JP2005000906A - Amine carrying porous silica, resin composition containing the porous silica and multilayered structure containing resin composition - Google Patents

Amine carrying porous silica, resin composition containing the porous silica and multilayered structure containing resin composition Download PDF

Info

Publication number
JP2005000906A
JP2005000906A JP2004043042A JP2004043042A JP2005000906A JP 2005000906 A JP2005000906 A JP 2005000906A JP 2004043042 A JP2004043042 A JP 2004043042A JP 2004043042 A JP2004043042 A JP 2004043042A JP 2005000906 A JP2005000906 A JP 2005000906A
Authority
JP
Japan
Prior art keywords
porous silica
resin
oxygen
acid
amine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004043042A
Other languages
Japanese (ja)
Other versions
JP4831519B2 (en
Inventor
Takayuki Ishihara
隆幸 石原
Eki Murakami
恵喜 村上
Ikuo Komatsu
威久男 小松
Hiroaki Goto
弘明 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2004043042A priority Critical patent/JP4831519B2/en
Publication of JP2005000906A publication Critical patent/JP2005000906A/en
Application granted granted Critical
Publication of JP4831519B2 publication Critical patent/JP4831519B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an adsorbent for an oxygen barrier multilayered structure that scavenges an odor component efficiently accompanying the oxidation reaction of an oxidizing organic component which is an oxygen scavenging component, and to provide the multilayered structure that is excellent in flavoring properties while maintaining the excellent processability and mechanical strengths without transferring the odor component accompanying the oxidative reaction of the oxidizing organic component to the inside and/or outside. <P>SOLUTION: The subject amine carrying porous silica is obtained by bonding a silane coupling agent having an amino group on the surface of the porous silica having a specific surface area of 450 m<SP>2</SP>/g or more and an average pore particle size of 80 Å or less. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、多層構造体の酸素吸収性層に含まれる酸化性有機成分の酸化に伴って発生する臭気物質を捕捉するための吸着剤に関し、より詳細には、その表面を、アミノ基を有するシランカップリング剤で処理したアミン担持多孔質シリカに関する。   The present invention relates to an adsorbent for capturing an odorous substance generated by oxidation of an oxidizing organic component contained in an oxygen-absorbing layer of a multilayer structure, and more specifically, has an amino group on the surface thereof. The present invention relates to an amine-supporting porous silica treated with a silane coupling agent.

従来、包装容器としては、金属缶、ガラスビン、各種プラスチック容器等が使用されている。プラスチック容器は、軽量であり、耐衝撃性にもある程度優れているという利点を有しているが、容器壁を透過する酸素による内容物の変質、フレーバー低下等の問題を有している。特に、金属缶やガラスビンでは容器壁を通しての酸素透過がゼロであり、容器内に残留する酸素のみが問題となるのに対して、プラスチック容器の場合には、器壁を通して無視し得ないオーダーの酸素が透過し、内容品の保存性の点で問題となっている。
これを防止するために、プラスチック容器では、エチレン−ビニルアルコール共重合体等のガス遮断性を有する樹脂の層を少なくとも1層有する多層構造体が提案されている(例えば、特許文献1参照。)。
また、ポリマーから成り酸素捕集特性を有する組成物又は該組成物の層を含有する包装用障壁において、組成物が酸化可能有機成分の金属触媒酸化により酸素を捕集することを特徴とする包装用障壁が提案されており、酸化可能有機成分として、ポリアミド、特にキシリレン基含有ポリアミドが使用されている(例えば、特許文献2参照。)。
Conventionally, metal cans, glass bottles, various plastic containers, and the like are used as packaging containers. The plastic container is advantageous in that it is light in weight and excellent in impact resistance to some extent, but it has problems such as deterioration of contents due to oxygen permeating through the container wall and lowering of flavor. In particular, oxygen permeation through the container wall is zero in metal cans and glass bottles, and only the oxygen remaining in the container becomes a problem, whereas in the case of plastic containers, it cannot be ignored through the container wall. Oxygen permeates, which is a problem in terms of storage stability of the contents.
In order to prevent this, as a plastic container, a multilayer structure having at least one resin layer having gas barrier properties such as an ethylene-vinyl alcohol copolymer has been proposed (for example, see Patent Document 1). .
Also, a packaging comprising a polymer having oxygen scavenging properties or a packaging barrier containing a layer of the composition, wherein the composition collects oxygen by metal-catalyzed oxidation of an oxidizable organic component Barriers have been proposed, and polyamides, particularly xylylene group-containing polyamides, are used as oxidizable organic components (see, for example, Patent Document 2).

上記ガスバリヤー性に優れた樹脂、例えばエチレン−ビニルアルコール共重合体(EVOH)は、低湿度条件下ではきわめて優れた酸素遮断性を示すものの、高湿度条件下では酸素に対する透過性が極めて大きくなるという問題を有している。さらに、内容物の保存性の向上を目的として、上記ガスバリヤー性樹脂は湯殺菌、ボイル殺菌、レトルト殺菌等の加熱殺菌包装技法と組み合わせて用いられる場合が多い。従って、この加熱殺菌時に、EVOHは高湿度条件下に置かれるため、酸素透過性の大きい状態になるばかりでなく、EVOHが有する保水性のために、殺菌終了後も酸素透過性の大きい状態が続き、所定のガスバリヤー性が得られない。   Resins with excellent gas barrier properties, such as ethylene-vinyl alcohol copolymer (EVOH), exhibit extremely good oxygen barrier properties under low humidity conditions, but extremely high permeability to oxygen under high humidity conditions. Has the problem. Furthermore, the gas barrier resin is often used in combination with a heat sterilization packaging technique such as hot water sterilization, boil sterilization, or retort sterilization for the purpose of improving the storage stability of the contents. Therefore, during this heat sterilization, EVOH is placed under a high humidity condition, so that not only the oxygen permeability becomes high, but also the water permeability of EVOH has a high oxygen permeability even after the end of sterilization. Subsequently, a predetermined gas barrier property cannot be obtained.

このような問題を解決するため、本発明者等は、遷移金属触媒と酸化性有機成分とを特定のガスバリヤー性樹脂に配合してガスバリヤー層の厚さ方向断面における酸化性有機成分の分散構造及び分布構造を特定の範囲に制御することによって、優れた加工性や機械的強度を維持しつつ、この多層構造体の湿熱時における酸素透過係数を顕著に改善し得ることを見出した(PCT/JP02/13388)。この多層構造体では、酸化性有機成分が遷移金属触媒の作用により酸化されることにより、前記ガスバリヤー性樹脂を透過する酸素を吸収するため、湿熱条件下に置かれた場合にも、酸素透過係数を低い値に抑制することができる。
また、上記のようなガスバリヤー性樹脂に遷移金属触媒と酸化性有機成分を配合することで、酸素透過係数を抑制する方法に加えて、本発明者等は、特定の熱可塑性樹脂に、エチレン系不飽和炭化水素を含有する樹脂と遷移金属触媒を配合することで、エチレン系不飽和炭化水素を有する樹脂が前記特定の熱可塑性樹脂の酸化反応のトリガーとなり、前記特定の熱可塑性樹脂の酸化反応が連鎖的に進行して、大量の酸素捕捉能力を有する酸素吸収性樹脂組成物が得られることを見出した(特願2002−243238)。更に、本発明者等は、前記特定の熱可塑性樹脂の酸化反応のトリガーとなる樹脂として、水添スチレン−ジエン共重合体が、特に好適であることを見出した(特願2003−194839)。前記特定の熱可塑性樹脂と、前記特定の熱可塑性樹脂の酸化のトリガーとなる他の樹脂と、遷移金属触媒を配合した酸素吸収性樹脂組成物は、マトリックスである前記特定の熱可塑性樹脂が大量の酸素を吸収できるので、この酸素吸収性樹脂組成物からなる層を、EVOHに代表されるガスバリヤー性樹脂からなる層と積層した多層構造体は、ガスバリヤー性樹脂の酸素透過性が大きくなる湿熱条件下においても、酸素吸収性樹脂組成物の優れた酸素捕捉性能により、長期間酸素透過係数を低い値に抑制することができる。
In order to solve such a problem, the present inventors have blended a transition metal catalyst and an oxidizing organic component with a specific gas barrier resin to disperse the oxidizing organic component in the cross section in the thickness direction of the gas barrier layer. It has been found that by controlling the structure and the distribution structure within a specific range, the oxygen permeability coefficient of the multilayer structure during wet heat can be remarkably improved while maintaining excellent processability and mechanical strength (PCT). / JP02 / 13388). In this multilayer structure, the oxidizable organic component is oxidized by the action of the transition metal catalyst to absorb oxygen that passes through the gas barrier resin. The coefficient can be suppressed to a low value.
In addition to the method for suppressing the oxygen permeability coefficient by blending a transition metal catalyst and an oxidizing organic component with the gas barrier resin as described above, the present inventors have added ethylene to a specific thermoplastic resin. By blending a resin containing an unsaturated hydrocarbon and a transition metal catalyst, the resin having an ethylenically unsaturated hydrocarbon triggers the oxidation reaction of the specific thermoplastic resin, and the oxidation of the specific thermoplastic resin. It has been found that the reaction proceeds in a chain and an oxygen-absorbing resin composition having a large amount of oxygen scavenging ability is obtained (Japanese Patent Application No. 2002-243238). Furthermore, the present inventors have found that a hydrogenated styrene-diene copolymer is particularly suitable as a resin that triggers an oxidation reaction of the specific thermoplastic resin (Japanese Patent Application No. 2003-194839). The oxygen-absorbing resin composition containing the specific thermoplastic resin, another resin that triggers the oxidation of the specific thermoplastic resin, and a transition metal catalyst has a large amount of the specific thermoplastic resin that is a matrix. Therefore, a multilayer structure in which a layer made of this oxygen-absorbing resin composition is laminated with a layer made of a gas barrier resin typified by EVOH increases the oxygen permeability of the gas barrier resin. Even under wet heat conditions, the oxygen permeability coefficient of the oxygen-absorbing resin composition can suppress the oxygen permeability coefficient to a low value for a long period of time.

特開平1−278344号公報JP-A-1-278344 特表平2−500846号公報Japanese National Patent Publication No. 2-500846

しかしながら、上記多層構造体においては、酸素吸収作用である酸化性有機成分の酸化に伴って臭気物質が発生し、この臭気物質は酸素吸収性層や、多層構造体の他の層を透過して構造体の外側及び内側にまで達し、その結果、臭気物質が内容品に移行し、フレーバー性に劣るという問題が生じる。また、冷蔵庫等で保管する場合に、一緒に保管している他の食品等に臭気成分が移行したり、酸化吸収性層を有する多層構造体を用いた包装容器を包む外装体を開いたときに異臭を生じたりという問題が生じる。
本発明の目的は、酸素捕捉成分である酸化性有機成分の酸化反応に伴う臭気成分を効率良く捕捉する酸素バリヤー性多層構造体用吸着剤を提供することである。
また、本発明の目的は、酸化性有機成分の酸化反応に伴う臭気成分を内側及び/又は外側に移行させることなく、優れた加工性や機械的強度を維持しながら、湿熱時においても優れたガスバリヤー性を維持することができると共に、フレーバー性に優れた多層構造体を提供することである。
However, in the multilayer structure, an odorous substance is generated with the oxidation of the oxidizing organic component which is an oxygen absorbing action, and the odorous substance permeates the oxygen-absorbing layer and other layers of the multilayered structure. As a result, it reaches the outside and inside of the structure, and as a result, the odorous substance is transferred to the contents, resulting in inferior flavor properties. In addition, when storing in a refrigerator, etc., when odor components migrate to other foods stored together, or when opening an outer package that wraps a packaging container using a multilayer structure having an oxidation-absorbing layer There is a problem that a strange odor is produced.
An object of the present invention is to provide an adsorbent for an oxygen barrier multilayer structure that efficiently captures an odor component accompanying an oxidation reaction of an oxidizing organic component that is an oxygen scavenging component.
In addition, the object of the present invention is excellent in wet heat while maintaining excellent processability and mechanical strength without shifting the odor component accompanying the oxidation reaction of the oxidizing organic component to the inside and / or outside. It is to provide a multilayer structure that can maintain gas barrier properties and is excellent in flavor properties.

本発明は、450m2/g以上の比表面積及び80Å以下の平均細孔径を有する多孔質シリカの表面に、アミノ基を有するシランカップリング剤が結合してなるアミン担持多孔質シリカを提供する。
また、本発明は、前記アミン担持多孔質シリカと臭気物質に対するバリヤー性を有する熱可塑性樹脂を含む樹脂組成物を提供する。
さらに、本発明は、前記樹脂組成物からなる臭気バリヤー層及び酸素吸収性層を有する多層構造体を提供する。
The present invention provides an amine-supporting porous silica in which a silane coupling agent having an amino group is bonded to the surface of a porous silica having a specific surface area of 450 m 2 / g or more and an average pore diameter of 80 mm or less.
The present invention also provides a resin composition comprising the amine-supporting porous silica and a thermoplastic resin having a barrier property against odorous substances.
Furthermore, the present invention provides a multilayer structure having an odor barrier layer and an oxygen-absorbing layer made of the resin composition.

本発明の多層構造体を用いることにより、酸素捕捉成分である酸化性有機成分の酸化反応に伴う臭気成分を効率良く吸着し、臭気物質に対するバリヤー性を有する熱可塑性樹脂に分散したときに熱可塑性樹脂の増粘やゲル化を誘発せず、優れた加工性や機械的強度を維持しながら、優れたガスバリヤー性を維持することができる。   By using the multilayer structure of the present invention, the odor component accompanying the oxidation reaction of the oxidizing organic component which is an oxygen scavenging component is efficiently adsorbed, and is thermoplastic when dispersed in a thermoplastic resin having a barrier property against the odor substance. Excellent gas barrier properties can be maintained while maintaining excellent processability and mechanical strength without inducing thickening or gelation of the resin.

シランカップリング剤処理したアミン担持多孔質シリカは、酸化性有機成分を含有する酸素吸収性層を有する多層構造体に含有させた場合、多層構造体の酸素吸収性層に含まれる酸化性有機成分の酸化に伴って発生する臭気物質を捕捉することができる。しかしながら、シランカップリング剤処理したアミン担持多孔質シリカは、後述する臭気物質に対するバリヤー性を有する熱可塑性樹脂と配合して樹脂組成物を調製した場合に、樹脂組成物の溶融粘度を経時的に増大するという問題を有することが、本発明者らの検討結果により明らかとなった。本発明者らがさらに鋭意検討した結果、450m2/g以上の比表面積及び80Å以下の平均細孔径を有する多孔質シリカの表面を、アミノ基を有するシランカップリング剤で処理することにより、多層構造体の酸素吸収性層に含まれる酸化性有機成分の酸化に伴って発生する臭気物質を効率よく捕捉することができると共に、樹脂組成物の溶融粘度の経時的な増大を抑制することができることが分かった。
臭気物質の捕捉効率や溶融粘度増大の抑制の点から、シランカップリング剤処理する上記多孔質シリカは、好ましくは450m2/g以上、の比表面積を有し、より好ましくは450〜800m2/gの比表面積を有する。また、シランカップリング剤処理する上記多孔質シリカは、好ましくは80Å以下の平均細孔径を有し、より好ましくは30〜80Åの平均細孔径を有する。
また、シランカップリング剤処理する上記多孔質シリカの吸油量は、200ml/100g以下であるのが好ましく、90〜180ml/100gであるのがより好ましい。
さらに、シランカップリング剤処理する上記多孔質シリカの平均粒径は、1〜10μmであるのが好ましく、1〜5μmであるのがより好ましい。
シランカップリング剤処理する上記多孔質シリカの製法としては、特に制限されるものではなく、公知の製法を用いることができ、例えば湿式法で合成されたシリカを粉砕し分級することによって得られる多孔質シリカや乾式法で合成された多孔質シリカを、本発明において用いることができる。
When amine-supported porous silica treated with a silane coupling agent is included in a multilayer structure having an oxygen-absorbing layer containing an oxidizing organic component, the oxidizing organic component contained in the oxygen-absorbing layer of the multilayer structure It is possible to capture odorous substances that are generated as a result of oxidation. However, when the amine-supported porous silica treated with the silane coupling agent is blended with a thermoplastic resin having a barrier property against odor substances described later, the melt viscosity of the resin composition is changed over time. It has become clear from the examination results of the present inventors that there is a problem of increasing. As a result of further diligent investigations by the present inventors, a multi-layer was obtained by treating the surface of porous silica having a specific surface area of 450 m 2 / g or more and an average pore diameter of 80 mm or less with a silane coupling agent having an amino group. It is possible to efficiently capture odorous substances generated with the oxidation of the oxidizing organic component contained in the oxygen-absorbing layer of the structure, and to suppress an increase in the melt viscosity of the resin composition over time. I understood.
The porous silica to be treated with the silane coupling agent preferably has a specific surface area of 450 m 2 / g or more, more preferably 450 to 800 m 2 / g specific surface area. Further, the porous silica to be treated with the silane coupling agent preferably has an average pore diameter of 80 mm or less, more preferably 30 to 80 mm.
The oil absorption of the porous silica treated with the silane coupling agent is preferably 200 ml / 100 g or less, and more preferably 90 to 180 ml / 100 g.
Furthermore, the average particle diameter of the porous silica to be treated with the silane coupling agent is preferably 1 to 10 μm, and more preferably 1 to 5 μm.
The method for producing the porous silica to be treated with the silane coupling agent is not particularly limited, and a known production method can be used. For example, a porous material obtained by pulverizing and classifying silica synthesized by a wet method. Silica or porous silica synthesized by a dry method can be used in the present invention.

アミノ基を有するシランカップリング剤としては、下記式(1)で表されるものが好ましい。
2N−X−SiR1 n(OR23-n (1)
As a silane coupling agent which has an amino group, what is represented by following formula (1) is preferable.
H 2 N—X—SiR 1 n (OR 2 ) 3-n (1)

式中、nは0、1又は2を表す。
Xは炭素数1〜5の直鎖又は分岐鎖の2価の炭化水素基を表す。具体的には、−CH2−、−CH2CH2−、−CH2CH2CH2−、−CH2CH(CH3)−、−CH2CH2CH2CH2−、−CH2CH(CH3)CH2−、−CH2CH2CH(CH3)−、−CH2C(CH32−、−CH2CH2CH2CH2CH2−、−CH2CH(CH3)CH2CH2−、−CH2CH2CH(CH3)CH2−、−CH2CH2CH2CH(CH3)−、−CH2C(CH32CH2−、−CH2CH2C(CH32−等が挙げられる。
1は炭素数1〜3のアルキル基を表す。具体的には、−CH3、−CH2CH3、−CH2CH2CH3、−CH(CH3)CH3等が挙げられる。
2は炭素数1〜3のアルキル基を表す。具体的には、−CH3、−CH2CH3、−CH2CH2CH3、−CH(CH3)CH3等が挙げられる。
好ましいアミノ基を有するシランカップリング剤は、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルジメチルエトキシシラン、γ−アミノプロピルメチルジエトキシシラン、γ−アミノプロピルトリメトキシシランであり、特に衛生性の点でγ−アミノプロピルトリエトキシシランが好ましい。
In the formula, n represents 0, 1 or 2.
X represents a linear or branched divalent hydrocarbon group having 1 to 5 carbon atoms. Specifically, -CH 2 -, - CH 2 CH 2 -, - CH 2 CH 2 CH 2 -, - CH 2 CH (CH 3) -, - CH 2 CH 2 CH 2 CH 2 -, - CH 2 CH (CH 3 ) CH 2 —, —CH 2 CH 2 CH (CH 3 ) —, —CH 2 C (CH 3 ) 2 —, —CH 2 CH 2 CH 2 CH 2 CH 2 —, —CH 2 CH ( CH 3) CH 2 CH 2 - , - CH 2 CH 2 CH (CH 3) CH 2 -, - CH 2 CH 2 CH 2 CH (CH 3) -, - CH 2 C (CH 3) 2 CH 2 -, -CH 2 CH 2 C (CH 3 ) 2 - and the like.
R 1 represents an alkyl group having 1 to 3 carbon atoms. Specifically, —CH 3 , —CH 2 CH 3 , —CH 2 CH 2 CH 3 , —CH (CH 3 ) CH 3 and the like can be mentioned.
R 2 represents an alkyl group having 1 to 3 carbon atoms. Specifically, —CH 3 , —CH 2 CH 3 , —CH 2 CH 2 CH 3 , —CH (CH 3 ) CH 3 and the like can be mentioned.
Preferred silane coupling agents having amino groups are γ-aminopropyltriethoxysilane, γ-aminopropyldimethylethoxysilane, γ-aminopropylmethyldiethoxysilane, and γ-aminopropyltrimethoxysilane, which are particularly sanitary. In view of this, γ-aminopropyltriethoxysilane is preferred.

前記シランカップリング剤による前記多孔質シリカの表面処理方法としては、特に限定されるものではなく、乾式法、スラリー法、スプレー法等の前処理法やインテグラルブレンド法等の公知の方法を用いることができる。シリカ表面を均一に処理できるという点で前処理法が好ましい。
多孔質シリカに担持するアミノ基を有するシランカップリング剤の量は、多孔質シリカ1gに対して、0.1〜1mmolであるのが好ましく、0.3〜0.8mmolであるのがより好ましい。
The surface treatment method of the porous silica with the silane coupling agent is not particularly limited, and a known method such as a pretreatment method such as a dry method, a slurry method, a spray method, or an integral blend method is used. be able to. The pretreatment method is preferable in that the silica surface can be uniformly treated.
The amount of the silane coupling agent having an amino group supported on the porous silica is preferably 0.1 to 1 mmol, more preferably 0.3 to 0.8 mmol, with respect to 1 g of the porous silica. .

次に、前記シランカップリング剤処理したアミン担持多孔質シリカを含有する多層構造体について説明する。
前記アミン担持多孔質シリカは、臭気物質に対するバリヤー性を有する熱可塑性樹脂に配合した樹脂組成物として用いるのが好ましい。
臭気物質に対するバリヤー性を有する熱可塑性樹脂としては、エチレン−ビニルアルコール共重合体、ポリアミド樹脂、ポリエステル樹脂、環状オレフィン系樹脂、ポリプロピレンが挙げられる。これらの樹脂は単独で用いてもよく、また2種以上組み合わせて用いてもよい。
本発明では、酸素や香気成分に対するバリヤー性に特に優れた樹脂として、エチレン−ビニルアルコール共重合体を用いるのが望ましい。エチレン−ビニルアルコール共重合体としては、それ自体公知の任意のものを用いることができ、例えば、エチレン含有量が20〜60モル%、特に25〜50モル%であるエチレン−酢酸ビニル共重合体を、ケン化度が96モル%以上、特に99モル%以上となるようにケン化して得られる共重合体ケン化物が使用できる。
このエチレン−ビニルアルコール共重合体ケン化物は、フィルムを形成し得るに足る分子量を有するべきであり、一般に、フェノール:水の重量比で85:15の混合溶媒中30℃で測定して 0.01dL/g以上、特に0.05dL/g以上の粘度を有することが望ましい。
Next, the multilayer structure containing the amine-supporting porous silica treated with the silane coupling agent will be described.
The amine-supporting porous silica is preferably used as a resin composition blended with a thermoplastic resin having barrier properties against odorous substances.
Examples of the thermoplastic resin having barrier properties against odorous substances include ethylene-vinyl alcohol copolymer, polyamide resin, polyester resin, cyclic olefin resin, and polypropylene. These resins may be used alone or in combination of two or more.
In the present invention, it is desirable to use an ethylene-vinyl alcohol copolymer as a resin particularly excellent in barrier properties against oxygen and aroma components. As the ethylene-vinyl alcohol copolymer, any one known per se can be used. For example, an ethylene-vinyl acetate copolymer having an ethylene content of 20 to 60 mol%, particularly 25 to 50 mol%. A saponified copolymer obtained by saponifying the saponification degree so that the saponification degree is 96 mol% or more, particularly 99 mol% or more can be used.
The saponified ethylene-vinyl alcohol copolymer should have a molecular weight sufficient to form a film and is generally measured at 30 ° C. in a mixed solvent of 85:15 by weight ratio of phenol: water. It is desirable to have a viscosity of 01 dL / g or more, particularly 0.05 dL / g or more.

ポリアミド樹脂としては、(a)ジカルボン酸成分とジアミン成分とから誘導された脂肪族、脂環族或いは半芳香族ポリアミド、(b) アミノカルボン酸或いはそのラクタムから誘導されたポリアミド、或いはこれらのコポリアミド或いはこれらのブレンド物が挙げられる。
ジカルボン酸成分としては、例えばコハク酸、アジピン酸、セバチン酸、デカンジカルボン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸等の炭素数4〜15の脂肪族ジカルボン酸、テレフタル酸やイソフタル酸等の芳香族ジカルボン酸が挙げられる。
また、ジアミン成分としては、 1,6− ジアミノヘキサン、1,8−ジアミノオクタン、1,10− ジアミノデカン、1,12− ジアミノドデカン等の炭素数4〜25、特に6〜18の直鎖状又は分岐鎖状アルキレンジアミン、ビス(アミノメチル)シクロヘキサン、ビス(4−アミノシクロヘキシル)メタン、4, 4′− ジアミノ−3,3′− ジメチルジシクロヘキシルメタン、特にビス(4−アミノシクロヘキシル)メタン、1,3−ビス(アミノシクロヘキシル)メタン、1,3−ビス(アミノメチル)シクロヘキサン等の脂環族ジアミン、m−キシリレンジアミン及び/又はp−キシリレンジアミン等の芳香脂肪族ジアミンが挙げられる。
アミノカルボン酸成分として、脂肪族アミノカルボン酸、例えばω−アミノカプロン酸、ω−アミノオクタン酸、ω−アミノウンデカン酸、ω−アミノドデカン酸や、パラ−アミノメチル安息香酸、パラ−アミノフェニル酢酸等の芳香脂肪族アミノカルボン酸等を挙げることができる。
Polyamide resins include (a) an aliphatic, alicyclic or semi-aromatic polyamide derived from a dicarboxylic acid component and a diamine component, (b) a polyamide derived from an aminocarboxylic acid or its lactam, or a copolymer thereof. Examples thereof include polyamides and blends thereof.
Examples of the dicarboxylic acid component include aliphatic dicarboxylic acids having 4 to 15 carbon atoms such as succinic acid, adipic acid, sebacic acid, decanedicarboxylic acid, undecanedicarboxylic acid, and dodecanedicarboxylic acid, and aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid. Examples include acids.
The diamine component includes 1,6-diaminohexane, 1,8-diaminooctane, 1,10-diaminodecane, 1,12-diaminododecane, etc., a straight chain having 4 to 25 carbon atoms, particularly 6 to 18 carbon atoms. Or branched alkylenediamine, bis (aminomethyl) cyclohexane, bis (4-aminocyclohexyl) methane, 4,4'-diamino-3,3'-dimethyldicyclohexylmethane, especially bis (4-aminocyclohexyl) methane, 1 , 3-bis (aminocyclohexyl) methane, alicyclic diamines such as 1,3-bis (aminomethyl) cyclohexane, and araliphatic diamines such as m-xylylenediamine and / or p-xylylenediamine.
As the aminocarboxylic acid component, aliphatic aminocarboxylic acids such as ω-aminocaproic acid, ω-aminooctanoic acid, ω-aminoundecanoic acid, ω-aminododecanoic acid, para-aminomethylbenzoic acid, para-aminophenylacetic acid, etc. And araliphatic aminocarboxylic acid.

これらのポリアミドの内でもキシリレン基含有ポリアミドが好ましく、具体的には、ポリメタキシリレンアジパミド、ポリメタキシリレンセバカミド、ポリメタキシリレンスベラミド、ポリパラキシリレンピメラミド、ポリメタキシリレンアゼラミド等の単独重合体、及びメタキシリレン/パラキシリレンアジパミド共重合体、メタキシリレン/パラキシリレンピメラミド共重合体、メタキシリレン/パラキシリレンセバカミド共重合体、メタキシリレン/パラキシリレンアゼラミド共重合体等の共重合体、或いはこれらの単独重合体または共重合体の成分とヘキサメチレンジアミンの如き脂肪族ジアミン、ピペラジンの如き脂環式ジアミン、パラ−ビス(2アミノエチル)ベンゼンの如き芳香族ジアミン、テレフタル酸の如き芳香族ジカルボン酸、ε−カプロラクタムの如きラクタム、7−アミノヘプタン酸の如きω−アミノカルボン酸、パラ−アミノメチル安息香酸の如き芳香族アミノカルボン酸等を共重合した共重合体が挙げられるが、m−キシリレンジアミン及び/又はp−キシリレンジアミンを主成分とするジアミン成分と、脂肪族ジカルボン酸及び/又は芳香族ジカルボン酸とから得られるポリアミドが特に好適に用いることができる。
これらのキシリレン基含有ポリアミドは、他のポリアミド樹脂に比してガスバリヤー性に優れており、本発明の目的に好ましいものである。
これらのポリアミドもフィルムを形成するに足る分子量を有するべきであり、濃硫酸中1.0g/dl の濃度で且つ30℃の温度で測定した相対粘度(ηrel)が1.1以上、特に1.5以上であることが望ましい。
Among these polyamides, xylylene group-containing polyamides are preferable, and specifically, polymetaxylylene adipamide, polymetaxylylene sebacamide, polymetaxylylene veramide, polyparaxylylene pimeramide, polymetaxylylene. Homopolymers such as azelamide, and metaxylylene / paraxylylene adipamide copolymer, metaxylylene / paraxylylene pimeramide copolymer, metaxylylene / paraxylylene sebacamide copolymer, metaxylylene / paraxylylene Copolymers such as azeramide copolymers, or homopolymer or copolymer components thereof, aliphatic diamines such as hexamethylenediamine, alicyclic diamines such as piperazine, and para-bis (2aminoethyl) benzene Aromatic diamines, such as terephthalic acid A copolymer obtained by copolymerizing acid, lactam such as ε-caprolactam, ω-aminocarboxylic acid such as 7-aminoheptanoic acid, aromatic aminocarboxylic acid such as para-aminomethylbenzoic acid, and the like. A polyamide obtained from a diamine component mainly composed of xylylenediamine and / or p-xylylenediamine and an aliphatic dicarboxylic acid and / or an aromatic dicarboxylic acid can be particularly preferably used.
These xylylene group-containing polyamides are excellent in gas barrier properties as compared with other polyamide resins, and are preferable for the purpose of the present invention.
These polyamides should also have a molecular weight sufficient to form a film, with a relative viscosity (ηrel) measured at a concentration of 1.0 g / dl in concentrated sulfuric acid and a temperature of 30 ° C. of 1.1 or greater, especially 1. It is desirable to be 5 or more.

ポリエステル樹脂としては、テレフタル酸やイソフタル酸のような芳香族ジカルボン酸と、エチレングリコールのようなジオール類とから誘導された熱可塑性ポリエステル、いわゆるガスバリヤー性ポリエステルが挙げられる。このガスバリヤー性ポリエステルは、重合体鎖中に、テレフタル酸成分(T)とイソフタル酸成分(I)とを、
T:I=95: 5乃至 5:95
特に 75:25乃至25:75
のモル比で含有し、且つエチレングリコール成分(E)とビス(2−ヒドロキシエトキシ)ベンゼン成分(BHEB)とを、
E:BHEB=99.999:0.001〜2.0:98.0
特に 99.95:0.05〜40:60
のモル比で含有する。BHEBとしては、1,3−ビス(2−ヒドロキシエトキシ)ベンゼンが好ましい。
このポリエステルは、少なくともフィルムを形成し得るに足る分子量を有するべきであり、一般にフェノールとテトラクロルエタンとの60:40の重量比の混合溶媒中、30℃の温度で測定して、0.3〜2.8dl/g、特に0.4〜1.8dl/gの固有粘度[η]を有することが望ましい。
ポリグリコール酸を主体とするポリエステル樹脂、或いはこのポリエステル樹脂と上記芳香族ジカルボン酸とジオール類とから誘導されたポリエステル樹脂をブレンドしたポリエステル樹脂を用いることもできる。
Examples of the polyester resin include thermoplastic polyesters derived from aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid and diols such as ethylene glycol, so-called gas barrier polyesters. This gas barrier polyester comprises a terephthalic acid component (T) and an isophthalic acid component (I) in a polymer chain.
T: I = 95: 5 to 5:95
Especially 75:25 to 25:75
The ethylene glycol component (E) and the bis (2-hydroxyethoxy) benzene component (BHEB),
E: BHEB = 99.999: 0.001-2.0: 98.0
Especially 99.95: 0.05-40: 60
In a molar ratio. As BHEB, 1,3-bis (2-hydroxyethoxy) benzene is preferable.
The polyester should have a molecular weight that is at least sufficient to form a film, and is generally 0.3% as measured in a 60:40 weight ratio mixed solvent of phenol and tetrachloroethane at a temperature of 30 ° C. It is desirable to have an intrinsic viscosity [η] of ˜2.8 dl / g, especially 0.4 to 1.8 dl / g.
A polyester resin mainly composed of polyglycolic acid or a polyester resin obtained by blending this polyester resin, a polyester resin derived from the above aromatic dicarboxylic acid and diols can also be used.

環状オレフィン系樹脂は、エチレン系不飽和結合とビシクロ環とを有する脂環族炭化水素化合物、特にビシクロ[2、2、1]ヘプト−2−エン骨格を有する炭化水素化合物であり、具体的には次のものが挙げられるが、これに限定されるものではない。
ビシクロ[2.2.1]ヘプト−2−エン誘導体:例えば下記式(1)で表されるビシクロ[2.2.1]ヘプト−2−エン誘導体。特に、ビシクロ[2.2.1]ヘプト−2−エン、6−メチルビシクロ[2.2.1]ヘプト−2−エン、5,6−ジメチルビシクロ[2.2.1]ヘプト−2−エン、1−メチルビシクロ[2.2.1]ヘプト−2−エン、6−エチルビシクロ[2.2.1]ヘプト−2−エン、6−n−ブチルビシクロ[2.2.1]ヘプト−2−エン、6−イソブチルビシクロ[2.2.1]ヘプト−2−エン、7−メチルビシクロ[2.2.1]ヘプト−2−エン。

Figure 2005000906
(2)
(式中、Rは水素原子、アルキル基、シクロアルキル基又はアルキリデン基であり、nは1〜4の整数である。) The cyclic olefin-based resin is an alicyclic hydrocarbon compound having an ethylenically unsaturated bond and a bicyclo ring, particularly a hydrocarbon compound having a bicyclo [2,2,1] hept-2-ene skeleton. The following may be mentioned, but the invention is not limited to these.
Bicyclo [2.2.1] hept-2-ene derivative: For example, a bicyclo [2.2.1] hept-2-ene derivative represented by the following formula (1). In particular, bicyclo [2.2.1] hept-2-ene, 6-methylbicyclo [2.2.1] hept-2-ene, 5,6-dimethylbicyclo [2.2.1] hept-2-ene Ene, 1-methylbicyclo [2.2.1] hept-2-ene, 6-ethylbicyclo [2.2.1] hept-2-ene, 6-n-butylbicyclo [2.2.1] hept 2-ene, 6-isobutylbicyclo [2.2.1] hept-2-ene, 7-methylbicyclo [2.2.1] hept-2-ene.
Figure 2005000906
(2)
(In the formula, R is a hydrogen atom, an alkyl group, a cycloalkyl group or an alkylidene group, and n is an integer of 1 to 4.)

トリシクロ[4.3.0.12.5]−3−デセン誘導体:例えば、下記式(2)で表されるトリシクロ[4.3.0.12.5]−3−デセン誘導体。特に、トリシクロ[4.3.0.12.5]−3−デセン、2−メチルトリシクロ[4.3.0.12.5]−3−デセン5−メチルトリシクロ[4.3.0.12.5]−3−デセン。




Figure 2005000906
(3)
(式中、Rは水素原子、アルキル基、シクロアルキル基又はアルキリデン基であり、nは1〜4の整数である。) Tricyclo [4.3.0.12.5] -3-decene derivative: For example, a tricyclo [4.3.0.12.5] -3-decene derivative represented by the following formula (2). In particular, tricyclo [4.3.0.12.5] -3-decene, 2-methyltricyclo [4.3.0.12.5] -3-decene5-methyltricyclo [4.3.0 .12.5] -3-decene.




Figure 2005000906
(3)
(In the formula, R is a hydrogen atom, an alkyl group, a cycloalkyl group or an alkylidene group, and n is an integer of 1 to 4.)

トリシクロ[4.4.0.12.5]−3−ウンデセン誘導体:例えば、下記式(3)で表されるトリシクロ[4.4.0.12.5]−3−ウンデセン誘導体。特に、トリシクロ[4.4.0.12.5]−3−ウンデセン、10−メチルトリシクロ[4.4.0.12.5]−3−ウンデセン。

Figure 2005000906
(4)
(式中、Rは水素原子、アルキル基、シクロアルキル基又はアルキリデン基であり、nは1〜4の整数である。) Tricyclo [4.4.0.12.5] -3-undecene derivative: For example, a tricyclo [4.4.0.12.5] -3-undecene derivative represented by the following formula (3). In particular, tricyclo [4.4.0.12.5] -3-undecene, 10-methyltricyclo [4.4.0.12.5] -3-undecene.
Figure 2005000906
(4)
(In the formula, R is a hydrogen atom, an alkyl group, a cycloalkyl group or an alkylidene group, and n is an integer of 1 to 4.)

テトラシクロ[4.4.0.12.5.17.10]−3−ドデセン誘導体、例えば、下記式(4)で表されるテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン誘導体。特に、テトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、8−メチルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、8−エチルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、8−プロピルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、8−ブチルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、8−イソブチルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、8−ヘキシルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、8−シクロヘキシルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、8−ステアリルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、5,10−ジメチルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、2,10−ジメチルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、8,9−ジメチルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、8−エチル−9−メチルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、11,12−ジメチルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、2,7,9−トリメチルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、2,7−ジメチル−9−エチルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、9−イソブチル−2,7−ジメチルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、9,11,12−トリメチルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、9−エチル−11,12−ジメチルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、9−イソブチル−11,12−ジメチルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、5,8,9,10−テトラメチルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、8−エチリデンテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、8−エチリデン−9−メチルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、8−エチリデン−9−エチルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、8−エチリデン−9−イソプロピルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、8−エチリデン−9−ブチルテトラシクロ[4.4.0.12.5.17.10]−2R−ドデセン、8−n−プロピリデンテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、8−n−プロピリデン−9−メチルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、8−n−プロピリデン−9−エチルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、8−n−プロピリデン−9−イソプロピルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、8−n−プロピリデン−9−ブチルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、8−イソプロピリデンテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、8−イソプロピリデン−9−メチルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、8−イソプロピリデン−9−エチルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、8−イソプロピリデン−9−イソプロピルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン、8−イソプロピリデン−9−ブチルテトラシクロ[4.4.0.12.5.17.10]−3−ドデセン。

Figure 2005000906
(5)
(式中、Rは水素原子、アルキル基、シクロアルキル基又はアルキリデン基であり、nは1〜4の整数である。) Tetracyclo [4.4.0.12.5.17.10] -3-dodecene derivative, for example, tetracyclo [4.4.0.12.5.17.10]-represented by the following formula (4) 3-dodecene derivative. In particular, tetracyclo [4.4.0.12.5.17.10] -3-dodecene, 8-methyltetracyclo [4.4.0.12.5.17.10] -3-dodecene, 8- Ethyltetracyclo [4.4.0.12.5.17.10] -3-dodecene, 8-propyltetracyclo [4.4.0.12.5.17.10] -3-dodecene, 8- Butyltetracyclo [4.4.0.12.5.17.10] -3-dodecene, 8-isobutyltetracyclo [4.4.0.12.5.17.10] -3-dodecene, 8- Hexyltetracyclo [4.4.0.12.5.17.10] -3-dodecene, 8-cyclohexyltetracyclo [4.4.0.12.5.17.10] -3-dodecene, 8- Stearyltetracyclo [4.4.0.12.5.17.10] 3-dodecene, 5,10-dimethyltetracyclo [4.4.0.12.5.17.10] -3-dodecene, 2,10-dimethyltetracyclo [4.4.0.12.5.17 .10] -3-dodecene, 8,9-dimethyltetracyclo [4.4.0.12.5.17.10] -3-dodecene, 8-ethyl-9-methyltetracyclo [4.4.0 12.5.17.10] -3-dodecene, 11,12-dimethyltetracyclo [4.4.0.12.5.17.10] -3-dodecene, 2,7,9-trimethyltetracyclo [4.4.0.12.5.17.10] -3-dodecene, 2,7-dimethyl-9-ethyltetracyclo [4.4.0.12.5.17.10] -3-dodecene 9-isobutyl-2,7-dimethyltetracyclo [4.4.0. 2.5.17.10] -3-dodecene, 9,11,12-trimethyltetracyclo [4.4.0.12.5.17.10] -3-dodecene, 9-ethyl-11,12- Dimethyltetracyclo [4.4.0.12.5.17.10] -3-dodecene, 9-isobutyl-11,12-dimethyltetracyclo [4.4.0.12.5.17.10]- 3-dodecene, 5,8,9,10-tetramethyltetracyclo [4.4.0.12.5.17.10] -3-dodecene, 8-ethylidenetetracyclo [4.4.0.12. 5.17.10] -3-dodecene, 8-ethylidene-9-methyltetracyclo [4.4.0.12.5.17.10] -3-dodecene, 8-ethylidene-9-ethyltetracyclo [ 4.4.0.12.5.17.10] -3-do Decene, 8-ethylidene-9-isopropyltetracyclo [4.4.0.12.5.17.10] -3-dodecene, 8-ethylidene-9-butyltetracyclo [4.4.0.12.5 17.10] -2R-dodecene, 8-n-propylidenetetracyclo [4.4.0.12.5.17.10] -3-dodecene, 8-n-propylidene-9-methyltetracyclo [ 4.4.0.12.5.17.10] -3-dodecene, 8-n-propylidene-9-ethyltetracyclo [4.4.0.12.5.17.10] -3-dodecene, 8-n-propylidene-9-isopropyltetracyclo [4.4.0.12.5.17.10] -3-dodecene, 8-n-propylidene-9-butyltetracyclo [4.4.0.12 5.17.10] -3-Dodece 8-isopropylidenetetracyclo [4.4.0.12.5.17.10] -3-dodecene, 8-isopropylidene-9-methyltetracyclo [4.4.0.12.5.17. 10] -3-dodecene, 8-isopropylidene-9-ethyltetracyclo [4.4.0.12.5.17.10] -3-dodecene, 8-isopropylidene-9-isopropyltetracyclo [4. 4.0.12.5.17.10] -3-dodecene, 8-isopropylidene-9-butyltetracyclo [4.4.0.12.5.17.10] -3-dodecene.
Figure 2005000906
(5)
(In the formula, R is a hydrogen atom, an alkyl group, a cycloalkyl group or an alkylidene group, and n is an integer of 1 to 4.)

ペンタシクロ[6.5.1.13.6.02.7.09.13]−4−ペンタデセン誘導体;例えば、下記式(5)で表されるペンタシクロ[6.5.1.13.6.02.7.09.13]−4−ペンタデセン誘導体。特に、ペンタシクロ[6.5.1.13.6.02.7.09.13]−4−ペンタデセン、1,3−ジメチルペンタシクロ[6.5.1.13.6.02.7.09.13]−4−ペンタデセン、1,6−ジメチルペンタシクロ[6.5.1.13.6.02.7.09.13]−4−ペンタデセン、14,15−ジメチルペンタシクロ[6.5.1.13.6.02.7.09.13]−4−ペンタデセン。

Figure 2005000906
(6)
(式中、Rは水素原子、アルキル基、シクロアルキル基又はアルキリデン基であり、nは1〜4の整数である。) Pentacyclo [6.5.1.13.6.02.77.09.13] -4-pentadecene derivative; for example, pentacyclo [6.5.1.13.6.02 represented by the following formula (5) 7.09.13] -4-pentadecene derivative. In particular, pentacyclo [6.5.1.13.6.0.2.7.09.13] -4-pentadecene, 1,3-dimethylpentacyclo [6.5.1.13.6.6.0.7.0.09. .13] -4-pentadecene, 1,6-dimethylpentacyclo [6.5.1.13.6.02.77.09.03] -4-pentadecene, 14,15-dimethylpentacyclo [6.5 1.13.6.6.0.7.09.13] -4-pentadecene.
Figure 2005000906
(6)
(In the formula, R is a hydrogen atom, an alkyl group, a cycloalkyl group or an alkylidene group, and n is an integer of 1 to 4.)

ペンタシクロ[7.4.0.12.5 .19.12.08.13]−3−ペンタデセン誘導体、例えば下記式(6)で表されるペンタシクロ[7.4.0.12.5.19.12.08.13]−3−ペンタデセン誘導体。特に、ペンタシクロ[7.4.0.12.5.19.12.08.13]−3−ペンタデセン、メチル置換ペンタシクロ[7.4.0.12.5.19.12.08.13]−3−ペンタデセン。

Figure 2005000906
(7)
(式中、Rは水素原子、アルキル基、シクロアルキル基又はアルキリデン基であり、nは1〜4の整数である。) Pentacyclo [7.4.0.12.5. 19.12.08.13] -3-pentadecene derivative, for example, pentacyclo [7.4.0.12.55.19.12.08.13] -3-pentadecene derivative represented by the following formula (6). In particular, pentacyclo [7.4.0.12.55.19.12.08.13] -3-pentadecene, methyl-substituted pentacyclo [7.4.0.12.55.19.12.08.13]- 3-pentadecene.
Figure 2005000906
(7)
(In the formula, R is a hydrogen atom, an alkyl group, a cycloalkyl group or an alkylidene group, and n is an integer of 1 to 4.)

ペンタシクロ[6.5.1.13.6.02.7.09.13]−4,10−ペンタデカジエン誘導体、例えば下記式(7)で表されるペンタシクロ[6.5.1.13.6.02.7.09.13]−4,10−ペンタデカジエン誘導体。
特に、ペンタシクロ[6.5.1.13.6.02.7.09.13]−4,10−ペンタデカジエン。

Figure 2005000906
(8)
(式中、Rは水素原子、アルキル基、シクロアルキル基又はアルキリデン基であり、nは1〜4の整数である。) Pentacyclo [6.5.1.13.3.6.02.77.09.13] -4,10-pentadecadiene derivative, for example, pentacyclo [6.5.1.13. 6.0.2.7.09.13] -4,10-pentadecadiene derivative.
In particular, pentacyclo [6.5.1.13.6.0.2.7.7.0.13] -4,10-pentadecadien.
Figure 2005000906
(8)
(In the formula, R is a hydrogen atom, an alkyl group, a cycloalkyl group or an alkylidene group, and n is an integer of 1 to 4.)

ペンタシクロ[8.4.0.12.5.19.12.08.13]−3−ヘキサデセン誘導体、例えば下記式(8)で表されるペンタシクロ[8.4.0.12.5.19.12.08.13]−3−ヘキサデセン誘導体。特に、ペンタシクロ[8.4.0.12.5.19.12.08.13]−3−ヘキサデセン、11−メチル−ペンタシクロ[8.4.0.12.5.19.12.08.13]−3−ヘキサデセン、11−エチル−ペンタシクロ[8.4.0.12.5.19.12.08.13]−3−ヘキサデセン、10,11−ジメチル−ペンタシクロ[8.4.0.12.5 .19.12.08.13]−3−ヘキサデセン。

Figure 2005000906
(9)
(式中、Rは水素原子、アルキル基、シクロアルキル基又はアルキリデン基であり、nは1〜4の整数である。) Pentacyclo [8.4.0.12.5.19.12.08.13] -3-hexadecene derivative, for example, pentacyclo [8.4.0.12.5.19. 12.08.13] -3-Hexadecene derivative. In particular, pentacyclo [8.4.0.12.5.19.12.08.13] -3-hexadecene, 11-methyl-pentacyclo [8.4.0.12.5.19.12.08.13. ] -3-hexadecene, 11-ethyl-pentacyclo [8.4.0.12.55.19.12.08.13] -3-hexadecene, 10,11-dimethyl-pentacyclo [8.4.0.12] .5. 19.12.08.13] -3-Hexadecene.
Figure 2005000906
(9)
(In the formula, R is a hydrogen atom, an alkyl group, a cycloalkyl group or an alkylidene group, and n is an integer of 1 to 4.)

ペンタシクロ[6.6.1.13.6 .02.7 .09.14]−4−ヘキサデセン誘導体、例えば、下記式(9)で表されるペンタシクロ[6.6.1.13.6.02.7.09.14]−4−ヘキサデセン誘導体。特に、ペンタシクロ[6.6.1.13.6.02.7.09.14]−4−ヘキサデセン、1,3−ジメチルペンタシクロ[6.6.1.13.6.02.7.09.14]−4−ヘキサデセン、1,6−ジメチルペンタシクロ[6.6.1.13.6.02.7.09.14]−4−ヘキサデセン、15,16−ジメチルペンタシクロ[6.6.1.13.6.02.7.09.14]−4−ヘキサデセン。

Figure 2005000906
(10)
(式中、Rは水素原子、アルキル基、シクロアルキル基又はアルキリデン基であり、nは1〜4の整数である。) Pentacyclo [6.6.1.13.6. 02.7. 09.14] -4-hexadecene derivative, for example, pentacyclo [6.6.1.13.6.6.07.09.04] -4-hexadecene derivative represented by the following formula (9). In particular, pentacyclo [6.6.1.13.6.0.2.7.09.14] -4-hexadecene, 1,3-dimethylpentacyclo [6.6.1.13.6.6.0.7.0.09. .14] -4-hexadecene, 1,6-dimethylpentacyclo [6.6.1.13.6.02.77.09.04] -4-hexadecene, 15,16-dimethylpentacyclo [6.6 1.13.6.6.07.07.014] -4-hexadecene.
Figure 2005000906
(10)
(In the formula, R is a hydrogen atom, an alkyl group, a cycloalkyl group or an alkylidene group, and n is an integer of 1 to 4.)

ヘキサシクロ[6.6.1.13.6 .110.13 .02.7 .09.14]−4−ヘプタデセン誘導体、例えば下記式(10)で表されるヘキサシクロ[6.6.1.13.6.110.13 .02.7.09.14]−4−ヘプタデセン誘導体。特に、ヘキサシクロ[6.6.1.13.6.110.13.02.7.09.14]−4−ヘプタデセン、12−メチルヘキサシクロ[6.6.1.13.6.110.13.02.7.09.14]−4−ヘプタデセン、12−エチルヘキサシクロ[6.6.1.13.6.110.13.02.7.09.14]−4−ヘプタデセン、12−イソブチルヘキサシクロ[6.6.1.13.6.110.13.02.7.09.14]−4−ヘプタデセン、1,6,10−トリメチル−12−イソブチルヘキサシクロ[6.6.1.13.6.10.13.02.7.09.14]−4−ヘプタデセン。

Figure 2005000906
(11)
(式中、Rは水素原子、アルキル基、シクロアルキル基又はアルキリデン基であり、nは1〜4の整数である。) Hexacyclo [6.6.1.13.6. 110.13. 02.7. 09.14] -4-heptadecene derivative, for example, hexacyclo [6.6.1.13.6.110.13. 02.7.09.14] -4-heptadecene derivative. In particular, hexacyclo [6.6.1.13.6.110.3.03.0.7.0.14] -4-heptadecene, 12-methylhexacyclo [6.6.1.13.6.110.13. 0.02.7.14] -4-heptadecene, 12-ethylhexacyclo [6.6.1.13.6.110.13.02.7.7.0.14] -4-heptadecene, 12-isobutyl Hexacyclo [6.6.1.13.6.110.13.02.7.7.0.14] -4-heptadecene, 1,6,10-trimethyl-12-isobutylhexacyclo [6.6.1. 13.6.10.13.02.7.7.0.14] -4-heptadecene.
Figure 2005000906
(11)
(In the formula, R is a hydrogen atom, an alkyl group, a cycloalkyl group or an alkylidene group, and n is an integer of 1 to 4.)

ヘプタシクロ[8.7.0.12.9.14.7.111.17.03.8.012.16]−5−エイコセン誘導体、例えば、下記式(11)で表されるヘプタシクロ[8.7.0.12.9.14.7.111.17.03.8.012.16]−5−エイコセン誘導体。特に、ヘプタシクロ[8.7.0.12.9.14.7.111.17.03.8.012.16]−5−エイコセン。

Figure 2005000906
(12)
(式中、Rは水素原子、アルキル基、シクロアルキル基又はアルキリデン基であり、nは1〜4の整数である。) Heptacyclo [8.7.0.12.99.14.7.11.11.7.0.8.0.12.16] -5-eicosene derivative, for example, heptacyclo [8.7 represented by the following formula (11) .0.12.99.14.7.11.111.7.0.8.02.116] -5-eicosene derivative. In particular, heptacyclo [8.7.0.12.99.14.7.11.111.7.0.8.02.116] -5-eicosene.
Figure 2005000906
(12)
(In the formula, R is a hydrogen atom, an alkyl group, a cycloalkyl group or an alkylidene group, and n is an integer of 1 to 4.)

ヘプタシクロ[8.7.0.13.6.110.17.112.15.02.7.011.16]−4−エイコセン誘導体、例えば、下記式(12)で表されるヘプタシクロ[8.7.0.13.6.110.17.112.15.02.7.011.16]−4−エイコセン誘導体。特に、ヘプタシクロ[8.7.0.13.6.110.17.112.15.02.7.011.16]−4−エイコセン、ジメチル置換ヘプタシクロ[8.7.0.13.6.110.17.112.15.02.7.011.16]−4−エイコセン。

Figure 2005000906
(13)
(式中、Rは水素原子、アルキル基、シクロアルキル基又はアルキリデン基であり、nは1〜4の整数である。) Heptacyclo [8.7.0.13.6.110.110.112.15.02.7.011.16] -4-eicosene derivative, for example, heptacyclo [8.7 represented by the following formula (12) 0.13.6.110.17.12.12.15.02.7.011.16] -4-eicosene derivative. In particular, heptacyclo [8.7.0.13.6.110.17.12.12.15.02.7.01.16] -4-eicosene, dimethyl substituted heptacyclo [8.7.0.13.6.110 17.112.15.02.7.7.011.16] -4-eicosene.
Figure 2005000906
(13)
(In the formula, R is a hydrogen atom, an alkyl group, a cycloalkyl group or an alkylidene group, and n is an integer of 1 to 4.)

ヘプタシクロ[8.8.0.12.9.14.7.111.18.03.8.012.17]−5−ヘンエイコセン誘導体、例えば、下記式(13)で表されるヘプタシクロ[8.8.0.12.9.14.7.111.18.03.8.012.17]−5−ヘンエイコセン誘導体。特に、ヘプタシクロ[8.8.0.12.9.14.7.111.18.03.8.012.17]−5−ヘンエイコセン。

Figure 2005000906
(14)
(式中、Rは水素原子、アルキル基、シクロアルキル基又はアルキリデン基であり、nは1〜4の整数である。) Heptacyclo [8.8.0.12.99.14.7.11.111.8.03.8.12.17] -5-heneicosene derivative, for example, heptacyclo [8.8 represented by the following formula (13) 0.12.99.14.7.11.111.8.03.08.012.17] -5-heneicosene derivative. In particular, heptacyclo [8.8.0.12.99.14.7.11.111.18.8.08.02.117] -5-henecocene.
Figure 2005000906
(14)
(In the formula, R is a hydrogen atom, an alkyl group, a cycloalkyl group or an alkylidene group, and n is an integer of 1 to 4.)

ヘプタシクロ[8.8.0.14.7 .111.18 .113.16 .03.8 .012.17]−5−ヘンエイコセン誘導体、例えば下記式(14)で表されるヘプタシクロ[8.8.0.14.7.111.18.113.16.03.8.012.17]−5−ヘンエイコセン誘導体。特に、ヘプタシクロ[8.8.0.14.7.111.18.113.16.03.8.012.17]−5−ヘンエイコセン、15−メチル−ヘプタシクロ[8.8.0.14.7.111.18.113.16.03.8.012.17]−5−ヘンエイコセン、トリメチル置換ヘプタシクロ[8.8.0.14.7.111.18.113.16.03.8.012.17]−5−ヘンエイコセン。

Figure 2005000906
(15)
(式中、Rは水素原子、アルキル基、シクロアルキル基又はアルキリデン基であり、nは1〜4の整数である。) Heptacyclo [8.8.0.14.7. 111.18. 113.16. 03.8. 02.17] -5-heneicosene derivative, for example, heptacyclo [8.8.0.14.7.111.18.113.16.6.0.8.0.17] -5 represented by the following formula (14): -Haneicosene derivatives. In particular, heptacyclo [8.8.0.14.7.11.11.18.113.16.8.08.012.17] -5-heneicosene, 15-methyl-heptacyclo [8.8.0.14.7 111.18.113.13.16.8.08.012.17] -5-heneicosene, trimethyl-substituted heptacyclo [8.8.0.14.7.11.11.18.11.113.6.0.8.012. 17] -5-Hanekosen.
Figure 2005000906
(15)
(In the formula, R is a hydrogen atom, an alkyl group, a cycloalkyl group or an alkylidene group, and n is an integer of 1 to 4.)

オクタシクロ[8.8.0.12.9.14.7.111.18.113.16.03.8.012.17]−5−ドコセン誘導体、例えば、下記式(15)で表されるオクタシクロ[8.8.0.12.9.14.7.111.18.113.16.03.8.012.17]−5−ドコセン誘導体。特に、オクタシクロ[8.8.0.12.9.14.7.111.18.113.16.03.8.012.17]−5−ドコセン、15−メチルオクタシクロ[8.8.0.12.9.14.7.111.18.113.16.03.8.012.17]−5−ドコセン、15−エチルオクタシクロ[8.8.0.12.9.14.7.111.18.013.16.03.8.012.17]−5−ドコセン。

Figure 2005000906
(16)
(式中、Rは水素原子、アルキル基、シクロアルキル基又はアルキリデン基であり、nは1〜4の整数である。) Octacyclo [8.8.0.12.99.14.7.11.111.18.11.16.3.8.8.012.17] -5-docosene derivative, for example, octacyclo represented by the following formula (15) [8.8.8.01.92.97.14.7.11.11.113.16.6.0.8.0.12.17] -5-docosene derivative. In particular, octacyclo [8.8.0.12.99.14.7.11.11.18.113.16.8.08.02.117] -5-docosene, 15-methyloctacyclo [8.8.0. 12.19.14.7.11.111.8.13.16.08.08.12.17] -5-docosene, 15-ethyloctacyclo [8.8.0.12.99.14.7. 111.18.013.16.03.08.02.17] -5-docosene.
Figure 2005000906
(16)
(In the formula, R is a hydrogen atom, an alkyl group, a cycloalkyl group or an alkylidene group, and n is an integer of 1 to 4.)

ノナシクロ[10.9.1.14.7.113.20.115.18.02.10.03.8.012.21.014.19]−5−ペンタコセン誘導体、例えば下記式(16)で表されるノナシクロ[10.9.1.14.7.113.20.115.18.02.10.03.8.012.21.014.19]−5−ペンタコセン誘導体。特に、ノナシクロ[10.9.1.14.7.113.20.115.18.02.10.03.8.012.21.014.19]−5−ペンタコセン、ドリメチル置換ノナシクロ[10.9.1.14.7.113.20.115.18.02.10.03.8.012.21.014.19]−5−ペンタコセン。

Figure 2005000906
(17)
(式中、Rは水素原子、アルキル基、シクロアルキル基又はアルキリデン基であり、nは1〜4の整数である。) Nonacyclo [10.9.1.14.77.13.20.1158.18.02.10.03.8.012.21.014.19] -5-pentacocene derivative, for example, represented by the following formula (16) Nonacyclo [10.9.1.14.77.13.20.1158.18.02.10.03.8.012.21.014.19] -5-pentacene derivatives. In particular, nonacyclo [10.9.1.14.77.13.20.115.18.8.02.10.03.8.8.12.21.014.19] -5-pentaccocene, dorimethyl substituted nonacyclo [10.9 1.14.7.113.20.1158.18.01.00.03.8.012.21.014.19] -5-pentacene.
Figure 2005000906
(17)
(In the formula, R is a hydrogen atom, an alkyl group, a cycloalkyl group or an alkylidene group, and n is an integer of 1 to 4.)

ノナシクロ[10.10.1.15.8.114.21.116.19.02.11.04.9.013.22.015.20]−6−ヘキサコセン誘導体、例えば、下記式(17)で表されるノナシクロ[10.10.1.15.8.114.21.116.19.02.11.04.9.013.22.015.20]−6−ヘキサコセン誘導体。特に、ノナシクロ[10.10.1.15.8.114.21.116.19.02.11.04.9.013.22.015.20]−6−ヘキサコセン。

Figure 2005000906
(18)
(式中、Rは水素原子、アルキル基、シクロアルキル基又はアルキリデン基であり、nは1〜4の整数である。) Nonacyclo [10.10.15.18.18.14.21.1116.19.02.11.04.99.03.13.22.015.20] -6-hexacocene derivative, for example, in the following formula (17) The represented nonacyclo [10.10.15.18.18.14.21.1116.19.02.11.04.99.03.13.22.015.20] -6-hexacocene derivative. In particular, nonacyclo [10.10.15.18.18.14.21.1116.19.02.11.04.99.03.13.22.015.20] -6-hexacocene.
Figure 2005000906
(18)
(In the formula, R is a hydrogen atom, an alkyl group, a cycloalkyl group or an alkylidene group, and n is an integer of 1 to 4.)

環状オレフィンの他の例としては、5−フェニル−ビシクロ[2.2.1]ヘプト−2−エン、5−メチル−5−フェニルビシクロ[2.2.1]ヘプト−2−エン、5−ベンジル−ビシクロ[2.2.1]ヘプト−2−エン、5−トリル−ビシクロ[2.2.1]ヘプト−2−エン、5−(エチルフェニル)−ビシクロ[2.2.1]ヘプト−2−エン、5−(イソプロピルフェニル)−ビシクロ[2.2.1]ヘプト−2−エン、5−(ビフェニル)−ビシクロ[2.2.1]ヘプト−2−エン、5−(β−ナフチル)−ビシクロ[2.2.1]ヘプト−2−エン、5−(α−ナフチル)−ビシクロ[2.2.1]ヘプト−2−エン、5−(アントラセニル)−ビシクロ[2.2.1]ヘプト−2−エン、5,6−ジフェニル−ビシクロ[2.2.1]ヘプト−2−エン、シクロペンタジエン−アセナフチレン付加物、1,4−メタノ−1,4,4a,9a−テトラヒドロフルオレン、1,4−メタノ−1,4,4a,5,10,10a−ヘキサヒドロアントラセン、8−フェニル−テトラシクロ[4.4.0.12.5 .17.10 ]−3−ドデセン、8−メチル−8−フェニル−テトラシクロ[4.4.0.12.5 .17.10]−3−ドデセン、8−ベンジル−テトラシクロ[4.4.0.12.5 .17.10 ]−3−ドデセン、8−トリル−テトラシクロ[4.4.0.12.5 .17.10 ]−3−ドデセン、8−(エチルフェニル)−テトラシクロ[4.4.0.12.5 .17.10 ]−3−ドデセン、8−(イソプロピルフェニル)−テトラシクロ[4.4.0.12.5 .17.10 ]−3−ドデセン、8,9−ジフェニル−テトラシクロ[4.4.0.12.5 .17.10 ]−3−ドデセン、8−(ビフェニル)テトラシクロ[4.4.0.12.5 .17.10 ]−3−ドデセン、8−(β−ナフチル)テトラシクロ[4.4.0.12.5 .17.10 ]−3−ドデセン、8−(αナフチル)−テトラシクロ[4.4.0.12.5 .17.10 ]−3−ドデセン、8−(アントラセニル)−テトラシクロ[4.4.0.12.5 .17.10 ]−3−ドデセン、(シクロペンタジエン−アセナフチレン付加物)にシクロペンタジエンをさらに付加した化合物、11,12−ベンゾ−ペンタシクロ[6.5.1.13.6 .02.7 .09.13]−4−ペンタデセン、11,12−ベンゾ−ペンタシクロ[6.6.1.13.6 .02.7 .09.14]−4−ヘキサデセン、11−フェニル−ヘキサシクロ[6.6.1.13.6 .110.13 .02.7 .09.14 ]−4−ヘプタデセン、14,15−ベンゾ−ヘプタシ3Nロ[8.7.0.12.9 .14.7 .111.17 .03.8 .012.16 −5−エイコセン]が挙げられる。   Other examples of cyclic olefins include 5-phenyl-bicyclo [2.2.1] hept-2-ene, 5-methyl-5-phenylbicyclo [2.2.1] hept-2-ene, 5- Benzyl-bicyclo [2.2.1] hept-2-ene, 5-tolyl-bicyclo [2.2.1] hept-2-ene, 5- (ethylphenyl) -bicyclo [2.2.1] hept 2-ene, 5- (isopropylphenyl) -bicyclo [2.2.1] hept-2-ene, 5- (biphenyl) -bicyclo [2.2.1] hept-2-ene, 5- (β -Naphthyl) -bicyclo [2.2.1] hept-2-ene, 5- (α-naphthyl) -bicyclo [2.2.1] hept-2-ene, 5- (anthracenyl) -bicyclo [2. 2.1] hept-2-ene, 5,6-diphenyl-bicyclo [ 2.2.1] Hept-2-ene, cyclopentadiene-acenaphthylene adduct, 1,4-methano-1,4,4a, 9a-tetrahydrofluorene, 1,4-methano-1,4,4a, 5 10,10a-Hexahydroanthracene, 8-phenyl-tetracyclo [4.4.0.12.5. 17.10] -3-dodecene, 8-methyl-8-phenyl-tetracyclo [4.4.0.12.5. 17.10] -3-dodecene, 8-benzyl-tetracyclo [4.4.0.12.5. 17.10] -3-dodecene, 8-tolyl-tetracyclo [4.4.0.12.5. 17.10] -3-dodecene, 8- (ethylphenyl) -tetracyclo [4.4.0.12.5. 17.10] -3-dodecene, 8- (isopropylphenyl) -tetracyclo [4.4.0.12.5. 17.10] -3-dodecene, 8,9-diphenyl-tetracyclo [4.4.0.12.5. 17.10] -3-dodecene, 8- (biphenyl) tetracyclo [4.4.0.12.5. 17.10] -3-dodecene, 8- (β-naphthyl) tetracyclo [4.4.0.12.5. 17.10] -3-dodecene, 8- (α-naphthyl) -tetracyclo [4.4.0.12.5. 17.10] -3-dodecene, 8- (anthracenyl) -tetracyclo [4.4.0.12.5. 17.10] -3-dodecene, a compound obtained by further adding cyclopentadiene to (cyclopentadiene-acenaphthylene adduct), 11,12-benzo-pentacyclo [6.5.1.13.6. 02.7. 09.13] -4-pentadecene, 11,12-benzo-pentacyclo [6.6.1.13.6. 02.7. 09.14] -4-hexadecene, 11-phenyl-hexacyclo [6.6.1.13.6. 110.13. 02.7. 09.14] -4-heptadecene, 14,15-benzo-heptasis 3N [8.7.0.12.9. 14.7. 111.17. 03.8. 02.16-5-eicosene].

この樹脂(COC)は、50〜22モル%、特に40〜22モル%の環状オレフィンと残余のエチレンとから誘導され、且つ200℃以下、特に150〜60℃のガラス転移点(Tg)を有するのがよい。
この樹脂の分子量は、特に制限はないが、デカリン中135℃で測定して、0.1〜20dl/gの極限粘度[η]を有するのがよく、また、その結晶化度は、X線回折法で測定して、一般に10%以下、特に5%以下である。
上記樹脂(COC)は、オレフィンと環状オレフィンとを、それ自体公知のバナジウム系触媒或いはメタロセン系触媒の存在下にランダム重合させることにより得られる。好適な環状オレフィン系樹脂(COC)は、三井石油化学株式会社から、アペルの商品名で市販されている。
環状オレフィン系樹脂は、単独で用いることが好ましいが、その本質を損なわない範囲、即ち50重量%よりも少ない量、特に30重量%以下の量で、他のオレフィン系樹脂とのブレンド物の形態で使用してもよい。他のオレフィン系樹脂としては、オレフィン系ホモポリマーやコポリマーが好適に使用される。例えば、低密度、中密度或いは高密度のポリエチレン、線状低密度ポリエチレン、ポリプロピレン、ポリブテン−1、ポリペンテン−1、ポリ4−メチルペンテン−1、プロピレン−エチレン共重合体、アイオノマー、エチレン−アクリル共重合体、エチレン−酢酸ビニル共重合体等を挙げることができる。これらのオレフィン系樹脂は、単独又は2種以上の組み合わせて使用してもよい。
ポリプロピレンとしては、ホモのポリプロピレンが好ましい。
上記熱可塑性樹脂は、ガラス転移点(Tg)が50℃以上であることが好ましい。また、前記アミン担持多孔質シリカは上記熱可塑性樹脂中に0.1〜5重量%の量で用いることが好ましく、添加方法は、そのまま添加してもよいがマスターバッチの形で添加させることが分散性の点から好ましい。
This resin (COC) is derived from 50 to 22 mol%, especially 40 to 22 mol% of cyclic olefin and the remaining ethylene and has a glass transition point (Tg) of 200 ° C. or less, particularly 150 to 60 ° C. It is good.
The molecular weight of this resin is not particularly limited, but it should have an intrinsic viscosity [η] of 0.1 to 20 dl / g measured in decalin at 135 ° C. Generally, it is 10% or less, particularly 5% or less as measured by a diffraction method.
The resin (COC) can be obtained by random polymerization of an olefin and a cyclic olefin in the presence of a known vanadium catalyst or metallocene catalyst. A suitable cyclic olefin resin (COC) is commercially available from Mitsui Petrochemical Co., Ltd. under the trade name of Apel.
The cyclic olefin-based resin is preferably used alone, but in the form of a blended product with other olefin-based resin in a range that does not impair the essence thereof, that is, in an amount less than 50% by weight, particularly in an amount of 30% by weight or less. May be used. As other olefin resins, olefin homopolymers and copolymers are preferably used. For example, low density, medium density or high density polyethylene, linear low density polyethylene, polypropylene, polybutene-1, polypentene-1, poly-4-methylpentene-1, propylene-ethylene copolymer, ionomer, ethylene-acrylic copolymer Examples thereof include a polymer and an ethylene-vinyl acetate copolymer. These olefin resins may be used alone or in combination of two or more.
As the polypropylene, homopolypropylene is preferable.
The thermoplastic resin preferably has a glass transition point (Tg) of 50 ° C. or higher. The amine-supporting porous silica is preferably used in an amount of 0.1 to 5% by weight in the thermoplastic resin, and the addition method may be added as it is, but may be added in the form of a masterbatch. It is preferable from the viewpoint of dispersibility.

本発明の多層構造体としては、前記樹脂組成物からなる臭気バリヤー層及び酸素吸収性層を有する多層構造体が好ましい。
本発明の多層構造体中の酸素吸収性層は、酸化性有機成分及び遷移金属触媒を含有するものである。酸化性有機成分は、酸化されることにより酸素を吸収する作用を示すものである。
酸化性有機成分としては、分子構造にエチレン構造を有する熱可塑性樹脂(A)と樹脂(A)以外の樹脂であって樹脂(A)の酸化のトリガーとなる樹脂(B)の混合物も好適
に用いられる。
前記樹脂(A)としては、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、線状超低密度ポリエチレン、アイソタクティック又はシンジオタクテイクスポリプロピレン、エチレン−プロピレン共重合体、ポリブテン−1、エチレン−ブテン−1共重合体、プロピレン−ブテン−1共重合体、エチレン−プロピレン−ブテン−1共重合体、エチレン−酢酸ビニル共重合体、イオン架橋オレフィン共重合体或いはこれらのブレンド物等が挙げられる。また、これらの樹脂をベースポリマーとし、不飽和カルボン酸又はこれらの誘導体でグラフト変性された酸変性オレフィン系樹脂を樹脂(A)として用いることもできる。
好ましくは、樹脂(A)は低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、線状超低密度ポリエチレン、エチレン−プロピレン共重合体、エチレン−ブテン−1共重合体等のエチレン系共重合体であり、特に好ましくは低密度ポリエチレン及び線状低密度ポリエチレンである。これらの樹脂は、単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
The multilayer structure of the present invention is preferably a multilayer structure having an odor barrier layer and an oxygen-absorbing layer made of the resin composition.
The oxygen-absorbing layer in the multilayer structure of the present invention contains an oxidizing organic component and a transition metal catalyst. The oxidizing organic component exhibits an action of absorbing oxygen by being oxidized.
As the oxidizing organic component, a mixture of a thermoplastic resin (A) having an ethylene structure in the molecular structure and a resin (B) which is a resin other than the resin (A) and triggers oxidation of the resin (A) is also suitable. Used.
Examples of the resin (A) include low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, linear ultra low density polyethylene, isotactic or syndiotactic polypropylene, and ethylene-propylene copolymer. , Polybutene-1, ethylene-butene-1 copolymer, propylene-butene-1 copolymer, ethylene-propylene-butene-1 copolymer, ethylene-vinyl acetate copolymer, ion-crosslinked olefin copolymer, or these The blended material etc. are mentioned. In addition, an acid-modified olefin resin obtained by using these resins as a base polymer and graft-modified with an unsaturated carboxylic acid or a derivative thereof can also be used as the resin (A).
Preferably, the resin (A) is a low density polyethylene, a medium density polyethylene, a high density polyethylene, a linear low density polyethylene, a linear ultra low density polyethylene, an ethylene-propylene copolymer, an ethylene-butene-1 copolymer, or the like. Ethylene copolymers, particularly preferably low density polyethylene and linear low density polyethylene. These resins may be used alone or in combination of two or more.

樹脂(A)の酸化のトリガーとなる樹脂(B)としては、主鎖又は側鎖にエチレン系不飽和炭化水素を有する樹脂、主鎖に三級炭素原子を含む樹脂及び主鎖に活性メチレン基を有する樹脂を挙げることができる。
これらは、樹脂中に単独で含有されていてもよいし、二種以上の組合せで含有されていてもよい。
主鎖又は側鎖にエチレン系不飽和炭化水素を有する樹脂は、鎖状又は環状の共役又は非共役ポリエンから誘導された単位を含む樹脂が好ましい。
これらの単量体としては、例えばブタジエン、イソプレン等の共役ジエン;1,4−ヘキサジエン、3−メチル−1,4−ヘキサジエン、4−メチル−1,4−ヘキサジエン、5−メチル−1,4−ヘキサジエン、4,5−ジメチル−1,4−ヘキサジエン、7−メチル−1,6−オクタジエン等の鎖状非共役ジエン;メチルテトラヒドロインデン、5−エチリデン−2−ノルボルネン、5−メチレン−2−ノルボルネン、5−イソプロピリデン−2−ノルボルネン、5−ビニリデン−2−ノルボルネン、6−クロロメチル−5−イソプロペニル−2−ノルボルネン、ジシクロペンタジエン等の環状非共役ジエン;2,3−ジイソプロピリデン−5−ノルボルネン、2−エチリデン−3−イソプロピリデン−5−ノルボルネン、2−プロペニル−2,2−ノルボルナジエン等のトリエン等が挙げられる。
具体的な重合体としては、ポリ−1,2−ブタジエン、ポリ−1,4−ブタジエン、ポリ−1,2−イソプレン、ポリ−1,4−イソプレンのような共役ジエンポリマー;スチレン−ブタジエン共重合体、スチレン−イソプレン共重合体等の共役ジエン共重合体;エチレン−プロピレン−非共役ジエン共重合体等が挙げられる。
また、主鎖に三級炭素を有する樹脂としては、側鎖にベンゼン環を有する重合体や共重合体が好適に用いられる。
このうち、前記樹脂(A)に対するトリガー効果が顕著である点から、側鎖にベンゼン環を有するスチレン共重合体が好ましく、スチレン−ジエン共重合体やそのジエン部分を水添した共重合体等が好ましい。特に、スチレン−イソプレン共重合体の一種であるスチレン−イソプレン−スチレントリブロック共重合体、ジエン部分に水素化処理を行った水添スチレン−イソプレン−スチレントリブロック共重合体及び水添スチレン−ブタジエン−スチレントリブロック共重合体が好ましい。
The resin (B) that triggers the oxidation of the resin (A) includes a resin having an ethylenically unsaturated hydrocarbon in the main chain or side chain, a resin containing a tertiary carbon atom in the main chain, and an active methylene group in the main chain Can be mentioned.
These may be contained alone in the resin, or may be contained in a combination of two or more.
The resin having an ethylenically unsaturated hydrocarbon in the main chain or side chain is preferably a resin containing a unit derived from a linear or cyclic conjugated or non-conjugated polyene.
Examples of these monomers include conjugated dienes such as butadiene and isoprene; 1,4-hexadiene, 3-methyl-1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4 -Chain non-conjugated dienes such as hexadiene, 4,5-dimethyl-1,4-hexadiene, 7-methyl-1,6-octadiene; methyltetrahydroindene, 5-ethylidene-2-norbornene, 5-methylene-2- Cyclic non-conjugated dienes such as norbornene, 5-isopropylidene-2-norbornene, 5-vinylidene-2-norbornene, 6-chloromethyl-5-isopropenyl-2-norbornene, dicyclopentadiene; 2,3-diisopropylidene -5-norbornene, 2-ethylidene-3-isopropylidene-5-norbornene, 2-propeni Triene such as 2,2-norbornadiene and the like.
Specific polymers include conjugated diene polymers such as poly-1,2-butadiene, poly-1,4-butadiene, poly-1,2-isoprene, poly-1,4-isoprene; Examples thereof include conjugated diene copolymers such as polymers and styrene-isoprene copolymers; ethylene-propylene-nonconjugated diene copolymers.
As the resin having tertiary carbon in the main chain, a polymer or copolymer having a benzene ring in the side chain is preferably used.
Of these, a styrene copolymer having a benzene ring in the side chain is preferable because the trigger effect on the resin (A) is remarkable, such as a styrene-diene copolymer or a copolymer obtained by hydrogenating the diene portion. Is preferred. In particular, a styrene-isoprene-styrene triblock copolymer which is a kind of styrene-isoprene copolymer, a hydrogenated styrene-isoprene-styrene triblock copolymer obtained by subjecting a diene portion to hydrogenation treatment, and a hydrogenated styrene-butadiene. -Styrene triblock copolymers are preferred.

前記樹脂(A)と前記樹脂(B)からなる酸化性有機成分を用いる以外に、エチレン系不飽和炭化水素を有する樹脂のみを酸化性有機成分として使用することもできる。この場合、エチレン系不飽和炭化水素を有する樹脂を、使用期間中実質的には酸化しないガスバリヤー性の熱可塑性樹脂中に配合して使用する形態が好ましい。
ガスバリヤー性樹脂に配合する場合には、エチレン系不飽和炭化水素を有する樹脂が、官能基を有することが好ましい。官能基としては、カルボン酸基、カルボン酸無水物基、カルボン酸エステル基、カルボン酸アミド基、エポキシ基、水酸基、アミノ基、カルボニル基などが挙げられるが、カルボン酸基、カルボン酸無水物基が、相溶性等の点で特に好ましい。これらの官能基は樹脂の側鎖に存在していても、末端に存在していてもよい。
これらの官能基を導入するのに用いられる単量体としては、上記の官能基を有するエチレン系不飽和単量体が挙げられる。
エチレン系不飽和炭化水素を有する樹脂にカルボン酸基又はカルボン酸無水物基を導入するために用いる単量体としては、不飽和カルボン酸またはこれらの誘導体を用いるのが望ましく、具体的には、アクリル酸、メタクリル酸、マレイン酸、フマール酸、イタコン酸、シトラコン酸、テトラヒドロフタル酸等のα,β−不飽和カルボン酸、ビシクロ〔2,2,1〕ヘプト−2−エン−5,6−ジカルボン酸等の不飽和カルボン酸、無水マレイン酸、無水イタコン酸、無水シトラコン酸、テトラヒドロ無水フタル酸等のα,β不飽和カルボン酸無水物、ビシクロ〔2,2,1〕ヘプト−2−エン−5,6−ジカルボン酸無水物等の不飽和カルボン酸の無水物が挙げられる。
エチレン系不飽和炭化水素を有する樹脂の酸変性は、エチレン系不飽和炭化水素を有する樹脂をベースポリマーとし、このベースポリマーに不飽和カルボン酸またはその誘導体をそれ自体公知の手段でグラフト共重合させることにより製造されるが、前述したエチレン系不飽和炭化水素を有する樹脂と不飽和カルボン酸またはその誘導体とをランダム共重合させることによっても製造することができる。
ガスバリヤー性樹脂への分散性の点で、特に好適なカルボン酸又はカルボン酸無水物基を有するエチレン系炭化水素を有する樹脂は、カルボン酸又はその誘導体を、酸価が5KOHmg/g以上となる量で含有している液状樹脂であることが好ましい。
不飽和カルボン酸又はその誘導体の含有量が上記の範囲にあると、エチレン系不飽和炭化水素を有する樹脂のガスバリヤー性樹脂への分散が良好となると共に、酸素の吸収も円滑に行われる。
ガスバリヤー性樹脂に配合する場合、エチレン系不飽和炭化水素を有する樹脂は、遷移金属触媒の存在下において、エチレン系不飽和炭化水素を有する樹脂1g当たり常温で2×10-3mol以上、特に4×10-3mol以上の酸素を吸収する能力を有することが好ましい。すなわち、酸素吸収能力が上記値以上である場合、良好な酸素バリヤー性を発現させるために多量のエチレン系不飽和炭化水素を有する樹脂をガスバリヤー性樹脂に配合する必要がなく、従って、配合した樹脂組成物の加工性や成形性の低下を招くこともない。
本発明に用いるエチレン系不飽和炭化水素を有する樹脂における炭素−炭素二重結合は、特に限定されず、ビニレン基の形で主鎖中に存在しても、またビニル基の形で側鎖に存在していてもよく、要は酸化可能なものであればよい。
ガスバリヤー性樹脂としては、エチレン−ビニルアルコール共重合体、ポリアミド樹脂、ポリエステル樹脂等の上述した熱可塑性樹脂が好ましく用いられる。これらの樹脂は単独で用いてもよく、また2種以上組み合わせて用いてもよい。
In addition to using the oxidizing organic component comprising the resin (A) and the resin (B), only a resin having an ethylenically unsaturated hydrocarbon can be used as the oxidizing organic component. In this case, a form in which a resin having an ethylenically unsaturated hydrocarbon is used by being blended with a gas barrier thermoplastic resin that does not substantially oxidize during the period of use is preferable.
When blended with a gas barrier resin, the resin having an ethylenically unsaturated hydrocarbon preferably has a functional group. Examples of the functional group include a carboxylic acid group, a carboxylic acid anhydride group, a carboxylic acid ester group, a carboxylic acid amide group, an epoxy group, a hydroxyl group, an amino group, and a carbonyl group. Is particularly preferable in terms of compatibility. These functional groups may exist in the side chain of the resin or may exist in the terminal.
Examples of the monomer used to introduce these functional groups include ethylenically unsaturated monomers having the above functional groups.
As a monomer used for introducing a carboxylic acid group or a carboxylic anhydride group into a resin having an ethylenically unsaturated hydrocarbon, it is desirable to use an unsaturated carboxylic acid or a derivative thereof. Specifically, Α, β-unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, tetrahydrophthalic acid, bicyclo [2,2,1] hept-2-ene-5,6- Unsaturated carboxylic acids such as dicarboxylic acids, maleic anhydride, itaconic anhydride, citraconic anhydride, α, β unsaturated carboxylic anhydrides such as tetrahydrophthalic anhydride, bicyclo [2,2,1] hept-2-ene And unsaturated carboxylic acid anhydrides such as -5,6-dicarboxylic acid anhydride.
In the acid modification of a resin having an ethylenically unsaturated hydrocarbon, a resin having an ethylenically unsaturated hydrocarbon is used as a base polymer, and an unsaturated carboxylic acid or a derivative thereof is graft-copolymerized to the base polymer by means known per se. However, it can also be produced by random copolymerization of the above-mentioned resin having an ethylenically unsaturated hydrocarbon and an unsaturated carboxylic acid or a derivative thereof.
A resin having an ethylene-based hydrocarbon having a carboxylic acid or a carboxylic acid anhydride group that is particularly suitable for dispersibility in a gas barrier resin has a carboxylic acid or a derivative thereof having an acid value of 5 KOHmg / g or more. The liquid resin is preferably contained in an amount.
When the content of the unsaturated carboxylic acid or derivative thereof is in the above range, the resin having an ethylenically unsaturated hydrocarbon is well dispersed in the gas barrier resin, and oxygen is smoothly absorbed.
When blended in a gas barrier resin, the resin having an ethylenically unsaturated hydrocarbon is 2 × 10 −3 mol or more at room temperature per gram of the resin having an ethylenically unsaturated hydrocarbon in the presence of a transition metal catalyst. It preferably has an ability to absorb 4 × 10 −3 mol or more of oxygen. That is, when the oxygen absorption capacity is equal to or higher than the above value, it is not necessary to blend a resin having a large amount of ethylenically unsaturated hydrocarbon into the gas barrier resin in order to develop good oxygen barrier properties. The processability and moldability of the resin composition are not reduced.
The carbon-carbon double bond in the resin having an ethylenically unsaturated hydrocarbon used in the present invention is not particularly limited. Even if it exists in the main chain in the form of vinylene group, it also has a side chain in the form of vinyl group. It may be present as long as it can be oxidized.
As the gas barrier resin, the above-described thermoplastic resins such as an ethylene-vinyl alcohol copolymer, a polyamide resin, and a polyester resin are preferably used. These resins may be used alone or in combination of two or more.

遷移金属触媒としては、鉄、コバルト、ニッケル等の周期律表第VIII族金属成分が好ましいが、他に銅、銀等の第I族金属:錫、チタン、ジルコニウム等の第IV族金属、バナジウムの第V族、クロム等VI族、マンガン等のVII族の金属成分を挙げることができる。これらの金属成分の内でもコバルト成分は、酸素吸収速度が大きく、本発明の目的に特に適したものである。
遷移金属触媒は、上記遷移金属の低価数の無機酸塩或いは有機酸塩或いは錯塩の形で一般に使用される。
無機酸塩としては、塩化物などのハライド、硫酸塩等のイオウのオキシ酸塩、硝酸塩などの窒素のオキシ酸塩、リン酸塩などのリンオキシ酸塩、ケイ酸塩等が挙げられる。
一方有機酸塩としては、カルボン酸塩、スルホン酸塩、ホスホン酸塩などが挙げられるが、カルボン酸塩が本発明の目的に好適であり、その具体例としては、酢酸、プロピオン酸、イソプロピオン酸、ブタン酸、イソブタン酸、ペンタン酸、イソペンタン酸、ヘキサン酸、ヘプタン酸、イソヘプタン酸、オクタン酸、2−エチルヘキサン酸、ノナン酸、3,5,5−トリメチルヘキサン酸、デカン酸、ネオデカン酸、ウンデカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、マーガリン酸、ステアリン酸、アラキン酸、リンデル酸、ツズ酸、ペトロセリン酸、オレイン酸、リノール酸、リノレン酸、アラキドン酸、ギ酸、シュウ酸、スルファミン酸、ナフテン酸等の遷移金属塩が挙げられる。
The transition metal catalyst is preferably a Group VIII metal component of the periodic table such as iron, cobalt and nickel, but also a Group I metal such as copper and silver: Group IV metals such as tin, titanium and zirconium, vanadium Group V, Group VI such as chromium, and Group VII metal components such as manganese. Among these metal components, the cobalt component has a high oxygen absorption rate and is particularly suitable for the purpose of the present invention.
The transition metal catalyst is generally used in the form of a low-valent inorganic acid salt, organic acid salt or complex salt of the transition metal.
Examples of inorganic acid salts include halides such as chlorides, sulfur oxyacid salts such as sulfates, nitrogen oxyacid salts such as nitrates, phosphorus oxyacid salts such as phosphates, and silicates.
On the other hand, examples of the organic acid salt include a carboxylate, a sulfonate, and a phosphonate. The carboxylate is suitable for the purpose of the present invention, and specific examples thereof include acetic acid, propionic acid, and isopropion. Acid, butanoic acid, isobutanoic acid, pentanoic acid, isopentanoic acid, hexanoic acid, heptanoic acid, isoheptanoic acid, octanoic acid, 2-ethylhexanoic acid, nonanoic acid, 3,5,5-trimethylhexanoic acid, decanoic acid, neodecanoic acid , Undecanoic acid, Lauric acid, Myristic acid, Palmitic acid, Margaric acid, Stearic acid, Arachic acid, Linderic acid, Tuzic acid, Petroceric acid, Oleic acid, Linoleic acid, Linolenic acid, Arachidonic acid, Formic acid, Oxalic acid, Sulfamine Examples thereof include transition metal salts such as acid and naphthenic acid.

一方、遷移金属の錯体としては、β−ジケトンまたはβ−ケト酸エステルとの錯体が使用され、β−ジケトンまたはβ−ケト酸エステルとしては、例えば、アセチルアセトン、アセト酢酸エチル、1,3−シクロヘキサジオン、メチレンビス−1,3ーシクロヘキサジオン、2−ベンジル−1,3−シクロヘキサジオン、アセチルテトラロン、パルミトイルテトラロン、ステアロイルテトラロン、ベンゾイルテトラロン、2−アセチルシクロヘキサノン、2−ベンゾイルシクロヘキサノン、2−アセチル−1,3−シクロヘキサンジオン、ベンゾイル−p−クロルベンゾイルメタン、ビス(4−メチルベンゾイル)メタン、ビス(2−ヒドロキシベンゾイル)メタン、ベンゾイルアセトン、トリベンゾイルメタン、ジアセチルベンゾイルメタン、ステアロイルベンゾイルメタン、パルミトイルベンゾイルメタン、ラウロイルベンゾイルメタン、ジベンゾイルメタン、ビス(4−クロルベンゾイル)メタン、ビス(メチレン−3,4−ジオキシベンゾイル)メタン、ベンゾイルアセチルフェニルメタン、ステアロイル(4−メトキシベンゾイル)メタン、ブタノイルアセトン、ジステアロイルメタン、アセチルアセトン、ステアロイルアセトン、ビス(シクロヘキサノイル)−メタン及びジピバロイルメタン等を用いることができる。   On the other hand, as the transition metal complex, a complex with β-diketone or β-keto acid ester is used, and examples of β-diketone or β-keto acid ester include acetylacetone, ethyl acetoacetate, 1,3-cyclohexane. Sadione, methylenebis-1,3-cyclohexadione, 2-benzyl-1,3-cyclohexadione, acetyltetralone, palmitoyltetralone, stearoyltetralone, benzoyltetralone, 2-acetylcyclohexanone, 2-benzoylcyclohexanone 2-acetyl-1,3-cyclohexanedione, benzoyl-p-chlorobenzoylmethane, bis (4-methylbenzoyl) methane, bis (2-hydroxybenzoyl) methane, benzoylacetone, tribenzoylmethane, diacetylbenzoylmethane Stearoylbenzoylmethane, palmitoylbenzoylmethane, lauroylbenzoylmethane, dibenzoylmethane, bis (4-chlorobenzoyl) methane, bis (methylene-3,4-dioxybenzoyl) methane, benzoylacetylphenylmethane, stearoyl (4-methoxybenzoyl) ) Methane, butanoylacetone, distearoylmethane, acetylacetone, stearoylacetone, bis (cyclohexanoyl) -methane, dipivaloylmethane, and the like can be used.

酸化性有機成分として、分子構造にエチレン構造を有する熱可塑性樹脂(A)と樹脂(A)以外の樹脂であって樹脂(A)の酸化のトリガーとなる樹脂(B)、及び遷移金属触媒からなる酸素吸収性樹脂組成物を用いる場合、前記樹脂(B)は前記樹脂(B)と前記樹脂(A)の合計重量に対して1〜10重量%で配合されることが好ましい。前記樹脂(B)の配合量がこの範囲内であれば、前記樹脂(B)のトリガー効果が効率よく発現し、成形中の劣化を抑制することができる。また、遷移金属触媒は、酸素吸収性樹脂組成物合計重量に対して、遷移金属量として、10〜3000ppm、特に50〜1000ppmが好ましい。遷移金属触媒が、上記範囲であれば、酸素吸収性層は十分な酸素吸収能を有し、樹脂組成物の成形性も維持することができる。
一方、酸素吸収性層として、ガスバリヤー性樹脂に、エチレン系不飽和炭化水素を有する樹脂と遷移金属触媒を配合した酸素吸収性樹脂組成物を用いる場合、エチレン系不飽和炭化水素を有する樹脂は、樹脂組成物に対して1〜30重量%、特に3〜20重量%の範囲で含有されるのが好ましい。エチレン系不飽和炭化水素を有する樹脂の配合量が上記範囲内であれば、酸素吸収性層は十分な酸素吸収能を有し、樹脂組成物の成形性も維持することができる。また、遷移金属触媒は、酸素吸収性樹脂組成物合計重量に対して、遷移金属量として100〜1000ppm、特に200〜500ppmの量で含有されていることが好ましい。
遷移金属触媒の量が上記範囲内であれば、良好なガスバリヤー性を得ることができ、酸素吸収性樹脂組成物の混練成形時における劣化傾向を抑制することができる。
ガスバリヤー性樹脂にエチレン系不飽和炭化水素を有する樹脂と遷移金属触媒からなる樹脂組成物を酸素吸収性層に用いる場合、酸素吸収性層の厚み方向断面における面積法平均分散粒径が1μm以下、その分散粒子により占める面積率が1%以上となるように、エチレン系不飽和炭化水素を有する樹脂の分散状態を制御することも重要である。分散粒径が上記範囲内であれば、良好な成形性を得ることができ、高湿度下でのバリヤー性の低下を招くこともなく、また面積率が上記範囲内であれば、良好なバリヤー性を得ることができる。
As an oxidizing organic component, a thermoplastic resin (A) having an ethylene structure in the molecular structure, a resin other than the resin (A) and a resin (B) that triggers oxidation of the resin (A), and a transition metal catalyst When using this oxygen-absorbing resin composition, the resin (B) is preferably blended in an amount of 1 to 10% by weight based on the total weight of the resin (B) and the resin (A). If the compounding quantity of the said resin (B) exists in this range, the trigger effect of the said resin (B) will express efficiently, and degradation during shaping | molding can be suppressed. The transition metal catalyst is preferably 10 to 3000 ppm, particularly 50 to 1000 ppm as the amount of transition metal with respect to the total weight of the oxygen-absorbing resin composition. When the transition metal catalyst is in the above range, the oxygen-absorbing layer has a sufficient oxygen-absorbing ability and can maintain the moldability of the resin composition.
On the other hand, when an oxygen-absorbing resin composition in which a gas barrier resin is blended with a resin having an ethylenically unsaturated hydrocarbon and a transition metal catalyst is used as the oxygen-absorbing layer, the resin having an ethylenically unsaturated hydrocarbon is The content is preferably 1 to 30% by weight, particularly 3 to 20% by weight, based on the resin composition. If the blending amount of the resin having an ethylenically unsaturated hydrocarbon is within the above range, the oxygen-absorbing layer has a sufficient oxygen-absorbing ability and can maintain the moldability of the resin composition. Further, the transition metal catalyst is preferably contained in an amount of 100 to 1000 ppm, particularly 200 to 500 ppm as the amount of transition metal with respect to the total weight of the oxygen-absorbing resin composition.
If the amount of the transition metal catalyst is within the above range, good gas barrier properties can be obtained, and deterioration tendency during kneading and molding of the oxygen-absorbing resin composition can be suppressed.
When a resin composition comprising a resin having an ethylenically unsaturated hydrocarbon and a transition metal catalyst is used for the oxygen-absorbing layer in the gas-barrier resin, the area-method average dispersed particle size in the thickness direction cross section of the oxygen-absorbing layer is 1 μm or less It is also important to control the dispersion state of the resin having an ethylenically unsaturated hydrocarbon so that the area ratio occupied by the dispersed particles is 1% or more. If the dispersed particle diameter is within the above range, good moldability can be obtained, the barrier property is not lowered under high humidity, and if the area ratio is within the above range, a good barrier is obtained. Sex can be obtained.

酸素吸収性樹脂組成物の配合には、種々の手段を用いることができるが、サイドフィードを備えた二軸押出機を用いる方法が好適である。二軸押出機による混練に際しては、酸素吸収性樹脂組成物の劣化を最小限とするため、非酸化的雰囲気で実施するのが良い。また、滞留時間を短く、成形温度もできるだけ低温とすることが、酸素吸収性樹脂組成物の性能維持において極めて重要である。 Various means can be used for blending the oxygen-absorbing resin composition, but a method using a twin screw extruder equipped with a side feed is preferred. The kneading by the twin-screw extruder is preferably performed in a non-oxidizing atmosphere in order to minimize the deterioration of the oxygen-absorbing resin composition. In addition, it is extremely important to maintain the performance of the oxygen-absorbing resin composition that the residence time is short and the molding temperature is as low as possible.

本発明で用いる酸素吸収性層には、一般に必要ではないが、所望によりそれ自体公知の活性化剤を配合することができる。活性化剤の適当な例は、これに限定されないが、ポリエチレングリコール、ポリプロピレングリコール、エチレン・メタクリル酸共重合体、各種アイオノマー等の水酸基及び/またはカルボキシル基含有重合体である。
本発明に用いる酸素吸収性層には、充填剤、着色剤、耐熱安定剤、耐候安定剤、酸化防止剤、老化防止剤、光安定剤、紫外線吸収剤、帯電防止剤、金属セッケンやワックス等の滑剤、改質用樹脂乃至ゴム、等の公知の樹脂配合剤を、それ自体公知の処方に従って配合できる。
例えば、滑剤を配合することにより、スクリューへの樹脂の食い込みが改善される。滑剤としては、ステアリン酸マグネシウム、ステアリン酸カルシウム等の金属石ケン、流動、天然または合成パラフィン、マイクロワックス、ポリエチレンワックス、塩素化ポリエチレンワックス等の炭化水素系のもの、ステアリン酸、ラウリン酸等の脂肪酸系のもの、ステアリン酸アミド、バルミチン酸アミド、オレイン酸アミド、エシル酸アミド、メチレンビスステアロアミド、エチレンビスステアロアミド等の脂肪酸モノアミド系またはビスアミド系のもの、ブチルステアレート、硬化ヒマシ油、エチレングリコールモノステアレート等のエステル系のもの、セチルアルコール、ステアリルアルコール等のアルコール系のもの、およびそれらの混合系が一般に用いられる。
The oxygen-absorbing layer used in the present invention is not generally necessary, but a known activator can be blended if desired. Suitable examples of activators include, but are not limited to, polymers containing hydroxyl and / or carboxyl groups such as polyethylene glycol, polypropylene glycol, ethylene / methacrylic acid copolymers, various ionomers, and the like.
The oxygen-absorbing layer used in the present invention includes a filler, a colorant, a heat stabilizer, a weather stabilizer, an antioxidant, an anti-aging agent, a light stabilizer, an ultraviolet absorber, an antistatic agent, a metal soap and a wax, etc. A known resin compounding agent such as a lubricant, a modifying resin or a rubber can be blended according to a formulation known per se.
For example, by incorporating a lubricant, the bite of the resin into the screw is improved. Lubricants include metal soaps such as magnesium stearate and calcium stearate, hydrocarbons such as fluid, natural or synthetic paraffin, micro wax, polyethylene wax and chlorinated polyethylene wax, and fatty acid systems such as stearic acid and lauric acid. Fatty acid monoamides or bisamides such as stearic acid amide, valmitic acid amide, oleic acid amide, esylic acid amide, methylene bisstearamide, ethylene bisstearamide, butyl stearate, hydrogenated castor oil, ethylene An ester type such as glycol monostearate, an alcohol type such as cetyl alcohol and stearyl alcohol, and a mixed system thereof are generally used.

本発明の多層構造体において、臭気バリヤー層は酸素吸収性層の外側及び/又は内側に位置する。ここで、酸素吸収性層の内側とは、本発明の多層構造体を用いて包装容器とした場合に内容物に接する側をいい、酸素吸収性層の外側とは、前記容器の外側となる側をいう。これにより、臭気成分を吸着して、臭気成分の多層構造体の外側及び内側への移行を更に有効に防止できる。
本発明では、上記酸素吸収性層と、この酸素吸収性層の外側及び/又は内側に位置する上記臭気バリヤー層を設け、必要により他の樹脂層を組み合わせて、カップ、トレイ、ボトル、チューブ容器、パウチ等の形のプラスチック多層構造体とする。
一般に、酸素吸収性層は、容器などの外表面に露出しないように容器などの外表面よりも内側に設けるのが好ましく、また内容物との直接的な接触を避ける目的で、容器などの内表面より外側に設けるのが好ましい。かくして、多層の樹脂容器の中間層として、酸素吸収性層を設けるのが望ましい。
また臭気バリヤー層も好適には、酸素吸収性層の外側又は内側に、やはり中間層として位置することが好ましい。より好ましくは、酸素吸収性層の外側及び内側に、中間層として位置する。また臭気バリヤー性をより優れたものにするには、異なる種類の樹脂から成る臭気バリヤー層を2層以上設けてもよい。
In the multilayer structure of the present invention, the odor barrier layer is located outside and / or inside the oxygen-absorbing layer. Here, the inside of the oxygen-absorbing layer refers to the side in contact with the contents when the multilayer container of the present invention is used as a packaging container, and the outside of the oxygen-absorbing layer is the outside of the container. Say the side. Thereby, an odor component can be adsorb | sucked and the transfer to the outer side and inner side of a multilayer structure of an odor component can be prevented still more effectively.
In the present invention, the cup, tray, bottle, tube container is provided by providing the oxygen-absorbing layer and the odor barrier layer located outside and / or inside the oxygen-absorbing layer and combining other resin layers as necessary. A plastic multilayer structure in the form of a pouch or the like.
In general, the oxygen-absorbing layer is preferably provided on the inner side of the outer surface of the container so as not to be exposed on the outer surface of the container, and the inner side of the container or the like for the purpose of avoiding direct contact with the contents. It is preferable to provide it outside the surface. Thus, it is desirable to provide an oxygen-absorbing layer as an intermediate layer of a multilayer resin container.
The odor barrier layer is also preferably located as an intermediate layer outside or inside the oxygen-absorbing layer. More preferably, it is located as an intermediate layer outside and inside the oxygen-absorbing layer. In order to further improve the odor barrier property, two or more odor barrier layers made of different types of resins may be provided.

また上記酸素吸収性層及び臭気バリヤー層以外の他の樹脂層を組み合わせることも可能であり、例えば、オレフィン系樹脂や熱可塑性ポリエステル樹脂などの耐湿性樹脂等が挙げられる。
オレフィン樹脂としては、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、線状低密度ポリエチレン(LLDPE)、線状超低密度ポリエチレン(LVLDPE)等のポリエチレン(PE)、ポリプロピレン(PP)、エチレン−プロピレン共重合体、ポリブテン−1、エチレン−ブテン−1共重合体、プロピレン−ブテン−1共重合体、エチレン−プロピレン−ブテン−1共重合体、エチレン−酢酸ビニル共重合体、イオン架橋オレフィン共重合体(アイオノマー)或いはこれらのブレンド物等が挙げられる。
また、熱可塑性ポリエステル樹脂としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリグリコール酸を主体とするポリエステル樹脂、或いはこれらの共重合ポリエステル、更にはこれらのブレンド物等が挙げられる。
It is also possible to combine other resin layers other than the oxygen-absorbing layer and the odor barrier layer, and examples thereof include moisture-resistant resins such as olefin resins and thermoplastic polyester resins.
Examples of the olefin resin include polyethylene (PE) such as low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), linear low density polyethylene (LLDPE), and linear very low density polyethylene (LVLDPE). , Polypropylene (PP), ethylene-propylene copolymer, polybutene-1, ethylene-butene-1 copolymer, propylene-butene-1 copolymer, ethylene-propylene-butene-1 copolymer, ethylene-vinyl acetate Examples thereof include copolymers, ion-crosslinked olefin copolymers (ionomers), and blends thereof.
The thermoplastic polyester resin includes polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), a polyester resin mainly composed of polyglycolic acid, or a copolymer polyester thereof, and further Examples include blends.

容器積層構造の適当な例は、酸素吸収性層をOBR、臭気バリヤー層をSBRとして表して、次の通りである。尚、左側を外面側、右側を内面側として表す。
四層構造:PET/SBR/OBR/PET、PET/OBR/SBR/PET、PE/SBR/OBR/PE、PE/OBR/SBR/PE、PP/SBR/OBR/PP、PP/OBR/SBR/PP、PE/SBR/OBR/PET、PE/OBR/SBR/PET、
五層構造:PE/SBR1/OBR/SBR2/PE、PET/SBR1/OBR/SBR2/PET、PET/SBR/PE/OBR/PET、PET/OBR/PE/SBR/PET、
などである。
上記積層体の製造に当たって、各樹脂層間に必要により接着剤樹脂を介在させることもできる。
このような接着剤樹脂としては、カルボン酸、カルボン酸無水物、カルボン酸塩、カルボン酸アミド、カルボン酸エステル等に基づくカルボニル(−CO−)基を主鎖又は側鎖に、1〜700ミリイクイバレント(meq)/100g樹脂、特に10〜500(meq)/100g樹脂の濃度で含有する熱可塑性樹脂が挙げられる。接着剤樹脂の適当な例は、エチレン−アクリル酸共重合体、イオン架橋オレフィン共重合体、無水マレイン酸グラフトポリエチレン、無水マレイン酸グラフトポリプロピレン、アクリル酸グラフトポリオレフフィン、エチレン−酢酸ビニル共重合体、共重合ポリエステル、共重合熱可塑性等の1種又は2種以上の組み合わせである。これらの樹脂は、同時押出或いはサンドイッチラミネーション等による積層に有用である。
また、予め形成された酸素吸収性バリヤー性樹脂フィルム、臭気バリヤー性樹脂フィルム、及び耐湿性樹脂フィルムとの接着積層には、イソシアネート系或いはエポキシ系等の熱硬化型接着剤樹脂も使用される。
A suitable example of the container laminated structure is as follows, in which the oxygen-absorbing layer is represented as OBR and the odor barrier layer is represented as SBR. The left side is represented as the outer surface side, and the right side is represented as the inner surface side.
Four layer structure: PET / SBR / OBR / PET, PET / OBR / SBR / PET, PE / SBR / OBR / PE, PE / OBR / SBR / PE, PP / SBR / OBR / PP, PP / OBR / SBR / PP, PE / SBR / OBR / PET, PE / OBR / SBR / PET,
Five-layer structure: PE / SBR1 / OBR / SBR2 / PE, PET / SBR1 / OBR / SBR2 / PET, PET / SBR / PE / OBR / PET, PET / OBR / PE / SBR / PET,
Etc.
In manufacturing the laminate, an adhesive resin may be interposed between the resin layers as necessary.
As such an adhesive resin, a carbonyl (—CO—) group based on a carboxylic acid, a carboxylic acid anhydride, a carboxylate, a carboxylic acid amide, a carboxylic acid ester or the like is used in a main chain or a side chain of 1 to 700 mm. Examples include thermoplastic (meq) / 100 g resin, particularly thermoplastic resin contained at a concentration of 10 to 500 (meq) / 100 g resin. Suitable examples of the adhesive resin include ethylene-acrylic acid copolymer, ion-crosslinked olefin copolymer, maleic anhydride grafted polyethylene, maleic anhydride grafted polypropylene, acrylic acid grafted polyolefin, ethylene-vinyl acetate copolymer. , One or a combination of two or more of copolyester and copolymer thermoplasticity. These resins are useful for lamination by coextrusion or sandwich lamination.
In addition, an isocyanate-based or epoxy-based thermosetting adhesive resin is also used for adhesive lamination with a preformed oxygen-absorbing barrier resin film, odor barrier resin film, and moisture-resistant resin film.

本発明の多層構造体において、酸素吸収性層の厚みは、特に制限はないが、一般に3〜100μm、特に5〜80μmの範囲にあるのが好ましい。すなわち、酸素吸収性層の厚みが上記範囲内であれば、良好なガスバリヤー性能を得ることができ、また経済性、材料の可撓性や柔軟性などの容器特性の点からも上記範囲が好ましい。
また臭気バリヤー層の厚みは、特に制限はないが、一般に5〜50μm、特に10〜40μmの範囲にあるのが好ましい。すなわち、臭気バリヤー層の厚みが上記範囲内であれば、良好な臭気バリヤー性を発現することができ、また上記酸素吸収性層同様に、経済性、材料の可撓性や柔軟性などの容器特性の点からも上記範囲がこのましい。
本発明の多層構造体において全体の厚みは、用途によっても相違するが、一般に30〜7000μm、特に50〜5000μmであるのがよい。
酸素吸収性層の厚みは、全体の厚みの0.5〜95%、特に1〜50%の厚みとするのが適当である。
また、臭気バリヤー層の厚みは、全体の厚みの0.5〜20%、特に1〜10%の厚みとするのが適当である。
In the multilayer structure of the present invention, the thickness of the oxygen-absorbing layer is not particularly limited, but is generally in the range of 3 to 100 μm, particularly 5 to 80 μm. That is, if the thickness of the oxygen-absorbing layer is within the above range, good gas barrier performance can be obtained, and the above range is also from the viewpoint of container properties such as economy and material flexibility and flexibility. preferable.
The thickness of the odor barrier layer is not particularly limited, but it is generally preferably in the range of 5 to 50 μm, particularly 10 to 40 μm. That is, if the thickness of the odor barrier layer is within the above range, good odor barrier properties can be expressed, and, as with the oxygen-absorbing layer, containers such as economy, material flexibility and flexibility are used. The above range is preferable from the viewpoint of characteristics.
In the multilayer structure of the present invention, the overall thickness varies depending on the application, but it is generally 30 to 7000 μm, particularly 50 to 5000 μm.
The thickness of the oxygen-absorbing layer is suitably 0.5 to 95%, particularly 1 to 50% of the total thickness.
The thickness of the odor barrier layer is suitably 0.5 to 20%, particularly 1 to 10% of the total thickness.

本発明の多層構造体は、前述した酸素吸収性層及びその外側に臭気バリヤー層を配置している点を除けば、それ自体公知の方法で製造が可能である。
すなわち、本発明の多層構造体の製造には、それ自体公知の共押出成形法を用いることができ、例えば樹脂の種類に応じた数の押出機を用いて、多層多重ダイを用いて通常の押出成形を行えばよい。
また、本発明の多層構造体の製造には、樹脂の種類に応じた数の射出成形機を用いて、共射出法や逐次射出法により多層射出成形体を製造することができる。
更に、本発明の多層構造体を用いたフィルムやシートの製造には、押出コート法や、サンドイッチラミネーションを用いることができ、また、予め形成されたフィルムのドライラミネーションによって多層フィルムあるいはシートを製造することもできる。
フィルム等の包装材料は、種々の形態の包装袋として用いることができ、その製袋は、それ自体公知の製袋法で行うことができ、三方或いは四方シールの通常のパウチ類、ガセット付パウチ類、スタンディングパウチ類、ピロー包装袋などが挙げられるが、この例に限定されない。
本発明の多層構造体を用いた包装容器は、酸素による内容物の香味低下を防止できる容器として有用である。
充填できる内容物としては、飲料ではビール、ワイン、フルーツジュース、炭酸ソフトドリンク、ウーロン茶、緑茶等、食品では果物、ナッツ、野菜、肉製品、幼児食品、コーヒー、ジャム、マヨネーズ、ケチャップ、食用油、ドレッシング、ソース類、佃煮類、乳製品等、その他では医薬品、化粧品、ガソリン等、酸素存在下で劣化を起こしやすい内容品などが挙げられるが、これらの例に限定されない。
上記包装容器は、さらに外装体によって包装した包装体としてもよい。
次に、実施例及び比較例を示して本発明を説明する。
The multilayer structure of the present invention can be produced by a method known per se, except that the above-described oxygen-absorbing layer and the odor barrier layer are disposed outside thereof.
That is, for the production of the multilayer structure of the present invention, a publicly known coextrusion molding method can be used. For example, using a number of extruders according to the type of resin, a multi-layered multi-die is used. Extrusion molding may be performed.
In the production of the multilayer structure of the present invention, a multilayer injection molded article can be produced by a co-injection method or a sequential injection method using a number of injection molding machines corresponding to the type of resin.
Furthermore, for the production of a film or sheet using the multilayer structure of the present invention, an extrusion coating method or sandwich lamination can be used, and a multilayer film or sheet is produced by dry lamination of a film formed in advance. You can also
Packaging materials such as film can be used as packaging bags of various forms, and the bags can be produced by a known bag making method. Ordinary pouches with three- or four-side seals, pouches with gussets. , Standing pouches, pillow packaging bags, and the like, but are not limited to this example.
The packaging container using the multilayer structure of the present invention is useful as a container that can prevent a decrease in flavor of the contents due to oxygen.
Contents that can be filled include beer, wine, fruit juice, carbonated soft drink, oolong tea, green tea for beverages, fruits, nuts, vegetables, meat products, infant foods for food, coffee, jam, mayonnaise, ketchup, cooking oil, Examples include dressings, sauces, boiled dairy products, dairy products, and the like, and other products such as pharmaceuticals, cosmetics, gasoline, etc. that are susceptible to deterioration in the presence of oxygen, but are not limited to these examples.
The said packaging container is good also as a package further packaged by the exterior body.
Next, an Example and a comparative example are shown and this invention is demonstrated.

(多孔質シリカ)
アミン担持多孔質シリカのベースとなる多孔質シリカ(水澤化学工業(株):ゲルタイプ多孔質シリカ)について、以下の基本物性を測定した。
[平均粒径の測定]
多孔質シリカ1gを蒸留水100gに入れて十分に撹拌して水分散液を調整した。この液をレーザー回折式粒度分布測定装置(SALD−3000:(株)島津製作所)にかけて、平均粒径をレーザー散乱法により体積基準で測定した。
[吸油量の測定]
JIS K5101.21準拠の方法に基づき、多孔質シリカの吸油量を測定した。
[比表面積の測定]
固体表面に物理吸着する窒素ガスの量から表面積を求めるBET法により多孔質シリカの比表面積を算出した。
[平均細孔径の測定]
前記比表面積の測定から得られた値:Sc[m2/g]と、同じく窒素ガスの吸着を利用して求めた全細孔容積:V[ml/g]から、多孔質シリカの平均細孔径:Dを求めた。


(Porous silica)
The following basic physical properties were measured for porous silica (Mizusawa Chemical Industry Co., Ltd .: gel type porous silica) serving as the base of the amine-supporting porous silica.
[Measurement of average particle size]
1 g of porous silica was put into 100 g of distilled water and stirred sufficiently to prepare an aqueous dispersion. This liquid was applied to a laser diffraction particle size distribution analyzer (SALD-3000: Shimadzu Corporation), and the average particle size was measured on a volume basis by a laser scattering method.
[Measurement of oil absorption]
The oil absorption of the porous silica was measured based on a method according to JIS K5101.21.
[Specific surface area measurement]
The specific surface area of the porous silica was calculated by the BET method for determining the surface area from the amount of nitrogen gas physically adsorbed on the solid surface.
[Measurement of average pore diameter]
From the value obtained from the measurement of the specific surface area: Sc [m 2 / g] and the total pore volume V V (ml / g) obtained by using the adsorption of nitrogen gas, the average fineness of the porous silica is obtained. Pore diameter: D was determined.


Figure 2005000906
Figure 2005000906

(アミン担持多孔質シリカ)
[アミン担持多孔質シリカの作製]
多孔質シリカの粉体を所定量のγ−アミノプロピルトリエトキシシラン(SH6020:東レ・ダウコーニングシリコーン(株))に添加し、さらに純水を加えて十分撹拌した。その後、スラリーをブフナーロートでろ過し、ろ液の電気伝導度が20μS/cm以下になるまで洗浄した。洗浄した粉体を100℃で12時間乾燥してアミン担持シリカを得た。
[アミン担持量]
JIS K0102.45.2「紫外線吸光光度法による全窒素の測定法」に準拠した測定をおこない、アミン担持多孔質シリカの単位質量当たりのアミノ基量を求めた。
[アミン担持多孔質シリカの脱臭性能評価]
評価に用いるアルデヒドとしてヘプタナールを選択し、これをメタノールで希釈し2重量%の臭気標準液を調整した。この標準液をマイクロシリンジで1μlはかり取り、前記作製したアミン担持多孔質シリカを0.5mg、蒸留水1.0mlと共に内容量20mlのバイヤル瓶に入れ、内面側にアルミテープを貼った蓋材を口部に被せ、その上からアルミ製のキャップをはめて密封した。30℃条件下で3日間経時保存した後、ヘッドスペースサンプラー(7694:アジレント・テクノロジー)付きガスクロマトグラフ(6890:アジレント・テクノロジー)を用いて容器内の揮発成分量を測定した。アミン担持多孔質シリカを入れずに測定を行なったものを基準値として、アミン担持多孔質シリカを入れたサンプルがこの値よりも50%以上減少したものを○、30〜50%未満を△、0〜30%未満を×として評価した。
(Amine-supporting porous silica)
[Preparation of amine-supported porous silica]
The porous silica powder was added to a predetermined amount of γ-aminopropyltriethoxysilane (SH6020: Toray Dow Corning Silicone Co., Ltd.), and pure water was further added and sufficiently stirred. Thereafter, the slurry was filtered with a Buchner funnel and washed until the electric conductivity of the filtrate was 20 μS / cm or less. The washed powder was dried at 100 ° C. for 12 hours to obtain amine-supported silica.
[Amine loading]
Measurement was performed in accordance with JIS K0102.45.2 “Measurement Method of Total Nitrogen by UV Absorption Spectrophotometry” to determine the amount of amino groups per unit mass of amine-supporting porous silica.
[Evaluation of deodorizing performance of amine-supported porous silica]
Heptanal was selected as an aldehyde used for evaluation, and this was diluted with methanol to prepare a 2 wt% odor standard solution. 1 μl of this standard solution is weighed with a microsyringe, 0.5 mg of the prepared amine-supporting porous silica is placed in a vial with a capacity of 20 ml together with 1.0 ml of distilled water, and a lid with aluminum tape attached to the inner surface side. It was put on the mouth and sealed with an aluminum cap from above. After being stored for 3 days under a condition of 30 ° C., the amount of volatile components in the container was measured using a gas chromatograph (6890: Agilent Technology) with a headspace sampler (7694: Agilent Technology). With reference to the value measured without the amine-supporting porous silica, the sample containing the amine-supporting porous silica was reduced by 50% or more than this value, ○, 30 to less than 50% △, 0 to less than 30% was evaluated as x.

(樹脂との配合適性)
[樹脂組成物の作製]
出口部分にストランドダイを装着した二軸押出機(TEM−35B:東芝機械(株))を用いて、スクリュー回転数100rpmで高真空ベントを引きながら、サイドフィード法により粉体フィーダーを用いて、アミン担持多孔質シリカをエチレン−ビニルアルコール共重合体樹脂((株)クラレ F101B)100重量部に対して5重量部配合し、成形温度200℃でストランドを引き、目的とする樹脂組成物のペレットを作製した。
[粉体フィーダーによるシリカ粉末の供給状態]
アミン担持多孔質シリカをエチレン-ビニルアルコール共重合体樹脂に配合する際の供給状態を目視で評価した。供給量が安定なものは○、配合する際にアミン担持多孔質シリカの粉末が空気中に舞う等供給が不安定なものを△、ブロッキング等を起こし供給が間欠的なものを×とした。
[溶融樹脂の相対粘度の測定]
作製したペレットについて、樹脂に対するシリカ粉体の分散適性や経時安定性を調べるためキャピログラフ((株)東洋精機)を用いた。測定条件はノズル(D:1.0mm、L:10mm)、温度200℃で2分間放置し、樹脂が溶融したことを確認した後、0.5〜500mm/minの速度粘度測定を行った。
初期の増粘率
エチレンービニルアルコール共重合体樹脂の粘度と前記作製したアミン担持多孔質シリカを配合した樹脂組成物の粘度を上記方法で測定し、剪断速度6.08sec-1の見掛け粘度を基に、下記式により評価した。相対粘度が3以上のペレットは×、2〜3未満は△、2以下は○とした。
(Compatibility with resin)
[Preparation of resin composition]
Using a twin-screw extruder (TEM-35B: Toshiba Machine Co., Ltd.) equipped with a strand die at the outlet part, using a powder feeder by the side feed method while pulling a high vacuum vent at a screw rotation speed of 100 rpm, 5 parts by weight of amine-supported porous silica is blended with 100 parts by weight of ethylene-vinyl alcohol copolymer resin (Kuraray F101B Co., Ltd.), a strand is drawn at a molding temperature of 200 ° C., and pellets of the desired resin composition Was made.
[Supply state of silica powder by powder feeder]
The supply state when the amine-supporting porous silica was blended with the ethylene-vinyl alcohol copolymer resin was visually evaluated. The case where the supply amount was stable was evaluated as ◯, the case where the supply was unstable such as when the amine-supporting porous silica powder flew into the air when blended, and the case where the supply was unstable due to blocking or the like.
[Measurement of relative viscosity of molten resin]
Capillograph (Toyo Seiki Co., Ltd.) was used for examining the dispersion suitability and temporal stability of the silica powder with respect to the resin for the prepared pellet. The measurement conditions were a nozzle (D: 1.0 mm, L: 10 mm), left at a temperature of 200 ° C. for 2 minutes, and after confirming that the resin was melted, a velocity viscosity measurement of 0.5 to 500 mm / min was performed.
The viscosity of the initial thickening ratio ethylene-vinyl alcohol copolymer resin and the viscosity of the resin composition containing the produced amine-supporting porous silica were measured by the above method, and the apparent viscosity at a shear rate of 6.08 sec −1 was measured. On the basis of the evaluation, the following formula was used. Pellets having a relative viscosity of 3 or more were evaluated as “x”.

Figure 2005000906
この初期増粘率は、アミン担持多孔質シリカのエチレン−ビニルアルコール共重合体樹脂への分散性を表す尺度である。
Figure 2005000906
This initial thickening rate is a measure representing the dispersibility of the amine-supported porous silica in the ethylene-vinyl alcohol copolymer resin.

30分放置後の増粘率
キャピログラフに樹脂をセッティング後2分間放置した後に測定した場合と比較し、200℃で30分間経時した場合の粘度増加を下記式より求めた。粘度増加が1.3以上のペレットは×、1.1〜1.3未満は△、1.1未満のものは○として評価をした。
Viscosity increase after standing for 30 minutes Compared to the case of measuring after leaving the resin on the capillograph for 2 minutes, the increase in viscosity when aging at 200 ° C. for 30 minutes was determined from the following formula. The pellets with an increase in viscosity of 1.3 or more were evaluated as “x”, those having a viscosity less than 1.1 to 1.3 were evaluated as Δ, and those having a viscosity less than 1.1 were evaluated as ◯.

Figure 2005000906
Figure 2005000906
この200℃で30分放置後の樹脂組成物の粘度増加は、樹脂組成物の熱安定性を表す尺度であり、経時による粘度増加が1に近いほど、樹脂組成物の熱安定性が良いことを示している。
Figure 2005000906
Figure 2005000906
The increase in the viscosity of the resin composition after standing at 200 ° C. for 30 minutes is a measure representing the thermal stability of the resin composition. The closer the increase in viscosity over time to 1, the better the thermal stability of the resin composition. Is shown.

(多層構造体)
[臭気バリヤー材]
前記作製した樹脂組成物(アミン担持多孔質シリカとエチレン−ビニルアルコール共重合体樹脂((株)クラレ F101B)をブレンドしたもの)を臭気バリヤー材として用いた。
[酸素吸収材の作製]
ポリエチレン系酸素吸収材
低密度ポリエチレン樹脂(JB221R:日本ポリオレフィン(株))95重量部に、スチレン−イソプレン−スチレントリブロック共重合体樹脂(SIS5200:JSR(株))を5重量部とコバルト含有率14重量%のネオデカン酸コバルト(DICNATE5000:大日本インキ化学工業(株))をコバルト量で350ppm配合し、撹拌乾燥機(ダルトン(株))で予備混練後ホッパーに投入した。次いで、出口部分にストランドダイを装着した二軸押出機(TEM−35B:東芝機械(株))を用いて、スクリュー回転数100rpmで低真空ベントを引きながら、ストランド状に押し出してペレットを作製した。
エチレン−ビニルアルコール共重合体系酸素吸収材
32モル%のエチレンを共重合したエチレンービニルアルコール共重合体樹脂ペレット(EP−F101B:(株)クラレ)とコバルト含有率14重量%のネオデカン酸コバルト(DICNATE5000:大日本インキ化学工業(株))をコバルト量で350ppm配合し、撹拌乾燥機(ダルトン(株))で予備混練後ホッパーに投入した。次いで、出口部分にストランドダイを装着した二軸押出機(TEM−35B:東芝機械(株))を用いて、スクリュー回転数100rpmで低真空ベントを引きながら、液体フィーダーにより、酸価40KOHmg/gの無水マレイン酸変性ポリブタジエン(M−2000−20:新日本石油化学(株))を、コバルトを付着させたエチレンービニルアルコール共重合体95重量部に対して5重量部滴下し、成形温度200℃でストランドを引き、ペレットを作製した。
[多層構造体の作製]
上記方法により作製した臭気バリヤー材、酸素吸収材、低密度ポリエチレン(JB221R:日本ポリオレフィン(株))、接着性樹脂(モディックL522:三菱化学(株))を用いて、ダイレクトブロー成型機により目的とする多層構造体を作製した。成形温度は200℃、シェル径15mm,コア13mmを用い、広口ボトル(口径44mm,内容積125cc)を作製した。
ポリエチレン系酸素吸収材を用いた時の層構成は、外層側より低密度ポリエチレン(LDPE)樹脂層(100μm)/接着層(5μm)/臭気バリヤー層(8μm)/接着層(5μm)/ポリエチレン系酸素吸収性層(20μm)/接着層(5μm)/臭気バリヤー層(8μm)/接着層(5μm)/低密度ポリエチレン(LDPE)樹脂層(100μm)の4種9層である。
エチレン−ビニルアルコール共重合体系酸素吸収材を用いた時の層構成は、外層側より低密度ポリエチレン(LDPE)樹脂層(100μm)/接着層(5μm)/臭気バリヤー層(8μm)/エチレン−ビニルアルコール共重合体系酸素吸収性層(20μm)/臭気バリヤー層(8μm)/接着層(5μm)/低密度ポリエチレン(LDPE)樹脂層(100μm)の4種7層である。
(Multilayer structure)
[Odor barrier material]
The prepared resin composition (a blend of amine-supported porous silica and ethylene-vinyl alcohol copolymer resin (Kuraray F101B)) was used as an odor barrier material.
[Production of oxygen absorber]
Polyethylene oxygen absorber low density polyethylene resin (JB221R: Nippon Polyolefin Co., Ltd.) 95 parts by weight, styrene-isoprene-styrene triblock copolymer resin (SIS 5200: JSR Co., Ltd.) 5 parts by weight and cobalt content 14% by weight of cobalt neodecanoate (DICNATE5000: Dainippon Ink & Chemicals, Inc.) was blended in an amount of 350 ppm in terms of cobalt, and the mixture was preliminarily kneaded with a stirring dryer (Dalton Co., Ltd.) and charged into the hopper. Next, using a twin-screw extruder (TEM-35B: Toshiba Machine Co., Ltd.) equipped with a strand die at the outlet portion, a low vacuum vent was drawn at a screw rotation speed of 100 rpm, and extruded into a strand shape to produce pellets. .
Ethylene-vinyl alcohol copolymer-based oxygen absorbing material Ethylene-vinyl alcohol copolymer resin pellets (EP-F101B: Kuraray Co., Ltd.) copolymerized with 32 mol% of ethylene and cobalt neodecanoate with a cobalt content of 14% by weight ( DICnate 5000: Dainippon Ink Chemical Co., Ltd.) was blended in an amount of 350 ppm in terms of cobalt amount, and after pre-kneading with a stirring dryer (Dalton Co., Ltd.), it was put into a hopper. Next, using a twin screw extruder (TEM-35B: Toshiba Machine Co., Ltd.) equipped with a strand die at the outlet portion, while pulling a low vacuum vent at a screw rotation speed of 100 rpm, an acid value of 40 KOHmg / g 5 parts by weight of maleic anhydride-modified polybutadiene (M-2000-20: Shin Nippon Petrochemical Co., Ltd.) was added dropwise to 95 parts by weight of an ethylene-vinyl alcohol copolymer to which cobalt was adhered, and the molding temperature was 200. Strands were drawn at 0 ° C. to produce pellets.
[Production of multilayer structure]
Using a direct blow molding machine, the odor barrier material, oxygen absorbing material, low density polyethylene (JB221R: Nippon Polyolefin Co., Ltd.), and adhesive resin (Modic L522: Mitsubishi Chemical Corporation) produced by the above method are used. A multilayer structure was produced. Using a molding temperature of 200 ° C., a shell diameter of 15 mm, and a core of 13 mm, a wide-mouthed bottle (diameter 44 mm, internal volume 125 cc) was produced.
When the polyethylene-based oxygen absorbing material is used, the layer structure is lower density polyethylene (LDPE) resin layer (100 μm) / adhesive layer (5 μm) / odor barrier layer (8 μm) / adhesive layer (5 μm) / polyethylene from the outer layer side. There are four types and nine layers of oxygen absorbing layer (20 μm) / adhesive layer (5 μm) / odor barrier layer (8 μm) / adhesive layer (5 μm) / low density polyethylene (LDPE) resin layer (100 μm).
When the ethylene-vinyl alcohol copolymer-based oxygen absorber is used, the layer structure is lower density polyethylene (LDPE) resin layer (100 μm) / adhesive layer (5 μm) / odor barrier layer (8 μm) / ethylene-vinyl than the outer layer side. There are four types and seven layers of an alcohol copolymer system oxygen-absorbing layer (20 μm) / odor barrier layer (8 μm) / adhesive layer (5 μm) / low density polyethylene (LDPE) resin layer (100 μm).

[成形性の評価]
前記多層構造体作製の際、臭気バリヤー材の樹脂圧の変動や樹脂とカップリング剤の反応に起因するゲル化等の有無について評価した。成形初期と比較して、成形中に樹脂圧の増加が±10%以下のものは○、±10〜30%未満は△、±30%以上増加し、ゲルが発生したものは×とした。
[外観の評価]
前記作製した多層構造体の外観を目視により評価した。
[臭気の評価]
前記作製した多層構造体に蒸留水1cc入れ、ボトルの開口部にアルミ箔をバリヤー層とする蓋材でヒートシールした。このボトルを30℃−100%RH条件下で1ヶ月経時した後、ボトルの蓋を破り、ボトル内の臭気を5名のパネラーによる官能試験で評価した。全く臭いを感じなかったものを○、少々臭いを感じたものを△、臭いを感じたものを×とした。
[Evaluation of formability]
During the production of the multilayer structure, the presence or absence of gelation or the like due to the change in the resin pressure of the odor barrier material or the reaction between the resin and the coupling agent was evaluated. Compared to the initial stage of molding, the resin pressure increase during molding was ± 10% or less, ◯, ± 10 to less than 30% was Δ, and ± 30% or more was increased, and gel was generated was marked X.
[Evaluation of appearance]
The appearance of the produced multilayer structure was visually evaluated.
[Odor evaluation]
1 cc of distilled water was added to the produced multilayer structure, and the bottle was heat-sealed with a lid material using an aluminum foil as a barrier layer at the opening of the bottle. The bottle was aged for one month under the conditions of 30 ° C. and 100% RH, then the lid of the bottle was broken, and the odor in the bottle was evaluated by a sensory test with five panelists. The case where no odor was felt was indicated by ○, the case where a slight odor was felt was indicated by △, and the case where odor was felt was indicated by ×.

[実施例1]
多孔質シリカ(P−752(水澤化学工業(株)):平均粒径2.2μm、比表面積450m2/g、平均細孔径80Å、吸油量160ml/100g)にγ−アミノプロピルトリエトキシシランを0.3mmol/g担持させ、アミン担持多孔質シリカを作製した。次いで、このアミン担持多孔質シリカとエチレンービニルアルコール共重合体樹脂を配合した樹脂組成物を作製し、これを用いてポリエチレン系酸素吸収材層を有する多層構造体を作製した。
[Example 1]
Porous silica (P-752 (Mizusawa Chemical Co., Ltd.): average particle size 2.2 μm, specific surface area 450 m 2 / g, average pore size 80 mm, oil absorption 160 ml / 100 g) and γ-aminopropyltriethoxysilane 0.3 mmol / g was supported to produce amine-supported porous silica. Next, a resin composition in which this amine-supporting porous silica and an ethylene-vinyl alcohol copolymer resin were blended was produced, and a multilayer structure having a polyethylene-based oxygen absorber layer was produced using the resin composition.

[実施例2]
多孔質シリカ(平均粒径2.2μm、比表面積550m2/g、平均細孔径60Å、吸油量130ml/100g)にγ−アミノプロピルトリエトキシシランを0.4mmol/g担持させた以外は、実施例1と同様に多層構造体を作製した。
[Example 2]
Except that γ-aminopropyltriethoxysilane was supported at 0.4 mmol / g on porous silica (average particle size 2.2 μm, specific surface area 550 m 2 / g, average pore diameter 60 mm, oil absorption 130 ml / 100 g) A multilayer structure was produced in the same manner as in Example 1.

[実施例3]
エチレン−ビニルアルコール共重合体系酸素吸収材層を有する多層構造体とした以外は、実施例1と同様に多層構造体を作製した。
[Example 3]
A multilayer structure was produced in the same manner as in Example 1 except that a multilayer structure having an ethylene-vinyl alcohol copolymer-based oxygen absorber layer was used.

[実施例4]
多孔質シリカ(P−766(水澤化学工業(株)):平均粒径は6.5μm、比表面積620m2/g、平均細孔径29Å、吸油量90ml/100g)にγ−アミノプロピルトリエトキシシランを0.3mmol/g担持させた以外は、実施例1と同様に多層構造体を作製した。
[Example 4]
Porous silica (P-766 (Mizusawa Chemical Co., Ltd.): average particle diameter 6.5 μm, specific surface area 620 m 2 / g, average pore diameter 29 mm, oil absorption 90 ml / 100 g) and γ-aminopropyltriethoxysilane A multilayer structure was produced in the same manner as in Example 1 except that 0.3 mmol / g was supported.

[実施例5]
γ−アミノプロピルトリエトキシシランを2mmol/g担持させた以外は、実施例1と同様に多層構造体を作製した。
[Example 5]
A multilayer structure was produced in the same manner as in Example 1 except that 2 mmol / g of γ-aminopropyltriethoxysilane was supported.

[実施例6]
多孔質シリカ(平均粒径0.5μm、比表面積560m2/g、平均細孔径70Å、吸油量150ml/100g)にγ−アミノプロピルトリエトキシシランを0.05mmol/g担持させた以外は、実施例1と同様に多層構造体を作製した。
[Example 6]
Except that γ-aminopropyltriethoxysilane was supported at 0.05 mmol / g on porous silica (average particle size 0.5 μm, specific surface area 560 m 2 / g, average pore diameter 70 mm, oil absorption 150 ml / 100 g) A multilayer structure was produced in the same manner as in Example 1.

[実施例7]
多孔質シリカ(平均粒径12.5μm、比表面積550m2/g、平均細孔径44Å、吸油量150ml/100g)にγ−アミノプロピルトリエトキシシランを0.3mmol/g担持させた以外は、実施例1と同様に多層構造体を作製した。
[Example 7]
Except that γ-aminopropyltriethoxysilane was supported at 0.3 mmol / g on porous silica (average particle size 12.5 μm, specific surface area 550 m 2 / g, average pore size 44 mm, oil absorption 150 ml / 100 g) A multilayer structure was produced in the same manner as in Example 1.

[比較例1]
多孔質シリカ(P−707(水澤化学工業(株)):平均粒径2.4μm、比表面積270m2/g、平均細孔径240Å、吸油量250ml/100g)にγ−アミノプロピルトリエトキシシランを0.3mmol/g担持させた以外は、実施例1と同様に多層構造体を作製した。
[Comparative Example 1]
Porous silica (P-707 (Mizusawa Chemical Co., Ltd.): average particle size 2.4 μm, specific surface area 270 m 2 / g, average pore size 240 mm, oil absorption 250 ml / 100 g) was added with γ-aminopropyltriethoxysilane. A multilayer structure was produced in the same manner as in Example 1 except that 0.3 mmol / g was supported.

[比較例2]
多孔質シリカ(P−604(水澤化学工業(株)):平均粒径1.6μm、比表面積55m2/g、平均細孔径95Å、吸油量130ml/100g)にγ−アミノプロピルトリエトキシシランを0.3mmol/g担持させた以外は、実施例1と同様に多層構造体を作製した。
[Comparative Example 2]
Porous silica (P-604 (Mizusawa Chemical Co., Ltd.): average particle size 1.6 μm, specific surface area 55 m 2 / g, average pore size 95 mm, oil absorption 130 ml / 100 g) was added γ-aminopropyltriethoxysilane. A multilayer structure was produced in the same manner as in Example 1 except that 0.3 mmol / g was supported.

[比較例3]
実施例1で用いた多孔質シリカとエチレンービニルアルコール共重合体樹脂とを配合した樹脂組成物を作製し、これを用いてポリエチレン系酸素吸収材層を有する多層構造体を作製した。
前記実施例及び比較例におけるアミン担持多孔質シリカの脱臭性能を表1に、また、樹脂との配合適性、多層構造体の成形性、外観、臭気の評価結果を表2に示す。











[Comparative Example 3]
A resin composition in which the porous silica used in Example 1 and the ethylene-vinyl alcohol copolymer resin were blended was prepared, and a multilayer structure having a polyethylene-based oxygen absorber layer was prepared using the resin composition.
Table 1 shows the deodorizing performance of the amine-supporting porous silica in the above Examples and Comparative Examples, and Table 2 shows the results of evaluation of blendability with the resin, moldability of the multilayer structure, appearance, and odor.











Figure 2005000906
Figure 2005000906




Figure 2005000906
表1及び2の結果から明らかなように、アミンの担持量や多孔質シリカの性質(平均粒径、比表面積、平均細孔径、吸油量)の違いにより、脱臭性能、樹脂との成形性、多層構造体の外観評価で相違が見られた。
Figure 2005000906
As is clear from the results in Tables 1 and 2, the deodorization performance, moldability with resin, and the difference in amine loading and porous silica properties (average particle diameter, specific surface area, average pore diameter, oil absorption) Differences were observed in the appearance evaluation of the multilayer structure.

Claims (9)

450m2/g以上の比表面積及び80Å以下の平均細孔径を有する多孔質シリカの表面に、アミノ基を有するシランカップリング剤が結合してなるアミン担持多孔質シリカ。 An amine-supported porous silica obtained by bonding a silane coupling agent having an amino group to the surface of a porous silica having a specific surface area of 450 m 2 / g or more and an average pore diameter of 80 mm or less. 多孔質シリカが200ml/100g以下の吸油量を有する請求項1に記載のアミン担持多孔質シリカ。   The amine-supporting porous silica according to claim 1, wherein the porous silica has an oil absorption of 200 ml / 100 g or less. アミノ基を有するシランカップリング剤が下記式(1)で表される請求項1又は2に記載のアミン担持多孔質シリカ。
2N−X−SiR1 n(OR23-n (1)
(式中、nは0、1又は2を表し、
Xは炭素数1〜5の直鎖又は分岐鎖の2価の炭化水素基を表し、
1は炭素数1〜3のアルキル基を表し、
2は炭素数1〜3のアルキル基を表す。)
The amine-supporting porous silica according to claim 1 or 2, wherein the silane coupling agent having an amino group is represented by the following formula (1).
H 2 N—X—SiR 1 n (OR 2 ) 3-n (1)
(In the formula, n represents 0, 1 or 2,
X represents a linear or branched divalent hydrocarbon group having 1 to 5 carbon atoms,
R 1 represents an alkyl group having 1 to 3 carbon atoms,
R 2 represents an alkyl group having 1 to 3 carbon atoms. )
多孔質シリカにアミノ基を有するシランカップリング剤を0.1〜1mmol/g担持させてなる請求項1〜3のいずれか1項に記載のアミン担持多孔質シリカ。   The amine-supporting porous silica according to any one of claims 1 to 3, wherein 0.1 to 1 mmol / g of a silane coupling agent having an amino group is supported on the porous silica. 多孔質シリカの平均粒径が1〜10μmである請求項1〜4のいずれか1項記載のアミン担持多孔質シリカ。   The amine-carrying porous silica according to any one of claims 1 to 4, wherein the average particle diameter of the porous silica is 1 to 10 µm. 多層構造体の酸素吸収性層に含まれる酸化性有機成分の酸化に伴って発生する臭気物質を捕捉するための請求項1〜5のいずれか1項記載のアミン担持多孔質シリカ。   The amine-supporting porous silica according to any one of claims 1 to 5, for capturing an odorous substance generated along with oxidation of an oxidizing organic component contained in the oxygen-absorbing layer of the multilayer structure. 請求項1〜6のいずれか1項記載のアミン担持多孔質シリカと臭気物質に対するバリヤー性を有する熱可塑性樹脂を含む樹脂組成物。   A resin composition comprising the amine-supporting porous silica according to any one of claims 1 to 6 and a thermoplastic resin having barrier properties against odorous substances. 前記熱可塑性樹脂がエチレン−ビニルアルコール共重合体である請求項7に記載の樹脂組成物。   The resin composition according to claim 7, wherein the thermoplastic resin is an ethylene-vinyl alcohol copolymer. 請求項7又は8に記載の樹脂組成物からなる臭気バリヤー層及び酸素吸収性層を有する多層構造体。   A multilayer structure having an odor barrier layer and an oxygen-absorbing layer comprising the resin composition according to claim 7 or 8.
JP2004043042A 2003-05-19 2004-02-19 Amine-supporting porous silica, resin composition containing the porous silica, and multilayer structure containing the resin composition Expired - Lifetime JP4831519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004043042A JP4831519B2 (en) 2003-05-19 2004-02-19 Amine-supporting porous silica, resin composition containing the porous silica, and multilayer structure containing the resin composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003140355 2003-05-19
JP2003140355 2003-05-19
JP2004043042A JP4831519B2 (en) 2003-05-19 2004-02-19 Amine-supporting porous silica, resin composition containing the porous silica, and multilayer structure containing the resin composition

Publications (2)

Publication Number Publication Date
JP2005000906A true JP2005000906A (en) 2005-01-06
JP4831519B2 JP4831519B2 (en) 2011-12-07

Family

ID=34106366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004043042A Expired - Lifetime JP4831519B2 (en) 2003-05-19 2004-02-19 Amine-supporting porous silica, resin composition containing the porous silica, and multilayer structure containing the resin composition

Country Status (1)

Country Link
JP (1) JP4831519B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129605A1 (en) * 2005-05-31 2006-12-07 Zeon Corporation Oxygen absorbent, oxygen absorbing film, packaging material and packaging container
KR100792620B1 (en) 2007-02-21 2008-01-09 한국과학기술원 A mesoporous silica sba-15 functionalized with amine and a purification method of succinic acid using said material
JP2009521326A (en) * 2005-12-27 2009-06-04 サエス ゲッターズ ソチエタ ペル アツィオニ Gas sorptive composite system and manufacturing method thereof
JP2010248334A (en) * 2009-04-14 2010-11-04 Mitsubishi Gas Chemical Co Inc Oxygen-absorbing resin composition
US8293346B2 (en) 2005-03-23 2012-10-23 Zeon Corporation Oxygen absorbent and oxygen-absorbing multi-layer body
WO2013054697A1 (en) * 2011-10-12 2013-04-18 ソニー株式会社 Adsorbent, method for producing same, adsorbent for water purification, mask and adsorptive sheet
JP2013249330A (en) * 2012-05-30 2013-12-12 Canon Inc Molded article and method of producing the same
KR101545694B1 (en) 2013-06-10 2015-11-20 서울시립대학교 산학협력단 Adsorbent using mcn-1 for reducing indoor air pollutants and method for manufacturing the same
JP2017020041A (en) * 2016-08-26 2017-01-26 株式会社トクヤマ Aerogel and matting agent made of aerogel
WO2018074270A1 (en) * 2016-10-21 2018-04-26 ラサ工業株式会社 White deodorant, chemical product with deodorant function, method for using white deodorant and method for manufacturing white deodorant
WO2022102683A1 (en) * 2020-11-16 2022-05-19 Agc株式会社 Adsorbent
WO2023139183A1 (en) * 2022-01-21 2023-07-27 Sabic Global Technologies B.V. Functionalized silica for odor reduction of polyolefin and engineering thermoplastic polymers
JP7406313B2 (en) 2018-10-18 2023-12-27 株式会社アドマテックス Transparent resin composition for melt-kneading and molding processing, method for producing the same, and transparent resin molded product

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1045974A (en) * 1996-08-06 1998-02-17 Mitsui Petrochem Ind Ltd Polypropylene resin composition and polypropylene film produced therefrom
JP2000218159A (en) * 1999-01-29 2000-08-08 Toyota Central Res & Dev Lab Inc Deodorizer
JP2003012940A (en) * 2001-07-03 2003-01-15 Kuraray Co Ltd Resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1045974A (en) * 1996-08-06 1998-02-17 Mitsui Petrochem Ind Ltd Polypropylene resin composition and polypropylene film produced therefrom
JP2000218159A (en) * 1999-01-29 2000-08-08 Toyota Central Res & Dev Lab Inc Deodorizer
JP2003012940A (en) * 2001-07-03 2003-01-15 Kuraray Co Ltd Resin composition

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8293346B2 (en) 2005-03-23 2012-10-23 Zeon Corporation Oxygen absorbent and oxygen-absorbing multi-layer body
WO2006129605A1 (en) * 2005-05-31 2006-12-07 Zeon Corporation Oxygen absorbent, oxygen absorbing film, packaging material and packaging container
JP2009521326A (en) * 2005-12-27 2009-06-04 サエス ゲッターズ ソチエタ ペル アツィオニ Gas sorptive composite system and manufacturing method thereof
KR100792620B1 (en) 2007-02-21 2008-01-09 한국과학기술원 A mesoporous silica sba-15 functionalized with amine and a purification method of succinic acid using said material
JP2010248334A (en) * 2009-04-14 2010-11-04 Mitsubishi Gas Chemical Co Inc Oxygen-absorbing resin composition
WO2013054697A1 (en) * 2011-10-12 2013-04-18 ソニー株式会社 Adsorbent, method for producing same, adsorbent for water purification, mask and adsorptive sheet
JP2013249330A (en) * 2012-05-30 2013-12-12 Canon Inc Molded article and method of producing the same
KR101545694B1 (en) 2013-06-10 2015-11-20 서울시립대학교 산학협력단 Adsorbent using mcn-1 for reducing indoor air pollutants and method for manufacturing the same
JP2017020041A (en) * 2016-08-26 2017-01-26 株式会社トクヤマ Aerogel and matting agent made of aerogel
WO2018074270A1 (en) * 2016-10-21 2018-04-26 ラサ工業株式会社 White deodorant, chemical product with deodorant function, method for using white deodorant and method for manufacturing white deodorant
JPWO2018074270A1 (en) * 2016-10-21 2019-06-24 ラサ工業株式会社 White deodorant, chemical product with deodorizing function, method of using white deodorant, and method of producing white deodorant
JP7406313B2 (en) 2018-10-18 2023-12-27 株式会社アドマテックス Transparent resin composition for melt-kneading and molding processing, method for producing the same, and transparent resin molded product
WO2022102683A1 (en) * 2020-11-16 2022-05-19 Agc株式会社 Adsorbent
WO2023139183A1 (en) * 2022-01-21 2023-07-27 Sabic Global Technologies B.V. Functionalized silica for odor reduction of polyolefin and engineering thermoplastic polymers

Also Published As

Publication number Publication date
JP4831519B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
JP4406921B2 (en) Multilayer structure
JP4082023B2 (en) Oxygen-absorbing resin composition, packaging material and multilayer container for packaging
KR100780567B1 (en) Oxygen absorption resin composition and a molded product comprising the same
EP1553137A1 (en) Oxygen-absorbing resin composition and layered product
JP3896875B2 (en) Resin composition and packaging material excellent in moldability and gas barrier properties
JP5019248B2 (en) Oxygen-absorbing resin composition
JP4241382B2 (en) Multi-layer structure with excellent gas barrier properties
JP4831519B2 (en) Amine-supporting porous silica, resin composition containing the porous silica, and multilayer structure containing the resin composition
JP2001039475A (en) Resin composition, laminate, container and container lid
JP4399860B2 (en) Multi-layer container
KR101136676B1 (en) Packaging container
JP4543538B2 (en) Oxygen absorbing package
JP5268014B2 (en) Pellets for oxygen-absorbing resin composition and oxygen-absorbing resin composition
US20160039572A1 (en) Multilayered container excellent in oxygen-barrier property
JP4186592B2 (en) Resin composition and packaging material excellent in moldability and gas barrier properties
JP4192478B2 (en) Multi-layer packaging material
JP3882802B2 (en) Package
JP2004025664A (en) Multilayered structure with oxygen-barrier property
JP3903997B2 (en) Packaging container
JP4389150B2 (en) Oxygen-absorbing resin composition and multilayer structure using the same
JP2004002566A (en) Resin composition and multilayered packaging material using the same
JP5527919B2 (en) Moisture and oxygen barrier resin composition
JP4026417B2 (en) Resin composition and multilayer packaging material using the same
JP4671161B2 (en) Oxygen-absorbing resin composition
JP4186609B2 (en) Gas barrier material and laminated structure using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110829

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4831519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350