KR100792620B1 - A mesoporous silica sba-15 functionalized with amine and a purification method of succinic acid using said material - Google Patents

A mesoporous silica sba-15 functionalized with amine and a purification method of succinic acid using said material Download PDF

Info

Publication number
KR100792620B1
KR100792620B1 KR1020070017578A KR20070017578A KR100792620B1 KR 100792620 B1 KR100792620 B1 KR 100792620B1 KR 1020070017578 A KR1020070017578 A KR 1020070017578A KR 20070017578 A KR20070017578 A KR 20070017578A KR 100792620 B1 KR100792620 B1 KR 100792620B1
Authority
KR
South Korea
Prior art keywords
amine
succinic acid
acid
mesoporous silica
organic acids
Prior art date
Application number
KR1020070017578A
Other languages
Korean (ko)
Inventor
홍원희
이상엽
홍연기
전영시
허윤석
이은주
원효진
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020070017578A priority Critical patent/KR100792620B1/en
Application granted granted Critical
Publication of KR100792620B1 publication Critical patent/KR100792620B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof

Abstract

A mesoporous silica SBA-15 grafted with amine and a method of purifying succinic acid more efficiently and economically by using the same are provided to adsorb selectively impure organic acids generated together with succinic acid by strains in the fermentation process. A mesoporous silica SBA-15 grafted with amine is used as an adsorbent of impure organic acids in the purification process of succinic acid. The amine is a primary amine, a secondary amine, or a tertiary amine. The primary amine is 3-aminopropyltriethoxysilane, the secondary amine is N-methylaminopropyltrimethoxysilane, and the tertiary amine is 3-(N,N-dimethylaminopropyl)trimethoxysilane. A purification method of succinic acid comprises adsorbing and removing impure organic acids using the mesoporous silica SBA-15 grafted with amine as an adsorbent for adsorbing impure organic acids. The purification method comprises performing the adsorption process in the pH range of 2.0 to 2.5.

Description

아민 접붙임 메조포어 실리카 SBA―15 및 이를 이용한 숙신산의 정제 방법{A MESOPOROUS SILICA SBA―15 FUNCTIONALIZED WITH AMINE AND A PURIFICATION METHOD OF SUCCINIC ACID USING SAID MATERIAL}A MESOPOROUS SILICA SBA-15 FUNCTIONALIZED WITH AMINE AND A PURIFICATION METHOD OF SUCCINIC ACID USING SAID MATERIAL}

도 1은 pH 변화에 따른 수용액 내 피루브산의 농도 변화 및 아민 접붙임 메조포어 실리카 SBA-15의 흡착 성능 변화를 나타낸 결과이다.1 is a result showing the change in the concentration of pyruvic acid in the aqueous solution and the adsorption performance of the amine grafted mesoporous silica SBA-15 with pH changes.

도 2는 pH 변화에 따른 수용액 내 숙신산의 농도 변화 및 아민 접붙임 메조포어 실리카 SBA-15의 흡착 성능 변화를 나타낸 결과이다. 2 is a result showing the change in the concentration of succinic acid in the aqueous solution and the adsorption performance of the amine grafted mesoporous silica SBA-15 with pH change.

본 발명은 아민 접붙임 메조포어 실리카 SBA-15 및 이를 이용한 숙신산의 정제 방법에 관한 것으로, 보다 상세하게는 1차, 2차 또는 3차 아민 접붙임 메조포어 실리카 SBA-15 및 이를 이용하여 불순물 유기산을 선택적으로 흡착 및 제거함으로써 생물학적 공정을 통해 생산된 숙신산을 정제하는 방법에 관한 것이다. The present invention relates to an amine grafted mesoporous silica SBA-15 and a method for purifying succinic acid using the same, more specifically, primary, secondary or tertiary amine grafted mesoporous silica SBA-15 and impurity organic acid using the same The present invention relates to a method for purifying succinic acid produced through a biological process by selectively adsorbing and removing ethylene.

숙신산은 2가 유기산의 하나로서, 방사선량 계측, 기준완충용액, 식품 처리 및 의학용 등 다양하게 사용될 수 있다. 근래에, 숙신산이 합성수지나 생분해성 고분자의 단량체로 이용될 가능성이 있기 때문에 관심이 증대되고 있다(Gottschalk G., Bacterial Metabolism, 2nd ed., Springer-Verlag, NY, USA, 1986). Succinic acid is one of divalent organic acids, and can be used in various ways such as radiation dose measurement, reference buffer solution, food treatment, and medical use. In recent years, there has been increasing interest because succinic acid may be used as a monomer of a synthetic resin or a biodegradable polymer (Gottschalk G., Bacterial Metabolism, 2nd ed., Springer-Verlag, NY, USA, 1986).

이와 같은 수요에 따라 현재 생물학적 방법을 이용한 숙신산의 대량생산에 대한 연구가 진행되고는 있지만, 침전, 결정화, 액-액 추출, 막분리, 에스테르화 등의 방법 등을 이용한 분리 정제 공정의 경우 사용되는 용매나 에너지의 양이 증가하여 말레산 무수물(maleic anhydride)을 원료 물질로 하는 기존의 화학 합성 공정에 비해 제조 단가가 매우 높은 단점이 있다(Vick Roy T. B., In comprehensive Biotechnology, Murray Moo-Young eds., Vol. 3, Pergamon Press, 761, 1985; Bessling B., Loening J. M., Ohligschlaeger A., Schembecker G. and Sundmacher L., Chem. Eng. Technol., 21:393-400, 1998; Han D. H. and Hong W. H., Sep. Sci. & Techn., 31:1123-1135, 1996; Lee E. K., "Recovery of lactic acid from fermentation broth using electrodialysis", KAIST Ph. D. Thesis, 1998, Zeikus J. G., Elankovan P. and Grethlein A., Chem. Proc., 58(7):71-73, 1995; Choi J. and Hong W. H., Int. J. of Chemical Kinetics, 28:37-41, 1996; Choi J. and Hong W. H., J. of Chemical Eng. of Jpn., 32(2):184-189, 1999). In line with such demand, studies on the mass production of succinic acid using biological methods are being conducted, but the separation and purification processes using methods such as precipitation, crystallization, liquid-liquid extraction, membrane separation, and esterification are used. Due to the increased amount of solvent and energy, the manufacturing cost is very high compared to the conventional chemical synthesis process using maleic anhydride as a raw material (Vick Roy TB, Integra Biotechnology, Murray Moo-Young eds. , Vol. 3, Pergamon Press, 761, 1985; Bessling B., Loening JM, Ohligschlaeger A., Schembecker G. and Sundmacher L., Chem. Eng. Technol., 21: 393-400, 1998; Han DH and Hong WH, Sep. Sci. & Techn., 31: 1123-1135, 1996; Lee EK, "Recovery of lactic acid from fermentation broth using electrodialysis", KAIST Ph. D. Thesis, 1998, Zeikus JG, Elankovan P. and Grethlein A., Chem. Proc., 58 (7): 71-73, 1995; Choi J. and Hong WH, Int. J. of Chemica Kinetics, 28: 37-41, 1996; Choi J. and Hong W. H., J. of Chemical Eng. of Jpn., 32 (2): 184-189, 1999).

이런 문제점을 극복하기 위해 유기산과의 가역적인 결합을 통해 복합체를 형성하여 분리가 가능하도록 하는 방안이 연구되고 있으며, 특히, 흡착 및 추출 과정에서 이런 개념을 반영한 연구 결과가 발표되었다(Tung L. A. and King C. J., Ind. Eng. Chem. Res. 33;3217-3223). In order to overcome this problem, a method of separating and forming a complex through reversible bonding with an organic acid has been studied. In particular, research results reflecting this concept in the adsorption and extraction process have been published (Tung LA and King). CJ, Ind. Eng. Chem. Res. 33; 3217-3223).

아민 작용기를 가지는 고분자 흡착제 및 액상 추출제의 경우, 분리 및 정제 과정에서 소비되는 에너지가 적을 뿐만 아니라, 분리 및 정제 성능이 좋은 것으로 알려져 있다. 또한, 복합체를 형성한 뒤 pH, 온도, 희석제, 증류, 용매 침출 등의 방법을 이용하면 용이하게 재생이 가능하다. 그러나, 액상 추출제의 경우, 발효 균주에 미치는 독성과 낮은 재생율이 문제되며, 고상 추출제의 경우, 특정한 산에 대한 선택성 떨어지고 추출량에 한계가 있다.In the case of the polymer adsorbent and the liquid extractant having the amine functional group, it is known that not only the energy consumed in the separation and purification processes but also the separation and purification performance is good. In addition, it is possible to easily regenerate using a method such as pH, temperature, diluent, distillation, solvent leaching after forming the complex. However, in the case of the liquid extractant, the toxicity and low regeneration rate on the fermentation strains is a problem, and in the case of the solid phase extractant, the selectivity for a particular acid is inferior and the extraction amount is limited.

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 숙신산의 정제 과정에서 숙신산을 직접 흡착하여 정제하는 대신, 발효 과정에서 균주에 의하여 숙신산과 함께 생성되는 불순물 유기산을 선택적으로 흡착할 수 있는 아민 접붙임 메조포어 실리카 SBA-15을 제공하는 것이다. 또한, 본 발명의 목적은 상기 아민 접붙임 메조포어 실리카 SBA-15를 사용하여 숙신산을 보다 효율적이고, 경제적으로 정제하는 방법을 제공하는 것이다.The present invention has been made to solve the above problems, an object of the present invention is to selectively select the impurity organic acid produced together with the succinic acid by the strain in the fermentation instead of directly adsorbing and purifying the succinic acid in the purification process of succinic acid It is to provide an amine grafted mesoporous silica SBA-15 that can be adsorbed. It is also an object of the present invention to provide a method for more efficiently and economically purifying succinic acid using the amine grafted mesoporous silica SBA-15.

상기와 같은 목적을 달성하기 위하여, 본 발명은 숙식산 정제에 사용되는 불순물 유기산 흡착제인 아민 접붙임 메조포어 실리카 SBA-15를 제공하는 것을 특징으로 한다.In order to achieve the above object, the present invention is characterized in that it provides an amine grafted mesoporous silica SBA-15 which is an impurity organic acid adsorbent used for succinic acid purification.

상기 메조포어 실리카는 다른 흡착제에 비해 큰 표면적을 가지며, 이런 특성 을 이용해 흡착, 분리 및 촉매뿐만 아니라, 새로운 나노구조를 가지는 물질의 제조에도 이용되는 물질이다.The mesoporous silica has a larger surface area than other adsorbents, and is used for the preparation of new nanostructured materials as well as adsorption, separation and catalyst using these properties.

상기 메조포어 실리카 SBA-15는 기공 내에 미소공을 포함하고 있어 탄화수소와 같은 기체에 대한 흡착성능이 뛰어나고, 열수작용에 의한 영향이 적으며, 표면에 다양한 작용기를 접붙임하여 사용될 수 있는 물질이다.The mesoporous silica SBA-15 is a material that contains micropores in the pores and has excellent adsorption performance for gases such as hydrocarbons, less influence by hydrothermal action, and can be used by grafting various functional groups on the surface.

상기 아민 접붙임 메조포어 실리카 SBA-15는 합성 과정에서 숙성(aging) 온도와 P123(Aldrich, EO 20 PO 70 EO 20 )의 양을 조절하여 기공과 표면적 및 기공부피를 변화시키는 것이 가능하므로, 유기산의 흡착에 용이하게 분자 구조를 변화시킬 수 있다.Since the amine grafted mesoporous silica SBA-15 is able to change the pore, surface area and pore volume by controlling the aging temperature and the amount of P123 (Aldrich, EO 20 PO 70 EO 20 ) in the synthesis process, the organic acid The molecular structure can be easily changed in the adsorption of.

상기 아민은 유기산에 대한 흡착성능을 최대화시키기 위해 1차, 2차, 또는 3차 아민인 것이 바람직하다. The amine is preferably a primary, secondary or tertiary amine in order to maximize the adsorption performance for organic acids.

상기 1차아민은 3-aminopropyltriethoxysilane, 상기 2차아민은 N-methylaminopropyltrimethoxyliane, 상기 3차아민은 3-(N,N-dimethylaminopropyl) trimethoxysilane인 것이 바람직하다. Preferably, the primary amine is 3-aminopropyltriethoxysilane, the secondary amine is N-methylaminopropyltrimethoxyliane, and the tertiary amine is 3- (N, N-dimethylaminopropyl) trimethoxysilane.

상기 아민은 450℃ 이상이 되어야 열분해 될 만큼 강한 결합을 형성하고 있으므로 온도에 의한 구조 변화 가능성이 적은 특징이 있다.Since the amine forms a bond strong enough to be pyrolyzed at 450 ° C. or higher, there is little possibility of structural change due to temperature.

메조포어 실리카 SBA-15에 아민을 접붙임하는데 있어서, 첨가하는 실란의 양을 조절하므로써 메조포어 실리카 SBA-15의 표면에 존재하는 아민의 양을 조절하는 것이 가능하다.In grafting an amine to mesoporous silica SBA-15, it is possible to control the amount of amine present on the surface of mesoporous silica SBA-15 by adjusting the amount of silane to be added.

상기 아민은 실란기에 존재하는 메톡사이드 기가 메조포어 실리카 SBA-15의 표면에 존재하는 실라놀기와 알코올을 생성하며 반응하는 특성을 이용하여 접붙임되며, 실란의 아민기와 유기산의 카르복시기가 복합체를 형성하여 흡착하게 하는 역할을 한다. 이에 사용되는 화학반응식은 다음과 같다.The amine is grafted using the property that the methoxide group present in the silane group reacts with the silanol group and the alcohol present on the surface of the mesoporous silica SBA-15, and the carboxyl group of the amine group and the organic acid of the silane forms a complex. It serves to adsorb. The chemical reaction formula used is as follows.

Si(OCH3)3(CH2)3NH2+HOOC(CH2)2COOH↔Si(OCH3)3(CH2)3NH3 +-OOC(CH2)2COOHSi (OCH 3 ) 3 (CH 2 ) 3 NH 2 + HOOC (CH 2 ) 2 COOH↔Si (OCH 3 ) 3 (CH 2 ) 3 NH 3 + . - OOC (CH 2) 2 COOH

상기 반응에서 생성되는 복합체는 아민기와 카르복시기 간의 수소결합에 의해서 발생하며 가역적인 반응이다. 따라서 온도나 pH의 조건을 변화시키면 결합된 유기산을 쉽게 분리하는 것이 가능하다.The complex produced in the reaction is generated by hydrogen bonding between an amine group and a carboxyl group and is a reversible reaction. Therefore, by changing the conditions of temperature or pH, it is possible to easily separate the bound organic acid.

또한, 본 발명은 상기 본 발명의 아민 접붙임 메조포어 물질 SBA-15을 불순물 유기산의 흡착제로 사용하여 불순물 유기산을 흡착 및 제거시키는 것을 특징으로 하는 숙신산의 정제 방법을 제공한다.The present invention also provides a method for purifying succinic acid, wherein the amine grafted mesoporous material SBA-15 of the present invention is used as an adsorbent for impurity organic acids to adsorb and remove impurity organic acids.

상기 흡착제를 이용한 흡착 공정은 메조포어 실리카 SBA-15의 기공 내에 유기산과 특정한 반응을 하는 작용기인 아민기의 도입을 통해 분자 단위의 반응이 가능하도록 하여 유기산을 흡착하며, 균주로부터 숙신산과 동시에 생산되는 불순 유기산 중 아세트산이나 피루브산 등의 모노카르복시산이 아민기와 더 큰 반응력을 가지는 점을 이용해 불순 유기산을 선택적으로 제거할 수 있다는 장점이 있다.The adsorption process using the adsorbent allows the reaction of the molecular unit through the introduction of an amine group, which is a functional group that performs a specific reaction with the organic acid in the pores of mesoporous silica SBA-15 to adsorb the organic acid, and is produced simultaneously with the succinic acid from the strain. Among the impure organic acids, monocarboxylic acids such as acetic acid and pyruvic acid have an advantage of having a greater reaction force with an amine group, so that the impure organic acids can be selectively removed.

상기 흡착 공정에서의 pH는 2.0~2.5의 범위인 것이 바람직하다. 상기 범위를 벗어나는 경우에 불순물 유기산의 흡착능이 저하되는 단점이 있다.It is preferable that pH in the said adsorption process is 2.0-2.5. If outside the above range there is a disadvantage that the adsorption capacity of the impurity organic acid is lowered.

상기 흡착제는 pH나 온도의 조절을 통해 쉽게 재생할 수 있어 기존의 정제 공정의 추출제 및 흡착제 재생 과정에서 문제가 되던 많은 양의 용매의 발생과 에너지 소비를 해결할 수 있다. The adsorbent can be easily regenerated by adjusting the pH or temperature to solve the generation and energy consumption of a large amount of solvent, which is a problem in the extraction process and the adsorbent regeneration of the conventional purification process.

이하, 실시예를 통하여 본 발명을 더욱 구체적으로 설명한다. Hereinafter, the present invention will be described in more detail with reference to Examples.

[[ 실시예Example ]]

1. One. 메조포어Mesopores 실리카  Silica SBASBA -15의 제조Manufacture of -15

Pluronic 123(Aldrich, EO 20 PO 70 EO 20 ) 12g을 1.6M HCl 수용액 450ml에 녹여 테트라에틸 오르쏘실리캐이트(tetraethyl orthoslicate, TEOS) 25.5g과 혼합하였다. 24시간 동안 35℃로 유지하면서 저어주고, 생성된 침전을 여과하였다. 여과를 통해서 얻어진 분말을 100℃에서 말려 수분을 제거한 뒤, 550℃에서 4시간 동안 소성하였다. 12 g of Pluronic 123 (Aldrich, EO 20 PO 70 EO 20 ) was dissolved in 450 ml of 1.6M HCl aqueous solution and mixed with 25.5 g of tetraethyl orthoslicate (TEOS). Stir while maintaining at 35 ° C. for 24 h and filter the resulting precipitate. The powder obtained through filtration was dried at 100 ° C. to remove moisture, and then calcined at 550 ° C. for 4 hours.

2. 아민 접붙임 2. Amine Grafting 메조포어Mesopores 실리카  Silica SBASBA -15의 제조Manufacture of -15

상기 1에서 제조된 메조포어 실리카 SBA-15의 기공 표면에 유기산과 복합체를 형성할 수 있도록 하기 위해 아민기를 접붙임하였다. 메조포어 실리카 SBA-15 10g을 톨루엔 450ml에 분산시켰다. 완전히 분산시킨 후, 1차 아민인 3-아미노프로필트리에톡시실란(aminopropyltriethoxysilane), 2차 아민인 N-메틸아미노프로필 트리메톡시실란(N-methylaminopropyl trimethoxysilane) 또는 3차 아민인 3-(N,N-디메틸아미노프로필)트리메톡시실란(3-(N,N-dimethylaminopropyl)trimethoxysilane)을 각각 넣어준 뒤, 15시간 동안 환류시켰다. 혼합물을 여과하여 분말을 얻어낸 뒤, 아세톤을 이용하여 세척하고 다시 여과 시켰다. 기공 속에 남아있는 용매를 제거하기 위해 분말을 80℃에서 진공 상태로 24시간 동안 건조시켰다. 이렇게 하여 만들어진 물질은 표면에 각각 1차, 2차 또는 3차 아민기가 접붙임된 메조포어 실리카 BSA-15가 된다. 이 물질은 다음 표 1에 나타난 바와 같이 4~5nm 정도의 기공 크기를 가지는 메조포어 물질이며, 표면적은 280~340m2/g이다. 물질 1g 당 1.7~2.3mmol의 아민기가 기공의 표면에 흡착되어 있었다.The amine group was grafted to form a complex with an organic acid on the pore surface of the mesoporous silica SBA-15 prepared in 1 above. 10 g of mesoporous silica SBA-15 was dispersed in 450 ml of toluene. After complete dispersion, the primary amine 3-aminopropyltriethoxysilane, the secondary amine N-methylaminopropyl trimethoxysilane or the tertiary amine 3- (N, N-dimethylaminopropyl) trimethoxysilane (3- (N, N-dimethylaminopropyl) trimethoxysilane) was added thereto, and the mixture was refluxed for 15 hours. The mixture was filtered to give a powder, washed with acetone and filtered again. The powder was dried in vacuo at 80 ° C. for 24 hours to remove solvent remaining in the pores. The material thus produced becomes mesoporous silica BSA-15 with primary, secondary or tertiary amine groups bonded to the surface, respectively. This material is a mesoporous material having a pore size of about 4 ~ 5nm, as shown in Table 1, the surface area is 280 ~ 340m 2 / g. 1.7-2.3 mmol of amine groups were adsorbed on the surface of pores per gram of material.

물질matter 표면적 (m2/g)Surface area (m 2 / g) 기공부피 (cm3/g)Pore Volume (cm 3 / g) 기공크기 (nm)Pore size (nm) d100 (Å) d 100 (Å) 벽두께 (nm)Wall thickness (nm) 아민함량 (mmol/g)Amine Content (mmol / g) SBA-15SBA-15 838.52838.52 0.940.94 5.455.45 89.6189.61 4.904.90 -- 1차 아민Primary amine 318.66318.66 0.470.47 4.794.79 91.4791.47 5.775.77 2.182.18 2차 아민Secondary amines 283.28283.28 0.410.41 4.344.34 90.5490.54 6.126.12 2.312.31 3차 아민Tertiary amines 332.76332.76 0.460.46 4.534.53 91.0091.00 5.985.98 1.721.72

3. 아민 접붙임 3. Amine Grafting 메조포어Mesopores 실리카  Silica SBASBA -15을 이용한 숙신산과 불순물 유기산의 경쟁 흡착Competitive Adsorption of Succinic Acid and Impurity Organic Acids Using -15

25℃에서 1차, 2차 또는 3차 아민기를 가지는 실란을 접붙임한 메조포어 실리카 SBA-15를 이용하여 숙신산과 불순물 유기산을 경쟁흡착하였다. 수용액 속의 유기산의 농도는 발효균주인 만헤이미아 숙시니시푸로듀센스(Mannheimia succiniciproducens)에 의해 생산되는 숙신산(340mmol/L), 푸르마산(12.5mmol/L), 피루브산(27mmol/L)의 농도를 기준으로 하였고, 숙신산과 푸마르산, 숙신산과 피루브산의 2성분계에서의 실험을 통해 메조포어 물질이 특정 유기산에 대해 선택성을 가지는지 확인해 보았다. Succinic acid and impurity organic acids were competitively adsorbed using mesoporous silica SBA-15 grafted with a silane having a primary, secondary or tertiary amine group at 25 ° C. The concentration of organic acid in the aqueous solution is based on the concentrations of succinic acid (340 mmol / L), furamic acid (12.5 mmol / L), and pyruvic acid (27 mmol / L) produced by the fermented strain Mannheimia succiniciproducens . The two-component system of succinic acid and fumaric acid, succinic acid and pyruvic acid was used to confirm whether the mesoporous material had a selectivity for a specific organic acid.

아민기를 가지는 메포조어 실리카 SBA-15 0.1g을 유기산 수용액 10ml와 섞어준 후, 24시간 동안 반응한 뒤 HPLC(Waters, 1515 & 2487)를 이용해 수용액 내에 잔존하는 유기산의 농도를 측정함으로써 흡착제 내에 흡착된 유기산의 농도를 파악하였다.0.1 g of mesozoic silica SBA-15 having an amine group was mixed with 10 ml of an aqueous solution of an organic acid, and then reacted for 24 hours, followed by measuring the concentration of organic acid remaining in the aqueous solution using HPLC (Waters, 1515 & 2487). The concentration of organic acid was determined.

흡착제의 흡착능은 단위 g당 흡착된 유기산의 몰수로 나타내었고, 분배계수의 비교를 통해 어떤 종류의 아민을 포함하는 흡착제가 더 좋은 성능을 가지는지 비교해 보았다. 여기서 분배계수는 다음과 같이 정의된다.The adsorption capacity of the adsorbent was expressed as the number of moles of organic acid adsorbed per gram, and the distribution coefficients were compared to compare which kind of amine adsorbent had better performance. Here, the distribution coefficient is defined as

Kd = 흡착제에 흡착된 유기산의 양(mmol/g) / 수용액에 잔존하는 유기산의 양(mmol/g) K d = amount of organic acid adsorbed on adsorbent (mmol / g) / amount of organic acid remaining in aqueous solution (mmol / g)

표 2와 표 3에서는 본 실시예에서의 경쟁실험 결과를 나타내었다. 표 2는 숙신산과 피루브산의 경쟁흡착 결과를 나타내며, 표 3은 숙신산과 푸마르산의 경쟁흡착 결과를 나타낸다.Table 2 and Table 3 show the results of the competition experiments in this example. Table 2 shows the competitive adsorption results of succinic acid and pyruvic acid, and Table 3 shows the competitive adsorption results of succinic acid and fumaric acid.

흡착제 absorbent 피루브산의 농도Concentration of pyruvic acid 흡착량Adsorption amount 숙신산의 농도Concentration of succinic acid 흡착량Adsorption amount 흡착전 (mmol/L)Before adsorption (mmol / L) 흡착후 (mmol/L)After adsorption (mmol / L) mmol/gmmol / g Kd K d 흡착전 (mmol/L)Before adsorption (mmol / L) 흡착후 (mmol/L)After adsorption (mmol / L) mmol/gmmol / g Kd K d 1차 아민Primary amine 26.9226.92 13.9413.94 1.301.30 93.0993.09 361.01361.01 360.67360.67 0.030.03 0.090.09 2차 아민Secondary amines 26.9226.92 22.2222.22 0.470.47 21.1421.14 361.01361.01 351.80351.80 0.920.92 2.622.62 3차 아민Tertiary amines 26.0626.06 23.2323.23 0.280.28 12.2012.20 353.12353.12 351.24351.24 0.190.19 0.530.53

흡착제 absorbent 푸마르산의 농도Concentration of fumaric acid 흡착량Adsorption amount 숙신산의 농도Concentration of succinic acid 흡착량Adsorption amount 흡착전 (mmol/L)Before adsorption (mmol / L) 흡착후 (mmol/L)After adsorption (mmol / L) mmol/gmmol / g Kd K d 흡착전 (mmol/L)Before adsorption (mmol / L) 흡착후 (mmol/L)After adsorption (mmol / L) mmol/gmmol / g Kd K d 1차 아민Primary amine 12.4212.42 11.2911.29 0.110.11 10.0110.01 337.55337.55 336.34336.34 0.120.12 0.360.36 2차 아민Secondary amines 12.5012.50 11.5311.53 0.100.10 8.428.42 339.80339.80 339.73339.73 0.010.01 0.020.02 3차 아민Tertiary amines 12.5012.50 11.7311.73 0.080.08 6.576.57 340.23340.23 340.22340.22 9.32×10-4 9.32 × 10 -4 2.73×10-3 2.73 × 10 -3

상기 표 2 및 표 3에 나타난 바와 같이, 아민기를 가지는 메조포어 실리카 SBA-15 흡착제는 특정 유기산에 대해 선택성을 보인다. 표면에 흡착된 아민기는 수용액 속에 존재하는 두 유기산에 대해 모두 결합력을 보이지만, 다량의 숙신산이 존재함에도 불구하고 피루브산과 푸마르산을 비슷하거나 혹은 더 많은 양을 흡착하는 것을 알 수 있다. 아민기와 카르복실기의 수소결합은 산과 염기의 반응에서와 마찬가지로 산성과 염기성의 세기에 비례하게 되므로 더 큰 산성을 가지는 피루브산과 푸마르산이 더 큰 반응성을 가지게 되는 것이다. As shown in Tables 2 and 3 above, the mesoporous silica SBA-15 adsorbents having amine groups show selectivity for certain organic acids. Although the amine groups adsorbed on the surface show the binding force to both organic acids in the aqueous solution, despite the presence of large amounts of succinic acid, it can be seen that they adsorb similar or higher amounts of pyruvic acid and fumaric acid. Hydrogen bonds of amine and carboxyl groups are proportional to the acid and basic strengths as in the reaction of acid and base, so that pyruvic acid and fumaric acid with higher acidity have greater reactivity.

또한, 표면에 접붙임된 실란은 메조포어 물질의 기공 표면에서 가교된(cross-linked) 상태로 존재하게 되는데, 이때 근접한 두 아민기 사이의 거리는 약 0.4nm 이하일 것으로 예상된다. 피루브산(0.56nm)에 비해 더 큰 분자크기를 갖는 숙신산(0.72nm)의 경우 흡착된 유기산 분자가 더 큰 입체 방해를 받게 되므로 이 경우 흡착성능이 떨어지게 된다. In addition, the silane bonded to the surface will be present in a cross-linked state at the pore surface of the mesoporous material, where the distance between two adjacent amine groups is expected to be about 0.4 nm or less. In the case of succinic acid (0.72 nm) having a larger molecular size compared to pyruvic acid (0.56 nm), the adsorption performance is deteriorated because the adsorbed organic acid molecules are subjected to greater steric hindrance.

숙신산과 푸마르산에서의 경쟁실험에서는 1차 아민을 접붙임한 메조포어 흡착제 SBA-15가 2차 아민을 접붙임한 경우에 비해 선택성이 좋은 것으로 나타났다. 2차 아민이 가지는 염기성이 1차 아민에 비해 더 크고 기공 표면에 존재하는 아민기의 양 또한 많지만, 이 경우에 표면에 존재하는 아민기의 배열이 더 중요하다. 즉, 무작위로 배열된 실란기가 많은 경우에 입체 장애가 적어 유기산이 흡착하기에 더 좋은 환경이 조성된다. 황산을 이용한 도전율 변화를 통해 1차 아민이 2차 아민에 비해 무작위로 배열된 실란기가 많은 것을 관찰할 수 있었다.Competitive experiments with succinic acid and fumaric acid showed that the mesoporous adsorbent SBA-15 with primary amine was better than that with secondary amine. Although the basicity of secondary amines is larger than that of primary amines and the amount of amine groups present on the pore surface is also high, in this case the arrangement of amine groups present on the surface is more important. That is, when there are many randomly arranged silane groups, there are few steric hindrances, and a better environment for organic acids to adsorb is created. The conductivity change using sulfuric acid showed that the primary amines were more randomly arranged than the secondary amines.

4. 4. pHpH 변화에 따른 유기산의 흡착성능의 변화 비교 Comparison of Adsorption Performance of Organic Acids with Different Variations

pH 1~7 범위에서 숙신산과 피루브산에 대한 단일 흡착실험을 수행하였다. 25℃에서 pH를 1씩 변화시키면서 흡착능의 변화를 살펴보았다.Single adsorption experiments were performed for succinic acid and pyruvic acid in the pH range 1-7. The change in adsorption capacity was examined while changing the pH by 1 at 25 ° C.

도 1 및 도 2에 각각의 pH 변화에 따른 피루브산과 숙신산의 흡착능 변화를 나타내었다. 또한, 각각의 도면에는 수용액 속에 해리되지 않은 상태로 존재하는 피루브산과 숙신산의 농도를 pH 변화에 따라 나타내었다. 1 and 2 show the change in adsorption capacity of pyruvic acid and succinic acid according to respective pH changes. In addition, each figure shows the concentrations of pyruvic acid and succinic acid which are present in the aqueous solution without dissociation, according to the pH change.

도 1 및 도 2에 나타난 것과 같이, 유기산은 특정 pH에서만 좋은 흡착성능을 보인다. 이것은 아민기와 카르복시기 간의 수소결합이 pH에 따라서 영향을 받기 때문이다. pK 값보다 높은 pH에서는 유기산의 카르복시기가 해리된 상태로 존재하기 때문에 아민기와 수소결합을 할 수 없다. pK보다 낮은 pH에서는 유기산에 존재하는 H + 이외에 수용액 내에 존재하는 염산에서 해리된 H + 가 아민기와 반응을 하므로 유기산은 반응을 할 수가 없게 되는 것이다. 위의 결과로부터 불순물 유기산인 피루브산에 대한 선택성을 높이기 위해서는 pH 2~2.5에서 흡착하는 것이 바람직함을 알 수 있었다.As shown in Figures 1 and 2, the organic acid shows good adsorption performance only at a certain pH. This is because the hydrogen bond between the amine group and the carboxyl group is affected by pH. At pH higher than the pK value, the carboxyl group of the organic acid is present in the dissociated state, and thus hydrogen bond cannot be formed with the amine group. At pH lower than pK, in addition to H + present in the organic acid, H + dissociated in hydrochloric acid present in the aqueous solution reacts with the amine group, and thus the organic acid cannot react. From the above results, it can be seen that it is preferable to adsorb at pH 2 to 2.5 in order to increase the selectivity for pyruvic acid, which is an impurity organic acid.

이상과 같은 본 발명의 아민 접붙임 메소포어 실리카 SBA-15 및 이를 불순물 유기산의 흡착제로 사용한 숙신산의 정제방법에 의하면, 특정한 불순물 유기산만을 선택적으로 제거할 수 있고, 높은 효율성을 갖는 장점이 있으며, 또한, 화학적인 결합이 아닌 수소 결합을 통해 유기산을 분리하게 되므로 간단한 공정을 통해 쉽게 흡착제를 재생할 수 있어 경제적인 공정이 될 수 있다. According to the amine grafted mesoporous silica SBA-15 of the present invention as described above and the succinic acid purification method using the same as the adsorbent of impurity organic acids, it is possible to selectively remove only a specific impurity organic acid, has the advantage of having high efficiency, However, since organic acids are separated through hydrogen bonding rather than chemical bonding, the adsorbent can be easily regenerated through a simple process, thereby making it an economical process.

Claims (5)

숙신산의 정제 과정에서 불순물 유기산의 흡착제로서 사용되는 아민 접붙임 메조포어 물질 SBA-15.Amine grafted mesoporous material SBA-15 used as adsorbent for impurity organic acids in the purification of succinic acid. 제1항에 있어서, The method of claim 1, 상기 아민은 1차 아민 또는 2차 아민 또는 3차 아민인 것을 특징으로 하는 아민 접붙임 메조포어 물질 SBA-15.The amine grafted mesoporous material SBA-15, wherein the amine is a primary amine or a secondary amine or a tertiary amine. 제2항에 있어서, The method of claim 2, 상기 1차 아민은 3-aminopropyltriethoxysilane, 2차 아민은 N-methylaminopropyltrimethoxyliane, 3차 아민은 3-(N,N-dimethylaminopropyl) trimethoxysilane인 것을 특징으로 하는 아민 접붙임 메조포어 물질 SBA-15.The primary amine is 3-aminopropyltriethoxysilane, the secondary amine is N-methylaminopropyltrimethoxyliane, and the tertiary amine is 3- (N, N-dimethylaminopropyl) trimethoxysilane. 제1항 내지 제3항의 아민 접붙임 메조포어 물질 SBA-15을 불순물 유기산의 흡착제로 사용하여 불순물 유기산을 흡착 및 제거시키는 것을 특징으로 하는 숙신산의 정제 방법.A process for purifying succinic acid characterized by adsorbing and removing impurity organic acids using the amine grafted mesoporous material SBA-15 of claim 1 as an adsorbent for impurity organic acids. 제4항에 있어서, The method of claim 4, wherein 상기 흡착은 pH 2.0~2.5의 범위에서 수행되는 것을 특징으로 하는 숙신산의 정제 방법. The adsorption is a purification method of succinic acid, characterized in that carried out in the range of pH 2.0 ~ 2.5.
KR1020070017578A 2007-02-21 2007-02-21 A mesoporous silica sba-15 functionalized with amine and a purification method of succinic acid using said material KR100792620B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070017578A KR100792620B1 (en) 2007-02-21 2007-02-21 A mesoporous silica sba-15 functionalized with amine and a purification method of succinic acid using said material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070017578A KR100792620B1 (en) 2007-02-21 2007-02-21 A mesoporous silica sba-15 functionalized with amine and a purification method of succinic acid using said material

Publications (1)

Publication Number Publication Date
KR100792620B1 true KR100792620B1 (en) 2008-01-09

Family

ID=39217071

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070017578A KR100792620B1 (en) 2007-02-21 2007-02-21 A mesoporous silica sba-15 functionalized with amine and a purification method of succinic acid using said material

Country Status (1)

Country Link
KR (1) KR100792620B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107282007A (en) * 2016-04-01 2017-10-24 中国石油化工股份有限公司 The application of modified order mesoporous organosilicon material
CN109467102A (en) * 2018-12-21 2019-03-15 昆明理工大学 A method of SBA-15 molecular sieve is synthesized using SILICA FUME

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020074562A (en) * 2001-03-20 2002-10-04 광주과학기술원 Surface modified silica by plasma polymerization, preparation method of thereof and apparatus of thereof
JP2005000906A (en) 2003-05-19 2005-01-06 Toyo Seikan Kaisha Ltd Amine carrying porous silica, resin composition containing the porous silica and multilayered structure containing resin composition
KR20060061494A (en) * 2004-12-02 2006-06-08 요업기술원 Functionalized silica magnetic nanoparticles for separating-purifying nucleic acid(dna/rna) and method for preparing the same
KR100639639B1 (en) 2003-01-23 2006-11-01 전남대학교산학협력단 Networked silica for enhancing tensile strength of rubber compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020074562A (en) * 2001-03-20 2002-10-04 광주과학기술원 Surface modified silica by plasma polymerization, preparation method of thereof and apparatus of thereof
KR100639639B1 (en) 2003-01-23 2006-11-01 전남대학교산학협력단 Networked silica for enhancing tensile strength of rubber compound
JP2005000906A (en) 2003-05-19 2005-01-06 Toyo Seikan Kaisha Ltd Amine carrying porous silica, resin composition containing the porous silica and multilayered structure containing resin composition
KR20060061494A (en) * 2004-12-02 2006-06-08 요업기술원 Functionalized silica magnetic nanoparticles for separating-purifying nucleic acid(dna/rna) and method for preparing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107282007A (en) * 2016-04-01 2017-10-24 中国石油化工股份有限公司 The application of modified order mesoporous organosilicon material
CN107282007B (en) * 2016-04-01 2020-02-18 中国石油化工股份有限公司 Application of modified ordered mesoporous organosilicon material
CN109467102A (en) * 2018-12-21 2019-03-15 昆明理工大学 A method of SBA-15 molecular sieve is synthesized using SILICA FUME

Similar Documents

Publication Publication Date Title
EP2618928B1 (en) A porous polymer material
Hiyoshi et al. Adsorption characteristics of carbon dioxide on organically functionalized SBA-15
Yang et al. Acid catalyzed synthesis of ordered bifunctionalized mesoporous organosilicas with large pore
He et al. Thiol-yne click synthesis of boronic acid functionalized silica nanoparticle-graphene oxide composites for highly selective enrichment of glycoproteins
US8298986B2 (en) Structures for capturing CO2, methods of making the structures, and methods of capturing CO2
US7887770B2 (en) Amorphous aluminum silicate and adsorbent each having excellent moisture adsorption/desorption characteristics in medium-humidity range
Yan et al. Pyridine-functionalized mesoporous silica as an efficient adsorbent for the removal of acid dyestuffs
Lü et al. Functionalization of cubic Ia3d mesoporous silica for immobilization of penicillin G acylase
US20110179948A1 (en) Application of amine-tethered solid sorbents to co2 fixation from air
US8227377B2 (en) Carbon dioxide adsorbent capable of adsorption and desorption in dependence on pressure of atmospheric pressure or higher
Kucuk et al. Silsesquioxane-modified chitosan nanocomposite as a nanoadsorbent for the wastewater treatment
US20210371302A1 (en) Modified Cyclodextrin/mesoporous Silica for Adsorbing Pb and Cd and Application Thereof
KR100792620B1 (en) A mesoporous silica sba-15 functionalized with amine and a purification method of succinic acid using said material
Mirabaud et al. A new heterogeneous host–guest catalytic system as an eco-friendly approach for the synthesis of cyclic carbonates from CO 2 and epoxides
US11235306B2 (en) Phenothiazine based crosslinked polymer and methods thereof
Liu et al. Advanced mesoporous organosilica material containing microporous β-cyclodextrins for the removal of humic acid from water
Noshadi et al. Hydrophobic mesoporous adsorbent based on cyclic amine–divinylbenzene copolymer for highly efficient siloxane removal
US9006135B2 (en) Absorbent comprising hydrophobic mesoporous material for removal of harmful pharmaceuticals from aqueous environment
KR100347254B1 (en) Synthesis Method of Mesoporous Silicas with Chelating Ligands for Heavy Metal Ion Removal in Aqueous Solutions
Wang et al. Catalytic properties of dendron–OMS hybrids
KR101009310B1 (en) Sintered adsorbents, preparation method thereof and use of same for the drying of organic compounds
CN110845645A (en) Functionalized post-crosslinked resin and preparation method and application thereof
CN114570326B (en) Adsorbent and preparation method and application thereof
Barczak et al. Synthesis, structure and adsorption properties of nanoporous SBA-15 materials with framework and surface functionalities
Liu et al. Exploration of acid–base geometric influence on cooperative activation for aldol reaction

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111230

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130102

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee