JP2005020877A - 車載モータ制御装置 - Google Patents

車載モータ制御装置 Download PDF

Info

Publication number
JP2005020877A
JP2005020877A JP2003181501A JP2003181501A JP2005020877A JP 2005020877 A JP2005020877 A JP 2005020877A JP 2003181501 A JP2003181501 A JP 2003181501A JP 2003181501 A JP2003181501 A JP 2003181501A JP 2005020877 A JP2005020877 A JP 2005020877A
Authority
JP
Japan
Prior art keywords
motor
temperature
current
current sensor
zero point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003181501A
Other languages
English (en)
Inventor
Katsumi Tsuchida
克実 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003181501A priority Critical patent/JP2005020877A/ja
Publication of JP2005020877A publication Critical patent/JP2005020877A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】本発明は、車載モータ制御装置に関し、電流センサのゼロ点の温度ドリフトによる影響を排除することによりモータの制御精度を向上させることを目的とする。
【解決手段】イグニションがオフからオンへ切り替わった後、モータ12の非駆動時における電流センサ30の電流出力値とECU温度センサ40の温度出力値とをEEPROM38に格納し、電流センサ30のゼロ点の温度特性を学習する。そして、モータ12が駆動し始めた後は、学習結果から得られる、その時点において検出されるECU温度に応じた電流センサ30のゼロ点に従って電流センサ30の出力に基づく検出電流を補正し、モータ12に流れる電流を検出する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、車両に搭載されるモータ制御装置に係り、特に、電流センサの出力信号に基づく検出電流が目標電流に一致するようにモータを駆動する車載モータ制御装置に関する。
【0002】
【従来の技術】
従来より、例えば車両を操舵させるのに必要な運転者のステアリング操作をアシストするトルクを発生する電気モータの制御を行う車載モータ制御装置が知られている(例えば、特許文献1参照)。かかる車載モータ制御装置においては、操舵軸に加わる操舵トルクに応じたアシストトルクを得るためにモータに流すべき目標電流が設定される。そして、電流センサを用いてモータに実際に流れる電流が検出され、検出電流と目標電流とに偏差が生じないようにすなわち両者が一致するように回転角に従ったモータの駆動が行われる。
【0003】
【特許文献1】
特開平10−67335号公報
【0004】
【発明が解決しようとする課題】
一般に、電流センサのゼロ点には個体差があり、電流センサ出力に基づく検出電流値に真値との誤差が生ずることがある。この点、誤差の生じている検出電流値に基づいてモータの駆動制御が行われると、モータにトルクリップルが発生して、制御精度が低下し、その結果、車両運転者の操舵フィーリングが悪化する不都合が生ずる。そこで、かかる不都合を回避するために、電流センサのゼロ点をその製造出荷時において補正して、検出誤差の解消を図ることが考えられる。
【0005】
しかしながら、電流センサのゼロ点は、雰囲気の温度に影響を受け易くその温度に応じて変動する。このため、上記の如く製造出荷段階においてのみゼロ点補正を行ったとしても、その後、製造出荷時における温度と同一の温度下であれば検出電流値が適正な補正により真値を示す一方で、その製造出荷時における温度と異なる温度下では検出電流値の誤差が発生することとなる。従って、モータの制御精度を常に高く維持するためには、電流センサのゼロ点補正を製造出荷段階においてのみ行うことは適切でない。
【0006】
本発明は、上述の点に鑑みてなされたものであり、電流センサのゼロ点の温度ドリフトによる影響を排除することによりモータの制御精度を向上させることが可能な車載モータ制御装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的は、請求項1に記載する如く、モータに流れる電流に応じた信号を出力する電流センサと、前記電流センサの出力信号に基づく検出電流が目標電流に一致するように前記モータを駆動する駆動制御手段と、を備える車載モータ制御装置であって、
前記電流センサ近傍の温度を検出する温度検出手段と、
車両のイグニションがオフからオンへ又はオンからオフへ切り替わった後の前記モータが駆動されていない時点において検出される前記電流センサの出力値と前記温度検出手段による検出温度との関係に基づいて、前記電流センサのゼロ点−温度特性を学習するゼロ点温特学習手段と、
前記モータの駆動時、前記ゼロ点温特学習手段の学習結果に基づいて前記電流センサの出力信号に基づく検出電流を補正する電流補正手段と、を備え、
前記駆動制御手段は、前記電流補正手段により補正された結果得られる検出電流に基づいて前記モータの駆動を行う車載モータ制御装置により達成される。
【0008】
本発明において、車両のイグニションがオフからオンへ又はオンからオフへ切り替わった後、モータの非駆動時において、電流センサの出力値およびそのセンサ近傍の温度が検出される。モータが駆動されていない場合は、モータに流れる電流はゼロであるべきであるため、電流センサの出力はその温度下におけるゼロ点を示すと判断できる。従って、上記の如く電流センサの検出値と検出温度との関係によれば、電流センサのゼロ点の温度特性を学習することができる。このように学習がなされた後は、モータ駆動時、このゼロ点温度特性に従って電流センサの出力に基づく検出電流を補正すれば、検出電流の誤差を適正に解消させることができる。このため、本発明によれば、電流センサのゼロ点の温度ドリフトの影響が排除され、モータの制御精度が向上される。
【0009】
この場合、請求項2に記載する如く、請求項1記載の車載モータ制御装置において、前記ゼロ点温特学習手段は、車両のイグニションがオフからオンへ又はオンからオフへ切り替わる毎に検出された複数のモータ非駆動時における前記電流センサの出力値と前記温度検出手段による検出温度との関係に基づいて最小二乗法を適用して、前記電流センサのゼロ点−温度特性を学習することとすればよい。
【0010】
また、請求項3に記載する如く、請求項1又は2記載の車載モータ制御装置において、前記ゼロ点温特学習手段の学習結果を記憶する不揮発性メモリを備えることとすればよい。
【0011】
【発明の実施の形態】
図1は、本発明の一実施例である車両に搭載されるモータ制御装置10のシステム構成図を示す。本実施例の車載モータ制御装置10は、車両運転者のステアリング操作負担を軽減すべく、その操舵に必要な操舵トルクをアシストするトルクを発生するモータの制御を行う装置である。車載モータ制御装置10は、電気的な直流モータ(以下、単にモータと称す)12を備えている。モータ12は、その回転駆動によりステアリング装置のラックを車幅方向に沿って変位させるアシストトルクを発生し、車輪を転舵させるうえで必要な運転者のステアリング操作をアシストする。
【0012】
車載モータ制御装置10は、モータ12の駆動を制御する電子制御ユニット(以下、ECUと称す)14を備えている。ECU14は、マイクロコンピュータ(マイコン)16及び駆動回路18を備えている。マイコン16には、車両のステアリングホイールに加わる操舵トルクの情報が供給される。マイコン16は、供給された操舵トルクの情報に基づいて、モータ12に供給すべき目標電流i*を演算する。
【0013】
駆動回路18は、上記したモータ12に接続されている。駆動回路18は、バッテリ電源20に接続するパワースイッチング素子Tr1,Tr3と接地側に接続するパワースイッチング素子Tr2,Tr4とを直列接続したH型ブリッジ回路により構成されている。各パワースイッチング素子Tr1〜Tr4は、例えばMOSFETである。
【0014】
駆動回路18の各パワースイッチング素子Tr1〜Tr4はそれぞれ、マイコン16の有する後述のDuty出力部の指令に従ってPWM駆動され、モータ12に電圧を印加する。電源側パワースイッチング素子Tr1と接地側パワースイッチング素子Tr4とは、同時にオン・オフされる。また、電源側パワースイッチング素子Tr2と接地側パワースイッチング素子Tr3とは、同時にオン・オフされる。一方、Tr1とTr3とが同時にオンされることはなく、また、Tr2とTr4とが同時にオンされることはない。
【0015】
また、駆動回路18とモータ12との間には、モータリレー22が介在されている。モータリレー22は、パワーMOSFET等の半導体式のスイッチング素子であり、駆動回路18とモータ12との経路を導通・遮断する機能を有している。マイコン16は、IG−ON判定部24及びモータリレー出力部26を有している。
【0016】
IG−ON判定部24には、車両動力等の動作を実現させるためのイグニション信号が供給される。イグニション信号は、運転者等により機械的に又は遠隔的にイグニションオン操作がなされた場合にオン状態となり、車両停止等のイグニションオフ操作がなされた場合にオフ状態となる。IG−ON判定部24は、イグニション信号に基づいてイグニションの状態を判定し、車両が走行可能状態にあるか否かを判定する。
【0017】
モータリレー出力部26は、上記したモータリレー22に接続されている。モータリレー出力部26は、IG−ON判定部24によりイグニションがオフ状態にあると判定される場合には、モータリレー22をオフし、駆動回路18とモータ12との経路を遮断させる。一方、IG−ON判定部24によりイグニションがオン状態にあると判定される場合には、モータリレー22をオンし、駆動回路18とモータ12との経路を導通させる。
【0018】
モータリレー22がオンされている状況下、パワースイッチング素子Tr1,Tr4がオンされると、バッテリ電源20から出力される電流は、電源側パワースイッチング素子Tr1を介してモータ12へ流れ、その後、モータ12から接地側パワースイッチング素子Tr4を介して接地へ流れる。この場合、モータ12は、一の方向に回転する。また、モータリレー22がオンされている状況下、パワースイッチング素子Tr2,Tr3がオンされると、バッテリ電源20から出力される電流は、電源側パワースイッチング素子Tr2を介してモータ12へ流れ、その後、モータ12から接地側パワースイッチング素子Tr3を介して接地へ流れる。この場合、モータ12は、上記した一の方向とは反対方向に回転する。
【0019】
接地側パワースイッチング素子Tr3,Tr4は、所定の抵抗値を有するシャント抵抗28を介して接地されている。シャント抵抗28は、電流センサ30を構成している。電流センサ30は、シャント抵抗28の両端に生ずる電圧差に応じたアナログ信号、すなわち、モータ12に流れてそのモータ12から駆動回路18側へ流れたモータ電流に応じたアナログ信号を出力する。電流センサ30の出力信号は、マイコン16に供給される。マイコン16は、A/D変換部32を有している。A/D変換部32には、電流センサ30の出力信号が供給される。A/D変換部32は、電流センサ30の出力するアナログ信号をディジタル信号に変換する処理を実行する。
【0020】
マイコン16は、また、A/D変換部32の出力に接続する電流センサ補正部34を有している。電流センサ補正部34には、ECU温度検出部36及びEEPROM38が接続されている。ECU温度検出部36には、ECU温度センサ40が接続されている。ECU温度センサ40の有するサーミスタは、ECU14の回路基板上に実装されている。この回路基板上には、また、電流センサ30の有するオペアンプ等による電子回路が形成されている。ECU温度センサ40のサーミスタは、ECU14の温度に応じてその抵抗値が変化する部品である。ECU温度センサ40は、サーミスタの抵抗値に応じたアナログ信号をマイコン16のECU温度検出部36に出力する。ECU温度検出部36は、ECU温度センサ40によるアナログ信号をA/D変換し、そのディジタル信号に基づいてECU14内の温度を検出する。
【0021】
また、EEPROM38には、後に詳述する如く、電流センサ30のゼロ点の温度特性に関するパラメータがディジタル値で格納されている。電流センサ補正部34は、ECU温度センサ40を用いて現時点で検出されるECU14の温度に対応する電流センサ30のゼロ点特性をEEPROM38から読み出し、そのゼロ点特性に従ってA/D変換部32で変換された結果得られた電流センサ30の出力値に基づいてモータ12に流れる電流iを換算して検出する。この場合には、上記したゼロ点特性に従わない場合と比較して、モータ12に流れる検出電流iが適正な値に補正される。
【0022】
マイコン16は、操舵トルクに基づいて演算したモータ12の目標電流i*と電流センサ補正部34により補正された結果得られた電流センサ30による検出電流iとの偏差(i*−i)に基づいて、モータ12に流れる電流を目標電流i*に一致させるために必要なモータ12に印加すべき電圧指令値V*を演算する。マイコン16は、Duty出力部42を有している。Duty出力部42は、マイコン16の演算した電圧指令値V*がモータ12に実際に印加されるように駆動回路18の各パワースイッチング素子Tr1,Tr2,Tr3,Tr4を適当にPWM駆動する。かかるPWM駆動が行われると、モータ12に所定の電圧が印加され、モータ12の各相に所望のアシスト電流が流れる。
【0023】
かかる車載モータ制御装置10において、運転者によりステアリングホイールが操作されると、その操舵トルクに応じたアシストトルクがステアリング装置に付与されるようにモータ12が駆動される。この際、モータ12の駆動は、操舵トルクが大きいほど大きなアシストトルクが発生するように行われる。従って、本実施例のステアリング装置によれば、モータ12を用いて運転者によるステアリング操作の負担を軽減することができる。
【0024】
次に、本実施例の車載モータ制御装置10において電流センサ30の出力を補正する手順について説明する。本実施例の車載モータ制御装置10においては、まず、以下の如く、電流センサ30の有するゼロ点の温度特性パラメータがEEPROM38に格納され、その後、格納された結果から学習されたゼロ点温度特性に対応させて電流センサ30の出力に基づく検出電流が補正される。
【0025】
図2は、本実施例の車載モータ制御装置10において、電流センサ30の出力の補正を行うべくマイコン16が実行する一例の手順を表したフローチャートを示す。図2に示すルーチンが起動されると、まずステップ100の処理が実行される。
【0026】
ステップ100では、IG−ON判定部24の判定結果によりイグニションがオフからオンに切り替わったことが検知される。ステップ102では、パワースイッチング素子Tr1〜Tr4がすべてオフにありかつモータリレー22がオフにあることが検知される。
【0027】
ステップ104では、上記ステップ100及び102の条件が共に成立した時点で、電流センサ30のA/D出力値をモニタする処理が実行される。また、ステップ106では、上記ステップ100及び102の条件が共に成立した時点で、ECU温度センサ40のA/D出力値をモニタする処理が実行される。そして、ステップ108では、EEPROM38に、上記ステップ104及び106でモニタした電流センサ30の電流出力値および温度センサ40の温度出力値を対応させて格納し記憶させる処理が実行される。
【0028】
ここで、イグニションオン後、パワースイッチング素子Tr1〜Tr4がオフされかつモータリレー22がオフにある間は、モータ12と駆動回路18との経路は遮断され、モータ12にバッテリ電源20からの電流は流通しない筈である。このため、この際に電流センサ30が何らかの値を出力していれば、その出力値は、そのECU温度下におけるゼロ点であると判断することができる。
【0029】
従って、上記ステップ100〜108の処理によれば、イグニションがオンされた際、モータ12の駆動が行われる前に、そのECU温度下における電流センサ30のゼロ点を不揮発性のEEPROM38に記憶させることができる。そして、これらのステップ100〜108の処理が、車両の有するECU14が達し得る温度の範囲、例えば−40℃〜+125℃の温度範囲で複数回行われれば、電流センサ30のゼロ点の温度特性を学習することができる。
【0030】
図3は、電流センサ30のゼロ点の温度特性を表した図を示す。例えば、電流センサ30のゼロ点の出力が温度の上昇に伴って線形的に増加する場合には、図3(A)に示す如き特性が学習される。一方、電流センサ30のゼロ点の出力が温度の上昇に伴って線形的に減少する場合には、図3(B)に示す如き特性が学習される。尚、電流センサ30のゼロ点の温度特性は、線形に限らず、非線形となることもあるが、この場合においてもその温度特性を最小二乗法を適用して学習することは可能である。
【0031】
すなわち、ステップ110では、上記ステップ108で格納した電流センサ30の電流出力値および温度センサ40の温度出力値を含めて、それ以前にEEPROM38に格納した過去のすべての電流出力値および温度出力値を両者を相関させて読み出す処理が実行される。また、ステップ112では、上記ステップ110で読み出した電流出力値と温度出力値との関係のすべてに基づいて最小二乗法を適用して、電流センサ30のゼロ点−温度特性マップを演算する処理が実行される。
【0032】
そして、ステップ114では、上記ステップ112で演算したマップを参照することにより上記ステップ106でモニタしたECU温度下におけるゼロ点を把握すると共に、そのゼロ点を基準として上記ステップ104でモニタされた電流センサ30のA/D出力値が示しているモータ12に流れる電流iを検出する処理が実行される。本ステップ114の処理が実行されると、以後、駆動回路18をPWM駆動するうえでの演算の基準となる電流センサ30による検出電流iが、モータ12に流れる電流を正確に表すこととなる。本ステップ114の処理が終了すると、今回のルーチンは終了される。
【0033】
上記図2に示すルーチンによれば、イグニションがオンになる毎に繰り返しモータ非駆動時における電流センサ30のゼロ点の温度特性を学習することができ、以後、その時点でのECU温度に応じたゼロ点に従って、電流センサ30の出力に基づく検出電流を適正に補正することができる。
【0034】
このため、本実施例の車載モータ制御装置10によれば、電流センサ30のゼロ点に温度変化に伴う変動が生ずる場合にも、その温度変化に起因する検出電流の真値に対する誤差を適正に解消させることができ、電流センサ30のゼロ点の温度ドリフトの影響を排除することができる。従って、本実施例の車載モータ制御装置10によれば、モータ12の制御精度を向上させることができ、モータ12による操舵アシストを受ける車両運転者の操舵フィーリングを良好に維持することが可能となっている。
【0035】
また、上記の如く、本実施例においては、イグニションがオンになる毎に繰り返し電流センサ30のゼロ点の温度特性が学習され、その特性に従って電流センサ30の出力に基づく検出電流が補正される。この点、電流センサ30の出力に基づく検出電流の補正に用いられるゼロ点の温度特性は、その電流センサ30自身の特性である。従って、電流センサ30個々のゼロ点の温度特性についてバラツキがあっても、本実施例のシステムに現に搭載される電流センサ30自体のゼロ点の温度特性に従ってその検出電流の補正が行われるため、予め記憶された一般的なゼロ点の温度特性に従って検出電流の補正が行われる構成に比べて、補正精度の向上が図られており、モータ12が高精度に制御されることとなる。
【0036】
また、上記の如く、本実施例においては、イグニションがオンになる毎に繰り返し電流センサ30のゼロ点の温度特性が学習され、その特性に従って電流センサ30の出力に基づく検出電流が補正される。すなわち、本実施例において、電流センサ30のゼロ点の温度特性は、イグニションオンごとに繰り返し学習される。このため、電流センサ30のゼロ点が経時変化を起こした場合においても、その変化に従って適切に検出電流の補正を行うことができ、モータ12の制御精度を高く維持することが可能となっている。
【0037】
更に、本実施例においては、モータ12の制御精度を向上させるうえで、マイコン16においてイグニションオンごとに電流センサ30のゼロ点の温度特性を学習し、その結果をEEPROM38に格納し、その学習値に従って電流センサ30の検出電流を補正することとしている。この場合には、ECU14において電流センサ30の検出電流の補正を行ううえで複雑なハード回路構成を設けることは不要である。この点、本実施例によれば、簡素な構成でモータ12の制御精度の向上が図られている。
【0038】
尚、上記第1の実施例においては、マイコン16のDuty出力部28が特許請求の範囲に記載した「駆動制御手段」に、ECU温度検出部32が特許請求の範囲に記載した「温度検出手段」に、マイコン16が図2に示すルーチン中ステップ108〜112の処理を実行することが特許請求の範囲に記載した「ゼロ点温特学習手段」に、マイコン16がステップ114の処理を実行することが特許請求の範囲に記載した「電流補正手段」に、EPROMが特許請求の範囲に記載した「不揮発性メモリ」に、それぞれ相当している。
【0039】
次に、本発明の第2実施例について説明する。尚、本実施例の構成において、上記した第1実施例の構成と同一の部分については、同一の符号を付してその説明を省略する。
【0040】
上記した第1実施例では、車両のイグニションがオンになるごとに、電流センサ30の電流出力値及びECU温度センサ40の温度出力値が、電流センサ30のゼロ点の温度特性パラメータとしてEEPRPM38に格納される。これに対して、本実施例においては、本システムが車両に搭載された後、製造出荷される直前や修理される際には、その搭載された電流センサ30のゼロ点の温度特性マップを予めEEPROM38に固定して記憶させる一方で、車両の通常走行中は電流センサ30のゼロ点の温度特性パラメータの格納・更新を行わない。
【0041】
すなわち、本実施例の車載モータ制御装置10は、製造出荷直前や修理時にその製造工場や修理工場の恒温槽においてECU温度を予め設定固定した状態で、搭載された電流センサ30のゼロ点をモニタする。そして、例えば−40℃〜+125℃の温度範囲において所定温度間隔(例えば10℃間隔)でECU温度を順次切り替えて上記のモニタを繰り返す。予め定められた温度範囲のモニタがすべて終了すると、それらの全モニタ値を基にその電流センサ30のゼロ点の温度特性を学習して、そのマップ自体をEEPROM38に記憶する。以後は、ゼロ点温度特性としてのマップの変更を行うことなく、記憶されたマップに従って各ECU温度下における電流センサ30のゼロ点を基準にしてモータ12に流れる電流を検出し、電流センサ30による検出電流を補正する。
【0042】
図4は、本実施例の車載モータ制御装置10において、電流センサ30の出力の補正を行うべくマイコン16が実行する一例の手順を表したフローチャートを示す。図4に示すルーチンが起動されると、まずステップ150の処理が実行される。
【0043】
ステップ150では、恒温槽の温度を−30℃に設定することにより、ECU温度を予め−30℃に設定固定する処理が実行される。ステップ152では、IG−ON判定部24の判定結果によりイグニションがオフからオンに切り替わったことが検知される。ステップ154では、パワースイッチング素子Tr1〜Tr4がすべてオフにありかつモータリレー22がオフにあることが検知される。
【0044】
ステップ156では、上記ステップ152及び154の条件が共に成立した時点で、電流センサ30のA/D出力値をモニタする処理が実行される。ステップ158では、上記ステップ152及び154の条件が共に成立した時点で、ECU温度センサ40のA/D出力値をモニタする処理が実行される。本ステップ158の処理が終了すると、電流センサ30のA/D出力値およびECU温度センサ40のA/D出力値の双方が対応して一時記憶メモリに記憶されることとなる。
【0045】
ステップ160では、恒温槽の設定温度を−30℃〜+120℃の範囲で順次所定温度間隔で切り替えることによりECU温度を再設定して、上記ステップ152〜158の処理を繰り返す処理が実行される。本ステップ160の処理が行われると、電流センサ30の各設定温度ごとのゼロ点出力が得られることとなる。本ステップ160の処理がECU温度の所定温度範囲のすべてについて行われた後は、次にステップ162の処理が実行される。
【0046】
ステップ162では、一時記憶メモリに記憶されている電流センサ30の電流出力値とECU温度センサ40の温度出力値との関係のすべてに基づいて最小二乗法を適用して、電流センサ30のゼロ点−温度特性マップを演算する処理が実行される。そして、ステップ164では、上記ステップ162で演算して得られた電流センサ30のゼロ点−温度特性マップをEEPROM38に格納し記憶させる処理が実行される。本ステップ164の処理が終了すると、今回のルーチンは終了される。
【0047】
上記図4に示すルーチンによれば、モータ非駆動時、所定温度間隔ごとのECU温度についての電流センサ30の電流出力値に基づいて演算されるその電流センサ30のゼロ点−温度特性のマップをEEPROM38に記憶させることができる。上述の如く電流センサ30のゼロ点−温度特性マップが不揮発性のEEPROM38に記憶されると、以後、モータ12の駆動制御時にその時点でのEUC温度下における電流センサ30のゼロ点を適切に抽出することができ、そのゼロ点を基準にしてモータ12に流れる電流を検出し、電流センサ30による検出電流を補正することができる。
【0048】
このため、本実施例の車載モータ制御装置10によれば、電流センサ30のゼロ点に温度変化に伴う変動が生ずる場合にも、その温度変化に起因する検出電流の真値に対する誤差を適正に抑制することができ、電流センサ30のゼロ点の温度ドリフトの影響を極力排除することができる。従って、本実施例の車載モータ制御装置10によれば、モータ12の制御精度を向上させることができ、モータ12による操舵アシストを受ける車両運転者の操舵フィーリングを良好に維持することが可能となっている。
【0049】
また、本実施例のシステムにおいて、EEPROM38に記憶される電流センサ30のゼロ点の温度特性は、そのシステムが実際に搭載する電流センサ30そのものの特性である。従って、電流センサ30個々のゼロ点の温度特性についてバラツキがあっても、本実施例のシステムに現に搭載される電流センサ30自体のゼロ点の温度特性に従ってその検出電流の補正が行われるため、予め記憶された一般的なゼロ点の温度特性に従って検出電流の補正が行われる構成に比べて、補正精度の向上が図られており、モータ12が高精度に制御されることとなる。
【0050】
また、本実施例の構成において、電流センサ30のゼロ点−温度特性のマップは、システムの製造出荷前や修理時に予めEEPROM38に記憶される。すなわち、車両が実際に走行し、モータ12の駆動が開始された後には、電流センサ30のゼロ点−温度特性に関するパラメータのEEPROM38への格納は行われない。この場合には、EEPROM38に格納されるデータが増加されることはないため、従って、本実施例によれば、EEPROM38自体のメモリ容量を節約することができ、安価な構成で車載モータ制御装置10を実現することが可能となる。
【0051】
尚、上記第2の実施例においては、マイコン16が図4に示すルーチン中ステップ162及び164の処理を実行することが特許請求の範囲に記載した「ゼロ点温特学習手段」に、マイコン16がEEPROM38に格納された電流センサ30のゼロ点−温度特性マップに従って電流センサ30による検出電流を補正することが特許請求の範囲に記載した「電流補正手段」に、それぞれ相当している。
【0052】
ところで、上記第1及び第2の実施例においては、電流検出を行うモータ12を直流モータとしているが、多相のモータに適用することも可能である。また、電動パワーステアリング装置に用いるモータ12のゼロ点の温度特性を学習することによりその制御精度の向上を図ることとしているが、電動パワーステアリング装置以外のシステムに使用するモータに適用することも可能である。
【0053】
また、上記第1及び第2の実施例においては、モータ12に流れる電流として、駆動回路18の接地側に流れる電流を検出することとしているが、本発明はこれに限定されるものではなく、駆動回路18のバッテリ電源20側に流れる電流や、駆動回路18とモータ12との間の経路に流れる電流を検出することとしてもよい。
【0054】
また、上記第1及び第2の実施例においては、イグニションがオフからオンへ切り替わった際に、パワースイッチング素子Tr1〜Tr4およびモータリレー22のオフ時における電流センサ30の電流出力値とECU温度センサ40の温度出力値とをEEPROM38に格納することとしているが、イグニションがオンからオフへ切り替わった際に、それらの出力値をEEPROM38に格納することとしてもよい。
【0055】
【発明の効果】
上述の如く、請求項1乃至3記載の発明によれば、電流センサのゼロ点−温度特性の学習を行うため、電流センサのゼロ点の温度ドリフトの影響を排除することができ、これにより、モータの制御精度を向上させることができる。
【図面の簡単な説明】
【図1】本発明の第1実施例である車載モータ制御装置のシステム構成図である。
【図2】本実施例において電流センサの出力を補正する手順を表したフローチャートである。
【図3】電流センサのゼロ点の温度特性を表した図である。
【図4】本発明の第2実施例において電流センサの出力を補正する手順を表したフローチャートである。
【符号の説明】
10 車載モータ制御装置
12 直流モータ(モータ)
14 電子制御ユニット(ECU)
16 マイクロコンピュータ(マイコン)
18 駆動回路
24 IG−ON判定部
30 電流センサ
34 電流センサ補正部
36 ECU温度検出部
38 EEPROM
40 ECU温度センサ

Claims (3)

  1. モータに流れる電流に応じた信号を出力する電流センサと、前記電流センサの出力信号に基づく検出電流が目標電流に一致するように前記モータを駆動する駆動制御手段と、を備える車載モータ制御装置であって、
    前記電流センサ近傍の温度を検出する温度検出手段と、
    車両のイグニションがオフからオンへ又はオンからオフへ切り替わった後の前記モータが駆動されていない時点において検出される前記電流センサの出力値と前記温度検出手段による検出温度との関係に基づいて、前記電流センサのゼロ点−温度特性を学習するゼロ点温特学習手段と、
    前記モータの駆動時、前記ゼロ点温特学習手段の学習結果に基づいて前記電流センサの出力信号に基づく検出電流を補正する電流補正手段と、を備え、
    前記駆動制御手段は、前記電流補正手段により補正された結果得られる検出電流に基づいて前記モータの駆動を行うことを特徴とする車載モータ制御装置。
  2. 前記ゼロ点温特学習手段は、車両のイグニションがオフからオンへ又はオンからオフへ切り替わる毎に検出された複数のモータ非駆動時における前記電流センサの出力値と前記温度検出手段による検出温度との関係に基づいて最小二乗法を適用して、前記電流センサのゼロ点−温度特性を学習することを特徴とする請求項1記載の車載モータ制御装置。
  3. 前記ゼロ点温特学習手段の学習結果を記憶する不揮発性メモリを備えることを特徴とする請求項1又は2記載の車載モータ制御装置。
JP2003181501A 2003-06-25 2003-06-25 車載モータ制御装置 Pending JP2005020877A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003181501A JP2005020877A (ja) 2003-06-25 2003-06-25 車載モータ制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003181501A JP2005020877A (ja) 2003-06-25 2003-06-25 車載モータ制御装置

Publications (1)

Publication Number Publication Date
JP2005020877A true JP2005020877A (ja) 2005-01-20

Family

ID=34182198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003181501A Pending JP2005020877A (ja) 2003-06-25 2003-06-25 車載モータ制御装置

Country Status (1)

Country Link
JP (1) JP2005020877A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007274817A (ja) * 2006-03-31 2007-10-18 Mitsuba Corp モータ電流検出装置
JP2009127438A (ja) * 2007-11-20 2009-06-11 Ihi Corp スタータ制御装置及びガスタービン発電装置
JP2009150362A (ja) * 2007-12-21 2009-07-09 Ihi Corp スタータ制御装置及び該スタータ制御装置を有するガスタービン発電装置
CN102062209A (zh) * 2010-11-15 2011-05-18 奇瑞汽车股份有限公司 一种用于消除传感器漂移的自适应控制方法及装置
JP2013060119A (ja) * 2011-09-14 2013-04-04 Hitachi Automotive Systems Ltd 電動パワーステアリング装置
JP2016158414A (ja) * 2015-02-25 2016-09-01 三菱電機株式会社 電動機制御装置
CN115951289A (zh) * 2023-02-20 2023-04-11 重庆云宸新能源科技有限公司 一种电流传感器零点校准系统、方法及电动汽车

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007274817A (ja) * 2006-03-31 2007-10-18 Mitsuba Corp モータ電流検出装置
JP2009127438A (ja) * 2007-11-20 2009-06-11 Ihi Corp スタータ制御装置及びガスタービン発電装置
JP2009150362A (ja) * 2007-12-21 2009-07-09 Ihi Corp スタータ制御装置及び該スタータ制御装置を有するガスタービン発電装置
CN102062209A (zh) * 2010-11-15 2011-05-18 奇瑞汽车股份有限公司 一种用于消除传感器漂移的自适应控制方法及装置
JP2013060119A (ja) * 2011-09-14 2013-04-04 Hitachi Automotive Systems Ltd 電動パワーステアリング装置
JP2016158414A (ja) * 2015-02-25 2016-09-01 三菱電機株式会社 電動機制御装置
CN115951289A (zh) * 2023-02-20 2023-04-11 重庆云宸新能源科技有限公司 一种电流传感器零点校准系统、方法及电动汽车

Similar Documents

Publication Publication Date Title
JP5228578B2 (ja) モータ制御装置および電動パワーステアリング装置
JP4270196B2 (ja) バッテリ状態診断装置
US20080054835A1 (en) Method and apparatus for controlling motor for vehicles
US7427843B2 (en) Electrically operated power steering controller and adjusting method of driving electric current offset in this controller
US20110178681A1 (en) Method of protecting motor-driven steering system from overheat
JP4042848B2 (ja) 電動式ステアリングの制御装置
US7222694B2 (en) Control unit for electric power steering
US11072363B2 (en) Control system for motor and control device for motor
US7044264B2 (en) Electrically driven power steering system for vehicle
JP2005110363A (ja) ブラシレスモータの駆動制御装置及び駆動制御方法
US6972537B2 (en) Electric power steering apparatus
JP3915964B2 (ja) 電動パワーステアリング制御装置
JP2005020877A (ja) 車載モータ制御装置
JP3663880B2 (ja) 電動パワーステアリング装置の制御装置
JP2012046049A (ja) 操舵装置
JP2001327002A (ja) 電気自動車用電流検出装置
JP4333661B2 (ja) 電動パワーステアリング装置
US6874594B2 (en) Controller for electric power steering system
JP3390360B2 (ja) 電動パワーステアリング装置
EP3465117B1 (en) Coil temperature estimation
JP5470968B2 (ja) モータ制御装置および電動パワーステアリング装置
JP4449771B2 (ja) 電動パワーステアリング装置
JP5983546B2 (ja) 不揮発性メモリ制御装置
JP2019209915A (ja) ワイパ装置及びワイパ装置の制御方法
JP3885920B2 (ja) 電動パワーステアリング制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080318