発光素子構造体(素子チップ)、101…素子積層構造、105…被覆膜、106…光変換部材、200…発光装置、201…実装基体(収納基体)、202…収納部(凹部、開口部225内部[内壁])、203…反射部、204…接着部材、205…放熱部、210…リード電極、211…内部リード、212…外部リード、220…装置基体、221…反射部、222…素子載置部(実装外部テラス部)、223…光取出し部、225…開口部、230…封止部材、231…光変換部層(106…部材)、240…光学レンズ部、250…導電性ワイヤー

Claims (18)

  1. 第1導電型層と第2導電型層とに挟まれた発光層を有する半導体発光素子において、
    前記第1導電型層と第2導電型層に、それぞれ第1電極、第2電極が同一面側に設けられ、
    該電極形成面には、前記発光層を備えた発光構造部を複数有し、
    前記発光構造部が、前記電極形成面内において、ほぼ全面が第1電極と第2電極とに挟まれた第1発光構造部と、一部が第1電極と第2電極とに挟まれた第2発光構造部と、を有する半導体発光素子
  2. 前記第1,2電極が、発光構造部の辺に沿って延伸する各延伸電極部を有し、前記第1発光構造部が、互いに対向して延伸する第1,2電極の延伸電極部に挟まれて形成されている請求項1記載の半導体発光素子。
  3. 前記第1発光構造部が、該一端において、一方の電極の延伸電極端部を、他方の電極の延伸電極部で囲む領域を有する請求項1又は2記載の半導体発光素子。
  4. 前記第2発光構造部が、一方の電極の延伸電極端部と、他方の電極の延伸電極部と、を有する請求項1乃至3記載の半導体発光素子。
  5. 前記第2発光構造部が、対向する辺を少なくとも1組有し、該対向する辺の一方に前記延伸電極部が設けられ、他方の辺が電極延伸部から露出されている請求項4記載の半導体発光素子。
  6. 前記発光素子が、第1発光構造部を複数有すると共に、該発光構造部の面積、若しくは長手方向の長さが異なる請求項1乃至5記載の半導体発光素子。
  7. 前記発光構造部が、前記第1発光構造部の対向延伸電極部で挟まれた領域と前記他方の電極延伸部で囲まれた領域とで、連接された複数の発光構造部である請求項1乃至6記載の半導体発光素子。
  8. 前記発光構造部が、連接して設けられた複数の発光構造部であり、該一端に前記第2発光構造部が配置されている請求項1乃至8記載の半導体発光素子。
  9. 前記発光素子が、発光構造部と前記第1,2電極との間に、非動作部の凹凸部を有する請求項1乃至8記載の半導体発光素子。
  10. 前記発光素子が、電極形成面内において、発光構造部の側面に沿って、発光構造部の一部が分離して形成された凹凸部を有する請求項1乃至9記載の発光素子
  11. 前記凹凸部は、素子動作部内で、発光構造部、若しくは発光構造部と第1電極とに挟まれた領域に設けられている請求項10記載の発光素子。
  12. 前記凹凸部は、発光構造部内に切り込む拡張部を有する請求項10又は11記載の発光素子。
  13. 前記発光素子を用いた発光装置であって、前記発光素子の発光の少なくとも一部を、波長変換する光変換部材を有する発光装置。
  14. 請求項1乃至6記載の発光素子を用いた発光装置であって、発光装置には、発光素子から光の一部を、それとは異なる波長の光に変換する光変換部材を有することを特徴とする発光装置。
  15. 前記光変換部材が、Alを含み、かつY、Lu、Sc、La、Gd、Tb、Eu及びSmから選択された少なくとも一つの元素と、Ga及びInから選択された一つの元素とを含むアルミニウム・ガーネット系蛍光体であって、さらに希土類元素から選択された少なくとも一つの元素を含有するアルミニウム・ガーネット系蛍光体を有することを特徴とする請求項8又は9記載の発光装置。
  16. 前記光変換部材が、(Re1−x(Al1−yGa12(0<x<1、0≦y≦1、但し、Reは、Y,Gd,La,Lu,Tb,Smからなる群より選択される少なくとも一種の元素であり、RはCe又はCeとPrである)であらわされる蛍光体を有することを特徴とする請求項10記載の発光装置。
  17. 前記光変換部材が、Nを含み、かつBe、Mg、Ca、Sr、Ba、及びZnから選択された少なくとも一つの元素と、C、Si、Ge、Sn、Ti、Zr、及びHfから選択された少なくとも一つの元素とを含み、希土類元素から選択された少なくとも一つの元素で付活された窒化物系蛍光体を有する請求項10に記載の発光装置。
  18. 前記窒化物系蛍光体が、一般式LSi(2/3X+4/3Y):Eu若しくはLSi(2/3X+4/3Y−2/3Z):Eu(Lは、Sr若しくはCa、又は、Sr及びCa、のいずれか。)で表されることを特徴とする請求項12に記載の発光装置。
JP2004222629A 2003-06-30 2004-06-30 半導体発光素子とそれを用いた発光装置 Expired - Fee Related JP4581540B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004222629A JP4581540B2 (ja) 2003-06-30 2004-06-30 半導体発光素子とそれを用いた発光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003188121 2003-06-30
JP2004222629A JP4581540B2 (ja) 2003-06-30 2004-06-30 半導体発光素子とそれを用いた発光装置

Publications (3)

Publication Number Publication Date
JP2005039284A true JP2005039284A (ja) 2005-02-10
JP2005039284A5 JP2005039284A5 (ja) 2007-08-02
JP4581540B2 JP4581540B2 (ja) 2010-11-17

Family

ID=34220505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004222629A Expired - Fee Related JP4581540B2 (ja) 2003-06-30 2004-06-30 半導体発光素子とそれを用いた発光装置

Country Status (1)

Country Link
JP (1) JP4581540B2 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088046A1 (ja) * 2005-02-16 2006-08-24 Rohm Co., Ltd 半導体発光素子
WO2006095566A1 (en) * 2005-03-09 2006-09-14 Showa Denko K.K. Nitride semiconductor light-emitting device and method for fabrication thereof
JP2006324661A (ja) * 2005-05-18 2006-11-30 Samsung Electro Mech Co Ltd 発光素子用のオーミックコンタクト層の製造方法及びこれを備えた発光素子の製造方法
JP2007067257A (ja) * 2005-09-01 2007-03-15 Kyocera Corp 発光素子
JP2008004729A (ja) * 2006-06-22 2008-01-10 Nichia Chem Ind Ltd 半導体発光素子
JP2008159957A (ja) * 2006-12-26 2008-07-10 Nichia Chem Ind Ltd 半導体発光素子
JP2010165983A (ja) * 2009-01-19 2010-07-29 Sharp Corp 発光チップ集積デバイスおよびその製造方法
JP2010225771A (ja) * 2009-03-23 2010-10-07 Toyoda Gosei Co Ltd 半導体発光素子
JP2012009864A (ja) * 2010-06-24 2012-01-12 Theleds Co Ltd 半導体発光素子
JP2014143394A (ja) * 2012-12-28 2014-08-07 Nichia Chem Ind Ltd 発光素子
US9236529B2 (en) 2013-07-30 2016-01-12 Nichia Corporation Semiconductor light emitting element having semiconductor structure with protrusions and/or recesses
US9577152B2 (en) 2013-12-09 2017-02-21 Nichia Corporation Light emitting element
JP2019106406A (ja) * 2017-12-08 2019-06-27 Dowaエレクトロニクス株式会社 半導体発光素子およびそれを用いた表面実装デバイスならびにそれらの製造方法
US11063183B2 (en) 2015-02-26 2021-07-13 Nichia Corporation Light emitting element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345480A (ja) * 2000-03-31 2001-12-14 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体素子
JP2002164574A (ja) * 2000-11-24 2002-06-07 Mitsubishi Cable Ind Ltd 半導体発光素子
JP2002319704A (ja) * 2001-04-23 2002-10-31 Matsushita Electric Works Ltd Ledチップ
JP2002322474A (ja) * 2001-02-07 2002-11-08 Patent Treuhand Ges Elektr Gluehlamp Mbh 高効率蛍光体及び高効率蛍光体を有する光源
JP2003110150A (ja) * 2001-10-01 2003-04-11 Matsushita Electric Ind Co Ltd 半導体発光素子とこれを用いた発光装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345480A (ja) * 2000-03-31 2001-12-14 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体素子
JP2002164574A (ja) * 2000-11-24 2002-06-07 Mitsubishi Cable Ind Ltd 半導体発光素子
JP2002322474A (ja) * 2001-02-07 2002-11-08 Patent Treuhand Ges Elektr Gluehlamp Mbh 高効率蛍光体及び高効率蛍光体を有する光源
JP2002319704A (ja) * 2001-04-23 2002-10-31 Matsushita Electric Works Ltd Ledチップ
JP2003110150A (ja) * 2001-10-01 2003-04-11 Matsushita Electric Ind Co Ltd 半導体発光素子とこれを用いた発光装置

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088046A1 (ja) * 2005-02-16 2006-08-24 Rohm Co., Ltd 半導体発光素子
US7803648B2 (en) 2005-03-09 2010-09-28 Showa Denko K.K. Nitride semiconductor light-emitting device and method for fabrication thereof
WO2006095566A1 (en) * 2005-03-09 2006-09-14 Showa Denko K.K. Nitride semiconductor light-emitting device and method for fabrication thereof
JP2006324661A (ja) * 2005-05-18 2006-11-30 Samsung Electro Mech Co Ltd 発光素子用のオーミックコンタクト層の製造方法及びこれを備えた発光素子の製造方法
US8580668B2 (en) 2005-05-18 2013-11-12 Samsung Electronics Co., Ltd. Method of forming ohmic contact layer and method of fabricating light emitting device having ohmic contact layer
JP2007067257A (ja) * 2005-09-01 2007-03-15 Kyocera Corp 発光素子
JP2008004729A (ja) * 2006-06-22 2008-01-10 Nichia Chem Ind Ltd 半導体発光素子
JP2008159957A (ja) * 2006-12-26 2008-07-10 Nichia Chem Ind Ltd 半導体発光素子
JP2010165983A (ja) * 2009-01-19 2010-07-29 Sharp Corp 発光チップ集積デバイスおよびその製造方法
JP2010225771A (ja) * 2009-03-23 2010-10-07 Toyoda Gosei Co Ltd 半導体発光素子
JP2012009864A (ja) * 2010-06-24 2012-01-12 Theleds Co Ltd 半導体発光素子
JP2014143394A (ja) * 2012-12-28 2014-08-07 Nichia Chem Ind Ltd 発光素子
US9236529B2 (en) 2013-07-30 2016-01-12 Nichia Corporation Semiconductor light emitting element having semiconductor structure with protrusions and/or recesses
US9882093B2 (en) 2013-12-09 2018-01-30 Nichia Corporation Light emitting element
US9577152B2 (en) 2013-12-09 2017-02-21 Nichia Corporation Light emitting element
US10276751B2 (en) 2013-12-09 2019-04-30 Nichia Corporation Light emitting element
US10593840B2 (en) 2013-12-09 2020-03-17 Nichia Corporation Light emitting element
US10978617B2 (en) 2013-12-09 2021-04-13 Nichia Corporation Light emitting element
US11817529B2 (en) 2013-12-09 2023-11-14 Nichia Corporation Light emitting element
US11063183B2 (en) 2015-02-26 2021-07-13 Nichia Corporation Light emitting element
JP2019106406A (ja) * 2017-12-08 2019-06-27 Dowaエレクトロニクス株式会社 半導体発光素子およびそれを用いた表面実装デバイスならびにそれらの製造方法

Also Published As

Publication number Publication date
JP4581540B2 (ja) 2010-11-17

Similar Documents

Publication Publication Date Title
JP4572604B2 (ja) 半導体発光素子及びそれを用いた発光装置
JP4053926B2 (ja) 窒化物半導体発光素子とそれを用いた発光装置
USRE49298E1 (en) Semiconductor light emitting element
JP4415575B2 (ja) 半導体発光素子及びそれを用いた発光装置
US8742438B2 (en) Semiconductor light-emitting device, method for manufacturing the same, and light-emitting apparatus including the same
JP5040355B2 (ja) 半導体発光素子及びこれを備えた発光装置
US7947996B2 (en) Semiconductor light emitting element
JP5634003B2 (ja) 発光装置
US8217568B2 (en) Light emitting element and light emitting device using the light emitting element
KR102460072B1 (ko) 반도체 발광 소자
JP4765632B2 (ja) 半導体発光素子
JP4882792B2 (ja) 半導体発光素子
JP4069936B2 (ja) 窒化物半導体発光素子、発光素子、素子積層体、並びにそれらを用いた発光装置
JP2008135789A (ja) 窒化物半導体発光素子、発光素子、素子積層体、並びにそれらを用いた発光装置
JP2008135554A (ja) 半導体発光素子、発光装置及び半導体発光素子の製造方法
JP3772801B2 (ja) 発光ダイオード
JP4581540B2 (ja) 半導体発光素子とそれを用いた発光装置
JPH10190053A (ja) 発光装置
JP2007300134A (ja) 窒化物半導体発光素子、発光素子、素子積層体、並びにそれらを用いた発光装置
KR101746002B1 (ko) 발광소자
US8643045B2 (en) Light emitting device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

R150 Certificate of patent or registration of utility model

Ref document number: 4581540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees