JP2004538508A - 光学マニホルド - Google Patents

光学マニホルド Download PDF

Info

Publication number
JP2004538508A
JP2004538508A JP2003519667A JP2003519667A JP2004538508A JP 2004538508 A JP2004538508 A JP 2004538508A JP 2003519667 A JP2003519667 A JP 2003519667A JP 2003519667 A JP2003519667 A JP 2003519667A JP 2004538508 A JP2004538508 A JP 2004538508A
Authority
JP
Japan
Prior art keywords
optical
manifold
optical manifold
input
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003519667A
Other languages
English (en)
Other versions
JP2004538508A5 (ja
Inventor
リチャード・エル・シモンズ
カーティス・エル・シューメイカー
ケネス・エル・コーネル
ハリー・エイ・ローダー
エドワード・ビー・ルーリー
マリオン・エイ・キャッサーバーグ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of JP2004538508A publication Critical patent/JP2004538508A/ja
Publication of JP2004538508A5 publication Critical patent/JP2004538508A5/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3632Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means
    • G02B6/3636Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means the mechanical coupling means being grooves
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/36642D cross sectional arrangements of the fibres
    • G02B6/36682D cross sectional arrangements of the fibres with conversion in geometry of the cross section
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3684Mechanical coupling means for mounting fibres to supporting carriers characterised by the manufacturing process of surface profiling of the supporting carrier
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • G02B6/3825Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres with an intermediate part, e.g. adapter, receptacle, linking two plugs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3874Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls using tubes, sleeves to align ferrules
    • G02B6/3878Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls using tubes, sleeves to align ferrules comprising a plurality of ferrules, branching and break-out means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/4471Terminating devices ; Cable clamps
    • G02B6/4472Manifolds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3608Fibre wiring boards, i.e. where fibres are embedded or attached in a pattern on or to a substrate, e.g. flexible sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/36642D cross sectional arrangements of the fibres
    • G02B6/3676Stacked arrangement
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/368Mechanical coupling means for mounting fibres to supporting carriers with pitch conversion between input and output plane, e.g. for increasing packing density
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3897Connectors fixed to housings, casing, frames or circuit boards

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Communication System (AREA)

Abstract

個々の光ファイバをまとめ、案内し、保護するための光学マニホルド(200)を特徴とする3次元光学回路が示されている。マニホルドは、対向する端にある第2の規則的な配置に多数の出力開口部(220)に通路によって接続される一端にある第1の規則的な配置に多数の入力開口部(210)を有する。複数の光ファイバは、シャッフルなどの3次元光学回路を作成するために、マニホルドの通路を通って指向されることができる。種々の光モジュールを形成するために多数の接続装置または終端装置と共に、光学マニホルドを用いてもよい。これらのモジュールは、電子構成要素のためのエンクロージャ内部でラック取付け用に構成されてもよい。

Description

【技術分野】
【0001】
本発明は、一般に3次元光学回路に関し、さらに詳細には、光学マニホルドを含む3次元光学回路アセンブリおよび同光学マニホルドの作成方法に関する。
【背景技術】
【0002】
光ファイバネットワークは、現在の遠隔通信システム、高速ルータ、コンピュータシステムおよび大量のデータを処理するための他のシステムにおいてますます普及しつつある。光ファイバネットワークは一般に、従来の電気信号の伝搬に比べて、伝送速度および効率を増大させるために、比較的長い距離にわたって経路設定される大量の光ファイバを含む。「光学回路」を作製するシステムを通じてさまざまな接点の間で、個々の光ファイバを経路設定する必要がたびたびある。今日、広く用いられている光学回路の1つは、「光シャッフル」と呼ばれる。例示のためにのみ、それぞれが8本の個々の光ファイバを中に入れている8本の光ファイバケーブルを用いて、簡単な光シャッフルを実現することができる。本願明細書の実施例のファイバを用いた「完全シャッフル」と呼ぶことができるものでは、入って来る8本のケーブルのそれぞれのファイバ1を出て行く1本の第1のケーブルに経路設定し、入って来る8本のケーブルのそれぞれの第2のファイバを出て行く1本の第2のケーブルに経路設定し、以下同様に経路設定することができる。ここで図1を参照すると、この具体的な光シャッフルが簡素化した概略図に示されており、図においてCは入力リボンまたはケーブルを表し、CはケーブルCで始まる個々のファイバFを表し、C’はケーブルシャッフルに続く出力リボンまたはケーブルである。この具体的な実施例は64本の光ファイバのみを特徴としているが、光学回路は経路設定しなければならないはるかに大量のファイバを含むことが多いことを理解されたい。したがって、光シャッフルおよび他の光学回路構造を手動で作製することは退屈であり、きわめてエラーの生じやすいプロセスである恐れがある。入力ケーブルと出力ケーブルとの間の回路に生じるもつれた光ファイバの塊を容易に思い浮かべることができる。
【0003】
大量のもつれた他のファイバを通って手動で入力点から出力点までファイバの経路設定を単純に行おうとする解決法ではなく、種々の光学回路の作製に関する複数の解決法が提案されている。1つのそのような解決法は、個々のファイバを必要な回路構成に織込む半自動式機械を用いることである。この解決法は、光ファイバの織込み以外の用途にほとんどまたは全く役に立たない機械に多大な経済的な投資を必要とすることが多い。
【0004】
光学回路の作製に関する問題に対する別の解決法としては、フレキシブルポリマー基板上に光ファイバを経路設定するさまざまな試みが挙げられる。ほんの一例として、この構造物の1つの公知の形態は、「フレックスフォイル」(Flex Foil)(登録商標)として販売されている。フレキシブル光学回路解決法に対する1つのアプローチは、ボナーニ(Bonanni)らに付与された特許文献1に記載および説明されている。この参考文献に記載されている解決法では、「マイラー」(Mylar)(登録商標)または「カプトン」(Kapton)(登録商標)などのフレキシブルポリマー基板は、感圧接着剤(PSA)でコーティングされ、その上に実装された光ファイバを有していてもよい。多数の光ファイバを適切な配置で基板上に配置した後、通常は基板と同一タイプの材料からなる保護カバー層がファイバの一番上に接合されてもよい。当然のことながら、後にこのカバー層の露出面は、接着剤自体によってコーティングされてもよく、光ファイバおよびカバー材料の追加層が積層構造の形で構築されてもよい。しかし、ファイバのレイアッププロセスは相当手間がかかり、ファイバの編込みと同様に自動化するためにきわめて特殊な装置を必要とすると考えられる。ボナーニ(Bonanni)らは、シャッフルが生じた本体から側面方向に延在し、光ファイバを水平位置から垂直位置までファイバを再指向するために、たとえば90°の角度で曲げたり回転したりすることができる基板材料のフレキシブルサイドタブまたはより薄いストリップの利用について、さらに開示している。
【0005】
フレキシブル光学回路を組込む別のアプローチは、ナセル(Knasel)に付与された特許文献2に記載されている。この具体的な参考文献は、フレキシブル光学回路が実装される内部部分を含むプリント回路基板(PCB)アセンブリについて開示している。ボナーニ(Bonanni)らの参照特許のように、ナセル(Knasel)は、フレキシブルシートの間に挟まれている複数の光ファイバを配置している。これらのフレキシブルシートは、「マイラー」(Mylar)(登録商標)などから一般に形成され、当業界で公知であるように、光ファイバを所定の位置に保持し、続いて感圧接着剤を用いて他のフレキシブルシートに接合される。この参照特許では、マルチファイバコネクタを光ファイバの個々の第1の端に取付け、プリント回路基板のより少なく実装されている内部部分などの空間をよりたやすく利用することができる光ファイバの第2の端にあるシングルファイバコネクタを用いることによって、空間がプリント回路基板の縁に沿って保護される。
【0006】
また、これらのフレキシブル回路アプローチはいずれも、予め経路設定されたファイバネットワークまたはその上に実装されたフレキシブル光学回路部分を有するプリント回路基板を備えた大きなシート形で一般に実現されることを留意すべきである。いずれの場合も、これらの回路は一般に、布設中に入力ファイバケーブルおよび出力ファイバケーブルを容易に取付けるために、光学回路の入力端および出力端の両方にスプライスを有する。フレキシブル回路の本体から延在するタブの長さの制限を克服するために、一般にスプライスが必要とされる。さらに、高耐久性のケーブルに連結するために、特殊なコネクタを回路の入力端および出力端に取付けるためにスプライスを用いてもよい。シャッフルまたは光学回路の入力端および出力端の両方におけるスプライスは、光信号の損失を生じ、光ネットワーク全体にわたって加えられるときに、この損失は著しく、利用者によって許容可能でない恐れがある。さらに、機械的スプライスおよび融着スプライスは一般に、スプライスの機械的補強または強化の必要性のために、相当の空間を必要とする。さらに、ここに記載されたフレキシブル光学回路アプローチは一般に、フレキシブル回路まではるばる導く保護外装または「高耐久性」光ファイバリボンを利用することができず、単独層のポリマーフィルムによって形成されるわずかな保護を越えて回路またはシャッフルの中の光ファイバに対する十分な保護を提供することもない。さらに、フレキシブル光学回路設計は、回路内の交差点でこれらのファイバの多くは互いに直接接触しているという点で、個々のファイバを分離したり保護したりしない。
【特許文献1】
米国特許第5,204,925号公報
【特許文献2】
米国特許第6,005,991号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
したがって、織込み機械を必要とすることなく作成することができ、さまざまな異なるシャッフル配置により容易に経路設定することができる3次元光学回路が必要である。「マイラー」(Mylar)(登録商標)フィルム、感圧接着剤、光ファイバからなる多層積層構造を積層するより少ない手間で済み、光ファイバの複数のストランドが同時に構築される光学回路配置が必要である。また、光ファイバケーブルの高耐久性リボンを回路まで延ばし、回路から延ばすことができ、シャッフル自体の中で光ファイバのための高耐久性の保護環境を形成する光学回路が必要とされる。ファイバのスプライスがより少なく、光信号の損失を低減する3次元光学回路が必要とされる。さらに、垂直方向(z軸)における空間を十分に利用するためにより効率的にシャッフルを積み重ねることによって、限られた表面積(x軸−y軸)の環境に収める3次元光学回路が必要とされる。
【課題を解決するための手段】
【0008】
以下の本願明細書に記載される3次元光ファイバ回路装置および方法は、このような上述の必要性のそれぞれに対処し、多数のさらなる利点も提供するであろう。一実施形態において、本発明は、ステレオリソグラフィ(「SLA」)、熱溶解積層法(「FDM」)、選択的レーザ焼結法(「SLS」)などの高速造形プロセスを用いて構築される硬い一体型の3次元マニホルドであるが、これらに限定されるわけではない。この技術はプロトタイプ作製のためのほか、実際の製造のためにも利用することができるという点で、「高速造形」および「高速製造」なる語は本発明に関して互換性があることを留意されたい。
【0009】
SLAプロセスおよび他の高速造形技術を実行するための機器は、比較的高価な機械であるが、これらのシステムは多目的であり、入手しやすい。SLA機および他の高速造形機は、コンピュータ支援設計(「CAD」)システムで設計することができる実質的に任意の3次元物体を作製するために、容易にプログラム可能である。したがって、多数の光ファイバの経路設定のための3次元マニホルドの設計は、CADシステムまたは設計者の着想の可能性にのみ限定されるさまざまな構成または配置に設計されることができる。さらに、適切な曲げ径を形成し、それによって光学信号の損失を最小限に抑えるため、および光学回路を通じて個々のファイバを分離および保護するために、光ファイバの経路設定のための通路またはチャネルを作製するためのこれらのシステムをプログラムすることが可能である。さらに、従来の成形または形成技術を用いて容易に製造することが可能ではない光学回路を作製することが可能である。
【0010】
本発明によれば、光ファイバマニホルドは、入力点および出力点を接続する多数の中空通路またはこの場合も先の場合と同様に多数の入力点および出力点を有する大多数の硬い中空チューブを有する固体ブロックを含むさまざまな可能な実施形態を取ることができる。ほんの一例として、これらの入力開口部が、等しい数の行および列を有するマトリックスに配置されてもよい。それぞれが8本のファイバを有する8本の光ファイバケーブルの場合には、これは、64個の入力開口部、64個の出力開口部およびその間を接続する64本の通路を有する光学マニホルドが必要になると推測される。マニホルドの入力端および出力端が適切にラベル付けされる場合には、いずれの光ファイバが適切な開口部に挿入され、マニホルドの対向する端にある適切な開口部から出ることになっているかを決定することが利用者にとって比較的容易でなければならない。さらに、特定の入力を特定の出力と接続する通路が唯一であることから、ファイバが互いの中で絡み合うか、またはマニホルドを通して案内する人を混乱させることを懸念する必要はない。
【0011】
さらに別の実施形態において、本発明は、入力端および出力端を有する硬い一体型の光学マニホルドを形成する工程と、マニホルドの入力端に通じる複数のファイバケーブルを配置する工程と、マニホルドの出力端から出る複数のファイバケーブルを配置する工程と、各入力ケーブルの個々のファイバを分割する工程と、各ファイバをマニホルドの個々の入力開口部に案内する工程と、光学マニホルドの出力開口部から延在する個々のファイバをまとめる工程と、個々のファイバを集めて光ケーブルバンドルに戻す工程と、を含む3次元光学回路を形成するためのプロセスである。一般に、入力ケーブルから光ファイバを剥いで分離し、マニホルドの入力開口部に挿入し、マニホルドを通してから出力側でのみ結果として生じるケーブル群を成端し、シャッフル自体の中ではファイバスプライスは存在しないようにすることが可能である。したがって、シャッフルを含む個々の光学回路の中にスプライスによって被る光信号の損失を完全に排除することが合理的である。光ネットワーク全体を通じて多重化されるのであれば、光信号の損失におけるこの低減は相当有効である可能性がある。
【0012】
添付図面と共に、以下の詳細な説明を参照することによって、本発明の方法および装置に関してより完全な理解が得られると思われる。尚、図面において、類似の参照符号は類似の部分を表す。
【発明を実施するための最良の形態】
【0013】
ここで図、具体的には図2〜6を参照すると、シャッフルなどの3次元光学回路に組込むことができる光学マニホルドを提供するための本発明によって構成される種々の実施形態または変形が開示されている。本願明細書で用いるとき、「光学マニホルド」なる語は、一連の入力開口部を一連の出力開口部に接続し、入力で第1の規則的な配置に複数の光ファイバを収容し、出力で第2の規則的な配置で複数のファイバを出力するために、多数の通路を形成する3次元光学回路の構成要素を指すものとする。光学マニホルドの開口部に関して用いられるとき、「規則的な配置」なる語は、互いに対する1つの孔の実際の空間的な関係または位置を指すわけではなく、むしろ、出力開口部に対する入力開口部の関係を指す。
【0014】
ほんの一例として、図1に関して説明したように、完全シャッフルを実現するための光学マニホルドは第1の規則的な関係を有してもよく、この関係において、行1の孔はケーブル1のファイバ1〜8に対応し、行2の孔はケーブル2のファイバ1〜8に対応し、以下同様である。この特定のシャッフルの場合には、マニホルドの出力端の孔は第2の規則的な関係を有してもよく、この関係において、行1の孔はケーブル1〜8のファイバ1に対応し、行2の孔はケーブル1〜8のファイバ2に対応し、以下同様である。このように、マニホルドの両端の孔は8×8の配列に配置されているが、入力における別の孔に対する1つの孔の規則的な関係は出力における規則的な関係と全く異なっていてもよい。つまり、光学マニホルドを通過している少なくとも2本のファイバの互いに対する位置を単に移動するだけで、マニホルドの入力端および出力端における孔の規則的な関係は異なっているに違いない。
【0015】
個々の光ファイバは、光ケーブルから分離され、光学マニホルドを通って案内され、次に別の光ファイバ、光コネクタ、光導波路またはよく似た任意の他の光学素子と連結されてもよい。本願明細書に図示および説明された実施例のそれぞれは、それぞれが8本の光ファイバを含む8本の光ケーブル、合計64本の個々の光ファイバの利用を必要とするが、これらの光学回路は、設計者の想像力、CADシステムの制限およびステレオリソグラフィまたは他の高速造形機の物理的制限によってのみ制限されるより大きな数またはより少ない数のケーブルおよびファイバを含んでもよいことをさらに留意すべきである。当然のことながら、たとえばそれぞれ8本、12本、16本または24本のファイバを有するケーブルを作成するために、ファイバは通常4の倍数単位で束ねられる。また、本願明細書に図示されている実施例では、光ファイバマニホルドは当業界では公知であるような種々の紫外線効果可能な感光性ポリマーから構成されるが、種々のセラミックおよび金属化合物を用いた高速造形技術を利用することも可能であることを留意すべきである。
【0016】
かなり一般的な光学回路は、行1、列1〜8に対応する個々のファイバを入力し、個々のファイバを列1、行1〜8に経路設定し、行2、列1〜8に対応する個々のファイバを入力し、個々のファイバを列2、行1〜8に経路設定し、以下同様によって実現される完全シャッフルの光学回路である。当然のことながら、図7〜11に示されているように、不完全シャッフル配置を用いてファイバを配列することも可能であり、不完全シャッフル配置では行Nのファイバがそれぞれ、マニホルドの入力端から出力端までN−1個の列の数だけ進む。たとえば、行1では、入力で列1に対応するファイバが列1から出る。入力で列2に対応するファイバが列2から出て、以下同様で、入力列8のファイバは出力列8から出る。行2では、入力列1のファイバは出力列2から出て、入力列2のファイバは列3から出る。以下同様で、入力列8のファイバは、出力列1から出る。さらに、これらの不完全シャッフルは、用いられるCADシステムおよび高速造形機によってのみ制限される任意の数(たとえば、N+1、N−2など)の方法で配置されることを理解すべきである。本願明細書で説明する高速造形の1つの好ましい形態は、ステレオリソグラフィである。これは、本発明の主要な中心ではないが、一部の詳細では、部品がどのようにステレオリソグラフィ技術を用いて一般に作成されるかに留意する価値がある。
【0017】
高速造形は、CADデータソースから直接、3次元の物理的物体を作製するために一般に用いられているさまざまな関連技術に与えられている名称である。これらの方法は、層のように材料を積層することによって、3次元物体を通常作製する点で、互いにほぼ類似している。高速造形はまた、フリーフォーム作製(Free Form Fabrication:「FFF」)、層状製造、自動作製およびこれらの語の他の変形などの名前でも呼ばれる。ステレオリソグラフィ(「SLA」)は、最も一般的に用いられる高速造形技術である。この技術は、液体感光性ポリマーの面の上にレーザビームをトレースまたはラスタライズすることによって1度に1層の3次元プラスチック部品または物体を作製する。レーザビームが液体の面に当たると、この特殊な類のポリマー材料は急速に凝固する。一旦、物体の1層が完全にトレースされると、物体は、感光性ポリマー材料で充填された容器の中のステージで1層の厚さまで薄くして、次に、第2の層が第1の層のちょうど真上にレーザによってトレースされる。感光性ポリマーは本質的に粘着性であり、3次元物体を形成するために積層されるときに、層は互いに接合しやすい。3次元部品の作成後、ステレオリソグラフィ装置が取り除かれ、より完全に硬化し、さらに大きさを安定させるために、紫外線(「UV」)後硬化のオーブン状の装置に配置される。
【0018】
選択的レーザ焼結法の技術は、物体が面上のパターンをトレースするレーザを用いて一度に1層を積層されるという点で、ステレオリソグラフィとある程度類似している。しかし、ポリマーまたは他の材料は通常、粉末の形であり、走査システムの案内の下で当たると、粉末を融解するレーザによって加熱および溶解される。硬化を伴い、用いられる高速造形技術に関係なく、結果として生じる3次元物体は、単独の一体部品であり、最終的な製品を作成するために、いくらかでもあればさらに機械加工をする必要がある。本発明の種々の実施形態の場合には、これらの3次元部品は、光学マニホルドと呼ばれ、任意の数の幾何構成または配置に配置してもよいが、それぞれがマニホルドの単独の入力開口部から単独の出力開口部まで個々の光ファイバを経路設定するための多数の中空通路、チューブまたはチャネルを特徴としている。マニホルドは、直面する可能性がある種々の環境条件および事故からファイバを保護するために十分なほど、相当硬くて強いというさらなる利点を有する。
【0019】
ここで図2を参照すると、積層された8×8シャッフルマニホルド200の斜視図が示されている。ここに示されているように、入力開口部210および出力開口部220が、8×8マトリックスに配置され、入力端の列および出力端の行のそれぞれがその間に配置された支持部材230によって積層構成に配置されている。支持部材230は、列および行の適切な間隔を確保するために機能し、最終的な部品にさらなる強度および硬さを与えるためにも機能する。光ファイバ(図示せず)で充填されると、この特定の実施形態は、列1〜8からの行1の個々のファイバが出力端の列1、行1〜8にまとめられるという点で、完全シャッフルを形成する。入力の行2、列1〜8のファイバは、出力端の列2、行1〜8に配置されるためにシャッフルされ、以下同様であり、行8、列1〜8のファイバは、マニホルドの出力端の列8、行1〜8にシャッフルされる。個々のファイバのいずれもが臨界曲げ径よりきつい曲げを被らないように確実にさせることによって、光学マニホルドを通過するファイバのそれぞれに関して、光信号の損失を最小限に抑え、機械的寿命を最大にするように、CADシステムはプログラムされていることを留意すべきである。
【0020】
図3を参照すると、本発明によって構成される光学マニホルド300の別の実施形態が示されている。この具体的な設計において、マニホルド300の入力開口部310および出力開口部320は、この場合も他方の上に一方が積層されるか、または互いに隣り合うように積層されるが、その間に配置される支持部材は取外されている。さらに、マニホルド300の入力端で、列1〜8は、入力開口部310の各組の間にさらなる間隔を与えるために、隣り合うように交互交替的にずれている。
【0021】
ここで図4を参照すると、図3に示された実施形態によって構築されるマニホルド400が、マニホルド400の入力開口部410につながっている多数の高耐久性ケーブルアタッチメント450の追加によって修正されている。このマニホルド400は、最大8本の高耐久性光ファイバケーブル(図示せず)を収容するのに適している。これらのケーブルのそれぞれは、ケーブルアタッチメント450に連結することができ、次に光学マニホルド400を通って経路設定することができるスナップ嵌合部材を有する。「高耐久性」ケーブルなる語は一般に、「ケブラー」(Kevlar)(登録商標)または他の内部張力保持部材の使用によってさらに補強されることができる丈夫なポリマー外部を有する光ケーブルのタイプを指す。このようなケーブルは、厳しい外部環境からかなりの物理的および機械的保護を有する光ファイバを形成する。
【0022】
ここで図5を参照すると、マルチファイバピッチツール500の詳細図が示されている。このツールは、リボン間隔またはリボンピッチを有するファイバ100を収容し、光学マニホルド400に入れる前に、各ケーブルの個々のファイバを分離または散開するように設計されている。マルチファイバピッチツール500は、マニホルド410の入力開口部とファイバを適切な間隔をとって整列することを確実に行う。
【0023】
当然のことながら、図6に示されているように、個々のファイバをケーブルバンドルにまとめるために、マニホルドの出力開口部にこれと同一の形の高耐久性ケーブルアタッチメントを用いることも可能である。ここで図6を参照すると、図3に示された実施形態のさらに別の変形が示されている。この具体的な光学マニホルド600において、高耐久性ケーブルアタッチメント650は、マニホルド600の入力端610および出力端620の両方に設けられている。
【0024】
ここで図7〜11、特に図7を参照すると、入力端板および出力端板のほか、ネジまたは他の取付けハードウェアのための開口部を特徴とする不完全シャッフルの斜視図が示されている。この具体的な光学マニホルド700の実施形態において、入力行は下から上に1〜8の番号が付けられ、入力列は左から右に1〜8の番号が付けられることを留意されたい。前述したように、この不完全シャッフルの個々のファイバは階段状に再配置される。このシャッフルの手法は、行Nに関してファイバをN−1列移動する。したがって、行1、列1〜8のファイバは、全く移動せずに、出力行1、列1〜8に密接に関連している。入力行2、列1〜8の個々のファイバは、1工程でシャッフルした列を有する出力行2に対応する。この工程で列1の入力は列2の出力に対応し、列2の入力は列3の出力に対応し、以下同様に対応し、列8の入力が列1の出力に対応する。同様に、行3では、列1の入力が列3の出力に対応し、列2の入力が列4の出力に対応し、列8の入力が列2の出力に対応するまで以下同様に対応する。このような連続が行8を通して実行され、列1が出力列8に対応し、入力列2が出力列1に対応し、以下同様に対応し、入力列8が出力列7に対応する。
【0025】
ここで図8を参照すると、図7の光ファイバマニホルド700の下面図が示されている。この図から、ファイバが最小曲げ径を下回らないことと、個々のチューブに封入されるため、個々のファイバがもつれる心配もなくきわめて密に重ねられることができることと、を保証するように、64本の個々のファイバチューブがどのようにして配置されるかを見ることが可能である。さらに、この図は、入力端板705、出力端板715およびネジまたは他の取付けハードウェアのために物体の全体深さを延在する孔730を示している。当業界において公知であるように、マニホルド700は任意の数のシステムまたは構成に取付けられてもよいほか、プリント回路基板によく似た取外し可能なカードに取付けられることも可能であることを理解すべきである。さらに、このマニホルド700は入力端710または出力端720にいかなる類のコネクタも終端装置も示されていないが、図4および6に示されているものとよく似たマニホルド700の入力端および出力端でマルチファイバアタッチメントまたは個々のファイバ接続装置または終端装置を用いてもよいことを理解すべきである。
【0026】
ここで図9を参照すると、図7のマニホルドの側面図が示されている。この図は、マニホルド700を構成する個々のチューブ、チャネルまたは通路の層のそれぞれに関する積層垂直配置を最もよく示している。用いられる高速造形技術の結果として、ファイバのもつれまたは著しい光信号の損失を恐れることなく、きわめてコンパクトかつ効率的な設計を実現することが可能である。高速造形はまた、隣接する通路またはチューブが共通の側壁を共有することが可能である。したがって、本発明によって作成されるマニホルド700は、マニホルドを形成するためにまとめられた予め形成されたチューブを合わせたものよりはるかにコンパクトである。
【0027】
ここで図10を参照すると、図7のマニホルドの拡大斜視図が示されている。ここで、マニホルド700の入力端710は、1〜8のリボンまたはケーブルの番号および入力端で再び1〜8の番号のケーブルを形成する個々のファイバを識別するために利用者用のマーキングを示していることを明確に示している。当然のことながら、マニホルドの行および列は、適切な識別を容易にするほぼすべての任意の方式でラベル付けまたは色分けされてもよい。
【0028】
ここで図11を参照すると、図7に示されたマニホルドの実施形態に関する別の拡大斜視図が示されている。この具体的な図は、これも8〜1のリボンまたはケーブルの番号および1〜8の範囲のファイバ番号を示す利用者用のナンバリングガイドを特徴とするマニホルド700の出力端720を最もよく示している。本発明の独特の利点の1つは、各入力ケーブルの適切に番号付けまたは色分けされたファイバを単に送り込み、マニホルドの対向する端でファイバを適切な出力ケーブルにまとめるだけで、ほぼエラーを防ぐ方法で任意の数の数学的配置のシャッフルを容易にすることであると考えられる。要するに、適切なファイバが適切な入力孔に送り込まれる限り、マニホルドの適切な出力孔から出て、適切なマルチファイバケーブルまたはバンドルに集束されなければならない。
【0029】
ここで図12を参照すると、本発明によって構成される別の代替実施形態が示されている。光学マニホルド800の本体は、一連の積層板810を積み重ねることによって構成されてもよい。これらの板810のそれぞれは、板810の入力端830から出力端840までその全長にわたって延在している多数の溝またはチャネル820を有する。板810は光学マニホルド800を形成するために縁に整列して積層されるように割出されるため、各板810のチャネル820はマニホルド800の一端にある入力開口部をマニホルドの対向する端にある出力開口部と接続する通路として機能する。当然のことながら、これらの板は、固形板にチャネルを圧延すること、面上にチャネルを有する板を成形すること、または上述したような層追加プロセスにおいて板を積み重ねることをはじめとする種々の異なる技術によって製造されることができるが、これらの技術に限定されるわけではない。
【0030】
ここで図13を参照すると、図12に関して記載して説明した光学マニホルドの別の実施形態が示されている。図12の実施形態と同様に、光学マニホルド900の本体は、一連の積層板910を積み重ねることによって構築されることができる。これらの板のそれぞれは、板910の入力端930から出力端940までその全長にわたって延在している多数の溝またはチャネル920を有する。しかし、この具体的な実施形態において、チャネルまたは溝920は、交差を避けるために、各板上に配置される。これは、ファイバが互いに直接接触して入らないようにするため、またはマニホルド900の入力端930から出力端940まで通過中に、ことによると誤ったチャネル920に誤った方向に向けられないようにするために行われることができる。ここで示したように、この態様で構成されるマニホルドは、チャネルを交差させ、ファイバに触れることができる板から同様の光学回路を構成しやすくするために、溝付の板910の数の少なくとも2倍必要である。これはまた、図12に示された実施形態よりz方向においてはるかに長いか、または大きい積層板マニホルドを生じる。
【0031】
ここで図14および15を参照すると、図12および13に示された積層板マニホルドの製造変形をそれぞれ示している。図14および15に示したようなマニホルドの実施形態800’、900’は、この場合もやはり、他方の上に一方の板810’、910’を積層して、マニホルドを形成するように割出すことによって作製される。しかし、図14および15の実施形態は、圧延、切削または板に成形されるチャネルまたは溝820’、920’ではなく、むしろその上にパターンを形成するために特定の板810’、910’に何らかの方法で接着、付着または取付けられるきわめて多数の個々のガイドピース850’,950’を有する。当業者が認識しているように、きわめて多数のガイドピースを作成し、個々の板にガイドピースを取付けた後、マニホルドを形成するために他方の上に一方の板を積層するために必要な手間または製造工程は、特に圧延、射出成形または他の作成技術によって形成される板に比べて相当であると推測される。図14および15は、図12および13に示されたように、積層板マニホルドを作製するためのさらに別のアプローチを示すために設けられている。
【0032】
ここで図16を参照すると、保護ハウジング1010の内部に封入され、プラグインカード1020に取付けられている光学マニホルドの斜視図が示されている。この実施形態はまた、プラグイン式光シャッフルモジュール1000と呼ぶこともできる。ここに示されているように、高耐久性のリボン化された光ケーブル50が、マルチファイバアタッチメント1050に指向され、終端されていないファイバ端が本発明による光シャッフルに入力される。光学マニホルドは、エポキシなどに埋設された成形シート金属、成形ポリマーからなる保護ハウジング1010内部に封入される。シャッフルの後で、個々のファイバがリボン化したバンドル60に再びまとめられ、ブライント嵌合プラグインまたは他の光カードコネクタ1060に指向される。これらのコネクタ1060は、プラグインカード1020の縁でファイバの接続を可能にし、光シャッフルを完全モジュール式即時接続設計において実現することができるようになされた端子として機能する。
【0033】
ここで図17を参照すると、3次元光学回路1200が、この回路に取付けられた単独の高耐久性光ファイバケーブル50の分解詳細図と共に示されている。3次元光学回路は、図4に関して記載して説明したものと類似の光学マニホルド400を特徴としている。このマニホルドは、入力端にある8個の高耐久性ケーブルアタッチメント450を特徴としている。高耐久性ケーブルアタッチメント450は、光ケーブル50の高耐久性外部からクリンプバーブ1230によって光学マニホルド400自体の本体への機械的負荷および応力の伝達を容易にするために、スナップ式のクリンプバーブ1230を収容するようになされている。要するに、本発明の光学マニホルドを利用する光学回路の独特かつ驚くべき特徴の1つは、機械的負荷または応力が実際に、マニホルド自体の一体の本体に伝達および伝搬されることができることにある。これは、マニホルド自体が中を通過しているファイバに対して応力緩和を提供することができるという点で、フレキシブル基板または編込みファイバアプローチとは相当異なる。本発明者らの認識によれば、従来技術は、機械的負荷を伝搬するか、またはファイバ自体に対する応力緩和を提供している間に、光ファイバをシャッフルするか、または光ファイバを回路にまとめることが可能である任意の類の装置を示すことはなかった。
【0034】
ここに示されているように、多数の光ファイバ100を含む高耐久性ケーブル50は、ケーブル50の高耐久性外部部分を最初に切詰めて、露出したファイバ100を張力緩和ブート1210、クリンプリング1220およびクリンプバーブ1230の中を通過させ、ケーブル50の負荷に耐える高耐久性外部にクリンプリング1220を圧着し、高耐久性ケーブル50からバーブ1230に機械的応力を伝達するために、クリンプバーブ1230内部にクリンプリング1220を嵌込み、最後に、バーブ1230をクリンプリング1220、クリンプバーブ1230、マニホルド自体400に応力を伝達するために、マニホルド400の高耐久性アタッチメント450に接続することによって、ケーブル50からマニホルド400を通過させる。高耐久性ケーブル50の光ファイバ100が高耐久性アタッチメント450を通過するとき、マニホルド400と確実に適切に整列するようにするために、ピッチツールなどを用いて広げられてもよい。最後に、3次元光学回路を作製するために、光ファイバ100は、光学マニホルド400の適切な入力開口部410に案内され、挿入される。
【0035】
ここで図18を参照すると、フェルールばね式押しピン型コネクタ1410を有するシャッフリングコネクタ1400として用いるために構築される3次元光学回路が示されている。ここに示されているように、3次元回路に光ファイバ100を配置し、個々のファイバ100をバンドルまたはリボン化した形にまとめるシャッフルアダプタ1460にファイバを出力するために、特に小さい光シャッフル1450を用いてもよい。したがって、リボン化したファイババンドル60は、図示されているように、ブライント嵌合式カードコネクタ1420と共に用いるためのフェルールばね式押しピン型コネクタ1410で終端されてもよい。光プラグインカードまたはモジュールの類などの電子エンクロージャをはじめとする種々の環境に適合するこのように特に小さいシャッフリングコネクタ1400を想定することも可能である。この小さくて、きわめて効率の高いモジュール設計は、従来技術のフレキシブル基板技術および適切なコネクタに取付けるための光ファイバスプライスを用いたシャッフルをはじめとする光学回路を作製するのに必要なきわめて広い面空間とは相当異なる。
【0036】
図19において最もよく分かるように、組立てられたシャッフリングコネクタ1400は、設計において相当コンパクトであってもよい。このモジュール構成要素全体は、長さおよび幅はいずれも2.0インチ未満であり、高さは1.0インチ未満であっても差し支えない。比較のため、類似の機能を実行するために構成されるフレキシブル基板の光学回路は、長さ方向および幅方向の両方において12.0インチ以上必要である可能性があり、z方向においてより薄くしても、電子エンクロージャの密に詰め込まれた環境の中では、そのような広い表面積を確保することは困難である。
【0037】
ここで図20を参照すると、高耐久性ファイバ入力1510、隔壁コネクタ出力1520およびラック取付けに適したハウジング1550を有する集積されたシャッフルモジュール1500を示す3次元光学回路の斜視図が示されている。ここに示されたモジュール設計は、電子エンクロージャ内のラック取付けに適した耐久性ハウジング1550を特徴としている。この具体的な3次元光学回路は、図7〜11に関して図示して説明した実施形態の光学マニホルド700を特徴としている。この3次元光学回路は、ハウジング1550の中で安全な曲げ径を通り、モジュール1500の出力に設けられた光終端部および隔壁コネクタ1520に光ファイバを案内するためのファイバ経路特徴部またはフィン1530をさらに具備している。また、このモジュール1500の入力には、ほぼどんな長さでもよい高耐久性ケーブル50からファイバを収容するようになされ、光ファイバに関する応力緩和をこの場合も提供するために、高耐久性ケーブル50からハウジング自体の本体に機械的負荷および応力を効率的に伝達するための高耐久性ケーブルアタッチメント1510が設けられることを留意すべきである。このモジュール設計はある特定の形の光学マニホルドを特徴としているが、当業者は、実質的に任意の光学マニホルド、特に本発明の一体型の本体を有する高速造形光学マニホルドの実施形態によって形成される光学マニホルドを十分に理解されたい。
【0038】
本発明の好ましい実施形態は実施例および前述の詳細に示してきたが、本発明は開示された実施形態に限定されるわけではなく、以下の特許請求の範囲において定義したように、本発明の精神を逸脱することなく、部品および要素の種々の再配置および修正を行うことができることを理解されたい。したがって、添付特許請求の範囲の精神および範囲は、本願明細書に含まれる好ましい実施形態の説明に限定すべきではない。
【図面の簡単な説明】
【0039】
【図1】完全な8×8光シャッフルにおける多数のケーブルおよびファイバの簡略化した概略図である。
【図2】本発明の一実施形態によって構成され、光学マニホルドの入力端および出力端の種々の行および列の間に、適切な間隔および構造的な硬さを確保するための断面ブレーシング部材を特徴とする光学マニホルドの斜視図である。
【図3】交互交替的に並んでいる入力および積み重ねられた出力を特徴とする本発明の別の実施形態によって構築される光学マニホルドの斜視図である。
【図4】マニホルドの一端に高耐久性ケーブルを収容するための高耐久性ケーブルアタッチメントを特徴とする図3の実施形態による光学マニホルドの斜視図である。
【図5】図4の光学マニホルドと整列されるピッチツールの内部構造を示す詳細斜視図である。
【図6】光学マニホルドの入力端および力端の両方において高耐久性ケーブルアタッチメントを特徴とする図3の実施形態による光学マニホルドの斜視図である。
【図7】入力端板、出力端板および取付けブラケットをさらに組込んだ本発明のさらに別の実施形態による光学マニホルドの斜視図である。
【図8】マニホルドの隅付近に位置する4つの取付け孔を明確に示す図7の実施形態による光学マニホルドの下面図である。
【図9】入力端および出力端の両方における一体端板を特徴とする図7の実施形態による光学マニホルドの側面図である。
【図10】入力端板と、リボンおよびファイバ番号付けシステムと、を特徴とする図7の実施形態による光学マニホルドの詳細斜視図である。
【図11】出力端板と、リボンおよびファイバ番号付けシステムと、を特徴とする図7の実施形態による光学マニホルドの詳細斜視図である。
【図12】刻まれた溝またはチャネルを有する一連の板を積み重ねることによって、本発明によって構成される光学マニホルドの分解斜視図である。
【図13】刻まれた溝またはチャネルを有する一連の板を積み重ねることによって構成される図12に示されたものとは別の実施形態の光学マニホルドの分解斜視図である。
【図14】溝またはチャネルを形成するために、表面に固着される複数のファイバガイド部品を有する一連の板を積み重ねることによって、本発明によって構成される光学マニホルドの分解斜視図である。
【図15】溝またはチャネルを形成するために、表面に固着される複数のファイバガイド部品を有する一連の板を積み重ねることによって構成される図14に示されたものとは別の光学マニホルドの分解斜視図である。
【図16】光学マニホルドが保護ハウジング内部に封入され、プラグインカード上に取付けられている本発明によって構築される3次元光学回路の斜視図である。
【図17】光学マニホルドにおいて高耐久性光ケーブルが高耐久性ケーブルアタッチメントに連結される本発明によって構築される3次元光学回路の分解斜視図である。
【図18】フェルールばね式押しピン型コネクタを有するシャッフリングコネクタを示す本発明によって構築される3次元光学回路の分解斜視図である。
【図19】フェルールばね式押しピン型コネクタを有するシャッフリングコネクタを示す図18に示された3次元光学回路の組立斜視図である。また、
【図20】高耐久性ファイバ入力、隔壁コネクタ出力を備えた総合シャッフルモジュールおよびラック取付けに適したエンクロージャを示す本発明によって構築される3次元光学回路の斜視図である。

Claims (31)

  1. 入力端および出力端を有する一体型本体と、
    第1の規則的な配置において複数の入力開口部を有する前記入力端と、
    前記第1の規則的な配置とは異なる第2の規則的な配置において複数の出力開口部を有する前記出力端と、
    複数の一体形成される通路をさらに含み、前記通路のそれぞれが単独の入力開口部を単独の出力開口部と接続させる前記一体型本体と、
    を具備する光学マニホルド。
  2. 前記一体型本体が、ポリマー材料から形成される、請求項1に記載の光学マニホルド。
  3. 前記一体型本体が、必要なポリマー材料の量を低減するために空隙を含む、請求項2に記載の光学マニホルド。
  4. 前記一体型本体が、金属から形成される、請求項1に記載の光学マニホルド。
  5. 前記一体型本体が、追加製造プロセスによって形成される、請求項1に記載の光学マニホルド。
  6. 前記通路が、研磨剤を含むスラリ研磨によって滑らかにされている、請求項1に記載の光学マニホルド。
  7. 少なくとも1つの高耐久性ケーブルアタッチメントが、前記一体型本体の前記入力端または前記出力端に設けられる、請求項1に記載の光学マニホルド。
  8. 前記少なくとも1つの高耐久性ケーブルアタッチメントが、張力緩和を提供するために、高耐久性ケーブルの耐負荷部分を前記一体型本体に固締する、請求項7に記載の光学マニホルド。
  9. 少なくとも1本のマルチファイバ終端装置が、前記一体型本体の前記入力端または前記出力端に作成されている、請求項1に記載の光学マニホルド。
  10. 前記一体型本体が、保護ハウジング内部に密閉されている、請求項1に記載の光学マニホルド。
  11. 少なくとも1つの光コネクタが、前記保護ハウジングに固締されている、請求項10に記載の光学マニホルド。
  12. 前記一体型本体が、光シャッフルモジュールを形成するために、プラグインカードに取付けられている、請求項1に記載の光学マニホルド。
  13. 前記光シャッフルモジュールが、ラック取付けされている、請求項12に記載の光学マニホルド。
  14. 複数の板を有し、前記板のそれぞれが入力端および出力端を有する本体を含み、
    各板が前記入力端から前記出力端まで各板の全長に広がる複数のチャネルで形成され、
    前記本体が積層構成に前記複数の板を配置することによって構築され、前記チャネルのそれぞれが単独の入力開口部を単独の出力開口部と接続させる通路を形成する、
    光学マニホルド。
  15. 前記少なくとも1本の通路が、非直線である、請求項14に記載の光学マニホルド。
  16. 少なくとも2つのチャネルが、少なくとも1枚の板上で交差する、請求項14に記載の光学マニホルド。
  17. 前記板が、実質的に剛性である、請求項14に記載の光学マニホルド。
  18. 前記板が、互いに対して前記板を割り出すための整列手段をさらに具備する、請求項14に記載の光学マニホルド。
  19. 前記チャネルが、前記板のそれぞれを圧延することによって形成される、請求項14に記載の光学マニホルド。
  20. 前記チャネルが、前記板のそれぞれを射出成形することによって形成される、請求項14に記載の光学マニホルド。
  21. 複数の中空のチューブを有する本体であって、前記チューブのそれぞれが入力端および出力端を有する、本体と、
    第1の規則的な配置において複数の入力開口部を有する第1の端板と、
    前記第1の規則的な配置とは異なる第2の規則的な配置において複数の出力開口部を有する第2の端板と、を含み、
    前記本体が、前記第1の端板と前記第2の端板との間に配置され、前記中空のチューブのそれぞれが単独の入力開口部を単独の出力開口部に接続させる光学マニホルド。
  22. 前記チューブが、可撓性である、請求項21に記載の光学マニホルド。
  23. 前記チューブが、実質的に剛性である、請求項21に記載の光学マニホルド。
  24. 前記チューブが、2つの半円筒ハーフから形成される、請求項23に記載の光学マニホルド。
  25. 前記チューブが、色分けされている、請求項21に記載の光学マニホルド。
  26. (a)第1の規則的な配置において複数の入力開口部を有する入力端と、
    (b)前記第1の規則的な配置とは異なる第2の規則的な配置において複数の出力開口部を有する出力端と、
    (c)複数の通路であって、前記通路のそれぞれが単独の入力開口部を単独の出力開口部と接続させる通路と、
    を具備する光学マニホルド。
  27. 光ファイバを接続する方法であって、
    (a)(i)第1の規則的な配置において複数の入力開口部を有する入力端と、(ii)前記第1の規則的な配置とは異なる第2の規則的な配置において複数の出力開口部を有する出力端と、(iii)複数の通路であって、前記通路のそれぞれが単独の入力開口部を単独の出力開口部と接続させる通路と、を含む光学マニホルドを形成する工程と、
    (b)前記マニホルドの中に光ファイバを通す工程と、
    (c)前記光学マニホルドの前記出力端においてのみ前記光ファイバを終端して、前記光学マニホルド内部にファイバスプライスがないようにする工程と、を含む方法。
  28. (a)光学マニホルドを代表するCADデータソースを作成する工程、および
    (b)前記CADデータソースを用いて高速造形プロセスによって前記光学マニホルドを作成する工程
    を含む光学マニホルドの作製方法。
  29. (a)マニホルド内部に位置する個々のファイバが、臨界曲げ径よりきつい曲げを被らせないことを保証するようにプログラムされるCADシステムを用いて、光学マニホルドを設計する工程、および
    (b)前記CADシステムによるデータを用いて高速造形プロセスによって前記光学マニホルドを作成する工程
    を含む光学マニホルドの作製方法。
  30. (a)光ファイバ用の隣接通路が、共通の側壁を共有するように、CADシステムを用いて、光学マニホルドを設計する工程、および
    (b)前記CADシステムによるデータを用いて高速造形プロセスによって前記光学マニホルドを作成する工程を含む光学マニホルドの作成方法。
  31. それぞれが入力端を出力端に接続させ複数の通路を含む本体を含み、前記本体が、中を通過する光ファイバに対して応力緩和を提供する、光学マニホルド。
JP2003519667A 2001-08-10 2002-07-11 光学マニホルド Withdrawn JP2004538508A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/927,663 US6850684B2 (en) 2001-08-10 2001-08-10 Three dimensional optical circuits
PCT/US2002/022383 WO2003014793A1 (en) 2001-08-10 2002-07-11 Optical manifold

Publications (2)

Publication Number Publication Date
JP2004538508A true JP2004538508A (ja) 2004-12-24
JP2004538508A5 JP2004538508A5 (ja) 2006-01-05

Family

ID=25455064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003519667A Withdrawn JP2004538508A (ja) 2001-08-10 2002-07-11 光学マニホルド

Country Status (8)

Country Link
US (4) US6850684B2 (ja)
EP (2) EP1423742B1 (ja)
JP (1) JP2004538508A (ja)
KR (1) KR20040023737A (ja)
CN (1) CN1541343A (ja)
AT (1) ATE297557T1 (ja)
DE (1) DE60204578D1 (ja)
WO (1) WO2003014793A1 (ja)

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6102559A (en) * 1999-01-25 2000-08-15 Ford Motor Company Multi-function vehicle taillight system with unitary optic
US6931195B2 (en) * 2003-08-05 2005-08-16 Agilent Technologies, Inc. Parallel fiber-fan-out optical interconnect for fiber optic system
US7099547B2 (en) 2004-02-12 2006-08-29 Panorama Labs Pty Ltd Apparatus, method, and computer program product for structured waveguide transport using microbubbles
CN101076744B (zh) * 2004-04-23 2010-05-12 光处方革新有限公司 用于发光二极管的光学歧管
US7556490B2 (en) * 2004-07-30 2009-07-07 Board Of Regents, The University Of Texas System Multi-material stereolithography
DE102004059933A1 (de) * 2004-12-09 2006-08-17 Siemens Ag Optische Koppelstelle für einen Lichtleiter mit mehreren Einzelleitern
GB2421641B8 (en) * 2004-12-22 2007-11-20 Brand Rex Ltd Improvements in blown optical fibre multi-tube terminal connectors
WO2006077961A1 (ja) * 2005-01-21 2006-07-27 Nec Corporation 光通信モジュールおよび光信号伝送方法
US7658603B2 (en) * 2005-03-31 2010-02-09 Board Of Regents, The University Of Texas System Methods and systems for integrating fluid dispensing technology with stereolithography
AU2006236409B2 (en) * 2005-04-19 2011-05-19 Adc Telecommunications, Inc. Loop back plug and method
US7780897B2 (en) * 2005-04-22 2010-08-24 Board Of Regents, The University Of Texas System Hydrogel constructs using stereolithography
US8798427B2 (en) 2007-09-05 2014-08-05 Corning Cable Systems Llc Fiber optic terminal assembly
US7689079B2 (en) * 2008-01-11 2010-03-30 Corning Cable Systems Llc Optical fiber interconnection devices and systems using same
US8382516B2 (en) * 2008-10-02 2013-02-26 Thales Avionics, Inc. Adaptable configuration plug in a vehicle entertainment system
US8573855B2 (en) 2008-10-06 2013-11-05 Adc Telecommunications, Inc. Fanout cable assembly and method
AU2008362634A1 (en) 2008-10-09 2010-04-15 Corning Cable Systems (Shanghai) Co., Ltd Fiber optic terminal having adapter panel supporting both input and output fibers from an optical splitter
US8879882B2 (en) 2008-10-27 2014-11-04 Corning Cable Systems Llc Variably configurable and modular local convergence point
DE102008062535A1 (de) * 2008-12-16 2010-06-17 Adc Gmbh Micro-Distribution-Kabel für die optische Nachrichtentechnik und Verfahren zur Herstellung eines Micro-Distribution-Kabels
EP2237091A1 (en) 2009-03-31 2010-10-06 Corning Cable Systems LLC Removably mountable fiber optic terminal
US20100303431A1 (en) * 2009-05-29 2010-12-02 Cox Terry D Fiber Optic Harnesses and Assemblies Facilitating Use of a Pre-Connectorized Fiber Optic Cable(s) with a Fiber Optic Terminal
EP2260937A1 (en) 2009-06-12 2010-12-15 DSM IP Assets B.V. Device for processing and conditioning of material transported through the device
FR2947916B1 (fr) * 2009-07-10 2011-12-09 Draka Compteq France Cable eclateur de fibres optiques
US8467651B2 (en) * 2009-09-30 2013-06-18 Ccs Technology Inc. Fiber optic terminals configured to dispose a fiber optic connection panel(s) within an optical fiber perimeter and related methods
US8485737B2 (en) * 2009-10-29 2013-07-16 Commscope, Inc. Of North Carolina Optical fiber array connectivity system for multiple transceivers and/or multiple trunk cables
US9547144B2 (en) 2010-03-16 2017-01-17 Corning Optical Communications LLC Fiber optic distribution network for multiple dwelling units
US8792767B2 (en) 2010-04-16 2014-07-29 Ccs Technology, Inc. Distribution device
US9720197B2 (en) 2010-10-19 2017-08-01 Corning Optical Communications LLC Transition box for multiple dwelling unit fiber optic distribution network
JP5759183B2 (ja) * 2011-01-14 2015-08-05 Seiオプティフロンティア株式会社 光コネクタ及びその組立方法
US8687934B2 (en) * 2011-03-21 2014-04-01 Tyco Electronics Corporation Fiber optic component holders and enclosures and methods including the same
CN102809784B (zh) * 2011-06-02 2014-08-27 富士康(昆山)电脑接插件有限公司 光背板组件
US9219546B2 (en) 2011-12-12 2015-12-22 Corning Optical Communications LLC Extremely high frequency (EHF) distributed antenna systems, and related components and methods
WO2013123353A1 (en) 2012-02-16 2013-08-22 Apple Inc. Interlocking flexible segments formed from a rigid material
US10110307B2 (en) 2012-03-02 2018-10-23 Corning Optical Communications LLC Optical network units (ONUs) for high bandwidth connectivity, and related components and methods
US9132510B2 (en) 2012-05-02 2015-09-15 Apple Inc. Multi-step pattern formation
US9004778B2 (en) 2012-06-29 2015-04-14 Corning Cable Systems Llc Indexable optical fiber connectors and optical fiber connector arrays
US9274299B2 (en) 2012-08-29 2016-03-01 International Business Machines Corporation Modular optical backplane and enclosure
US9049500B2 (en) 2012-08-31 2015-06-02 Corning Cable Systems Llc Fiber optic terminals, systems, and methods for network service management
US8909019B2 (en) 2012-10-11 2014-12-09 Ccs Technology, Inc. System comprising a plurality of distribution devices and distribution device
US10086484B2 (en) 2012-10-12 2018-10-02 Apple Inc. Manufacturing of computing devices
US9325604B2 (en) * 2013-03-15 2016-04-26 Plexxi Inc. System and method for data center optical connection
US9124959B2 (en) * 2013-08-05 2015-09-01 Telefonaktiebolaget L M Ericsson (Publ) High connectivity multiple dimension optical network in glass
US9852723B2 (en) 2014-03-27 2017-12-26 Apple Inc. Acoustic modules
US9451065B2 (en) 2014-04-03 2016-09-20 Apple Inc. Adaptive plug for edge protection
US10335979B2 (en) 2014-09-30 2019-07-02 Apple Inc. Machining features in a ceramic component for use in an electronic device
US10071539B2 (en) 2014-09-30 2018-09-11 Apple Inc. Co-sintered ceramic for electronic devices
US10054753B2 (en) 2014-10-27 2018-08-21 Commscope Technologies Llc Fiber optic cable with flexible conduit
US9778433B2 (en) * 2014-10-27 2017-10-03 Commscope Technologies Llc Splice module for fiber blade
US10207387B2 (en) 2015-03-06 2019-02-19 Apple Inc. Co-finishing surfaces
US10257268B2 (en) 2015-03-09 2019-04-09 Vapor IO Inc. Distributed peer-to-peer data center management
EP3254540B1 (en) 2015-03-09 2020-12-02 Vapor Io Inc. Rack for computing equipment
US10404523B2 (en) 2015-03-09 2019-09-03 Vapor IO Inc. Data center management with rack-controllers
US10833940B2 (en) 2015-03-09 2020-11-10 Vapor IO Inc. Autonomous distributed workload and infrastructure scheduling
AU2015207954C1 (en) 2015-07-31 2022-05-05 Adc Communications (Australia) Pty Limited Cable breakout assembly
US10216233B2 (en) 2015-09-02 2019-02-26 Apple Inc. Forming features in a ceramic component for an electronic device
US9985842B2 (en) 2015-10-30 2018-05-29 Vapor IO Inc. Bus bar power adapter for AC-input, hot-swap power supplies
US10454772B2 (en) 2015-10-30 2019-10-22 Vapor IO Inc. Compact uninteruptable power supply
WO2017161310A1 (en) 2016-03-18 2017-09-21 Commscope Technologies Llc Optic fiber cable fanout conduit arrangements; components, and methods
JP2017187678A (ja) * 2016-04-07 2017-10-12 住友電気工業株式会社 光配線部材
CN105676353B (zh) * 2016-04-13 2019-03-19 苏州光幔集成光学有限公司 一种光背板接口
US10274689B2 (en) * 2016-08-19 2019-04-30 Lijie Qiao Regroup optical cable
EP3507633A4 (en) 2016-08-31 2020-04-01 Commscope Technologies LLC FIBER OPTIC CABLE TIGHTENING AND TIGHTENING DEVICE
EP3526633A4 (en) 2016-10-13 2020-05-20 Commscope Technologies LLC GLASS FIBER WHIP TRANSITION ARRANGEMENT WITH EPOXY PLUG AND CABLE DRAW RELEASE
US11561357B2 (en) 2017-04-21 2023-01-24 CommScope Connectivity Belgium BVBA Fiber optic connection modules
EP3622336A4 (en) 2017-05-08 2021-01-20 Commscope Technologies LLC OPTICAL FIBER BYPASS TRANSITION KIT
US10542628B2 (en) 2017-08-02 2020-01-21 Apple Inc. Enclosure for an electronic device having a shell and internal chassis
CN107671284B (zh) * 2017-08-30 2019-09-10 杭州德迪智能科技有限公司 基于光纤激光熔融的3d打印装置
US10234644B1 (en) * 2017-10-20 2019-03-19 Corning Optical Communications LLC Optical-electrical printed circuit boards with integrated optical waveguide arrays and photonic assemblies using same
US10678012B1 (en) 2019-05-22 2020-06-09 Corning Research & Development Corporation Fiber optic cable assembly with integrated shuffle and fabrication method
CN112305674B (zh) * 2019-07-31 2022-04-29 华为技术有限公司 一种光交叉装置
CN112835161A (zh) * 2019-11-22 2021-05-25 富晋精密工业(晋城)有限公司 光纤光缆
WO2021166084A1 (ja) * 2020-02-18 2021-08-26 住友電気工業株式会社 光コネクタ付きファイバ接続構造、及びモジュール
US11415753B2 (en) 2020-04-30 2022-08-16 Corning Research & Development Corporation High-density FAUs and optical interconnection devices and related methods
CN114578488B (zh) * 2020-12-01 2024-03-12 深南电路股份有限公司 光纤线路板单元、光传输装置以及光电混合线路板
IL283017B2 (en) * 2021-05-06 2023-11-01 Fibernet Ltd Fiber optic connector
WO2022240838A1 (en) * 2021-05-13 2022-11-17 Commscope Technologies Llc Shuffle cable
US11770906B2 (en) 2021-08-27 2023-09-26 Schlumberger Technology Corporation 3D-printed ceramics with conductor infusion for ultra-high-speed electronics

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023887A (en) * 1972-10-30 1977-05-17 General Optimation, Inc. Optical communication, switching and control apparatus and systems and modular electro-optical logic circuits, and applications thereof
US4086001A (en) * 1975-01-13 1978-04-25 Honeywell Inc. Planar optical waveguide
FR2520516A1 (fr) * 1982-01-27 1983-07-29 Silec Liaisons Elec Dispositif de preparation en nappe des extremites de fibres optiques reparties autour d'une structure a symetrie axiale
JPS5995063A (ja) * 1982-11-22 1984-05-31 株式会社東芝 走査式レ−ザ装置
CA1249742A (en) 1983-12-08 1989-02-07 Yves Tremblay Fiber optic star coupler
US4812002A (en) * 1986-10-24 1989-03-14 Hitachi, Ltd. Optical coupling device and method of making the same
JPS63138306A (ja) 1986-11-29 1988-06-10 Nippon Telegr & Teleph Corp <Ntt> 光フアイバ接続部収納体
JPS63286807A (ja) 1987-05-20 1988-11-24 Canon Inc 光ファイバ
US4902092A (en) 1988-01-04 1990-02-20 Prestolite Wire Corporation Multi-piece connector and receptacle therefor
US4923275A (en) 1988-10-07 1990-05-08 Eastman Kodak Company Fiber optic array
US5537501A (en) 1989-11-24 1996-07-16 Nippon Telegraph And Telephone Corporation Optical connector
US5009475A (en) 1989-12-27 1991-04-23 Advance Display Technologies, Inc. Image transfer device and method of manufacture
US5155785A (en) 1991-05-01 1992-10-13 At&T Bell Laboratories Optical fiber interconnection apparatus and method
US5134673A (en) 1991-05-10 1992-07-28 At&T Bell Laboratories Optical fiber array splicing device
US5204925A (en) 1991-09-11 1993-04-20 At&T Bell Laboratories Optical interconnection of circuit packs
US5222179A (en) 1992-03-02 1993-06-22 Porta Systems Corp. Means for routing ribbon type fiber optic cable
US5239609A (en) 1992-03-03 1993-08-24 Porta Systems Corp. Means for routing buffer tube type fiber optical cable
JP3333843B2 (ja) 1993-03-11 2002-10-15 日本碍子株式会社 光コリメータアレイの光軸合わせ方法
GB9308689D0 (en) 1993-04-27 1993-06-09 Stockman Anthony J An optical fibre manifold
US5367595A (en) 1993-07-15 1994-11-22 General Motors Corporation Fiber optic connector for connecting a fiber optic harness to an optical device
US5394502A (en) 1993-12-21 1995-02-28 United Technologies Corporation Fiber optic cable harness break-out fitting
US5381501A (en) 1994-01-27 1995-01-10 General Motors Corporation Fiber optic bundle connector including a hollow cone and a terminal block
TW323341B (ja) * 1995-01-09 1997-12-21 Minnesota Mining & Mfg
US5715345A (en) 1995-02-27 1998-02-03 Hughes Danbury Optical Systems, Inc. Optical beam regeneration by optical fiber remapping
US5568574A (en) * 1995-06-12 1996-10-22 University Of Southern California Modulator-based photonic chip-to-chip interconnections for dense three-dimensional multichip module integration
US5668574A (en) * 1995-06-26 1997-09-16 Chung-Chin Chen Palm-top wireless trackball
JPH09222536A (ja) * 1995-12-13 1997-08-26 Furukawa Electric Co Ltd:The 多心光コネクタ
US6367985B1 (en) 1996-03-12 2002-04-09 Intellectual Property Company Optical connector using large diameter alignment features
US5832150A (en) 1996-07-08 1998-11-03 Laser Power Corporation Side injection fiber optic coupler
GB2314214B (en) 1996-06-13 2000-09-20 Marconi Gec Ltd Optical backplane
US5734777A (en) 1996-06-18 1998-03-31 Siecor Corporation Strain relief device for plurality of optical ribbon fibers
US5926598A (en) 1997-06-10 1999-07-20 Klein; Dennis Apparatus for breaking out ribbonized fiber optic cables
US6034821A (en) 1997-09-05 2000-03-07 Nec Research Institute, Inc. Optomechanical components for use as optical interconnects
US6005991A (en) 1997-11-26 1999-12-21 Us Conec Ltd Printed circuit board assembly having a flexible optical circuit and associated fabrication method
SE9704466L (sv) * 1997-12-01 1999-06-02 Ericsson Telefon Ab L M Förbindningsorgan för optofibrer
WO1999045719A1 (en) 1998-03-04 1999-09-10 Ciena Corporation Optical shuffle network interconnection
JPH11258448A (ja) 1998-03-13 1999-09-24 Nippon Telegr & Teleph Corp <Ntt> 光相互接続装置及びその製造方法
US6151437A (en) 1998-04-13 2000-11-21 Litton Systems, Inc. Junction enclosure for fiber optic telemetry system
AU4849899A (en) 1998-06-30 2000-01-17 Trustees Of Tufts College Multiple-material prototyping by ultrasonic adhesion
US6088493A (en) 1998-08-04 2000-07-11 Ciena Corporation Fiber shuffle interconnection apparatus and method
US6185348B1 (en) 1999-01-19 2001-02-06 Lucent Technologies Inc. Apparatus and method for manufacturing a multifiber interconnection circuit
US6148134A (en) 1999-03-25 2000-11-14 Schoonscan, Inc. Fiber mounts for fiber optic harness in a fiber optic-based imaging system
US6381390B1 (en) * 1999-04-06 2002-04-30 Alcatel Color-coded optical fiber ribbon and die for making the same
US6304784B1 (en) 1999-06-15 2001-10-16 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Flexible probing device and methods for manufacturing the same
US6351590B1 (en) * 1999-06-30 2002-02-26 Lucent Technologies Inc. Optical harness with optical connector and cross-connect method
US6222976B1 (en) 1999-06-30 2001-04-24 Lucent Technologies Inc. Optical harness and cross-connect method
US6421493B1 (en) 2000-03-24 2002-07-16 Fitel Usa Corp. Apparatus and method for assembling and aligning a plurality of optical fibers
US6464404B1 (en) 2000-06-19 2002-10-15 Schott Fiber Optics, Inc. Optical fiber rearrangement method and device
JP2002116360A (ja) 2000-08-15 2002-04-19 Fci シャッフル装置
GB0113880D0 (en) 2001-06-07 2001-08-01 M M Telecables Ltd Improvements in and relating to optical fibres

Also Published As

Publication number Publication date
KR20040023737A (ko) 2004-03-18
ATE297557T1 (de) 2005-06-15
EP1423742A1 (en) 2004-06-02
EP1423742B1 (en) 2005-06-08
US6850684B2 (en) 2005-02-01
US20030031449A1 (en) 2003-02-13
CN1541343A (zh) 2004-10-27
US6847774B2 (en) 2005-01-25
US20030031448A1 (en) 2003-02-13
US20030031419A1 (en) 2003-02-13
EP1462835A3 (en) 2005-04-06
EP1462835A2 (en) 2004-09-29
US7597483B2 (en) 2009-10-06
WO2003014793A1 (en) 2003-02-20
US6655848B2 (en) 2003-12-02
US20030031420A1 (en) 2003-02-13
DE60204578D1 (de) 2005-07-14

Similar Documents

Publication Publication Date Title
JP2004538508A (ja) 光学マニホルド
US6549710B2 (en) Method of making a three dimensional optical circuit
EP1415186B1 (en) In-line shuffle modules utilizing three dimensional optical circuits
US20180275356A1 (en) Optical shuffle cable, cable assembly, and methods of making the same
US6585524B2 (en) Optical fiber rearrangement method and device
EP1436650B1 (en) Use of an apparatus of cross-connecting optical fibres
EP0378235A2 (en) Optical fiber wiring apparatus
EP1444540B1 (en) Method and apparatus of cross-connecting optical fibers with layered substrates forming fiber optic ribbons
US6721042B1 (en) Fiber optic apparatus and method for cross-connecting optical fibers
JP2006194925A (ja) 光ファイバ構造体及びその製造方法
JP7341689B2 (ja) 接続ハーネス
JP4395389B2 (ja) 光ファイバテープ心線保護部材及び光ファイバコネクタフェルールの接続方法
JP2003131046A (ja) 光配線接続構造
CN117561465A (zh) 包括带状化光纤和光纤布线设备的光模块

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050707

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060414