JP2005005220A - Field emission type electron source element and its manufacturing method - Google Patents

Field emission type electron source element and its manufacturing method Download PDF

Info

Publication number
JP2005005220A
JP2005005220A JP2003169911A JP2003169911A JP2005005220A JP 2005005220 A JP2005005220 A JP 2005005220A JP 2003169911 A JP2003169911 A JP 2003169911A JP 2003169911 A JP2003169911 A JP 2003169911A JP 2005005220 A JP2005005220 A JP 2005005220A
Authority
JP
Japan
Prior art keywords
emitter
field emission
electron source
conductive
locally
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003169911A
Other languages
Japanese (ja)
Inventor
Mutsumi Yamamoto
睦 山本
Keisuke Koga
啓介 古賀
Akinori Shioda
昭教 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003169911A priority Critical patent/JP2005005220A/en
Publication of JP2005005220A publication Critical patent/JP2005005220A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably provide a field emission type electron source capable of obtaining a large current density at a low voltage with good reproducibility. <P>SOLUTION: The field emission type electron source comprises a plurality of conductive emitters 1b formed on a substrate so as to have a steep tip; and a leadout electrodes 5a formed so as to surround each emitter 1b in order to apply voltages to each emitter 1b for emitting electrons from the tips of each emitter 1b respectively. Segregated materials 7 having a composition different from that of a mother material composing the emitters 1b are dispersed locally on the surfaces of the emitters 1b. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、平面型の固体表示素子又は超高速の微小真空素子への応用が期待される冷陰極電子源であり、特に大電流動作の実現が可能な電界放出型電子源に関する。
【0002】
【従来の技術】
半導体の微細加工技術の進展により、微小電界放出陰極の形成が可能となった。スピントらによって提案されたコーン型の電界放出陰極(特許文献1:C.A.Spindt、 J.Appl. Phys. Vol.39、 p.3504(1986))以来、微小電界放出型電子源が注目されるに至っている。
【0003】
その後、同様の縦型構造でシリコンの結晶異方性エッチングやドライエッチングと熱酸化を用いてエミッタの先端形状のより鋭い冷陰極を形成する方法が提案された(特許文献2: H.F.Gray et al., IEDM Tech.Dig. p.776(1986))、特許文献3:別井、1990年秋季信学全大論文集5、SC−8−2(1990))。
【0004】
これらの電界放出型電子源の電子放出特性は、エミッタ先端部の形状や材料、引き出し電極を含めた電子源素子の構造等、様々な要因に影響される。電界放出型電子源の電子放出特性を向上させるための一つの手段として、エミッタの表面における仕事関数を低くすることによってエミッタの先端からの電子の放出を容易にするという考え方がある。
【0005】
図6は、従来の電界放出型電子源素子の要部拡大図である。図6に示すように、エミッタ1bの先端に、エミッタ1bの母体材料よりも仕事関数の低い物質91によってエミッタ1bの表面を被覆すると方法が多く試みられている。
【0006】
【特許文献1】
C.A.Spindt、 J.Appl. Phys. Vol.39、 p.3504(1986)、
【0007】
【特許文献2】
H.F.Gray et al., IEDM Tech.Dig.p.776(1986))、
【0008】
【特許文献3】
別井、1990年秋季信学全大論文集5、SC−8−2(1990)
【0009】
【発明が解決しようとする課題】
前記従来例に示した電子源は、エミッタの表面における仕事関数を下げるという点では効果がある。しかしながら、成膜方法にもよるが、エミッタの先端部を異なる材料で被覆すると、殆どの場合先端部の曲率半径が大きくなるか、或いは先端部は全く被覆されないという問題が生じる。
【0010】
一般的にエミッタの先端部における曲率半径が小さければ小さい程、即ちより先端部が尖っていればいるほど、外部電界によるエミッタ先端部への電界集中が強くなるので、電子を放出し易くなる。そのため、先端部の曲率半径を大きくすることなく、エミッタ表面の仕事関数を低くする方法が望まれている。
【0011】
またエミッタ先端部に低い仕事関数の材料を被覆する方法では、特に最終工程でこの処理を施した場合、引き出し電極とエミッタとを電気的に隔離している絶縁膜の側壁にも僅かに導電性の皮膜が形成される。このため、引き出し電極とエミッタ間でリーク電流が生じるという問題も引き起こしている。
【0012】
本発明の目的は、先鋭化されたエミッタ表面の形状を損なうことなく、また電気的な特性を損なうことなくエミッタ表面に相対的に仕事関数の低い箇所を局所的に形成することで、低電圧で大電流密度の可能な電界放出型電子源を、安定に、再現性良く提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明に係る電界放出型電子源は、急峻な先端を有するように基板上に形成された導電性を有する複数のエミッタと、各エミッタの先端から電子が放出されるように各エミッタに電圧を印加するために各エミッタを囲むように形成された引出電極とを具備しており、前記エミッタの表面には、前記エミッタを構成する母体材料の組成とは異なる組成を有する偏析物が局所的に点在しており、前記偏析物を構成する材料と前記エミッタを構成する材料とは、非全率固溶型の金属同士であることを特徴とする。
【0014】
本発明に係る電界放出型電子源の製造方法は、表面に急峻な先端を有する複数の導電性凸状微小構造体からなるエミッタを形成した後、前記エミッタの表面に前記エミッタとは異なる材料の導電性薄膜を一様に形成する工程と、所定の温度で熱処理を施してエミッタ表面と導電性薄膜の一部とを合金化する工程と、前記導電性薄膜をエッチング除去する工程と、前記合金化工程での温度よりも高い温度において再度熱処理を施して前記エミッタ表面に前記エミッタの母体材料とは異なる組成の偏析物を局所的に形成する工程とを包含しており、前記形成されたエミッタ表面に形成する前記エミッタとは異なる材料の導電性薄膜は、非全率固溶型の金属からなることを特徴とする。
【0015】
本発明に係る電界放出型電子源の製造方法は、表面に急峻な先端を有する複数の導電性凸状微小構造体からなるエミッタを形成した後、前記エミッタの表面に前記エミッタとは異なる材料の微小導電性物質を局所的に点在させて形成する工程と、所定の温度で熱処理を施してエミッタ表面と微小導電性物質の一部とを合金化、若しくは前記エミッタ表面に微小導電性物質の一部を拡散させて、前記エミッタ表面に前記エミッタの前記母体材料とは異なる組成の偏析物を局所的に形成する工程と、前記微小導電性物質をエッチング除去する工程とを包含しており、前記形成されたエミッタ表面に形成する前記エミッタとは異なる材料の導電性薄膜は、非全率固溶型の金属からなることを特徴とする。
【0016】
【発明の実施の形態】
本実施の形態に係る電界放出型電子源においては、エミッタの表面には、前記エミッタを構成する母体材料の組成とは異なる組成を有する偏析物が局所的に点在しており、偏析物を構成する材料とエミッタを構成する材料とは、非全率固溶型の金属同士である。このため、エミッタの先端において局所的に仕事関数の低くなる箇所が存在するため、その箇所がトリガーとなって引き出し電極からの電界に対する電子の放出が容易になる。その結果、これまでに比べて低電圧での電子放出が可能となる。
【0017】
以下、図面を参照して本発明の実施の形態を説明する。
【0018】
(実施の形態1)
図1(a)ないし図1(e)は実施の形態1に係る電界放出型電子源素子の製造方法を示す断面図であり、図2は実施の形態1に係る電界放出型電子源素子の要部拡大図である。
【0019】
まず、図1(a)に示すように、不純物を導入して低抵抗化したシリコン基板1の表面に、二酸化シリコン膜よりなる円盤状のドットパターン2を形成する。そして、ドットパターン2をマスクとしてシリコン基板1の表面を等方的及び異方的にエッチングして、上部が凸型の柱状シリコン1aを形成する。
【0020】
次に、図1(b)に示すように、シリコン基板1を所定の温度で一定時間熱処理して柱状シリコン1aを含むシリコン基板1の表面に熱酸化膜3を形成し、その内部に先鋭な先端部を有する柱状のエミッタ1bを形成する。
【0021】
その後、図1(c)に示すように、熱酸化膜3を除去した後、熱CVD法或いはプラズマCVD法を用いてエミッタ1bを含む基板1の全面に二酸化シリコン膜よりなる絶縁膜4、及びリンを不純物として含む多結晶シリコン膜よりなる導電性膜5を成膜する。その後、全面にフォトレジスト或いは塗布型の絶縁膜よりなる平坦化膜を塗布(図示せず)し、平坦化膜の全面に対して均一にエッチングを進めて、エミッタ1bの形状を反映した導電性膜の凸部の一部を露出させた状態において導電性膜のエッチングを行い、エミッタ1bの上部の導電性膜に開口部を設けて引き出し電極5aを形成する。その後、引き出し電極5aの開口部を介して絶縁膜4の一部をエッチング除去してエミッタ1bを露出させる。
【0022】
続いて、スパッタリング法若しくは真空蒸着法を用いて基板1の全面にアルミニウム若しくはアルミニウムを主成分とする金属膜6aを成膜し、所定の温度で熱処理を行なう(図1(d)参照)。実施の形態1では、急速熱処理法(Rapid Thermal Anneal、RTA法)を用い、真空中若しくは不活性ガス雰囲気中において約500℃、1分間の熱処理を行なった。
【0023】
その後、ウエットエッチング法により金属膜6aを全て除去した後、真空中で800℃、1時間の熱処理を行なったところ、エミッタ1aの表面にアルミニウムが局所的に偏析した局所偏析部7の点在するエミッタ1bが形成された(図1(e)および図2参照)。実施の形態1においては、引き出し電極5aの表面にも同様の局所偏析物7が形成されているが、本質的な問題ではない。
【0024】
実施の形態1に示した電界放出型電子源は、エミッタ1bの表面における局所偏析部7に母体材料とは異なる偏析物が局所的に存在する。またエミッタ1bの先端部の形状は、金属膜6aを形成する前となんら変わるところはなかった。
【0025】
実施の形態1に係る電界放出型電子源において、エミッタ1bに対して引き出し電極5aに正の電界を印加したところ、通常のシリコンのみのエミッタに比べて10V程度低い電圧で電子放出を開始した。実施の形態1における局所偏析物はアルミニウムであり、シリコンに比べて仕事関数の低い材料である。このことから、この局所偏析物がエミッタ1bの表面の実効的な仕事関数を下げる役割を果たしたと考えられる。
【0026】
以上のように実施の形態1によれば、エミッタ1bの表面における局所偏析部7には、エミッタ1bを構成する母体材料の組成とは異なる組成を有する偏析物が局所的に点在している。このため、エミッタ1bの先端において局所的に仕事関数の低くなる箇所が存在するため、その部分がトリガーとなって引き出し電極5aからの電界に対する電子の放出が容易になる。その結果、これまでに比べて低電圧での電子放出が可能となる。
【0027】
(実施の形態2)
図3(a)ないし図3(e)は、実施の形態2に係る電界放出型電子源素子の製造方法を示す断面図である。図1(a)ないし図1(e)を参照して前述した構成要素には同一の参照符号を付している。従って、これらの構成要素の詳細な説明は省略する。
【0028】
不純物を導入して低抵抗化したシリコン基板1の表面に、二酸化シリコン膜よりなる円盤状のドットパターン2を形成する(図3(a)〜図3(c)参照)。そして、ドットパターン2をマスクとしてシリコン基板1の表面を等方的及び異方的にエッチングし、上部が凸型の柱状シリコン1aを形成した後、エミッタ1b、絶縁膜4および引き出し電極5aを形成し、引き出し電極5aの開口部を介して絶縁膜4の一部をエッチング除去してエミッタ1bを露出させる工程は、前述した実施の形態1と同様である。このため、詳細な説明は省略する。
【0029】
エミッタ1bを露出した後、有機金属を用いたプラズマCVD法によって、ガリウム、インジウムおよびハフニウム等の金属粒6bを基板表面に島状に形成して所定の温度で熱処理を行なう(図3(d)参照)。実施の形態2では、真空熱処理炉を用いて、約400℃、30分間の熱処理を行なった。
【0030】
その後、ウエットエッチング法により金属粒6bの残った部分を全て除去した後、真空中で600℃、1時間の熱処理を行なったところ、エミッタ1aの表面に金属粒6bとシリコンとの合金が局所的に偏析した局所偏析部7が点在するエミッタ1bが形成された(図3(e)を参照)。
【0031】
実施の形態2においては、金属粒6bの形成方法としてCVD法を用いたため、絶縁膜4の側壁にも金属粒6bが島状に形成されるが、金属粒6bと絶縁膜4とは化合物を形成しないため、ウエットエッチング処理の際に金属粒6bは全て除去される。このため、リーク等の不良を起こすことはない。
【0032】
実施の形態2に示した電界放出型電子源でも、エミッタ1bの表面の局所偏析部7に母体材料とは異なる偏析物が局所的に存在することに起因したと考えられる電子放出開始電圧の低電圧化を実現することができた。
【0033】
(実施の形態3)
図4(a)ないし図4(e)は、実施の形態3に係る電界放出型電子源素子の製造方法を示す断面図である。図1(a)ないし図1(e)を参照して前述した構成要素には同一の参照符号を付している。従って、これらの構成要素の詳細な説明は省略する。
【0034】
不純物を導入して低抵抗化したシリコン基板1の表面に、二酸化シリコン膜よりなる円盤状のドットパターン2を形成する。そして、ドットパターン2をマスクとしてシリコン基板1の表面を等方的及び異方的にエッチングし、上部が凸型の柱状シリコンを形成した後、シリコン基板1を所定の温度で一定時間熱処理して柱状シリコンを含むシリコン基板1の表面に熱酸化膜3を形成し、その内部に先鋭な先端部を有する柱状のエミッタ1bを形成する(図4(a)参照)。
【0035】
熱酸化膜3を全面除去した後、有機溶媒によって粘度を持たせた銀を主成分とする金属ペースト6cを全面に塗布し、所定の温度で熱処理を行なう(図4(b)参照)。実施の形態3では、不活性ガスを導入したクリーンオーブン中で約250℃、30分間の熱処理を行なった。
【0036】
その後、リン酸、硝酸、酢酸及び水の混合液により残った金属ペースト6cを全て除去した後、RTA法を用いて真空中で850℃、1分間の熱処理を行なったところ、エミッタ1aの表面に銀が局所的に偏析した局所偏析部7が点在するエミッタ1bが形成された(図4(c)参照)。
【0037】
その後、熱CVD法或いはプラズマCVD法を用いてエミッタ1bを含む基板全面に二酸化シリコン膜よりなる絶縁膜4、及びリンを不純物として含む多結晶シリコン膜よりなる導電性膜5を成膜する(図4(d)参照)。
【0038】
続いて全面にフォトレジスト、或いは塗布型の絶縁膜よりなる平坦化膜(図示せず)を塗布し、平坦化膜の全面に対して均一にエッチングを進めて、エミッタ1bの形状を反映した導電性膜5の凸部の一部を露出させた状態で導電性膜5のエッチングを行い、エミッタ1bの上部の導電性膜5に開口部を設けて引き出し電極5aを形成する。最後に、引き出し電極5aの開口部を介して絶縁膜4の一部をエッチング除去してエミッタ1bを露出させて、電界放出型電子源が完成する(図4(e)参照)。
【0039】
実施の形態3に示した電界放出型電子源の製造方法は、前述した実施の形態1および実施の形態2とは異なり、エミッタ1bが形成された直後に、金属ペースト6cを利用してエミッタ1bの表面に母体材料とは異なる偏析物を局所的に形成する。実施の形態3に係る電界放出型電子源においても、エミッタ1bに対して引き出し電極5aに正の電界を印加したところ、通常のシリコンのみのエミッタに比べて低い電圧での電子放出を確認した。
【0040】
(実施の形態4)
図5(a)ないし図5(d)は、実施の形態4に係る電界放出型電子源素子の製造方法を示す断面図である。図1(a)ないし図1(e)を参照して前述した構成要素には同一の参照符号を付している。従って、これらの構成要素の詳細な説明は省略する。
【0041】
不純物を導入して低抵抗化したシリコン基板1の表面に、二酸化シリコン膜よりなる円盤状のドットパターン2を形成する(図5(a)参照)。ドットパターン2をマスクとしてシリコン基板1表面を等方的及び異方的にエッチングし、上部が凸型の柱状シリコン1aを形成した後、熱酸化によりエミッタ1bを形成し、熱酸化膜3を除去してエミッタ1bを露出させるまでの工程は前述した実施の形態3と同様であるため、詳細な説明は省略する。
【0042】
エミッタ1bを露出した後、フッ化マグネシウムを蒸発源に用いて、真空蒸着法によりマグネシウムを主成分とする金属粒6dを基板表面に島状に形成し、所定の温度で熱処理を行なう(図5(b)参照)。実施の形態4では、真空熱処理炉を用いて、約500℃、30分間の熱処理を行なった。
【0043】
その後、ウエットエッチング法により金属粒6dの残った部分を全て除去した後、RTA法を用いて真空中において700℃、1分間の熱処理を行なったところ、エミッタ1aの表面に金属粒6dとシリコンとの合金が局所的に偏析した局所偏析部7が点在するエミッタ1bが形成された(図5(c)参照)。
【0044】
実施の形態4に係る電界放出型電子源素子においても、エミッタ1bに対して引き出し電極5aに正の電界を印加したところ、通常のシリコンのみのエミッタに比べて低い電圧での電子放出を確認した。
【0045】
以上に述べた実施の形態1ないし実施の形態4では、いずれもタワー型のシリコンをエミッタとした電界放出型電子源について述べた。しかしながら、本発明はこれに限定されない。本発明の要件は、形成されたエミッタの表面に金属膜を成膜、或いは金属ペーストを塗布した後、母体となるエミッタの表面に金属膜や金属―ペーストの一部を残留、或いは合金化して残し、その後の熱処理によりエミッタの表面にエミッタ母体とは異なる材料の偏析物を形成することによって局所的に仕事関数の低い箇所を作ることにあり、同時に、いずれも初期に形成されたエミッタの表面形状には何ら変化が生じない点に特徴がある。
【0046】
従って、本発明の要件によれば、タワー型のシリコンを用いた電界放出型電子源のみならず、開口部を介した金属膜の蒸着により突起を形成した、いわゆるスピント型の電界放出型電子源にも適用することが可能である。
【0047】
【発明の効果】
以上のように本発明によれば、先鋭化されたエミッタ表面の形状を損なうことなく、また電気的な特性を損なうことなくエミッタ表面に相対的に仕事関数の低い箇所を局所的に形成することで、低電圧で大電流密度の可能な電界放出型電子源を、安定に、再現性良く提供することができる。
【図面の簡単な説明】
【図1】(a)ないし(e)は、実施の形態1に係る電界放出型電子源素子の製造方法を示す断面図である。
【図2】実施の形態1に係る電界放出型電子源素子の要部拡大図である。
【図3】(a)ないし(e)は、実施の形態2に係る電界放出型電子源素子の製造方法を示す断面図である。
【図4】(a)ないし(e)は、実施の形態3に係る電界放出型電子源素子の製造方法を示す断面図である。
【図5】(a)ないし(d)は、実施の形態4に係る電界放出型電子源素子の製造方法を示す断面図である。
【図6】従来の電界放出型電子源素子の要部拡大図である。
【符号の説明】
1 シリコン基板
1a 柱状シリコン
1b エミッタ
2 ドットパターン
3 熱酸化膜
4 絶縁層
5 導電成膜
5a 引き出し電極
6a 金属膜
6b 金属膜
6c 金属膜
6d 金属ペースト
7 局所偏析物
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cold cathode electron source expected to be applied to a flat-type solid display element or an ultrafast micro vacuum element, and more particularly to a field emission electron source capable of realizing a large current operation.
[0002]
[Prior art]
Advances in semiconductor microfabrication technology have enabled the formation of minute field emission cathodes. Since a cone-type field emission cathode proposed by Spindt et al. (Patent Document 1: CA Spindt, J. Appl. Phys. Vol. 39, p. 3504 (1986)), a minute field emission electron source has attracted attention. Has been done.
[0003]
Thereafter, a method of forming a cold cathode having a sharper tip shape by using crystal anisotropic etching, dry etching and thermal oxidation of silicon with a similar vertical structure was proposed (Patent Document 2: HF. Gray et al., IEDM Tech.Dig.p.776 (1986)), Patent Document 3: Besui, 1990 Fall Shingaku Zengakushu, 5, SC-8-2 (1990)).
[0004]
The electron emission characteristics of these field emission electron sources are affected by various factors such as the shape and material of the emitter tip and the structure of the electron source element including the extraction electrode. As one means for improving the electron emission characteristics of the field emission electron source, there is a concept of facilitating electron emission from the tip of the emitter by lowering the work function on the surface of the emitter.
[0005]
FIG. 6 is an enlarged view of a main part of a conventional field emission type electron source element. As shown in FIG. 6, many attempts have been made to cover the surface of the emitter 1b with a substance 91 having a work function lower than that of the base material of the emitter 1b at the tip of the emitter 1b.
[0006]
[Patent Document 1]
C. A. Spindt, J.M. Appl. Phys. Vol. 39, p. 3504 (1986),
[0007]
[Patent Document 2]
H. F. Gray et al. , IEDM Tech. Dig. p. 776 (1986)),
[0008]
[Patent Document 3]
Besui, 1990 Fall Shingaku Zengakushu 5, SC-8-2 (1990)
[0009]
[Problems to be solved by the invention]
The electron source shown in the conventional example is effective in reducing the work function on the surface of the emitter. However, depending on the film forming method, when the tip of the emitter is covered with a different material, in most cases, the radius of curvature of the tip becomes large or the tip is not covered at all.
[0010]
In general, the smaller the radius of curvature at the tip of the emitter, that is, the sharper the tip, the stronger the electric field concentration on the emitter tip due to the external electric field, and the easier it is to emit electrons. Therefore, a method for lowering the work function of the emitter surface without increasing the radius of curvature of the tip is desired.
[0011]
Also, in the method of covering the emitter tip with a material having a low work function, particularly when this treatment is performed in the final step, the side wall of the insulating film that electrically isolates the extraction electrode and the emitter is slightly conductive. A film is formed. For this reason, there is also a problem that a leak current is generated between the extraction electrode and the emitter.
[0012]
An object of the present invention is to locally form a portion having a relatively low work function on the emitter surface without impairing the shape of the sharpened emitter surface and without impairing electrical characteristics. An object of the present invention is to provide a field emission electron source capable of high current density stably and with good reproducibility.
[0013]
[Means for Solving the Problems]
The field emission electron source according to the present invention includes a plurality of conductive emitters formed on a substrate so as to have a steep tip, and a voltage applied to each emitter so that electrons are emitted from the tip of each emitter. And an extraction electrode formed so as to surround each emitter for application, and a segregated material having a composition different from the composition of the base material constituting the emitter is locally formed on the surface of the emitter. The material constituting the segregated material and the material constituting the emitter are non-totally solid solution type metals.
[0014]
In the method of manufacturing a field emission electron source according to the present invention, after forming an emitter composed of a plurality of conductive convex microstructures having a sharp tip on the surface, a material different from the emitter is formed on the surface of the emitter. A step of uniformly forming the conductive thin film, a step of alloying the emitter surface and a part of the conductive thin film by heat treatment at a predetermined temperature, a step of etching away the conductive thin film, and the alloy And a step of locally forming a segregated material having a composition different from that of the base material of the emitter on the surface of the emitter by performing a heat treatment again at a temperature higher than the temperature in the forming step. The conductive thin film made of a material different from the emitter formed on the surface is made of a non-total solid solution type metal.
[0015]
In the method of manufacturing a field emission electron source according to the present invention, after forming an emitter composed of a plurality of conductive convex microstructures having a sharp tip on the surface, a material different from the emitter is formed on the surface of the emitter. A step of forming a micro conductive material locally scattered and a heat treatment at a predetermined temperature to alloy the emitter surface and a part of the micro conductive material, or to form a micro conductive material on the emitter surface. Including a step of partially diffusing and locally forming a segregated material having a composition different from that of the base material of the emitter on the emitter surface, and a step of etching and removing the minute conductive material. The conductive thin film made of a material different from the emitter formed on the surface of the formed emitter is made of a non-total solid solution type metal.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
In the field emission electron source according to the present embodiment, segregated substances having a composition different from the composition of the base material constituting the emitter are locally scattered on the surface of the emitter. The material constituting the emitter and the material constituting the emitter are non-totally solid solution type metals. For this reason, there is a part where the work function is locally lowered at the tip of the emitter, and this part becomes a trigger, and it becomes easy to emit electrons to the electric field from the extraction electrode. As a result, electrons can be emitted at a lower voltage than before.
[0017]
Embodiments of the present invention will be described below with reference to the drawings.
[0018]
(Embodiment 1)
1A to 1E are cross-sectional views showing a method for manufacturing the field emission electron source device according to the first embodiment, and FIG. 2 shows the field emission electron source device according to the first embodiment. It is a principal part enlarged view.
[0019]
First, as shown in FIG. 1A, a disk-shaped dot pattern 2 made of a silicon dioxide film is formed on the surface of a silicon substrate 1 having a resistance lowered by introducing impurities. Then, using the dot pattern 2 as a mask, the surface of the silicon substrate 1 is etched isotropically and anisotropically to form a columnar silicon 1a having a convex upper portion.
[0020]
Next, as shown in FIG. 1B, the silicon substrate 1 is heat-treated at a predetermined temperature for a certain period of time to form a thermal oxide film 3 on the surface of the silicon substrate 1 containing the columnar silicon 1a, and the inside thereof is sharpened A columnar emitter 1b having a tip is formed.
[0021]
Thereafter, as shown in FIG. 1C, after the thermal oxide film 3 is removed, an insulating film 4 made of a silicon dioxide film is formed on the entire surface of the substrate 1 including the emitter 1b by using a thermal CVD method or a plasma CVD method, and A conductive film 5 made of a polycrystalline silicon film containing phosphorus as an impurity is formed. Thereafter, a planarization film (not shown) made of a photoresist or a coating type insulating film is applied to the entire surface (not shown), and the entire surface of the planarization film is uniformly etched to reflect the shape of the emitter 1b. The conductive film is etched in a state in which a part of the convex portion of the film is exposed, and an opening is provided in the conductive film above the emitter 1b to form the extraction electrode 5a. Thereafter, a part of the insulating film 4 is removed by etching through the opening of the extraction electrode 5a to expose the emitter 1b.
[0022]
Subsequently, aluminum or a metal film 6a containing aluminum as a main component is formed on the entire surface of the substrate 1 by sputtering or vacuum evaporation, and heat treatment is performed at a predetermined temperature (see FIG. 1D). In the first embodiment, a rapid thermal annealing method (Rapid Thermal Anneal, RTA method) is used, and heat treatment is performed at about 500 ° C. for 1 minute in a vacuum or in an inert gas atmosphere.
[0023]
Thereafter, after all the metal film 6a is removed by wet etching, a heat treatment is performed in vacuum at 800 ° C. for 1 hour. As a result, local segregation portions 7 where aluminum is segregated locally are scattered on the surface of the emitter 1a. Emitter 1b was formed (see FIG. 1 (e) and FIG. 2). In the first embodiment, the same local segregated material 7 is also formed on the surface of the extraction electrode 5a, but this is not an essential problem.
[0024]
In the field emission electron source shown in the first embodiment, a segregated material different from the base material locally exists in the local segregation portion 7 on the surface of the emitter 1b. Further, the shape of the tip of the emitter 1b was not different from that before the metal film 6a was formed.
[0025]
In the field emission electron source according to the first embodiment, when a positive electric field was applied to the extraction electrode 5a with respect to the emitter 1b, electron emission was started at a voltage lower by about 10V than a normal silicon-only emitter. The local segregated material in Embodiment 1 is aluminum, which is a material having a work function lower than that of silicon. From this, it is considered that this local segregated material played the role of lowering the effective work function of the surface of the emitter 1b.
[0026]
As described above, according to the first embodiment, the segregated material having a composition different from the composition of the base material constituting the emitter 1b is locally scattered in the local segregation portion 7 on the surface of the emitter 1b. . For this reason, since there is a part where the work function is locally lowered at the tip of the emitter 1b, the part becomes a trigger, and the electron emission from the extraction electrode 5a becomes easy. As a result, electrons can be emitted at a lower voltage than before.
[0027]
(Embodiment 2)
3 (a) to 3 (e) are cross-sectional views illustrating a method for manufacturing a field emission type electron source device according to the second embodiment. Components described above with reference to FIGS. 1A to 1E are denoted by the same reference numerals. Therefore, detailed description of these components is omitted.
[0028]
A disk-shaped dot pattern 2 made of a silicon dioxide film is formed on the surface of the silicon substrate 1 whose resistance has been reduced by introducing impurities (see FIGS. 3A to 3C). Then, the surface of the silicon substrate 1 is isotropically and anisotropically etched using the dot pattern 2 as a mask to form a columnar silicon 1a having a convex upper portion, and then an emitter 1b, an insulating film 4 and an extraction electrode 5a are formed. The process of etching away a part of the insulating film 4 through the opening of the extraction electrode 5a to expose the emitter 1b is the same as that in the first embodiment. For this reason, detailed description is omitted.
[0029]
After the emitter 1b is exposed, metal particles 6b such as gallium, indium and hafnium are formed in an island shape on the substrate surface by plasma CVD using an organic metal, and heat treatment is performed at a predetermined temperature (FIG. 3D). reference). In Embodiment 2, heat treatment is performed at about 400 ° C. for 30 minutes using a vacuum heat treatment furnace.
[0030]
Thereafter, all the remaining portions of the metal particles 6b are removed by wet etching, and then heat treatment is performed in vacuum at 600 ° C. for 1 hour. As a result, an alloy of the metal particles 6b and silicon is locally formed on the surface of the emitter 1a. As a result, the emitter 1b in which the local segregation portions 7 segregated in the region are scattered is formed (see FIG. 3E).
[0031]
In the second embodiment, since the CVD method is used as the method for forming the metal particles 6b, the metal particles 6b are also formed in the shape of islands on the sidewalls of the insulating film 4, but the metal particles 6b and the insulating film 4 are made of a compound. Since it is not formed, all the metal particles 6b are removed during the wet etching process. For this reason, defects such as leakage do not occur.
[0032]
Even in the field emission electron source shown in the second embodiment, the electron emission start voltage is low because it is considered that a segregated material different from the base material is locally present in the local segregation portion 7 on the surface of the emitter 1b. The voltage could be realized.
[0033]
(Embodiment 3)
4 (a) to 4 (e) are cross-sectional views illustrating a method for manufacturing a field emission type electron source device according to the third embodiment. Components described above with reference to FIGS. 1A to 1E are denoted by the same reference numerals. Therefore, detailed description of these components is omitted.
[0034]
A disk-like dot pattern 2 made of a silicon dioxide film is formed on the surface of the silicon substrate 1 whose resistance has been lowered by introducing impurities. Then, the surface of the silicon substrate 1 is etched isotropically and anisotropically using the dot pattern 2 as a mask to form columnar silicon having a convex upper portion, and then the silicon substrate 1 is heat-treated at a predetermined temperature for a certain time. A thermal oxide film 3 is formed on the surface of a silicon substrate 1 containing columnar silicon, and a columnar emitter 1b having a sharp tip portion is formed therein (see FIG. 4A).
[0035]
After removing the entire surface of the thermal oxide film 3, a metal paste 6c mainly composed of silver having a viscosity with an organic solvent is applied to the entire surface, and heat treatment is performed at a predetermined temperature (see FIG. 4B). In Embodiment 3, heat treatment was performed at about 250 ° C. for 30 minutes in a clean oven into which an inert gas was introduced.
[0036]
Thereafter, all of the remaining metal paste 6c was removed with a mixed solution of phosphoric acid, nitric acid, acetic acid and water, and then heat treatment was performed at 850 ° C. for 1 minute in vacuum using the RTA method. Emitters 1b interspersed with local segregation portions 7 where silver was segregated locally were formed (see FIG. 4C).
[0037]
Thereafter, an insulating film 4 made of a silicon dioxide film and a conductive film 5 made of a polycrystalline silicon film containing phosphorus as impurities are formed on the entire surface of the substrate including the emitter 1b by using a thermal CVD method or a plasma CVD method (FIG. 4 (d)).
[0038]
Subsequently, a photoresist or a planarizing film (not shown) made of a coating-type insulating film is applied to the entire surface, and etching is uniformly performed on the entire surface of the planarizing film to reflect the shape of the emitter 1b. The conductive film 5 is etched in a state where a part of the convex portion of the conductive film 5 is exposed, and an opening is provided in the conductive film 5 above the emitter 1b to form a lead electrode 5a. Finally, a portion of the insulating film 4 is removed by etching through the opening of the extraction electrode 5a to expose the emitter 1b, thereby completing the field emission electron source (see FIG. 4E).
[0039]
The manufacturing method of the field emission electron source shown in the third embodiment is different from the first and second embodiments described above, and immediately after the emitter 1b is formed, the emitter 1b is used by using the metal paste 6c. A segregated material different from the base material is locally formed on the surface of the substrate. Also in the field emission electron source according to the third embodiment, when a positive electric field was applied to the extraction electrode 5a with respect to the emitter 1b, electron emission at a lower voltage than that of a normal silicon-only emitter was confirmed.
[0040]
(Embodiment 4)
5 (a) to 5 (d) are cross-sectional views showing a method for manufacturing a field emission type electron source device according to Embodiment 4. FIG. Components described above with reference to FIGS. 1A to 1E are denoted by the same reference numerals. Therefore, detailed description of these components is omitted.
[0041]
A disk-shaped dot pattern 2 made of a silicon dioxide film is formed on the surface of the silicon substrate 1 whose resistance has been reduced by introducing impurities (see FIG. 5A). The surface of the silicon substrate 1 is etched isotropically and anisotropically using the dot pattern 2 as a mask to form a columnar silicon 1a having a convex top, and then an emitter 1b is formed by thermal oxidation, and the thermal oxide film 3 is removed. Since the process until the emitter 1b is exposed is the same as that in the third embodiment, detailed description thereof is omitted.
[0042]
After the emitter 1b is exposed, metal fluoride 6d containing magnesium fluoride as a main component is formed in an island shape on the substrate surface by vacuum evaporation using magnesium fluoride as an evaporation source, and heat treatment is performed at a predetermined temperature (FIG. 5). (See (b)). In Embodiment Mode 4, heat treatment is performed at about 500 ° C. for 30 minutes using a vacuum heat treatment furnace.
[0043]
Thereafter, all remaining portions of the metal particles 6d were removed by wet etching, and then heat treatment was performed at 700 ° C. for 1 minute in vacuum using the RTA method. As a result, the metal particles 6d and silicon were formed on the surface of the emitter 1a. As a result, an emitter 1b was formed in which local segregation portions 7 in which the alloy was locally segregated were scattered (see FIG. 5C).
[0044]
Also in the field emission electron source device according to the fourth embodiment, when a positive electric field was applied to the extraction electrode 5a with respect to the emitter 1b, electron emission at a lower voltage was confirmed as compared with a normal silicon-only emitter. .
[0045]
In the first to fourth embodiments described above, the field emission electron source using the tower type silicon as the emitter has been described. However, the present invention is not limited to this. The requirement of the present invention is that a metal film is formed on the surface of the formed emitter or a metal paste is applied, and then a part of the metal film or metal-paste is left or alloyed on the surface of the base emitter. It is to make a part with a low work function locally by forming a segregated material of a material different from the emitter base on the surface of the emitter by subsequent heat treatment, and at the same time, both of them are formed at the initial stage of the emitter surface. The feature is that the shape does not change at all.
[0046]
Therefore, according to the requirements of the present invention, not only a field emission electron source using tower type silicon but also a so-called Spindt type field emission electron source in which protrusions are formed by vapor deposition of a metal film through an opening. It is also possible to apply to.
[0047]
【The invention's effect】
As described above, according to the present invention, a portion having a relatively low work function is locally formed on the emitter surface without impairing the shape of the sharpened emitter surface and without impairing electrical characteristics. Thus, it is possible to provide a field emission electron source capable of a large current density at a low voltage stably and with good reproducibility.
[Brief description of the drawings]
FIGS. 1A to 1E are cross-sectional views illustrating a method for manufacturing a field emission type electron source device according to Embodiment 1. FIGS.
FIG. 2 is an enlarged view of a main part of the field emission type electron source device according to the first embodiment.
FIGS. 3A to 3E are cross-sectional views showing a method for manufacturing a field emission electron source device according to Embodiment 2. FIGS.
FIGS. 4A to 4E are cross-sectional views illustrating a method for manufacturing a field emission electron source device according to Embodiment 3. FIGS.
FIGS. 5A to 5D are cross-sectional views illustrating a method for manufacturing a field emission type electron source device according to Embodiment 4. FIGS.
FIG. 6 is an enlarged view of a main part of a conventional field emission type electron source element.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Silicon substrate 1a Columnar silicon 1b Emitter 2 Dot pattern 3 Thermal oxide film 4 Insulating layer 5 Conductive film formation 5a Lead electrode 6a Metal film 6b Metal film 6c Metal film 6d Metal paste 7 Local segregation material

Claims (3)

急峻な先端を有するように基板上に形成された導電性を有する複数のエミッタと、
各エミッタの先端から電子が放出されるように各エミッタに電圧を印加するために各エミッタを囲むように形成された引出電極とを具備しており、
前記エミッタの表面には、前記エミッタを構成する母体材料の組成とは異なる組成を有する偏析物が局所的に点在しており、
前記偏析物を構成する材料と前記エミッタを構成する材料とは、非全率固溶型の金属同士であることを特徴とする電界放出型電子源。
A plurality of conductive emitters formed on the substrate to have a sharp tip;
An extraction electrode formed to surround each emitter in order to apply a voltage to each emitter so that electrons are emitted from the tip of each emitter;
On the surface of the emitter, segregated substances having a composition different from the composition of the base material constituting the emitter are locally scattered,
2. The field emission electron source according to claim 1, wherein the material constituting the segregated material and the material constituting the emitter are non-totally solid solution type metals.
表面に急峻な先端を有する複数の導電性凸状微小構造体からなるエミッタを形成した後、前記エミッタの表面に前記エミッタとは異なる材料の導電性薄膜を一様に形成する工程と、
所定の温度で熱処理を施してエミッタ表面と導電性薄膜の一部とを合金化する工程と、
前記導電性薄膜をエッチング除去する工程と、
前記合金化工程での温度よりも高い温度において再度熱処理を施して前記エミッタ表面に前記エミッタの母体材料とは異なる組成の偏析物を局所的に形成する工程とを包含しており、
前記形成されたエミッタ表面に形成する前記エミッタとは異なる材料の導電性薄膜は、非全率固溶型の金属からなることを特徴とする電界放出型電子源の製造方法。
A step of uniformly forming a conductive thin film of a material different from the emitter on the surface of the emitter after forming an emitter composed of a plurality of conductive convex microstructures having a sharp tip on the surface;
Performing a heat treatment at a predetermined temperature to alloy the emitter surface with a portion of the conductive thin film; and
Etching away the conductive thin film;
Including a step of locally performing a heat treatment again at a temperature higher than the temperature in the alloying step to locally form a segregated material having a composition different from that of the base material of the emitter on the emitter surface.
A method of manufacturing a field emission electron source, wherein the conductive thin film made of a material different from the emitter formed on the surface of the formed emitter is made of a non-total solid solution type metal.
表面に急峻な先端を有する複数の導電性凸状微小構造体からなるエミッタを形成した後、前記エミッタの表面に前記エミッタとは異なる材料の微小導電性物質を局所的に点在させて形成する工程と、
所定の温度で熱処理を施してエミッタ表面と微小導電性物質の一部とを合金化、若しくは前記エミッタ表面に微小導電性物質の一部を拡散させて、前記エミッタ表面に前記エミッタの前記母体材料とは異なる組成の偏析物を局所的に形成する工程と、
前記微小導電性物質をエッチング除去する工程とを包含しており、
前記形成されたエミッタ表面に形成する前記エミッタとは異なる材料の導電性薄膜は、非全率固溶型の金属からなることを特徴とする電界放出型電子源の製造方法。
After forming an emitter made of a plurality of conductive convex microstructures having a sharp tip on the surface, the surface of the emitter is formed by locally interspersing microconductive materials of a material different from the emitter. Process,
A heat treatment is performed at a predetermined temperature to alloy the emitter surface and a part of the minute conductive material, or a part of the minute conductive material is diffused to the emitter surface, so that the base material of the emitter on the emitter surface. A step of locally forming a segregated material having a composition different from that of
And removing the fine conductive material by etching,
A method of manufacturing a field emission electron source, wherein the conductive thin film made of a material different from the emitter formed on the surface of the formed emitter is made of a non-total solid solution type metal.
JP2003169911A 2003-06-13 2003-06-13 Field emission type electron source element and its manufacturing method Withdrawn JP2005005220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003169911A JP2005005220A (en) 2003-06-13 2003-06-13 Field emission type electron source element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003169911A JP2005005220A (en) 2003-06-13 2003-06-13 Field emission type electron source element and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005005220A true JP2005005220A (en) 2005-01-06

Family

ID=34094905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003169911A Withdrawn JP2005005220A (en) 2003-06-13 2003-06-13 Field emission type electron source element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005005220A (en)

Similar Documents

Publication Publication Date Title
JP3098483B2 (en) Method of forming self-aligned gate structure around the tip of cold cathode emitter using chemical and mechanical polishing method
JP2763248B2 (en) Method for manufacturing silicon electron-emitting device
JP2728813B2 (en) Field emission type electron source and method of manufacturing the same
JP2001035354A (en) Field emission type electron source and manufacture thereof
JPH04167326A (en) Field emission type emitter and manufacture thereof
JP2005005220A (en) Field emission type electron source element and its manufacturing method
JPH0652788A (en) Field emission type electron source device and its manufacture
JPH1012166A (en) Electric field emission image display device and manufacture thereof
JP2006073923A (en) SiC SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD FOR SiC SEMICONDUCTOR DEVICE
JPH09270228A (en) Manufacture of field emission electron source
JP3622406B2 (en) Cold electron-emitting device and manufacturing method thereof
JP3525924B2 (en) Method of manufacturing field emission electron-emitting device
KR100275524B1 (en) Method for fabricating field emission display using silicidation process
JPH11339637A (en) Field emission electron element and its manufacture
JPH1196899A (en) Field emission type cold cathode and its manufacture
JP3487230B2 (en) Field emission electron source, method of manufacturing the same, and display device
JP3669291B2 (en) Manufacturing method of field emission electron source
JP3687520B2 (en) Field emission electron source and manufacturing method thereof
JP3767275B2 (en) Field emission electron source and manufacturing method thereof
JP3985445B2 (en) Manufacturing method of field emission electron source
KR100289066B1 (en) Method for manufacturing conical fed using conductive thin film deposition process
JPH1027540A (en) Field emission type electron source and its manufacture
JP2006073922A (en) SiC SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD FOR SiC SEMICONDUCTOR DEVICE
JP3826539B2 (en) Method for manufacturing cold electron-emitting device
KR100204025B1 (en) Manufacturing method of tri-electrode of field effect emitting element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905