JP2005002610A - Method for driving steel pipe pile, and screw type steel pipe - Google Patents

Method for driving steel pipe pile, and screw type steel pipe Download PDF

Info

Publication number
JP2005002610A
JP2005002610A JP2003165204A JP2003165204A JP2005002610A JP 2005002610 A JP2005002610 A JP 2005002610A JP 2003165204 A JP2003165204 A JP 2003165204A JP 2003165204 A JP2003165204 A JP 2003165204A JP 2005002610 A JP2005002610 A JP 2005002610A
Authority
JP
Japan
Prior art keywords
steel pipe
pile
screw
thickness
excavation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003165204A
Other languages
Japanese (ja)
Inventor
Hirosuke Yokoyama
弘介 横山
Toshiaki Tsushima
敏明 津嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Yokoyama Kiso Kohji Co Ltd
Original Assignee
JFE Steel Corp
Yokoyama Kiso Kohji Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Yokoyama Kiso Kohji Co Ltd filed Critical JFE Steel Corp
Priority to JP2003165204A priority Critical patent/JP2005002610A/en
Publication of JP2005002610A publication Critical patent/JP2005002610A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To create a safe, low-cost and easy-to-construct steel pipe pile by integrating a preceding steel pipe and a following steel pipe together as the steel pipe pile with a prescribed length by a screw joint through the use of a steel pipe as a steel material to be used along with construction work in place of an inhibiting pile with heavy weight and low strength. <P>SOLUTION: The steel pipes 13 and 13a are integrated together in a full-rotation-type all casing device 9 by an accompanying crane 12 via a screw; inner excavation and earth removal are performed by means of the accompanying crane 12 via an excavating grab 17; and an anti-rotation pin 20a prevents excessive rotation and corotation. Embedment is efficiently performed with sufficient strength and light weight, and the steel pipe pile is driven in an extremely efficient manner with good working efficiency, safety and low costs. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
開示技術は、抑止杭や基礎杭等に用いられる鋼材として軽量性に優れ、尚且つ、強度も十分である鋼管を用い、しかも、現場に持ち込まれる際に経由する一般国道等の車両通行や施工時に建て込まれる際の上空制限等により発生する可搬の困難性に対しての条件を満たすべく、設計長を下杭・中杭といった具合に複数に分割される構造にして、現場に応じた所定長さに分割することも出来るようにした技術の分野に属する。
【0002】
【従来の技術】
従来は土木工事において、埋め殺しタイプにされて使用される鋼管が複数に分割されて相互に接合を要する場合は、溶接接合部の溶接構造が多く用いられていた。
【0003】
しかしながら、当該接合の溶接工には多大な時間を要し、又、その品質が温度、湿度、風量等の気象条件に左右され易いというネックがあった。
【0004】
そこで、近年は、抑止杭等に用いる肉厚の鋼管相互の接合にネジ式継ぎ手が案出され、例えば、下記の公報等に記載のネジ式鋼管や技術が案出されて実用化はされている。
【0005】
【特許文献1】
特開平9−95940号公報
【特許文献2】
特開平10−273914号公報
【特許文献3】
特開平11−310921号公報
【特許文献4】
特開平11−310922号公報
【0006】
【発明が解決しようとする課題】
しかしながら、都市部の道路橋桁下空間等の著しい上空制限下では1回に建て込める長さに著しい制限が生じ、その結果、杭長が短尺となり、結果的に接合箇所が極端に増大し、施工時間もそれに比例して増大し、コスト的に高くなるばかりでなく、天候等の不確定要素による溶接部の品質劣化の可能性が増大する構造上の不具合を来す等の固有の欠点が多く生じていた。
【0007】
又、硬質地盤に対する鋼管杭の打設に際しては、直接圧入や直接打ち込み施工を行うことが困難であることが多く、その場合には硬質地盤用オールケーシング工等掘削孔を確保する施工を杭建て込みに先行して行う場合が多く、その際には、工程が掘削、建て込みと2工程化が現出され、更に、掘削に使用するケーシングも上記鋼管も同様に短尺となり、溶接による接合箇所が増大することから、施工は非常に長期化し、かえってコスト的に増大する傾向にあった。
【0008】
更に、上空制限が無い場合で、都市部施工においては、既設構造等が過密状態で錯綜しており、工事現場に於ても一般市民の居住空間や、駅、オフィス街等が隣設する場合も多く、溶接時に発生するスパークが近傍を通過する通行者の肉眼の視界に入ることすら避けられない場合も生じ、生活環境保護の観点からもその改善が望まれていた。
【0009】
そして、その一方、近年では、阪神・淡路大震災の教訓を踏まえ、都市部地下構造の耐震設計の強化が求められるようになるにつれ、断面全周方向に均一の安定した強度を有するネジ式鋼管が基礎構造として採用される要望が増加している。
【0010】
したがって、都市部施工においては、山間部の地すべり地帯の人口密度が極度に低い部位にて行われる抑止杭の施工と異なる、先述のような既設構造物による制約や人口の過密した居住環境に対する配慮から生ずる特殊条件を背景に、より一層鋼管を用いる基礎構造施工の所要時間を短縮する必要があった。
【0011】
これに対処するに、前述の特許文献3,特許文献4の公報等に記載の技術が改良開発されているが、これらは全て上述条件を満足出来る程度のものではないきらいがあった。
【0012】
【発明の目的】
この出願の発明の目的は、都市部施工等の施工の緊急性を要する施工現場に於いて、鋼管による基礎構造構築に際し、高速、廉価、且つ、上記公報発明の不満足な点を解消出来、高品質な施工を生活環境に十分配慮し、また既存技術では拘束条件となる現場環境に左右されない施工が安全に行えるようにして、建設産業における土木技術利用分野に益する新規な優れたネジ式鋼管、及び、鋼管杭の打設方法を提供せんとするものである。
【0013】
【発明が解決しようとする手段】
上述目的に沿い、先述特許請求の範囲を要旨とするこの出願の発明の構成は前述課題を解決するために、先行して打設する前回打設の下杭としての鋼管に対して次回の上杭としての鋼管をネジ接合して一体的に連結して一本の鋼管杭として連続して打設する方法において、先行して打設する前回打設の下杭の鋼管に対して次回の上杭としての鋼管をネジ接合を介し、一体的に連結して一本の鋼管杭として連続して打設する方法において、該鋼管の先端に全回転型オールケーシング掘削機により硬質地盤中に回転圧入自在なように切削ビットを形成し、該切削ビットを形成する鋼管の下端の肉厚が該切削ビット幅とほぼ同じに構成され、次いで該鋼管内に対して相伴クレーンによる掘削グラブを介して中掘り掘削と排土を行うようにし、下杭と上杭の該ネジ接合に際しネジ接合部が充分に締められて所定の間隙以下の間隙にされているようにし、該ネジ接合に際し締め込みが微動降下接合されるように該ネジ接合部に保護ボックスを介装し、而して先行する下杭と後行する上杭の鋼管のネジ接合に際し回転防止ピンを介装して該上杭の下端部と下杭の上端部を固定するようにすることを基幹とし、而して、その際、鋼管杭を連続して打設するに使用する鋼管であって、鋼管本管の肉厚より厚くなる切削ビットの植設部の肉厚との段差を漸次的に変化させる構造を有するネジ式鋼管であって、該肉厚差を底辺とし該肉厚差の4倍から6倍の長さを高さとする直角三角形の斜辺にほぼ沿う肉厚の変化勾配とする構造にされていることを第二の基幹とし、又、上記接合部の構造において、鋼管本管の肉厚より厚くなる上記ネジ接合部の肉厚との段差を漸次的に変化させる構造とする際、該肉厚差を底辺とし、該肉厚差の1.5倍から2倍の長さを高さとする直角三角形の斜辺にほぼ沿う肉厚の変化勾配とする構造にされていることを第三の基幹とし、又、更に、上記鋼管の杭の圧入工法において、先行する上記下杭の鋼管に対して上記上杭の鋼管のネジ接合部までの間に、掘削グラブによる該鋼管内の掘削排土作業が行われる際、該掘削グラブとの直接干渉を避けることが自在であるようにネジ接合部に保護ボックスを配設されているようにし、加えて、上記接合部に該保護ボックスを外装する際、該ネジ接合部に回転防止ピンを介装するために設けられたピン孔と係合してネジ接合部に上記保護ボックスの外装状態が固定自在にされるようにもした技術的手段を講じたものである。
【0014】
【作用】
而して、上述構成において、まず鋼管の杭として打設に際して前作業として用いている鋼管を建て込む掘削作業を行わず、下杭としての先行鋼管の先端に切削ビットを一体的に植設し掘削ケーシングとしての機能を付与し、該鋼管の接合部に高速の接合施工が自在なようにネジ式継ぎ手部接合部に掘削の駆動力である回転力および圧入力が付与される場合にも損傷が無いように切削ビットの変形や破壊が生じないように鋼管の下の部分の肉厚と切削ビットの幅と同様に形成され、ネジ接合部の結合が充分に締め付けられるようにされ該回転力および該圧入力に対抗自在なように十分な強度を有した回転防止ピンが介装されて、掘削が安定して行えるようにされ、更に掘削圧入施工時に随時鋼管内に出入りするハンマーグラブの干渉の衝撃力によりネジ式継ぎ手が損傷しないように保護自在なように保護キャップをネジ接合部に外装して設け、カバーし、その際、継ぎ手接合部に於ては、底辺を肉厚の差を底辺とし、高さが2倍〜6倍であるようにしたり、1.5倍〜2倍であるようにした直角三角形の斜辺部にほぼ沿うように変化勾配部を形成するようにして衝撃力の低下と衝撃力による摩耗を避け振動騒音の防止を図るようにして滑昇が自在であるように耐久性が著しく向上するようにしたものである。
【0015】
【発明が実施しようとする形態】
次ぎにこの出願の発明の実施形態を実施例の態様として図面に従って説明すれば以下の通りである。
【0016】
図1によってこの出願の発明の施工手順を説明すると、まず、図1の左側の上下配列のステップ1に示す様に、図2に示す如く、鋼管の下杭13のネジ接合面19をプロテクターやゴムシート等による当該ネジ接合部のネジ接合面19の保護を図りながら図1に示す様に行い、次に当該図1のステップ2に示す様に、当該ネジ接合部19の錆や砂等を完全に除去し、次いで、ステップ3の様にネジ接合面19の焼き付き防止の為にグリース等の潤滑剤を使用してネジ部に塗布する。
【0017】
次いでステップ4に示す様に、下杭13と上杭13aの鋼管の中心を合わせる軸心合わせを行う。そして、次にステップ5に示す様に、図3に示す如くバンドやアーム等により手作業を介して当該適宜の締め込み治具によるねじ込みを行い、上杭13aを全回転型オールケーシング装置9の回転により微動降下し、鋼管に与える衝撃を軽減するようにさせる。
【0018】
そしてステップ6に示す様に、鋼管のネジ接合面19の接合により連結が終了すれば、該ネジ接合面19に外装した図10に示す保護ボックス20にネジ穴20aを介して所定本数の回転防止ピン20bを挿入してステップ7に示す様に、回転防止ピン20bの取り付けを行い、下杭13の上端部と上杭13aの下端部の連結を行う。
【0019】
そして、上述手順をより詳細に説明すれば、まず図3に示す様に、所定の地盤8に対し、全回転型のオールケーシング装置9をクローラクレーン等により搬入セットし、カウンターウエイト10やスパイク11により所定に安定した状態でセットする。
【0020】
そして、図4に示す様に、相伴クレーン12により先行鋼管としての下杭13を当該全回転型オールケーシング装置9中の図示しないチャッキング部に建て込む。
【0021】
そして、当該下杭13の全回転型オールケーシング装置9のチャッキング部につぎ込むに際しては、図4に示す様にトランシットや下振り16により正確にして十分な鉛直度確認を行う。
【0022】
次に、図5に示す様に、当該下杭13の先端部14には予め工場で掘削が可能である様にビット等の切削ビット15を取り付け加工する。
【0023】
尚、該ネジ接合部19は図11に示す様に、底辺cに肉厚差を有し該底辺cに高さhを有し直角三角形の斜辺eをその該斜辺eにほぼ沿う勾配変化とされ、この場合、高さhが底辺cの4倍〜6倍である場合には、中掘り施工時のグラブ17のシェル先端とネジ接合面19の肉厚変化部の干渉が生じた際に滑降が自在であり、鋼管に与える衝撃を軽減出来るという効果があり、又、その高さhがcの1.5倍〜2倍の長さにあるような態様では上記掘削グラブ17作動時に発生する各部位の干渉音の発生を軽減し、都市部における低振動や低騒音が行えるというような効果があることが実験的に分かった。
【0024】
そして、図6に示す様に、先行鋼管としての下杭13が所定深度打設されると、図7に示す様に、相伴クレーン12により掘削グラブ17を吊り下げて下杭13内に臨ませて周知の如く所定の中掘り掘削と排土を行う。
【0025】
そして、図8に示す様に、当該下杭13の先行打設と中掘り掘削及び排土が所定深度で行われたのを確認した後には、相伴クレーン12を介して後行の上杭鋼管13aをオールケーシング装置9に対して吊り込んで該下杭13のネジ接合面19とバンド又は図示しないチェーントングにより面合わせと芯合わせを行い錆や砂を該ネジ接合部19から除去し、グリース等の潤滑剤を塗布し、又、図10に示す様に、保護ボックス20を介装して当該保護ボックス20の周辺に穿設したピン穴20aを介して所定数の回転防止ピン20bを挿入して下杭13の上端部と上杭13aの下端部との相互の回転防止を図り、上杭13aに対する全回転型オールケーシング装置9の回転に伴う共回りを防止し余分な共締めを防止する。
【0026】
そして、上下の両鋼管13,13aのネジ継ぎ手接合部19による一体連結が完了した後には相伴クレーン12及びオールケーシング装置9により鋼管13,13aから解離し、次回の再打設の準備を行う。
【0027】
その間両鋼管13,13aの接合連結一体化したものに対しては、全長間に対しオールケーシング装置9により回転圧入を所定深度まで行う。そして、掘削グラブ17により周知の如く中掘り掘削と排土を行う。
【0028】
そして、当該回転圧入施工に際しては回転は回転防止ピン20bの成形向きと同様に、例えば、右回転とする。
【0029】
尚、この出願の発明の実施態様は上述実施例の態様に限るものでないことは勿論であり、例えば、中掘り掘削及び排土の中途においても、先行施工や後施工の鋼管13,13aに対し回転圧入を行う等も可能である。
【0030】
【発明の効果】
以上、この出願の発明によれば、基本的に建設工事に伴う工事物に用いる鋼管等の鋼材を用いて鋼管杭とすることにより、その強度は十分であり、且つ軽量で取り扱い性が良く鋼管杭の施工能率が向上し、工期が短くて済み、又、安全性も高くコスト的にも安くつくという利点があり、又、ネジ接合面に対するネジの締め込みが微動効果を有して接合されるようにされることにより肉厚変化部と掘削グラブ端部との干渉が生じた際、滑降、滑昇が自在であり、鋼管に与える衝撃を軽減するメリットがある。
【0031】
又、中掘り掘削や排土も鋼管を用いることにより極めて施工がし易いという利点もある。
【0032】
そして、上下杭13の鋼管の先行下杭13と後行上杭13aとを両者のネジ接合部19に対する回転防止ピン20bを介して締め込み式に接合連結一体化出来る為に、単に錆や砂の除去やグリースの塗布等のメンテナンス的な作業を付加するだけで良い為に、施工能率が良く、又、安全な施工管理が出来るという優れた効果が奏される。
【0033】
このプロセスにおいて、図10に示す様に、下杭13の上端と上杭13aの下端とをネジ連結により接合する際に、両者の接合部の部分に回転防止の為の保護ボックス20を外装して、そのネジ穴20aに回転防止ピン20bを介して連結することにより両者の回転を防止する。
【0034】
そして、鋼管の打設に際して、締め込みを微動降下するようにすることにより、掘削に際して駆動力や回転力、及び、圧入力が付与される場合にもネジ部接合部に損傷の生じないようにできる効果がある。
【0035】
又、掘削ビットの肉厚と同肉厚の鋼管下端の肉厚より厚くならないようにすることにより、掘削ビットに対する衝撃力を軽減することが出来るという効果がある。
【図面の簡単な説明】
図面はこの出願の発明の実施形態を表すものである。
【図1】施工手順のフロー図である。
【図2】同作業フロー図である。
【図3】地盤の所定部位に設置された全回転型オールケーシング装置のセット姿勢側面図である。
【図4】同全回転型オールケーシング装置への下杭としての鋼管を相伴クレーンによりつぎ込みセット姿勢の側面図である。
【図5】先行下杭の鋼管の先端部の切削刃の取り合い説明図である。
【図6】地盤に対する下杭の先行鋼管の全回転型オールケーシング装置による回転圧入の態様側面図である。
【図7】同先行下杭の鋼管の中掘り排土の態様の側面図である。
【図8】全回転型オールケーシング装置に対する先行下杭鋼管と後行上杭鋼管の継ぎ足し態様側面図である。
【図9】一体化接合連結された鋼管杭に対する掘削グラブによる中掘り排土の側面図である。
【図10】鋼管のネジ接合部に対する回転防止ピンと保護ボックスとピン穴との取り合い側面図である。
【図11】鋼管のネジ接合部に於ける底辺と高さと斜辺の直角三角形の構造態様の模式図である。
【符号の説明】
9 全回転型オールケーシング装置
12 相伴クレーン
13 先行下杭鋼管
13a 後行上杭鋼管
15 切削ビット
10 カウンターウエイト
11 スパイク
17 掘削グラブ
19 ネジ接合部(ネジ接合面)
c 底辺(肉厚差)
h 高さ
e 斜辺(変化勾配)
20b 回転防止ピン
20 保護ボックス
20a ネジ穴
[0001]
BACKGROUND OF THE INVENTION
The disclosed technology uses steel pipes with excellent lightness and strength as steel materials used for deterrent piles, foundation piles, etc., and vehicle traffic and construction on general national roads etc. that are routed when they are brought to the site. The design length is divided into multiple parts such as lower piles and middle piles in order to meet the requirements for portability difficulties caused by restrictions on the sky when built at times, depending on the site It belongs to the field of technology that can be divided into predetermined lengths.
[0002]
[Prior art]
Conventionally, in a civil engineering work, when a steel pipe used in a buried type is divided into a plurality of parts and requires mutual joining, a welded structure of a welded joint is often used.
[0003]
However, the welder for the joint takes a lot of time, and the quality of the welder is easily affected by weather conditions such as temperature, humidity, and air volume.
[0004]
Therefore, in recent years, threaded joints have been devised for joining thick steel pipes used for deterring piles, etc., for example, threaded steel pipes and techniques described in the following publications have been devised and put into practical use. Yes.
[0005]
[Patent Document 1]
JP-A-9-95940 [Patent Document 2]
JP-A-10-273914 [Patent Document 3]
JP 11-310921 A [Patent Document 4]
Japanese Patent Laid-Open No. 11-310922
[Problems to be solved by the invention]
However, if the space above the bridge under the road bridge in urban areas is extremely limited, the length that can be built at one time is significantly limited. As a result, the pile length is shortened, resulting in an extremely increased number of joints. Time increases proportionally, and not only costs increase, but there are many inherent disadvantages such as structural defects that increase the possibility of quality deterioration of the weld due to uncertain factors such as weather. It was happening.
[0007]
Also, when placing steel pipe piles on hard ground, it is often difficult to perform direct press-fitting or direct driving work, in which case construction to secure excavation holes such as all-casing construction for hard ground is to be built. In this case, two processes, such as excavation and erection, have emerged. In addition, the casing used for excavation and the above steel pipe are similarly shortened, and the welded joints are Due to the increase, the construction has been prolonged for a long time, but tends to increase in cost.
[0008]
In addition, when there are no restrictions on the sky, construction in urban areas is complicated in an overcrowded state, and there is a general public living space, station, office district, etc. next to the construction site. In many cases, it is unavoidable that the sparks generated during welding enter the sight of a passerby passing through the vicinity, and the improvement has been desired from the viewpoint of protecting the living environment.
[0009]
On the other hand, in recent years, with the lessons learned from the Great Hanshin-Awaji Earthquake, it has become necessary to strengthen the seismic design of urban underground structures. There is an increasing demand for adoption as a foundation structure.
[0010]
Therefore, in urban construction, considerations for restrictions on existing structures and the densely populated living environment, such as those described above, differ from construction of deterred piles that are carried out in areas where the population density in mountainous landslide areas is extremely low. Against the backdrop of special conditions arising from this, it was necessary to further shorten the time required for foundation construction using steel pipes.
[0011]
In order to cope with this, the techniques described in the above-mentioned patent documents 3 and 4 have been improved and developed. However, all of these techniques are not sufficient to satisfy the above-described conditions.
[0012]
OBJECT OF THE INVENTION
The purpose of the invention of this application is to eliminate the unsatisfactory point of the above-mentioned publication invention at high speed, low cost, and construction of the foundation structure using steel pipes in construction sites requiring urgent construction such as urban construction. New excellent threaded steel pipes that will benefit the field of civil engineering technology use in the construction industry by giving sufficient consideration to the living environment for quality construction and enabling safe construction that does not depend on the site environment, which is a constraint condition with existing technology. And a method for placing steel pipe piles.
[0013]
Means to be Solved by the Invention
In order to solve the above-mentioned problems, the configuration of the invention of the present application, which is summarized in the scope of the above-mentioned claims in line with the above-mentioned purpose, is the next time to the steel pipe as the lower pile placed last time. In a method in which steel pipes as piles are joined together by screwing and connected continuously as a single steel pipe pile, it is the next In a method in which steel pipes as piles are connected together via screw joints and are continuously placed as a single steel pipe pile, it is possible to rotate and press into the hard ground with a full-rotation all-casing excavator at the tip of the steel pipe. The thickness of the lower end of the steel pipe forming the cutting bit is substantially the same as the width of the cutting bit, and then the inside of the steel pipe is dug through a drilling grab by an associated crane. So that excavation and soil removal, When screwing the pile, the screw joint is sufficiently tightened so that the gap is equal to or smaller than a predetermined gap, and a protective box is attached to the screw joint so that the tightening is finely lowered when the screw is joined. Interposing, and thus fixing the lower end of the upper pile and the upper end of the lower pile by interposing an anti-rotation pin when screwing the steel pipe of the preceding lower pile and the following upper pile. Therefore, at this time, the steel pipe pile is used for continuously placing the steel pipe pile, and the difference in thickness from the thickness of the cutting bit planting portion which is thicker than the thickness of the steel pipe main pipe. A threaded steel pipe having a gradually changing structure, wherein the wall thickness changes substantially along the hypotenuse of a right triangle with the wall thickness difference being the base and the length being 4 to 6 times the wall thickness difference. The second backbone is that the structure is a gradient, and the structure of the joint is steel. When the structure in which the step difference from the thickness of the screw joint portion, which becomes thicker than the thickness of the main pipe, is gradually changed, the difference in thickness is used as the bottom, and the difference in thickness is 1.5 to 2 times the thickness difference. The third basic feature is that the thickness is changed along the hypotenuse of a right triangle whose height is the height, and further, in the press-fitting method for steel pipe piles, It is possible to avoid direct interference with the excavation grab when excavation and excavation work in the steel pipe is performed by the excavation grab between the steel pipe of the upper pile and the screw joint of the steel pipe of the upper pile. In addition, a protective box is provided at the screw joint portion, and in addition, when the protective box is externally mounted on the joint portion, a pin provided for interposing an anti-rotation pin at the screw joint portion Engage with the hole so that the exterior of the protective box can be fixed to the screw joint. The technical measures that have been taken into account.
[0014]
[Action]
Thus, in the above-described configuration, first, a cutting bit is integrally planted at the tip of the preceding steel pipe as the lower pile without performing the excavation work for installing the steel pipe used as a previous work as the steel pipe pile. Even when a rotational force or pressure input, which is a driving force for excavation, is applied to the screw joint joint so that it can function as a drilling casing and high-speed joining can be performed at the steel pipe joint. It is formed in the same way as the thickness of the lower part of the steel pipe and the width of the cutting bit so that there is no deformation or breakage of the cutting bit so that the screw joint is sufficiently tightened and the rotational force And anti-rotation pins with sufficient strength so as to be able to resist the pressure input, so that the excavation can be stably performed, and interference of the hammer grab that enters and exits the steel pipe as needed during excavation press fitting To the impact force In order to protect the threaded joint so as not to be damaged, a protective cap is externally provided and covered on the screw joint, and at that time, in the joint joint, the bottom is the difference in wall thickness, The impact force is reduced by forming a change gradient portion so as to be substantially along the hypotenuse of the right triangle whose height is 2 to 6 times or 1.5 to 2 times. Durability is remarkably improved so that sliding can be done freely by avoiding wear caused by impact force and preventing vibration noise.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the invention of this application will be described as an embodiment of the present invention with reference to the drawings as follows.
[0016]
The construction procedure of the invention of this application will be explained with reference to FIG. 1. First, as shown in FIG. 2, the screw joint surface 19 of the lower pile 13 of the steel pipe is protected with a protector, as shown in FIG. While protecting the screw joint surface 19 of the screw joint portion with a rubber sheet or the like as shown in FIG. 1, next, as shown in Step 2 of FIG. Then, it is completely removed, and then applied to the threaded portion using a lubricant such as grease to prevent seizure of the screw joint surface 19 as in step 3.
[0017]
Next, as shown in step 4, axial alignment is performed to align the centers of the steel pipes of the lower pile 13 and the upper pile 13a. Then, as shown in step 5, as shown in FIG. 3, the upper pile 13 a is rotated by the full-rotation type all-casing device 9 by manually screwing with an appropriate tightening jig using a band, an arm, or the like. To reduce the impact on the steel pipe.
[0018]
Then, as shown in Step 6, when the connection is completed by joining the screw joint surface 19 of the steel pipe, a predetermined number of rotation preventions are provided to the protective box 20 shown in FIG. As shown in Step 7 by inserting the pin 20b, the rotation prevention pin 20b is attached, and the upper end of the lower pile 13 and the lower end of the upper pile 13a are connected.
[0019]
The above-described procedure will be described in more detail. First, as shown in FIG. 3, a full-rotation type all-casing device 9 is carried in and set on a predetermined ground 8 by a crawler crane or the like, and a counterweight 10 or spike 11 is used. Set in a stable state.
[0020]
And as shown in FIG. 4, the lower pile 13 as a preceding steel pipe is built in the chucking part which is not illustrated in the said all rotation type | mold all casing apparatus 9 with the accompanying crane 12. As shown in FIG.
[0021]
And when inserting into the chucking part of the all-rotation type all casing device 9 of the lower pile 13, as shown in FIG.
[0022]
Next, as shown in FIG. 5, a cutting bit 15 such as a bit is attached to the tip portion 14 of the lower pile 13 so that excavation is possible in a factory in advance.
[0023]
As shown in FIG. 11, the screw joint portion 19 has a thickness difference on the base c, a height h on the base c, and an inclined side e of a right triangle having a gradient change substantially along the hypotenuse e. In this case, when the height h is 4 to 6 times the base c, when the interference between the shell tip of the grab 17 and the thickness change portion of the screw joint surface 19 occurs during the digging operation. Downhill is free and has the effect of reducing the impact on the steel pipe. Also, in the aspect where the height h is 1.5 to 2 times c, it occurs when the excavation grab 17 is operated. It has been experimentally found that there is an effect of reducing the generation of interference sound at each part and performing low vibration and low noise in urban areas.
[0024]
Then, as shown in FIG. 6, when the lower pile 13 as the preceding steel pipe is driven at a predetermined depth, the excavation grab 17 is suspended by the companion crane 12 and brought into the lower pile 13 as shown in FIG. 7. As is well known, predetermined digging and earth removal are performed.
[0025]
Then, as shown in FIG. 8, after confirming that the lower pile 13 has been placed in advance, excavated and excavated at a predetermined depth, the succeeding upper pile steel pipe is connected via the companion crane 12. 13a is suspended from the all casing device 9, and the screw joint surface 19 of the lower pile 13 is face-aligned and centered by a band or a chain tongue (not shown), and rust and sand are removed from the screw joint portion 19 to obtain grease, etc. As shown in FIG. 10, a predetermined number of anti-rotation pins 20b are inserted through pin holes 20a provided around the protective box 20 with the protective box 20 interposed therebetween. Thus, mutual rotation prevention between the upper end portion of the lower pile 13 and the lower end portion of the upper pile 13a is achieved to prevent co-rotation associated with the rotation of the all-rotation type all casing device 9 with respect to the upper pile 13a, thereby preventing excessive co-tightening.
[0026]
After the integral connection of the upper and lower steel pipes 13 and 13a by the screw joints 19 is completed, the steel pipes 13 and 13a are separated from the steel pipes 13 and 13a by the companion crane 12 and the all casing device 9 to prepare for the next re-placement.
[0027]
In the meantime, for all the steel pipes 13 and 13a joined and integrated, the entire casing device 9 performs rotational press-fitting to a predetermined depth with respect to the entire length. The excavation grab 17 performs excavation and earth removal as is well known.
[0028]
Then, in the rotational press-fitting construction, the rotation is, for example, a clockwise rotation in the same manner as in the direction of forming the rotation prevention pin 20b.
[0029]
Of course, the embodiment of the invention of this application is not limited to the embodiment described above. For example, in the middle of excavation and earth removal, the steel pipes 13 and 13a for the pre-construction and post-construction can be used. For example, rotational press-fitting can be performed.
[0030]
【The invention's effect】
As described above, according to the invention of this application, the steel pipe pile is basically made of a steel material such as a steel pipe used for a construction work, so that the strength is sufficient, and the steel pipe is light and easy to handle. The construction efficiency of piles is improved, the construction period is short, the safety is high and the cost is low, and the screw tightening to the screw joint surface is joined with a fine motion effect. Thus, when interference occurs between the wall thickness changing portion and the end of the excavation grab, it is possible to slide down and climb up, and there is an advantage of reducing the impact on the steel pipe.
[0031]
Moreover, there is also an advantage that the construction is extremely easy by using a steel pipe for excavation and earth removal.
[0032]
And since the preceding lower pile 13 and the succeeding upper pile 13a of the steel pipe of the upper and lower piles 13 can be connected and integrated in a tightening manner via the anti-rotation pin 20b with respect to both screw joint portions 19, only rust or sand Since it is only necessary to add maintenance work such as removal of grease and application of grease, the construction efficiency is good, and an excellent effect that safe construction management can be performed is achieved.
[0033]
In this process, as shown in FIG. 10, when the upper end of the lower pile 13 and the lower end of the upper pile 13a are joined by screw connection, a protective box 20 for preventing rotation is put on the joint portion of both. Then, by connecting to the screw hole 20a via the rotation prevention pin 20b, both rotations are prevented.
[0034]
And, when the steel pipe is placed, the tightening is slightly moved down so that the screw joint is not damaged even when driving force, rotational force, and pressure input are applied during excavation. There is an effect that can be done.
[0035]
Moreover, the impact force with respect to a drill bit can be reduced by making it not thicker than the thickness of the lower end of a steel pipe with the same thickness as the drill bit.
[Brief description of the drawings]
The drawings represent embodiments of the invention of this application.
FIG. 1 is a flowchart of a construction procedure.
FIG. 2 is a flowchart of the work.
FIG. 3 is a set posture side view of the all-rotation type all-casing device installed at a predetermined portion of the ground.
FIG. 4 is a side view of a set-up attitude of a steel pipe as a lower pile to the all-rotation type all-casing apparatus using an accompanying crane.
FIG. 5 is an explanatory view of the cutting blades at the tip of the steel pipe of the preceding lower pile.
FIG. 6 is a side view showing a mode of rotary press-fitting of a preceding steel pipe of a lower pile with respect to the ground by an all-rotation type all casing device.
FIG. 7 is a side view showing an aspect of excavation and excavation of the steel pipe of the preceding lower pile.
FIG. 8 is a side view of an addition mode of a leading lower pile steel pipe and a trailing upper pile steel pipe for a full-rotation type all casing device.
FIG. 9 is a side view of medium excavation by excavation grab for steel pipe piles that are integrally joined and connected.
FIG. 10 is a side view of a connection between a rotation prevention pin, a protective box and a pin hole for a screw joint portion of a steel pipe.
FIG. 11 is a schematic view of a structural aspect of a right triangle having a bottom side, a height, and a hypotenuse at a screw joint portion of a steel pipe.
[Explanation of symbols]
9 Full-rotation type all-casing device 12 Companion crane 13 Leading lower pile steel pipe 13a Trailing upper pile steel pipe 15 Cutting bit 10 Counterweight 11 Spike 17 Drilling grab 19 Screw joint (screw joint surface)
c Bottom (thickness difference)
h Height e hypotenuse (change slope)
20b Anti-rotation pin 20 Protective box 20a Screw hole

Claims (5)

先行して打設する前回打設の下杭の鋼管に対して次回の上杭としての鋼管をネジ接合を介し、一体的に連結し一本の鋼管杭として連続打設する方法において、該鋼管の先端に全回転型オールケーシング掘削機により硬質地盤中に回転圧入自在なように切削ビットを形成し、該切削ビットを形成する鋼管をその下端の肉厚が該切削ビット幅とほぼ同じに構成され、次いで該鋼管内に対して相伴クレーンによる掘削グラブを介して中掘り掘削と排土を行うようにし、そのネジ接合に際しネジ部が充分に締められる所定の間隙以下の間隙にされているようにし、該ネジ接合に際し締め込みが微動降下接合されるように該ネジ接合部に保護ボックスを介装し、而して先行する下杭の鋼管のネジ接合に際し回転防止ピンを介装して該下杭の上端部と上杭の下端部を相互に固定するようにすることを特徴とする鋼管杭の打設方法。In the method of connecting the steel pipe as the next upper pile to the steel pipe of the lower pile that has been previously placed through threaded joining and continuously placing it as a single steel pipe pile, A cutting bit is formed at the tip of the steel pipe so that it can be press-fitted into the hard ground by a full-rotation all-casing excavator, and the thickness of the steel pipe forming the cutting bit is substantially the same as the width of the cutting bit. Next, the inside of the steel pipe is excavated and discharged through an excavation grab by a companion crane, and the screw portion is set to a gap that is not larger than a predetermined gap when the screw is joined. The screw joint is provided with a protective box so that the tightening is finely lowered and joined at the time of the screw joining, and thus the anti-rotation pin is interposed at the screw joining of the steel pipe of the preceding lower pile. Pile top and top pile Striking 設方 method of the steel pipe pile, characterized in that to fix the lower end portion to each other. 鋼管杭を連続して打設するに使用する鋼管であって、鋼管本管の肉厚より肉厚が厚くなる切削ビットの植設部の肉厚との段差を漸次的に変化させる構造を有するネジ式鋼管において、該肉厚の段差を底辺とし該肉厚差の4倍から6倍の長さを高さとする直角三角形の斜辺にほぼ沿う肉厚の変化勾配とする構造にされていることを特徴とするネジ式鋼管。It is a steel pipe used for continuously placing steel pipe piles, and has a structure that gradually changes the step difference from the thickness of the cutting bit planting portion where the thickness is thicker than the thickness of the steel pipe main pipe. In a threaded steel pipe, it is structured to have a thickness change gradient substantially along the hypotenuse of a right triangle with the thickness step as the base and the length 4 to 6 times the thickness difference as the height. Threaded steel pipe characterized by 上記接合部の構造において、鋼管本管の肉厚より厚くなる上記ネジ接合部の肉厚との段差を漸次的に変化させる構造とする際、該肉厚差を底辺とし、該肉厚差の1.5倍から2倍の長さを高さとする直角三角形の斜辺にほぼ沿う肉厚の変化勾配とする構造にされていることを特徴とする請求項2記載のネジ式鋼管。In the structure of the joint portion, when the structure is such that the step difference from the thickness of the screw joint portion, which becomes thicker than the thickness of the steel pipe main pipe, is gradually changed, 3. The threaded steel pipe according to claim 2, wherein the threaded steel pipe has a thickness change gradient substantially along a hypotenuse of a right triangle having a length of 1.5 to 2 times. 上記鋼管の杭の圧入において、先行する上記下杭の鋼管に対して上記上杭の鋼管のネジ接合部までの間に、掘削グラブによる該鋼管内の掘削排土作業が行われる際、該掘削グラブとの直接干渉を避けることが自在であるようにネジ接合部にネジ保護ボックスを外装されていることを特徴とする請求項2又は3記載のネジ式鋼管。In the press-fitting of the steel pipe pile, when excavation and excavation work is performed in the steel pipe by the excavation grab between the preceding steel pipe of the lower pile and the screw joint of the steel pipe of the upper pile, the excavation is performed. 4. The screw-type steel pipe according to claim 2, wherein a screw protection box is externally provided at the screw joint so as to avoid direct interference with the grab. 上記ネジ部に上記保護ボックスが外装される際、上記ネジ接合部の回転防止ピンを介装するピン孔と該回転防止ピンを係合して該ネジ部に上記保護ボックスの外装状態が固定自在にされるようにされていることを特徴とする請求項4記載のネジ式鋼管。When the protective box is externally mounted on the screw part, the external state of the protective box can be fixed to the screw part by engaging the anti-rotation pin with a pin hole that interposes the anti-rotation pin of the screw joint part. The threaded steel pipe according to claim 4, wherein the threaded steel pipe is configured as described above.
JP2003165204A 2003-06-10 2003-06-10 Method for driving steel pipe pile, and screw type steel pipe Pending JP2005002610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003165204A JP2005002610A (en) 2003-06-10 2003-06-10 Method for driving steel pipe pile, and screw type steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003165204A JP2005002610A (en) 2003-06-10 2003-06-10 Method for driving steel pipe pile, and screw type steel pipe

Publications (1)

Publication Number Publication Date
JP2005002610A true JP2005002610A (en) 2005-01-06

Family

ID=34091761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003165204A Pending JP2005002610A (en) 2003-06-10 2003-06-10 Method for driving steel pipe pile, and screw type steel pipe

Country Status (1)

Country Link
JP (1) JP2005002610A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255695A (en) * 2007-04-06 2008-10-23 Nippon Steel Corp Method of constructing steel pipe pile
CN115217091A (en) * 2022-08-16 2022-10-21 李铁学 Steel sheet pile construction method for water conservancy construction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255695A (en) * 2007-04-06 2008-10-23 Nippon Steel Corp Method of constructing steel pipe pile
JP4669494B2 (en) * 2007-04-06 2011-04-13 新日本製鐵株式会社 Steel pipe pile construction method
CN115217091A (en) * 2022-08-16 2022-10-21 李铁学 Steel sheet pile construction method for water conservancy construction

Similar Documents

Publication Publication Date Title
US9371623B2 (en) Diaphragm wall apparatus and methods
CN1837506B (en) Construction method for excavating box-shape structure over an operating tunnel
US20060185279A1 (en) Foundations for constructions
JP4875318B2 (en) Protection method for the foundation of floating structures
JP6774132B1 (en) Construction method of steel pipe pile
JP6007036B2 (en) Steel pipe sheet pile placing method
JP6319935B2 (en) Tubing pile driving method
JP2005002610A (en) Method for driving steel pipe pile, and screw type steel pipe
JP5028781B2 (en) Reinforcing and reinforcing method for existing quay and its reinforcing structure
KR100758502B1 (en) Entrance machine for driving waterwork pipe and method for constructing it
JP3682386B2 (en) Ground reinforcement method
JP5399292B2 (en) Element propulsion method and blade element used for element propulsion method
JP3165997B2 (en) Casting method and equipment for sheet piles
JP4867488B2 (en) Construction method of underground space, underground space constructed by this method, and underground structure constructed by this method
Simicevic et al. Guidelines for pipe ramming
JP3887383B2 (en) Construction method for underground structures
JP2013147814A (en) Steel pipe pile for excavation
JP3635167B2 (en) Steel pipe concrete well foundation installed on slope and its construction method
JPS6332930B2 (en)
JP4023532B2 (en) Underground continuous wall and its construction method
JP4323075B2 (en) Shaft opening structure
JP3708795B2 (en) Casing placement method
CN212033738U (en) Mounting structure of power pipeline
JP2935633B2 (en) Drilling rig for steel sheet pile wall construction
JPH10114954A (en) Manhole body block applied to small-bore pipe jacking and method of manhole construction

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060206

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071130

A521 Written amendment

Effective date: 20071126

Free format text: JAPANESE INTERMEDIATE CODE: A821

A131 Notification of reasons for refusal

Effective date: 20080730

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

A131 Notification of reasons for refusal

Effective date: 20090616

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20091030

Free format text: JAPANESE INTERMEDIATE CODE: A02