JP2004528916A - 身体領域内の標的の深さ、輝度およびサイズを決定するための方法および装置 - Google Patents

身体領域内の標的の深さ、輝度およびサイズを決定するための方法および装置 Download PDF

Info

Publication number
JP2004528916A
JP2004528916A JP2002589773A JP2002589773A JP2004528916A JP 2004528916 A JP2004528916 A JP 2004528916A JP 2002589773 A JP2002589773 A JP 2002589773A JP 2002589773 A JP2002589773 A JP 2002589773A JP 2004528916 A JP2004528916 A JP 2004528916A
Authority
JP
Japan
Prior art keywords
subject
light
light intensity
source
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002589773A
Other languages
English (en)
Other versions
JP4259879B2 (ja
Inventor
ブラッドレイ ダブリュー. ライス,
ダニエル ジー. スターンズ,
タマラ エル. トロイ,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xenogen Corp
Original Assignee
Xenogen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xenogen Corp filed Critical Xenogen Corp
Publication of JP2004528916A publication Critical patent/JP2004528916A/ja
Application granted granted Critical
Publication of JP4259879B2 publication Critical patent/JP4259879B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"

Abstract

被験体における発光源の位置およびサイズを調査する方法が開示される。この方法を実施する際に、(i)発光源から発生し、(ii)被験体の混濁生物学的組織を通して進み、そして(iii)被験体の目的の第1の表面領域から発光する、光子を測定することによって、光強度プロフィールを、光検出器デバイスを用いる第1の投射から、最初に得る。光強度プロフィールは、深さおよびサイズのような関数パラメータを予測するために、パラメータに基づく生物光学的関数に対して整合される。このように決定されたパラメータは、第1の測定された光強度プロフィール以外のデータを使用して精密化され、被験体における発光源のおよその深さおよびサイズを得る。この方法を実施するための装置もまた開示される。

Description

【技術分野】
【0001】
(発明の分野)
本発明は、非侵襲性医学的画像化、医学的研究、病理学、ならびに薬物の発見および開発の分野のための装置および方法に関する。
【背景技術】
【0002】
(発明の背景)
種々の医学的診断および治療設定において、ならびに生体医学的研究において、被験体の身体領域内の表面下標的または領域を画像化することは望ましい。例えば、固形腫瘍の一部もしくは全て、心筋虚血の領域、被験体に投与された治療化合物の分布、または疾患の進行を非侵襲的に位置決定し、画像化することは、有用な研究または診断情報を提供し得る。理想的には、画像化方法は、身体領域内の目的の標的を位置決定し得、その身体領域の表面の下にあるその標的の形状、サイズ、細胞数、および深さについての情報を提供し得る。しかし、これまでは、表面下の身体標的画像化のために使用され、そして/または提唱されてきた方法は、一般に、X線のような電離放射線、磁気共鳴画像法(MRI)のような高価かつ大きくて扱いにくい機器、または超音波を使用する方法に制限されてきた。
【0003】
X線は、優れた組織透過性を有し、コンピュータ連動断層撮影(CT)またはコンピュータ断層撮影(CAT)とともに使用される場合には、優れた画質を提供し得る。しかし、X線への曝露は、そのような曝露が長期化される場合には、潜在的に有害であるので、X線は、疾患の進行をモニタリングする際の使用を制限してきた。X線は、身体領域内の標的に位置した組成物を位置決定および画像化するために使用され得るが、常に、X線照射と関連した潜在的な有害性に曝されてはいる。しかし、X線は、インビボでの遺伝子産物の発現を画像化し、このような遺伝子産物を発現する標的の深さおよび/または形状を決定するためには、容易に使用することができない。
【0004】
MRIはまた、被験体の身体領域における標的、領域および構造を画像化するための優れた方法である。MRIは、電離照射と関連するもののような有害な属性を有するとは考えられていないが、MRIの使用のために必要な、その高価かつ大きく扱いにくい機器の大きさにより、多くの応用または状況が実際的なものではなくなっている。MRIは、被験体の身体領域以内の標的についての二次元情報および三次元情報を提供し得るが、標的と関連した生理学的活性を画像化する際にはあまり有効でない。
【0005】
超音波または超音波検査法は、ヒト身体内の構造の画像を生成するための高周波数音波(超音波)の使用である。超音波は、ヒトが聞き取れる音の範囲を超えた音波である。超音波は、圧電性結晶の電気刺激により発生され、このような波は、特定の身体領域にねらいをつけられ得る。波が身体領域内の身体組織を通って進むにつれて、波は、例えば、身体の2つの異なる器官の間の境界のように、組織密度が変化する任意の地点で反射される。超音波は、照射も放射活性物質も使用しないという利点を提供し、MRIほど、高価でもなく、大きく扱いにくい機器も使用しないが、下にある組織および構造の密度の違いを認識することにのみ制限される。従って、超音波は、感染により標的組織の密度に認識可能な変化が生じなければ、このような感染の進行を効率的に追跡しかつモニターすることはできない。超音波は、組織または器官の生理学的機能を画像化することも検出することもできない。
【0006】
これまで、陽子射出断層撮影法すなわちP.E.T.は、器官または組織の機能の画像を生成するので、画像化技術の中では、独特であった。他の画像化技術(例えば、X線、CT、MRIおよび超音波撮影)は、器官または組織の解剖学的構造を示すが、器官または組織内の生理学的活性を認識することはできない。器官の特定の生化学的活性を画像化するために、放射活性物質(放射性トレーサーまたは放射性医薬品といわれる)が身体内に注入または吸入されている。このトレーサーは、通常、水または糖のような身体内に天然に存在する物質の放射性等価物である。放射活性同位体は、その原子が、異なる中性子の数を有することを除いて、身体自身の非放射活性同位体に同一である。結論として、被験体の身体は、放射活性物質が負荷され、このような物質と関連する潜在的な有害性が負荷される。P.E.T.は、トランスジェニック組織、器官、またはトランスジェニック動物に由来する非同位体発現産物を検出できない。身体の放射線源の二次元写真が、放射性同位体の使用により得られる診断技術である、シンチグラフィーはまた、構造およびそれらの機能を画像化するために使用され得る。しかし、シンチグラフィーは、被験体の身体領域における標的の深さを決定するためには適切ではない。
【発明の開示】
【発明が解決しようとする課題】
【0007】
被験体の身体領域における標的の位置決めおよび画像化のための上述の技術の観点から、このような標的の深さおよび/または形状および/または細胞の数を、放射活性、放射線、または高価なかつ嵩高い機器を使用する必要なく決定するための、方法およびデバイスに対する必要性が存在する。本明細書中に開示される本発明は、これらの必要性を満たす。
【課題を解決するための手段】
【0008】
(発明の要旨)
1つの局面において、本発明は、被験体における発光源の位置、サイズおよび細胞数を調査するための方法を包含する。この方法を実施する際に、(i)発光源から発生し、(ii)被験体の混濁生物学的組織を通して進み、そして(iii)被験体の目的の第1の表面領域から発光する、光子を測定することによって構築される、第1の測定された光強度プロフィールを、光検出器デバイスを用いる第1の投射から、最初に得る。光強度プロフィールは、深さおよびサイズのような関数パラメータを予測するために、パラメータに基づく生物光学的関数に整合される。このように決定されたパラメータは、第1の測定された光強度プロフィール以外のデータを使用して精密化され、被験体における発光源のおよその深さおよび大きさを得る。さらなるデータは、被験体から測定されたデータ、モデリング分析からのデータ、または被験体の表面から放出された光子の波長に関連するデータであり得る。例えば、以下である:
この方法は、代表的に、被験体における発光源のおよその深さおよび形状を使用して、発光源の2−Dまたは3−Dの可視的表示を作成する工程、ならびにこの可視的表示を、被験体の2−Dまたは3−Dの画像に重ね合わせる工程を包含する。
【0009】
さらなるデータは、混濁媒体における発光源からの光の拡散のコンピュータシミュレーションから得られ得る。1つの好ましいシミュレーションアプローチは、(i)複数の深さの1つで位置し、かつ複数のサイズおよび形状の1つを有するグロー源から、生物学的祖組織と類似の吸収特性および散乱特性を有する混濁媒体を通る、光子拡散のモデルに基づいて、複数の理論的光強度プロフィールを作成する工程、(ii)これらの複数の理論的光強度プロフィールの各々と、第1の測定された光強度プロフィールとの間の一致の質を比較する工程、(iii)この第1の測定された光強度プロフィールを提供する理論的光強度プロフィールを選択する工程、ならびに(iv)(iii)で選択された理論的光強度プロフィールからのパラメータを使用して、被験体における源の適切な深さ、形状および輝度を得る工程、を包含する。この方法は、光子散乱モデルにおいて、光子が通過する組織に対応する1つ以上の予め決定された組織特異的光散乱係数を使用することを包含し得る。
【0010】
別の一般的な実施形態において、さらなるデータは、約400nmと約1000nmとの間の2つ以上の異なる波長において、被験体からの光放射を測定し、これらの異なる波長において測定した相対光強度を決定し、そしてこの決定された相対光強度と、異なる波長における既知の相対シグナル強度とを、組織深さの関数として比較することによって、得られる。あるいは、光強度のスペクトルは、約400〜1000nmの間の選択された波長範囲にわたって測定され、そしてこの測定されたスペクトルは、組織内の種々の深さに配置された発光源から測定された複数のスペクトルと比較され、この測定されたスペクトルと既知のスペクトルとを対応させることにより、発光源の深さを決定する。
【0011】
発光源についての種々の実施形態において、この発光源は、発光部分または蛍光部分であり;この発光源は、被験体に投与され、そして選択された標的に結合するか、またはそうでなければ、測定の前に、被験体内に位置し;そしてこの発光源は、被験体の生物学的細胞または被験体に投与される生物学的細胞により発現される光発生タンパク質のような、光発生タンパク質(例えば、ルシフェラーゼ、緑色蛍光タンパク質など)である。
【0012】
別の局面において、本発明は、被験体中の発光源の位置およびサイズを調査する際に使用するための装置を包含する。この装置は、被験体からの光放射事象が検出され得る遮光(light−tight)エンクロージャ、およびこのエンクロージャに付随する光学システムを備え、この光学システムは、このエンクロージャ内の第1の透視から、光子(これは、(i)発光源から発生し、(ii)被験体の混濁した生物学的組織を通過し、そして(iii)被験体の目的の第1の表面領域から放射される)を測定することにより作成される第1の光強度を生成する際に使用するためのものである。光子検出器に作動可能に連結された計算ユニットは、(i)この第1の測定された光強度プロフィールを、パラメータベースの生体光子関数と対応させ;そして(ii)この第1の測定された光強度プロフィール以外のデータを使用して、生体光子関数のパラメータを精密化して、被験体中の発光源の適切な深さおよび形状を生成するように機能する。
【0013】
光学システムは、好ましくは、増感電荷結合素子(CCD)または冷却電荷結合素子(CCD)、およびこのCCDに光を集めるためのレンズを備える。この光学システムは、被験体の目的の複数の異なる選択された表面領域から放射される光子を検出するような様式で、構成され得る。このシステムは、選択された異なる波長範囲(例えば、600nmの上および下)内の光子を伝達するための1つ以上のフィルタを備え得る。
【0014】
この計算ユニットは、曲線を第1の空間的プロフィールと対応させるために、種々の深さにおける種々のサイズの発光源を表すモデルの生体光子関数のデータファイルを備え得る。
【0015】
この光学システムは、波長弁別のためのフィルタを備え、この計算ユニットは、以下(i)および(ii)のパラメータ精密化操作の少なくとも1つを実施するように作動可能である:
(i)異なる波長で測定した相対光強度を決定し、そしてこの決定された相対光強度と、異なる波長における既知または算出された相対シグナル強度とを、組織深さの関数として比較すること;および
(ii)測定されたスペクトルを、組織内の種々の深さに配置された発光源から測定された複数のスペクトルと比較し、そしてこの測定されたスペクトルを既知のスペクトルと対応させることによって、発光源の深さを決定すること。
【0016】
別の実施形態において、この計算ユニットは、強度パターン画像を平均化して単一の強度値にし、さらに、特定のサイズおよび形状の発光源の関数として生成される、積分された光強度値によって、光放射源のサイズを決定するように、作動可能である。
【0017】
この計算ユニットは、複数の深さの1つで位置し、かつ複数のサイズおよび形状の1つを有する発光源から、生物学的祖組織と類似の吸収特性および散乱特性を有する混濁媒体を通る、光子拡散のモデルに基づく、複数の理論的光強度プロフィールを含むデータベースを有し得る。ここで、この計算ユニットは、(i)これらの複数の理論的光強度プロフィールの各々と、第1の測定された光強度プロフィールとの間の一致の質を比較し、(ii)この第1の測定された光強度プロフィールに対する最高の整合を提供する理論的光強度プロフィールを選択し、そして(iii)(ii)で選択された理論的光強度プロフィールからのパラメータを使用して、被験体における源の適切な深さ、形状および形状を得るように、作動可能である。
【0018】
さらに、この計算ユニットは、被験体中の発光源の適切な深さおよび形状を使用して、この発光源の可視的な二次元表示または三次元表示を作成するように作動可能であり、この可視的表示を被験体の二次元画像または三次元画像に重ね合わせる。
【0019】
別の局面において、本発明は、被験体中の発光源の深さを決定する方法を提供する。この方法の実施において、約400nmと約1000nmとの間の2つ以上の異なる波長にで、被験体からの光放射強度が、測定される。この発光源の深さは、測定された光強度および被験体の組織の光学特性に関する情報(例えば、被験体における減衰係数および拡散係数)を使用して決定される。
【0020】
光学特性に関する情報(例えば、被験体における減衰係数および拡散係数)は、被験体の減衰係数および拡散係数と同じかまたは類似である材料におけるこれらの係数の直接測定によって、得られ得る。
【0021】
あるいは、光学特性の情報は、2つ以上の異なる波長で、被験体の組織または材料に対応する組織または材料における複数の深さの各々に位置する発光源からの光強度を決定することによって、間接的に得られ得る。次いで、所望の深さの決定は、測定された光強度を、複数の深さの各々で決定された光強度と対応させることによって、行われる。
【0022】
後者のアプローチにおいて、発光源からの光強度のスペクトルプロフィールは、複数の深さの各々における発光源からの光強度の複数のスペクトルプロフィールの各々と比較され得る。
【0023】
本発明のこれらおよび他の目的および特徴は、以下の本発明の詳細な説明を、添付の図面と共に読んだ場合に、より十分に明らかとなる。
【0024】
(発明の詳細な説明)
(1.定義)
他に明記されない限り、以下の用語は、以下のように規定される。
【0025】
「生体光子関数」は、光子源変数(例えば、源の深さ、サイズおよび形状、光放射細胞の数、特定の組織型についての波長依存的散乱係数および吸収係数、ならびに光放射体のスペクトル特性)の形で、測定可能な光子出力(例えば、光放射プロフィール、スペクトル強度分布、または積分された光強度)を示す数学関数である。光子関数は、例えば、以下に記載されるような光子拡散モデル、Monte−Carloシミュレーション、または有限要素分析に基づき得る。
【0026】
「混濁組織」は、光散乱特性および光吸収特性の両方を有する、被験体中の不透明な組織である。
【0027】
「標的領域」とは、被験体中の内部表面下領域(例えば、表面下の組織または器官、固形腫瘍、または感染領域)をいい、これは,(i)被験体内に位置し、(ii)混濁組織によって、被験体の表面領域から離れており、そして(iii)好ましくは、少なくとも1つの区別可能な特徴(例えば、組織特異的抗原または器官特異的抗原、mRNAまたは発現タンパク質のいずれかとしての遺伝子または遺伝子産物、細胞、器官または組織の活性化、不活性化または調節から生じる産物)を有する。
【0028】
発光源とは、標的領域における光放射の源をいう。この発光源自体は、標的組織が、特定の遺伝子がいくつかの活性化手段により発現される場合に、組換え光放射タンパク質を生成するように遺伝的に改変されている場合、可視光を放射し得る。好ましい実施形態において、異なるタイプの光発生タンパク質(例えば、生体発光タンパク質(例えば、ルシフェラーゼ)および蛍光タンパク質(例えば、GFP、dsRedおよびYFP))が、用いられる。例示的な発光源としては、光発生タンパク質で形質転換され、動物被験体に投与された原核生物細胞および真核生物細胞、ならびに光発生レポーター遺伝子に対してトランスジェニックにされた動物の内因部分である光発生細胞が挙げられる。
【0029】
あるいは、この源は、蛍光分子または可視光を放射する電磁放射線によって励起され得る他の分子を含み得る。例えば、標的の光放射を引き起こすのに有効な組成物が、被験体に投与され得、そして標的位置における局在化を可能にされ、ここでこの組成物は、次いで、光を放出するか、または標的内または標的に隣接するいくつかの他の部分の光放出を引き起こす。例えば、投与される組成物は、標的内の細胞または標的に隣接する細胞を活性化し、次いで、このような細胞の光放射を引き起こす化合物であり得、従って、局在化した細胞は、被験体の身体領域内の標的である。さらに他の実施形態において、感染細胞が、被験体に投与され、そして疾患の進行および局所性が決定される。この実施形態において、標的は、被験体の身体領域内の位置を有する所定の点における細胞のクラスターである。本発明の他の実施形態において、身体領域は、複数の標的を有し得、そして被験体は、複数の身体領域を有し得、各々の領域は、標的を有する可能性がある。
【0030】
「蛍光色素」または「蛍光団」は、励起極大でまたは励起極大付近で効率的に励起され、長波長の光を放射または蛍光を発する分子である。蛍光色素の励起極大とこの蛍光色素の発光極大との間の差異は、ストークスシフトとして知られている。所定の蛍光色素のストークスシフトが大きくなるほど、励起スペクトル、またはこの蛍光色素を励起する波長の範囲と、発光スペクトル、または蛍光性である場合の蛍光色素により放射される光の波長の範囲との間の差異が大きくなる。本発明の特定の実施形態は、Texas Red、ローダミン、Cy3、Cy5、CY7、および他の遠赤外(deep far red)、または近赤外(NIRF)の蛍光色素が有するような高いストークスシフトを有する蛍光色素を用いる。特に好ましい蛍光色素は、約600nmより長い波長の光を放射する。他の好ましい蛍光色素は、600nmより短い範囲の光を放射する。特に、「緑色蛍光タンパク質」(GFP)の改変体(各々は、種々の発光スペクトルを有する)が、特に有用である。なぜなら、ルシフェラーゼと同様に、このようなタンパク質は、標的またはこの標的に隣接しているかもしくは結合している細胞によって合成され得るか、またはこのようなタンパク質は、例えば感染における場合と同様に、標的に位置しているからである。GFPは、結合体として、標的に局在する別のタンパク質または生物学的材料にさらに投与され得る。
【0031】
本発明の好ましい実施形態において、既知の発光条件下で、各々の発光源は、既知の発光スペクトルを有する。各々の発光スペクトルは、好ましくは、検出工程の全体にわたって一定である。特に、各々の光の波長で発光の相対強度は、全てのスペクトル強度が変化するので、発光源の発光スペクトルの範囲内の他の全ての光の波長での発光強度と比例したままである。本発明のいくつかの実施形態は、最低少なくとも2つの識別可能な範囲の発光波長を必要とする。より好ましくは、本発明の特定の実施形態は、これらの光が被験体の選択された体内の領域を伝わる場合、他の領域からこのような光が体内の領域を伝わるための距離または深さの関数として、各々の光の波長の範囲が別々に挙動することを必要とする。例えば、光の波長の第1範囲の強度は、光が伝わる体内の領域の1センチメートル毎に半分にカットされるのに対して、光の波長の第2範囲の強度は、光が伝わる体内の領域の1センチメートル毎に4分の3をカットされる。両方の波長範囲を有する光の強度は、各々の範囲が同じ強度を有する場合、1センチメートルの組織を通過後に、第1範囲で2分の1を、そして第2範囲で4分の3を減少する。組織の深さ0にて初期の1:1の強度比から得られた2:1の強度比を比較することによって、光が組織を通って1センチメートル伝わったという決定が、なされ得る。
【0032】
本発明は、異なるルシフェラーゼ酵素のような異なる発光源を用いて実行され得る。例えば、寒天上に発現した「青色(blue)」細菌ルシフェラーゼ(Photorhabdus luminescens)由来の発光は、約485nmに中心のあるスペクトルを明らかにする分光計によって分析された。PBS溶液中のPC−3M細胞にて発現した「緑色」ホタルルシフェラーゼ(Photinus pyralis)は、約570nmに中心のあるスペクトルを示して発光した。PBS溶液中に懸濁したPC−3M細胞にて発現した「赤色」ルシフェラーゼは、約620nmに中心のあるスペクトルを示した。
【0033】
(II 装置および方法)
図1Aは、本発明に従って、被験体における発光源の位置およびサイズを調査するのに使用され得る装置20の断面図である。この装置は、一般的に、被験体からの発光現象が検出され得る遮光エンクロージャまたはチャンバ22を備える。遮光ボックス22は、共有に係るPCT公開番号WO200163247(これは、その全体において本明細書中に参考として援用される)に記載されるように構築され得る。簡単には、このチャンバは、後壁(例えば、後壁21)および側壁によって規定され、そして前開口部(図示されてないが、これは、開けられてチャンバの内側へのアクセスを提供し得、そして閉じられて遮光シールを提供し得る)を有する。遮光ボックス22は、小動物に対して設計されたが、この技術は、ヒトを含むより大きな哺乳動物に適用され得る。
【0034】
ステージ24は、チャンバ内に含まれ、このステージ24上に被験体が配置され、そして好ましくは、発光検出の間、固定化される。本明細書中に記載される多数の実施例は、小さな哺乳動物の被験体(代表的には、マウスまたはラット)でなされなければならないが、同じ原理および方法が、チャンバサイズの適切な拡大、ならびに必要に応じて、標的領域における発光体のサイズおよび数の適切な増加を利用して、他の動物ならびにヒト被験体に適用することが理解される。示される装置におけるステージは、一般に26で示される従来のウォームスクリュー機構によって、そして利用者の制御下で、チャンバ内の選択された垂直位置に上昇および下降されるように設計される。チャンバ内のステージ位置は、可視光シグナルを必要としない多くの公知の追跡デバイスのいずれかによって、モニターされ得る。
【0035】
投射(viewing)オプティクスは、2つの一般的な構成要素に備えられる。1つ目は、光検出器32の検出スクリーン上に被験体の表面からの放出現象に焦点を合わせるために役立つレンズアセンブリ28であり、光検出器32は、代表的には、電荷結合デバイス(これは、内因性のノイズレベルを最小するために冷却条件で作動され得る)の光検出器ピクセルアレイである。レンズアセンブリの構築および光検出器へのレンズアセンブリの光学結合は、従来のものである。1つの好ましいCCDは、Spectral Instrumentsから市販のmodel 620 CCDである。
【0036】
光学システムの2つ目の任意の構成要素は、多数の光学バンドパスフィルター(選択された範囲の可視光波長以外、全ての光透過を遮断するように設計される)を備える波長フィルターホイール30である。1つの標準的な設定としては、以下の3つのフィルタが挙げられる;510nm未満の波長用のショートパスフィルター30a(青色光フィルタ)、500〜570nmの範囲内のバンドパス用のミッドパスフィルター30b(緑色光フィルタ)、および590nmより長い波長用のロングパスフィルター(赤色光フィルタ)。いくつかの適用において、フィルタは、より緻密なバンドパス(例えば、20nm毎)を提供し得る。直前に記載の投射オプティクスおよび検出器はまた、本明細書中において集団的に、光学システムと称される。
【0037】
この装置はまた、コントロールユニット34を備える。種々の利用者に制御される設定(例えば、ステージ高、配向、および並進位置、バンドパスフィルター、ならびに検出様式)は、装置内のコントロール入力パネル36を通じてなされる。
【0038】
図1Bは、装置20のより概略的な表現を示し、ここでは、小さな哺乳動物被験体(例えば、マウス38)の画像化に使用するためのスケールで示される。レンズアセンブリは、ここでは、単体レンズ28、フィルターホイール30、およびCCD検出器32として示されている。検出出力は、コントロールユニットコンピュータユニット34(これは、データファイルに対するプロセッサ40および記憶ユニット42を備える)内のコンピュータユニット40に提供される。検出器32由来の設計からの光検出シグナルに応答する、データファイルの内容、およびコンピュータユニットの作動は、以下に記載される。コントロールユニットは、利用者に情報および画像を表示するために、表示/出力デバイス44(例えば、コンピュータモニタ)に作動可能に接続される。
【0039】
コンピュータユニットの操作は、この装置によって実行される本発明の方法から理解され得、この操作は、図2に要約され、そして以下にさらに詳細に記載される。この方法における第1工程は、最初に測定される光−強度特性を得ることである。これは、被験体内に発光源をまず局在化することによってなされる。これは、上記されるように、種々の方法でなされ得、これらの方法としては、標的領域において発光タンパク質(例えば、ルシフェラーゼ)を産生するのに有効な遺伝子を被験体に導入すること、または標的源に蛍光性化合物を局在化させること(両方とも、例えば、共有に係るPCT出願WO99US/30078、WO00US/7296、WO99US30080;およびWO97US6578(これらの全ては、本明細書中に参考として援用される)に記載されるように公知である方法に従う)が挙げられる。
【0040】
このようにして準備された被験体は、遮光チャンバ内に配置され、そして標的領域での発光現象に由来する被験体表面からの発光が、図2において52で示されるように測定され、デジタル化され、そしてコンピュータユニットに収容される。コンピュータユニットは、このデータを用いて、54で示されるように発光の空間プロフィールを生成する。このプロフィールは、検出器内の検出器エレメントの選択された行および選択された列に沿って、取得され得、図1Aにおけるステージに平行な平面内のx(横)軸およびy(縦)軸に沿ってプロフィールを示す。すなわち、このプロフィールは、検出器エレメントの選択された行および列に沿って測定された強度値のプロットであり、そして被験体表面から検出器アレイ上へと焦点を合わせられる光強度の値の分布を表す。被験体から測定される例示的な光強度値は、図3Bに実線で示される。図3Aは、発光等高線を示し、そして図3Bは、これらの位置に対応する検出器ピクセルで決定されるような垂直プロフィールを示す。
【0041】
ここで、図2に戻ってみると、このように取得された空間プロフィールは、パラメータベースの光子関数(photonic function)のデータベース58に記憶されたプロフィールと整合またはあてはめられる。この光子関数は、既知のサイズおよび深さの発光源から測定されたか、または以下に記載されるような、深さパラメータおよびサイズパラメータ、ならびに必要に応じて、他のパラメータを用いる光子拡散モデルから計算されるかのいずれかの経験的関数である。
【0042】
最適な曲線の整合から、このプログラムは、発光源の深さおよび/またはサイズおよび/または輝度の好ましくは、3つ全ての初期に推定される決定を行い得る。本発明の特徴に従って、この方法は、深さ決定およびサイズ決定が、さらなる光強度データ、および/またはさらなるモデリングデータの形態であり得るさらなるデータによって精密化される様式で、現在実行されている。例えば、図2に示されるように、このデータは、以下の形態であり得る:
(a)第2投射角から被験体を投射することによって得られる、光強度データ、代表的には、空間プロフィールデータを意味する62で示されるような、第2投射データ。代表的には、装置内の被験体は、発光が、被験体表面の第2領域から得られるように光学システムに対して傾けられる;
(b)1つ以上のバンドパス範囲(例えば、青色光、緑色光、または赤色光のスペクトル範囲)で得られる光強度データを意味する64で示されるような、スペクトルデータ;
(c)代表的には、目的の被験体に近い被験体内の選択された位置で波長の関数として得られる予め決定された光強度値を意味する66で示されるような、透過率データ;
(d)組織パラメータ(例えば、光が拡散する被験体組織に対応する、減少した散乱係数μ’、吸収係数μ、または有効係数μeff)の予め決定された値を意味する68で示されるような、組織特性データ。このデータは、例えば、拡散モデルにより作成される空間プロフィール曲線を精密化するために、使用される;
(e)被験体の標的領域および隣接表面を示すモデルにおけるか、またはこの被験体に近い実際の被験体において、選択された位置で既知の強度およびサイズの光源を配置することによって取得される、予め決定された光強度値、代表的には、空間プロフィールデータを意味する70で示されるような、シミュレーションデータ;ならびに
(f)空間プロフィール全体または検出器アレイ全体にわたって、合計または積分された全光強度を意味する72で示されるような、全強度データ。コンピュータデバイスにより実行されるプログラムは、60でさらなる情報を受信し、そして以下に考察されるように、74での発光源の深さおよびサイズを精密化するための情報を使用する。最終的に、発光源における、源の深さ、サイズ、ならびに必要に応じて、形状および細胞数の精密化された決定は、発光源の位置および強度を示すデータの形態および/または1つ以上の被験体画像のいずれかで利用者に表示される。
【0043】
(g)73で示されるような絶対較正された光強度。絶対強度に対する較正は、CCDにおける計数/秒/ピクセルを、ラジアンス光子/s/cm/sr(srは、ステラジアンである)への変換を可能にする。図8Aは、較正方法において使用される光学アセンブリ100を例証する。このアセンブリは、CCD検出器102に加えて、レンズ104(上記のようにレンズアセンブリを示す)、バンドパスフィルター106および低光レベル積分球(例えば、Optronic Laboratoriesから入手可能なOL Series425球)を備え、この積分球は、既知の光強度の供給源として作動する。光子/秒/cm/srで測定されるこの球からの既知のラジアンスは、2つの数に関する較正因子の計算を可能にする。
【0044】
図8Bは、発光源において、細胞の総数を算出するために、絶対的な測定強度をどのように使用するかを説明する。各細胞が、光子フラックスφ(光子/秒/細胞)を生じると仮定する。被験体112内の発光源110からのラジアンスは、検出器102で測定される場合、光子/s/cm/srの数の測定値である。次いで、測定されたラジアンスが、目的の領域にわたって積分されて、光源フラックスφ(光子/秒)に変換される。既知のフラックス値から、発光源における細胞の数が、φ/φとして容易に算出される。
【0045】
(III.発光データおよびパラメータ)
この節は、本発明を実施する際に収集され得る発光データの種々の型を考慮し、そしてこれらのデータが、モデル拡散曲線との曲線の整合に基づいて、光子拡散モデル化において、および/または発光源の深さもしくはサイズを決定するために、どのように使用され得るかを議論する。
【0046】
(光強度の空間プロフィール) 決定された基礎の発光データは、図3Bに関して上で議論された、光強度の空間プロフィールである。測定された光強度の空間プロフィールは、被験体の表面領域から発光された光強度の空間的分布を示す。光強度の空間プロフィールは、単一の線、または2つ以上の線に沿って(例えば、被験体を支持しているステージに対してx方向およびy方向に沿って)得られ得る。光の2D表面分布全体もまた、使用され得る。モデル化された空間プロフィールは、混濁した組織を通しての光子拡散のモデルから算出された、推定の光強度の空間的分布を表す。測定されたプロフィールをモデル化されたプロフィールと整合させることによって、発光源のおよその深さおよび/またはサイズが決定され得る。
【0047】
(全光強度) 全光強度とは、検出器における全ての検出器要素にわたって合計または積分された、全光強度である。全光強度は、源、位置、および輝度を決定するために使用される、あてはめモデルに対するさらなる制約条件として使用され得る。
【0048】
(絶対的な較正光強度) 図8Bに関して上で議論されたように、絶対的な光強度フラックスを使用して、発光源からの全フラックスを測定し得る。この源が、各々が平均細胞フラックスφを発光する細胞から構成されると仮定すると、この源を構成している発光細胞の総数が決定され得る。次に、この決定を使用して、組織源についての既知または推定の細胞質量比に基づいて、源の総質量または総体積を精密化し得る。
【0049】
(スペクトルデータ) スペクトルデータとは、特定の波長範囲(例えば、上に記載された、青色光、緑色光、および赤色光の波長範囲)において収集された、光強度データである。光は、被験体の組織、および特に、被験体組織におけるヘモグロビンによって、短波長において優先的に吸収されるので、異なる波長の光の相対強度は、源の深さに関する情報を提供し得、そして精密化された波長依存性空間プロフィールを、波長依存性の組織散乱係数および吸収係数に基づいて生じるために、使用され得る。
【0050】
図4Aおよび4Bは、異なる波長または波長範囲において身体領域の組織を通って移動する光に対して距離または深さが有する差の効果を示す。このグラフは、y軸上に増加する光強度を示し、そしてx軸上に増加する波長を示す。図4Aにおける実線は、発光源についてのインビトロでの発光スペクトルを表し、これは、約495nmを中心とする幅広の単一のピークを含む、深さゼロの発光スペクトルに相関する。広い破線は、約1mmの組織(インビボ)を通過した後の、発光源の発光スペクトルを表す。約600nmにおいて、この1mmの深さの発光スペクトルは、小さなピークを生じる。なぜなら、一旦、約495nmの大きなピークの相対強度が減少し始めるからである。中位の破線は、約2mmの組織(インビボ)を通過した後の、発光源の発光スペクトルを表す。495nmのピークは、強度がより小さくなるが、一方で600nmのピークは増加し、そしてより明らかになる。最後に、点線は、約4mmの組織(インビボ)を通過した後の、発光源の発光スペクトルを表し、ここで、495nmのピークは、さらに減少している。
【0051】
図4Bは、組織深さゼロの発光スペクトルに縮尺を合わせた、組織の4mmの深さにおける発光スペクトルを表す。600nmのピークは、一旦突出した495nmのピークより突出する。この例において、発光源の深さに関する情報を提供するものは、495nmのピークに対する600nmのピークの比である。
【0052】
本発明の好ましい方法は、自己縮尺計算を使用し、その結果、発光源の深さが、その全体の強度とは無関係に決定され得る。この目的を達成するために、2つ以上の波長範囲の比を利用する関数が数式化され、ここで、各範囲の波長は、身体領域の表面からの標的の深さの関数として異なる割合で、その身体領域において組織を通過する。
【0053】
(身体を通しての透過率) 身体を通しての透過率は、被験体に対して選択された位置または被験体の内部に、既知の強度の光源を配置すること、およびこの被験体を通って透過した光強度を、複数の表面において測定することによって測定される。この透過率は、異なる組織の散乱係数および吸収係数の、強いスペクトル依存性に起因して、強いスペクトル成分を有する(以下を参照のこと)。代表的に、透過率の値は、モデル被験体を使用して、種々の選択された位置で、そして多数のスペクトル範囲の各々で、全透過率を測定することによって、予め決定される。
【0054】
図5は、複数の身体領域(番号1〜16によって示される)を有する被験体の上面図である。この例において、この被験体は、固定されたマウスであり、そして各身体領域は、目的の予め決定された領域に対応する。本発明の方法の実施による深さの決定の前に、この被験体は必要に応じて、各身体領域についての光学特性のデータファイルを作成するために、分析される。この例において、各身体領域は、スペクトル光源とスペクトル検出器との間に配置される。光透過スペクトルが、各身体領域について得られる。その結果は、各身体領域を分光計キュベットに入れ、そして各領域を異なる波長および波長範囲で測定して、光がどのように身体の異なる領域およびこのような領域における組織を透過するかのデータファイルを作成することと類似である。図1のデバイスを使用して、特定の波長範囲について類似のデータを作成し得、但し、このデバイスは、検出器に対して、被検体を試験される各身体領域を透過して照射するように適合される。従って、図1のデバイスは、本質的に、動物全体の分光計となる。
【0055】
図6Aおよび6Bは、すぐ上に記載されたスペクトル分析から収集された、実験的スペクトルデータを示す。以下にさらに詳細に記載されるように、このデータは、スペクトル全体または各スペクトルにおける特定の範囲のいずれかとして、検出された強度情報との比較のため、または標的深さを計算するための関数を展開するための、データファイルを作成するために使用され得る。
【0056】
より詳細なアプローチにおいて、この装置は、被験体全体またはその一部を走査するための、全身スキャナを提供し、これは、被検体の身体を走査するための、走査用2色レーザーをさらに備える。このスキャナは、少なくとも2色のアークレーザー光を、同時にかまたは連続的に通って移動する。このレーザー光が上向きに光を発する場合、この光は、回転チューブ内に入れられた被験体の身体を貫通する。このレーザー光源に対向して配置された検出器は、この検出器がそのアーク経路を通って移動するにつれて、レーザー光を受容し、そして測定するように適合される。
【0057】
(組織の光学的特性) 光子拡散モデル化において使用される被験体組織の、2つの重要な光学特性が存在する。第1のものは、組織の吸収係数μであり、これは、単位光路長あたりに吸収される入射光の一部に関係する。図7Aおよび7B(これらは、可視スペクトルにわたって、種々の組織型についての吸収係数をプロットする)に見られるように、吸収係数は、その組織の性質および光の波長に非常に依存し、各組織が、500〜600nmの範囲のピーク吸収を示す。約600nmより上での比較的低い吸収係数は、図13Aに見られるスペクトルデータ、ならびに図6Aおよび6Bに示される全透過率データと整合する。
【0058】
第2の重要な光学特性は、組織の減少した散乱係数μ’であり、これは、大きな角度の光散乱に起因する、単位長さあたりの光の貫通の強度の部分的な低下である。図7Cおよび7D(これらは、可視スペクトルにわたる同じ組織に対する減少した散乱係数をプロットする)に見られるように、散乱効果は、異なる組織において相対的に異なり得る。一般に、減少した散乱係数は、より長波長において、いくらか減少する。
【0059】
二重積分球(DIS)システムは、組織または任意の混濁媒体の光学特性を測定するために広範に使用される道具である。なぜなら、このシステムは、好都合に、拡散反射率Rおよび拡散透過率Tを同時に測定するからである。図6Cは、光学特性(例えば、吸収係数μ、および減少した散乱係数μ’)を得る目的でこれらの値を測定するために使用される、二重成分球装置74を示す(Prahl,S.A.ら、Applied Optics 32:559−568(1993);Pickering,J.W.ら、Applied Optics 32:399−410(1993))。サンプル76は、2つの積分球78と80との間に配置され、ここで内部バッフル82が、反射光または透過光を直接測定することを防止するために、配置される。これらの球は、高度に反射性の材料でコーティングされて、光の吸収を最小にする。光は、検出器84で検出され、そして好ましくは、コンピュータ86を使用して分析される。400〜1000nmの間でのサンプル照射が、光ファイバーケーブル90およびレンズ92を介してモノクロメータ88に接続されたアーク灯を使用して、達成される。
【0060】
拡散反射率R値および拡散透過率T値から、吸収係数および減少した散乱係数が、逆加算−倍化(inverse adding−doubling)プログラム(http://omlc.ogi.edu/software/iad/index.html)を使用して得られる。このプログラムは、ワンスピード放射伝播式(one speed radiative transport equation)の1つの数値の解であり、この式は、散乱媒体中での定常状態での光伝播を説明する(Prahl,S.A.ら、Applied Optics 32:559−568(1993))。このプログラムは、反復プロセスであり、これは、算出された反射率および透過率が測定値に整合するまで、光学パラメータのセットから反射率および透過率を測定する。
【0061】
DISシステムの特徴は、組織が測定の前に抽出される必要があるという事実である。従って、組織の生存性を測定条件下で維持することが望ましい。特に、ヘモグロビンおよび水の吸収が高い波長においては、ヘモグロビンの血管排出および組織の水和が、考慮される必要がある。上述のことを部分的に考慮して、組織光学特性を測定する好ましい方法は、以下のような、非侵襲性のインビボ測定である。
【0062】
Bevilacqua(Bevialcqua,F.ら、Applied Optics 38:4939−4950(1999))によって記載されるものと類似の円形のファイバープローブを使用して、光学特性を、非侵襲的に、または最小の侵襲で、インビボで測定し得る。図6Dは、円形ファイバープローブ94の実験設定を示す。ファイバープローブ94は、照射源95、少なくとも1つの照射ファイバー96、およびいくつかの(例えば、6つの)検出ファイバー97を、一般に1〜2mmの距離以内に備える。次いで、このプローブは、目的の組織99に、好ましくは、最小の接触圧で、垂直に配置される。検出ファイバー97の出力は、対応する検出器98のセットに供給される。光学特性は、源からの半径方向距離に対する強度から、空間的に解析される。源から検出器への小さな分離においては、単純な分析モデル(例えば、拡散近似)は、このシステムを説明するために十分に適切ではなく、従って、Monte Carlo法が、代表的に、データを分析するために使用される。
【0063】
(IV.光子伝播モデル)
この節は、身体の表面における、この表面の下の光源からの光子の放射、および混濁媒体を通る移動をシミュレートするための、光子伝播モデルを考慮する。特に、以下に基づいて、シミュレートされた光強度空間プロフィールを作成することが望ましい:(i)発光源の深さ、(ii)発光源のサイズ、ならびに(iii)光吸収係数および光散乱係数。光吸収係数および光散乱係数は、波長と、その光子が通って拡散する組織の性質との両方に依存するので、このモデルは、その組織の性質および選択された波長における空間プロフィールを、特に考慮するように精密化され得る。
【0064】
本明細書中において使用される光子拡散モデルは、初期光強度空間プロフィール(これから、節Vにおいて考慮されるように、最初の源の深さおよび源のサイズの情報が作成され得る)の作成の目的で、単純化するための多数の仮定を行う。次いで、このモデルは、さらなる組織依存性および/または波長依存性の情報を考慮することによって拡張され、測定された空間プロフィールとの曲線のあてはめを改善する目的で、空間プロフィールを精密化し得る。あるいは、最初の深さおよびサイズの情報は、他の型の曲線またはデータの整合によって、精密化され得る。最初の深さ/サイズの近似を精密化するための両方のアプローチは、以下の節Vにおいて考慮される。
【0065】
図9Aは、細胞(例えば、細胞小器官113を含む細胞111)から形成される混濁組織を通って拡散する場合の、光子の経路を示す。見られるように、細胞のサイズ(代表的に、20〜30ミクロンのサイズの範囲)は、光の波長λ(これは、約0.4ミクロンと0.6ミクロンとの間である)に対して大きい。散乱は、膜における段階的な不連続性(<<λ)に起因し、そして長さの逆数である散乱係数μ(約10〜20mm−1)によって特徴付けられる。散乱の異方性gは、約0.9であり、これは、減少した散乱係数μ’=μ(1−g)、すなわち約2mm−1を与える。吸収係数μ(λ)は、0.01mm−1と1mm−1との間であり、そして上で示されたように、強い波長依存性を有する。吸収係数および散乱係数は、波長依存性であるが、λ>約600nmにおいては、組織において、μ<<μ’であることが、一般に真実である。
【0066】
身体内の標的部位から、身体表面に隣接して位置する光検出器への光の伝播の、定量的な説明は、適切な境界条件を有する光の放射伝播拡散方程式の解によって達成され得る(例えば、R.C.Haskelら;「Boundary conditions for the diffusion equation in radiative transfer」、J.Optical Soc Am.,11A:2727(1994))。例えば、1つのアプローチは、図9Bに概略的に示される外插された境界条件を使用し、ここで、光学流束量は、距離zにおける物理的境界から消失する平坦な表面において消失し、これは、この物理的境界における光のフレネル反射を考慮する。
【0067】
第一近似として、発光源が位置する身体は、半無限の均一な混濁媒体として表現され、これは、散乱と吸収との両方を行う。この近似は、図9Bに示され、この図は、平板116中の点発光源114を、平板表面の下の距離dに示す。この拡散方程式は、以下:
D∇φ(r)=μφ(r)−S(r) (1)
であり、そして フィックの法則は、以下:
j(r)=−D∇φ(r) (2)
であり、ここで、φは、等方性の流束量(ワット/m)であり、jは、小さい指向性流束(ワット/m)であり、Sは、出力密度(ワット/m)であり、rは、半径であり、そして
【0068】
【数1】
Figure 2004528916
である。点源P(ワット)についてのグリーン関数の解は、以下:
【0069】
【数2】
Figure 2004528916
外插された境界条件を使用する平板構造における拡散方程式の解は、源114からの寄与に画像表面118(図9Bに示されるような)を合計して、深さdにおける点源P(ワット)についてその表面におけるラジアンス(その表面に対して垂直に見る)について以下の式を得ることによって、得られる:
【0070】
【数3】
Figure 2004528916
であり、そしてReffは、有効反射係数であり、これは、組織に対して約0.43である。
【0071】
表面ラジアンスをρの関数としてプロットすることによって、図10Bに実線で示されるプロットが得られ、これは、図3Bに点線で示される、光強度プロフィールプロットと同じ導関数を有する。
【0072】
混濁媒体における発光点についての空間プロフィール曲線もまた、さらにずっと計算に強いMonte Carloシミュレーションを使用して算出し、これは、図10Aに示されるように、酔歩を通して各光子を辿る。このMonte Carloシミュレーション(図10Bにおいて「+」の記号で示される)は、拡散方程式から算出された空間プロフィールに綿密に適合する。
【0073】
拡散方程式をどのように使用して、種々の組織および種々の深さを通しての光子拡散をモデル化するかを示すために、空間プロフィールを、種々のμeffの値について(それぞれ2.0cm−1および20cm−1のμ値およびμ’値に対応する、μeff=11cm−1について、それぞれ0.4cm−1および10cm−1に対応する、μeff=3.5cm−1について、ならびにそれぞれ0.05cm−1および5cm−1に対応する、μeff=0.87cm−1について)、算出した。μについてのこれらの3つの値は、青色波長、緑色波長、および赤色波長に対する組織吸収におよそ対応する。
【0074】
図11Aおよび11Bにおけるプロットは、深さが増加すると共に強度が減少し、そしてスポット幅が増加すること、および大きい値のμeffは、より狭いスポット幅のピーク強度の大きな減衰を生じることを示す。
【0075】
(V.深さおよびサイズの情報の決定)
本発明の方法を実施する際に、被験体は、最初、上に詳述されたように、標的の源において、発光分子を局在化するために処理される。次いで、この被験体は、装置20(被験体のサイズに対して適切に縮尺を決められている)の遮光チャンバ内の選択された位置に配置され、そして光学システムが、発光源と検出オプティクスとの間の、被験体の表面領域における源からの発光事象を測定するように調節される。被験体を選択された光学的関係で固定した状態で、表面発光の光強度の空間プロフィールが得られ、これもまた上記のとおりである。図3Aは、表面下の光源から測定された光強度の表面マップであり、これを引き続いて使用して、図3Bに示される空間プロフィールを作成した。
【0076】
次いで、空間プロフィールを、パラメータに基づく生体光子関数(これは、発光強度を発光源の深さ(およびいくつかの場合に、源のサイズ)に関係付ける)にあてはめ、源の深さ(およびいくつかの場合に、源のサイズ)を最初に決定する。1つの好ましい生体光子関数は、上記IV節において議論された、単純化拡散モデルから導出される関数であり、ここで、点源または規定された球状もしくは楕円体状の体積を有する源からの光強度は、源の深さ、一定の散乱係数および吸収係数、ならびに源からの表面距離rの関数として、算出される。従来の非線形最小二乗曲線あてはめ技術(例えば、Levenberg−Marquardt(「Numerical Recipes in C」Pressら編、Cambridge Press,NY,1989))は、曲線のあてはめに適切である。曲線のあてはめは、図3に示されるような単一の一次元(「1−D」)プロフィール、複数のこのようなプロフィール、または2−D全空間分布(例えば、図12Aに示されるような)を使用してなされ得る。図3Bに示されるデータに対する曲線のあてはめの算出(破線)は、2.7mmの深さを示し、これは、2.2mmの推定された実際の深さに十分に匹敵する。
【0077】
図12A〜12Cは、深さおよびサイズの情報がどのように空間プロフィールから決定され得るかの別の例を与える。ここで、発光源は、それぞれ2.7mmおよび3.2mmの、水平方向および垂直方向の実際の寸法、および1.5mmの腫瘍の厚さを有する、皮下の楕円状腫瘍である。水平プロフィールおよび垂直プロフィール(それぞれ図12Bおよび12C)を、それぞれ1.3mmおよび2.4mmの水平寸法および垂直寸法、1.5mmの厚さ、ならびに0.4mmの深さを有する楕円発光源に対して作成された曲線にあてはめた。
【0078】
源の深さ(および必要に応じて、源のサイズ)の、最初の曲線の当てはめからの決定は、さらなるデータ(その効果は、生体光子関数のパラメータを精密化することである)を使用することによって、精密化され得、そして源のサイズが近似され得る。さらなるデータの性質、および生体光子関数のパラメータ(例えば、深さおよびサイズ)を精密化して、精密化された深さおよび源のサイズの情報を与える様式を、ここで、上記節IIにおいて、図2に関して概説した情報の型の各々について、考慮する。
【0079】
(A.第2の投射の情報) 第2の投射のデータを得るために、被験体は、発光源を別の視点から見るために、投射および検出オプティクスに対して回転される。この第2の視点から、第2の光強度プロフィールが得られ、第2の被験体表面領域に対する第2の深さが決定される。2つの異なる表面位置において、源の深さの共通部分を決定することによって、より正確な深さおよび/または源のサイズが決定され得る。多くの視点が得られるほど、より正確な深さおよび源のサイズが決定され得る。
【0080】
(B.スペクトルデータ) 身体領域における標的の深さが、以下によって決定され得るか、または標的の深さが精密化され得る:(i)標的を、2つ以上の波長領域において発光させること、および(ii)各波長範囲の光が、深さの関数として、他の波長範囲の光とは異なって、身体領域を透過することを仮定して、身体領域の表面において、身体領域を透過する各範囲の光の差異を比較すること。
【0081】
源の深さの関数としての、代表的なスペクトル曲線(示される波長における全光強度に関する)が、上で議論された図4Aに示される。図4B(ここで、ピークは、インビトロでのスペクトル曲線に縮尺を合わせられている)に特に見られるように、約600nm(例えば、620nm)におけるピークの高さの、インビトロ(ゼロ深さ)でのピーク高さ(例えば、約500nm)に対する比は、深さの関数として劇的に増加する。従って、スペクトル曲線を作成し、そしてピーク高さの比を(代表的に、600nmより長波長および短波長、例えば、620nm:500nm))決定することによって、混濁組織における強度の、波長依存性の損失に基づく、正確な深さ情報が決定され得る。
【0082】
スペクトル測定からの近似深さを決定するために有用な式は、式4から、以下のように導出され得る:
【0083】
【数4】
Figure 2004528916
ここで、dは、深さを表し、φは、測定された光強度を表し、μeffは、実験的に決定された有効減衰係数を表し、そしてDは、実験的に決定された拡散係数である。上記式における下付き文字1および2は、測定がなされた2つの別の波長を表す。
【0084】
上記式を使用して、深さが、異なる波長または波長範囲における2つ以上の光強度の測定から決定され得る。1つの実施形態において、深さは、以下の一連の工程を実行することによって、得られ得る:(1)インビトロおよびインビボ(動物中)で、2つの波長で、生物発光細胞を画像化する;(2)例えば、ピーク強度または平均(積分)強度を各画像について測定することによって、画像を定量する;(3)各波長において、インビトロの画像データに対するインビボの画像データの比を算出する;ならびに(4)式7、および例えば組織特性測定から得られた有効散乱係数μeffを使用して深さを算出する。このアプローチの適用は、実施例1に説明される。
【0085】
1つの実施形態において、各μeffについて有意に異なる値を有することが好ましい。動物組織は、ヘモグロビン(これは、大きい吸収ピークを600nmのすぐ下に、そして比較的低い吸収を600nmの上に有する)の存在に大きく起因して、μeffにこのような差異を提供する。
【0086】
あるいは、さらなるスペクトルデータは、1つ以上の選択された波長または波長範囲において得られる、1つ以上の空間プロフィールを含み得る。次いで、このプロフィールは、図3Bに関して上に記載されるように、例えば、上記光子拡散モデルから、波長特異的な値(吸収係数、散乱係数、および/または有効な係数について)を使用して作成される、モデル強度関数と比較される。
【0087】
なお別の適用において、強度値は、20nmごとに間隔を空けた不連続な波長で測定され得る。図13Aにおけるスペクトルプロットは、PBS溶液中の細胞における緑色ルシフェラーゼ、ならびに図13Bに示される部位で皮下に、および図13Cに示される肺に局在した、緑色ルシフェラーゼについてのスペクトル曲線を示す。全ての曲線は、700nmにおける1の値に対して標準化されている。560nm対620nmの強度比は、深さの指標である。
【0088】
上記のように、本発明の関連する局面は、被験体における発光源の深さを決定する方法を提供する。この方法を実施する際に、被験体からの発光強度は、約400nmと約1000nmの間の2つ以上の異なる波長においてである。発光源の深さは、測定された発光強度、および被験体の光学特性に関する情報(例えば、被験体における減衰係数および拡散係数)を使用して、決定される。
【0089】
光学特性に関する情報(例えば、被験体における減衰係数および拡散係数)は、その被験体の物質と同じかまたは類似の物質の係数を直接測定することによって、得られ得る。この情報は、インビトロ(ゼロ深さ)およびインビボ(決定されるべき深さ)で、2つの波長で測定された強度と組み合わせて、式7に適用され、上記および実施例1に記載されるように、光源の深さを決定し得る。
【0090】
あるいは、光学特性情報は、被験体の組織または材料に対応する組織または材料における、2つ以上の複数の深さの各々に位置する発光源からの光強度を、2つの以上の異なる波長で決定することによって、間接的に得られ得る。次いで、所望の深さの決定が、測定された光強度(例えば、異なる波長における強度比)を、複数の深さの各々において決定された光強度と適合させることによって、なされる。より特定のアプローチにおいて、発光源からの光強度の空間プロフィールは、複数の深さの各々における発光源からの光強度の複数の空間プロフィールの各々と比較(適合)され得る。
【0091】
(C.身体を通しての透過率のデータ) 身体を通しての透過率のデータは、上記のように得られ、そして小動物被験体について、図5、6Aおよび6Bに示される。上記のように、この情報は、既知の厚さの選択された組織を通る、波長依存性の光透過値を提供する。被験体における多数の選択された位置からの、予め決定された透過率データを使用して、異なる被験体位置での全身の平均散乱係数および吸収係数を、推定し得る。この目的は、可視スペクトル全体にわたってか、または選択された波長においてかのいずれかで、測定された空間プロフィールに対する曲線のあてはめのために使用される、モデル化された空間プロフィールを精密化することである。
【0092】
(D.組織特性データ)組織特性データ(例えば、図7A〜7Dに示されるもの)は、代表的に、大部分の身体組織の各々についての、波長依存性の吸収係数および散乱係数を含む。このデータは、例えば、上記光子拡散のモデルにおいて、所定の組織を透過する、所定の波長(代表的に、赤色波長)の光によって生じる空間プロフィールを精密化するために使用される。従って、例えば、被験体における発光源が筋肉であり、そして空間プロフィールが赤色波長で測定される場合、組織特異的かつ波長特異的な吸収係数を用いて作成される、精密化された空間プロフィールは、測定された曲線との曲線のあてはめのために、精密化された空間プロフィール曲線を提供する。
【0093】
(E.シミュレーションデータ) 別の実施形態において、試験点または他の既知の形状の発光源は、混濁組織を模倣するブロックまたは平板に導入され得る。このブロックは、種々の散乱係数および拡散係数で、ならびに種々の形状で調製されて、被験体における発光源の条件をシミュレートし得る。試験点の配置の際に、空間プロフィールが、この試験点が配置された身体領域の外側表面からとられ得る。次いで、このデータは、試験点の実際の深さおよび位置に相関付けられる。この試験点をブロック内の点から点へと移動させることによって、一連の空間測定がなされ得る。この一連の空間測定から、被験体における異なる領域の空間応答をモデル化するためのデータファイルが組み立てられ得る。
【0094】
(F.積分された光強度)
合計または積分された光強度とは、上記のように、検出器アレイの規定された領域全体またはいくらかにわたって合計された光強度をいう。積分光強度は、式5の積分と比較されて、源の深さおよび輝度のなお別の評価を提供し得る。この情報は、プロフィール情報と組み合わせて提供され得る。積分光強度もまた、複数の波長について算出され得る。
【0095】
(G.較正された強度データ) 較正された強度データの非存在下では、強度測定は、カメラごとに変動し得、そして測定値は、投射、輝度、時刻およびFストップのような変数に依存する。
【0096】
絶対的な較正光強度(上記節III)は、上記節IIIにおいて議論されるように、真のピーク値に対する曲線のあてはめに基づいた源の深さの決定を精密化すること、および組織における生物発光細胞の数を推定することを可能にする。
【0097】
なお他の実施形態において、本発明は、強度および空間的分布データを用いて、他の画像化データの積分を提供し、被験体およびその中の標的位置のより詳細な三次元マップを作成する。例えば、集められた差次的光透過データ(例えば、上で開示されたもの)は、他の三次元画像化システム(例えば、三次元の計数化された「画像」または座標系を形成する、MRI画像の積み重ねられたスライス)から誘導された座標系と組み合わせられ得る。次いで、このような座標系を使用して、標的が同定される被験体の解剖学的構造をより良好に示し得る。被験体が実験室動物(例えば、ラット)である場合、このような動物は、所定の系統について、1匹の動物から次の動物へと、構造が高度に均一である。その結果、座標データ、スペクトルデータ、および空間強度パターンファイルは、市場の販売者によって作成され得、そして図1に示されるような単純化された検出ユニットと共に使用するために、販売され得る。モデル三次元情報がデータファイルとして供給される場合、ユーザのユニットは、三次元の走査およびマッピングのために装備される必要がない。上に開示された方法および装置において考慮された、二次元の画像を、販売者によって提供される三次元データファイルと組み合わせて、被験体における標的のサイズ、形状、深さ、位相、および位置についての完全な三次元情報を得ることができる。
【0098】
以下の実施例は、例示的であり、本発明を限定するようにはいかなる様式でも意図されない。
【実施例】
【0099】
(実施例1)
(2波長空間画像を使用する、発光物体の深さの算出)
図13Aに示される空間情報を使用して、細胞の皮下注射を受けた動物(図13B)および肺に標識細胞を有する動物(図13C)におけるルシフェラーゼ標識細胞の深さを算出した。この分析を、以下の工程を使用して、600nmおよび640nmに等しい波長でのデータを使用して実施した:(i)生物発光細胞を、インビトロおよびインビボで、600nmおよび640nmで画像化した;(ii)これらの画像を、各画像についての平均強度の測定によって定量した;(iii)インビトロの画像データに対するインビボの画像データの比を、各波長において決定した;そして(iv)式7を使用して深さを算出し、そして図7における平均有効散乱係数μeffを、吸収係数および散乱係数から推定した。
【0100】
皮下の細胞については、インビボ対インビトロの強度比(相対強度、すなわちφ)は、600nmおよび640nmにおいて、それぞれ0.35および0.75である。肺のシグナルについては、これらの同じ比は、0.05および0.47である。600nmにおいてμ=0.25mm−1およびμ’=1.0mm−1、ならびに640nmにおいてμ=0.05mm−1およびμ’=1.0mm−1を使用すると、600nmにおいてμeff=0.97mm−1、および640nmにおいて0.4mm−1が得られる。拡散係数Dの値は、600nmおよび640nmにおいて、それぞれ0.27mmおよび0.32mmである。これらの数値を式7(以下に再現する):
【0101】
【数5】
Figure 2004528916
(この場合、下付き文字1は、600nmを表し、そして下付き文字2は、640nmを表す)に代入すると、皮下および肺の深さについてそれぞれ、d=1.6mmおよびd=4.0mmが得られる。
【0102】
本発明を、特定の実施形態および適用に関して記載したが、種々の変化および改変が、本発明から逸脱することなくなされ得ることが、理解される。
【図面の簡単な説明】
【0103】
【図1A】図1Aは、被験体中の発光源の位置およびサイズを調査する際に使用するための、本発明に従って構築される装置の断面図である。
【図1B】図1Bは、図1Aにおける装置の特徴を、概略形態で例示する。
【図2】図2は、本発明の方法の実施における、この装置によって実施され得る一般的な工程のフローチャートである。
【図3A】図3Aは、動物被験体中の発光源からの表面光強度画像である。
【図3B】図3Bは、図3Aの動物被験体からの光放射プロフィールであり、測定された放射プロフィール(実線)と、拡散モデルから算出された光放射プロフィールとの間の曲線の一致を示す。
【図4】図4Aおよび4Bは、示されるように、マウス大腿中の種々の深さにおけるインビトロ(実線)およびインビボ(破線)の、細菌ルシフェラーゼの発光スペクトルのプロットであり、ここで図4におけるプロットは、600〜700nmの間の領域におけるインビボのピーク強度を示すために拡大されている。
【図5】図5は、透過スペクトルが得られた動物中の種々の位置を示す。
【図6A】図6Aは、図5に示される種々の動物位置における生きた実験用動物を通る透過スペクトルを示す。
【図6B】図6Bは、図5に示される種々の動物位置における生きた実験用動物を通る透過スペクトルを示す。
【図6C】図6Cは、サンプル(例えば、組織)の光学特性を測定するために有用な二重積分球型装置を例示する。
【図6D】図6Dは、インビボにおける組織の光学特性を測定するために有用な、放射状ファイバープローブの実験的設置を例示する。
【図7】図7Aおよび7Bは、吸収係数のプロットである。図7Cおよび7Dは、波長の関数としての、種々の組織の等方的または減少した散乱係数のプロットである。
【図8A】図8Aは、絶対的較正の決定のために使用される装置の要素を例示する。
【図8B】図8Bは絶対的較正が、動物被験体から細胞数を決定することをどのようにして可能にするかを例示する。
【図9】図9Aおよび9Bは、光子が組織を通ってどのように拡散するか(9A)、およびこの組織の表面に拡散する光子が、本発明においてどのように捕獲されるか(9B)を例示する。
【図10A】図10Aは、混濁組織を通る「酔歩」にわたる光子を追跡するMonte Carloシミュレーションを示す。
【図10B】図10Bは、4mmの深さにおける光源についての、拡散モデルから算出した予測光強度空間プロフィール(実線)、およびMonte Carloシミュレーションを用いて算出した光強度空間プロフィール(「+」記号)を例示する。
【図11】図11Aおよび11Bは、拡散モデルから算出したプロットであり、発光源の深さの関数として、ピーク強度(11A)およびスポット幅(FWHM)(10B)を示す。
【図12】図12Aは、被験体中の発光源からの表面光強度画像であり、光強度プロフィールが測定された水平プロフィール線および垂直プロフィール線を示す。図12Bおよび12Cは、図12Aに示される水平プロフィール線および垂直プロフィール線に沿って測定される光強度プロフィールである。
【図13】図13Aは、インビトロで取得されるルシフェラーゼ発光源のスペクトル画像プロット(実線)、図13に示される皮下部位から取得されるルシフェラーゼ発光源のスペクトル画像プロット(四角)、および図13Cに示される肺部位から取得されるルシフェラーゼ発光源のスペクトル画像プロット(菱形)を示す。図13Bおよび13Cは、皮下発光源を有する動物からの表面光強度画像(図13B)、および肺中に発光源を有する動物からの表面光強度画像(図13C)である。

Claims (35)

  1. 被験体における発光源の位置およびサイズを調査する方法であって、該方法は、以下の工程:
    (a)光検出デバイスを用いた第1の投射から、(i)該発光源から生じ、(ii)該被験体の混濁生物学的組織を通して進み、そして(iii)該被験体の目的の第1表面領域から発せられた光子を測定することにより、第1の測定された光強度プロフィールを得る工程;
    (b)該第1の測定された光強度プロフィールをパラメータベースの生体光子関数にあてはめる工程;および
    (c)該第1の測定された光強度プロフィール以外のデータを用いて、該生体光子関数のパラメータを精密化して、該被験体における該発光源のおよその深さおよびサイズを得る工程、
    を包含する、方法。
  2. 請求項1に記載の方法であって、前記精密化する工程が、前記被験体の発光源から発せられた光子の波長に関連するデータを使用する工程を包含する、方法。
  3. 前記被験体における発光源の深さを調査する工程において使用するための、請求項2に記載の方法であって、前記精密化する工程が、(a)約400〜約1000nmの間の2以上の異なる波長にて該被験体からの発光強度を測定する工程、(b)該被験体の組織における光学的特性に関連する情報を得る工程、および(c)前記測定された光強度および該得られた情報を使用して、該発光源の深さを精密化する工程、を包含する、方法。
  4. 請求項3に記載の方法であって、前記工程(a)、(b)、および(c)が、以下からなる群より選択されるプロトコル:
    A.工程(b)は、前記被験体の組織または材料における減衰係数および拡散係数に対応する、組織または材料における減衰係数および拡散係数を測定する工程を包含し、工程(c)は、前記発光源の深さを予測する式において、該係数を使用する工程を包含する;
    B.工程(b)は、2以上の異なる波長にて、該被験体の組織または材料に対応する、組織または材料における複数の深さの各々に位置した発光源からの光強度を決定することにより、実行され、工程(c)は、前記測定された光強度と該複数の深さの各々にて決定された光強度とを整合させることにより実行される;
    C.工程(a)は、前記発光源からの光強度のスペクトルプロフィールを測定する工程を包含し、工程(b)は、複数の深さの各々での発光源からの光強度のスペクトルプロフィールを決定することにより実施され、工程(c)は、該測定されたプロフィールと、該決定されたプロフィールとを整合させて、最良の曲線のあてはめを同定する工程により実施される;および
    D.工程(a)は、異なる波長における前記光強度プロフィールを測定する工程を包含する、
    により実行される、方法。
  5. 請求項1に記載の方法であって、前記精密化する工程が、前記被験体から測定されたデータを使用する工程を包含する、方法。
  6. 請求項5に記載の方法であって、前記精密化する工程は、第2の測定された光強度プロフィールから得られたデータを使用する工程を包含し、該第2のプロフィールは、光検出器を用いた第2の投射から、(i)発光源から生じ、(ii)該被験体の混濁生物学的組織を通して進み、そして(iii)該被験体の目的の第2表面領域から発せられた光子を測定することにより構築される、方法。
  7. 請求項5に記載の方法であって、前記データを得る工程は、(i)前記目的の第1表面領域からの総光強度を測定する工程、(ii)組織領域の深さ、サイズおよび輝度を、前記測定された光強度値と、点光源発光体の深さの関数として生成された総ラジアンス値とを比較することにより、予測する工程であって、該総ラジアンス値は、体表面の下の規定のサイズ、形状、および/または深さの光源からの光子拡散のモデルから生成される、工程、を包含する、方法。
  8. 請求項1に記載の方法であって、前記精密化する工程は、混濁媒体中の発光源からの光拡散のコンピュータシミュレーションから得られたデータを使用する工程を包含する、方法。
  9. 請求項8に記載の方法であって、前記コンピュータシミュレーションが、光子拡散モデルである、方法。
  10. 請求項9に記載の方法であって、前記精密化する工程が、(i)生物学的組織の吸収特性および散乱特性に類似する、吸収特性および散乱特性を有する混濁媒体を通した、複数の深さのうちの1つに位置し、複数のサイズおよび形状のうちの1つを有する発光源からの光子拡散モデルに基づいて、複数の理論的光強度プロフィールを生成する工程、(ii)該複数の理論的光強度プロフィールの各々と前記第1の測定された光強度プロフィールとの間のあてはめの質を比較する工程、(iii)該第1の測定された光強度プロフィールに供給する、該理論的光強度プロフィールを選択する工程、および(iv)前記被験体における該発光源のおよその深さ、形状および輝度を、(iii)において選択された該理論的光強度プロフィールからのパラメータを使用して得る工程、を包含する、方法。
  11. 請求項10に記載の方法であって、前記あてはめの質を比較する工程は、最小二乗アルゴリズムを使用して行われる、方法。
  12. 請求項10に記載の方法であって、前記あてはめの質を比較する工程は、遺伝アルゴリズムを使用して行われる、方法。
  13. 請求項10に記載の方法であって、前記生成する工程は、光子散乱モデルにおいて、前記光子が進む組織に対応する、1以上の所定の組織特異的光散乱係数を使用する工程を包含する、方法。
  14. 請求項1に記載の方法であって、前記発光源は発光部分である、方法。
  15. 請求項1に記載の方法であって、前記発光源は蛍光部分である、方法。
  16. 請求項1に記載の方法であって、前記発光源は、前記被験体に投与され、前記測定する工程の前に該被験体において選択された標的に結合する、方法。
  17. 請求項1に記載の方法であって、前記発光源は光発生タンパク質である、方法。
  18. 請求項17に記載の方法であって、前記光発生タンパク質は、前記被験体の生物学的細胞により発現される、方法。
  19. 請求項17に記載の方法であって、前記光発生タンパク質は、前記被験体に投与された生物学的細胞により発現される、方法。
  20. 請求項1に記載の方法であって、前記被験体における前記発光源の前記およその深さおよび形状を使用して、該発光源の可視的な表示を生成する工程、および該可視的な表示を該被験体の画像に重ね合わせる工程、をさらに包含する、方法。
  21. 請求項20に記載の方法であって、前記画像は二次元画像である、方法。
  22. 請求項20に記載の方法であって、前記画像は三次元画像である、方法。
  23. 被験体における発光源の位置およびサイズを調査する際に使用するための装置であって、該装置は、以下:
    該被験体からの発光事象を内部で検出し得る遮光エンクロージャ、
    (i)該発光源から生じ、(ii)該被験体の混濁生物学的組織を通じて進み、そして(iii)該被験体の目的の第1表面領域から発せられる、光子を該エンクロージャ内の第1投射から測定することにより、構築される第1光強度プロフィールを得る際に使用するための、該エンクロージャ内に設けられる光学システム;ならびに
    (i)該第1の測定された光強度プロフィールと、パラメータベースの生体光子関数とをあてはめ;そして(ii)該第1の測定された光強度プロフィール以外のデータを使用して、該生体光子関数の該パラメータを精密化して、該被験体における該発光源のおよその深さ、形状、および輝度を生成するための、該光検出器に操作可能に接続された計算ユニット、
    を備える、装置。
  24. 請求項23に記載の装置であって、前記光学システムは、冷却条件で操作され得る電荷結合デバイス(CCD)、および該CCD上に光を集めるためのレンズを備える、装置。
  25. 請求項24に記載の装置であって、前記光学システムは、前記被験体の目的の複数の異なる表面領域から発せられた光子を検出するように設計されている、装置。
  26. 請求項23に記載の装置であって、前記光学システムは、約400〜800nmの間の選択された2以上の異なる波長範囲内で光子発光強度を測定する際に使用するための、選択された異なる波長領域内の光子を通すための1以上の波長フィルタを備え、前記計算ユニットは、前記パラメータ精密化メント操作:
    (i)該異なる波長にて測定された相対光強度を決定し、組織深さの関数として、該決定された相対光強度と、該異なる波長での既知の相対シグナル強度とを比較する工程;および
    (ii)該測定されたスペクトルと、組織内の種々の深さに配置された発光源から測定される複数のスペクトルとを比較し、該測定されたスペクトルと、該既知のスペクトルとを整合させることから、該発光標的領域の深さを決定する工程、
    の少なくとも1つを実施するために操作可能である、装置。
  27. 請求項23に記載の装置であって、前記計算ユニットは、モデル被験体のモデル身体領域内の、モデル標的の発光のサイズ、形状、および/または深さの関数として、前記選択された波長範囲内で発光された光の空間分布に関する所定の空間分布情報を含むデータファイルを含み、そして前記ユニットが、(i)前記第1光強度プロフィールのスペクトル特性と、データベース中に含まれるスペクトル特性とを比較する、ためのタスクを実行する際に機能する、装置。
  28. 請求項23に記載の装置であって、前記計算ユニットは、強度パターン画像を、単一の強度値に積分し、特定のサイズおよび形状の発光源の関数として生成された、積分された光強度値により発光源サイズを予測することが操作可能である、装置。
  29. 請求項23に記載の装置であって、前記計算ユニットは、生物学的組織の吸収特性および散乱特性に類似の、吸収特性および散乱特性を有する混濁媒体を通した、複数の深さの1つに位置し、複数のサイズおよび形状のうちの1つを有するグロー源からの光子拡散のモデルに基づく複数の理論的光強度プロフィールを含むデータベースを含み、該ユニットは、(i)該複数の理論的光強度プロフィールの各々と、第1の測定された光強度プロフィールとの間のあてはめの質を比較すること、(ii)最良のあてはめを該第1の測定された光強度プロフィールに提供する該理論的光強度プロフィールを選択すること、および(iii)(ii)で選択された理論的光強度プロフィールからのパラメータを使用して、該被験体における該発光源のおよその深さおよび形状を得ることが操作可能である、装置。
  30. 請求項23に記載の装置であって、前記計算ユニットは、前記被験体における発光源のおよその深さおよび形状を使用して、前記発光源の可視的な二次元表示または三次元表示を生成し、そして該可視的な表示を、該被験体の二次元画像または三次元画像に重ね合わせることが可能である、装置。
  31. 請求項1に記載の方法であって、前記得る工程は、絶対強度値を得る工程を包含する、方法。
  32. 被験体の組織における発光源の深さを決定する方法であって、該方法は、以下の工程:
    (a)約400nm〜約1000nmの間の2以上の異なる波長にて該被験体からの発光強度を測定する工程;
    (b)該被験体の組織の光学的特性に関連した情報を得る工程、および
    (c)該測定された光強度および該得られた情報を使用して、該発光源の深さを決定する工程、
    を包含する、方法。
  33. 請求項32に記載の方法であって、工程(a)は、2つの異なる波長の各々にて光強度を測定することにより実施され、工程(b)は、前記被験体の組織または材料に対応する、組織または材料の減衰係数および拡散係数を測定する工程を包含し、工程(c)は、式において該係数を使用して、該発光源の深さを予測する工程を包含する、方法。
  34. 請求項33に記載の方法であって、工程(b)は、2以上の異なる波長にて、前記被験体における組織または材料に対応する、組織または材料における複数の深さの各々に位置した発光源からの光強度を決定する工程により実施され、工程(c)は、該測定された光強度と、該複数の深さの各々にて決定された参照光強度とを整合させることにより実施される、方法。
  35. 請求項34に記載の方法であって、工程(a)は、前記発光源からの光強度のスペクトルプロフィールを測定する工程を包含し、工程(b)は、複数の深さの各々での発光源からの光強度のスペクトルプロフィールを決定することにより実施され、工程(c)は、該測定されたプロフィールと、該決定されたプロフィールとを整合させて、最良の曲線のあてはめを同定することにより実施される、方法。
JP2002589773A 2001-05-17 2002-05-17 身体領域内の標的の深さ、輝度およびサイズを決定するための方法および装置 Expired - Lifetime JP4259879B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US29179401P 2001-05-17 2001-05-17
PCT/US2002/016006 WO2002093143A2 (en) 2001-05-17 2002-05-17 Method and apparatus for determining target depth, brightness and size within a body region

Publications (2)

Publication Number Publication Date
JP2004528916A true JP2004528916A (ja) 2004-09-24
JP4259879B2 JP4259879B2 (ja) 2009-04-30

Family

ID=23121857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002589773A Expired - Lifetime JP4259879B2 (ja) 2001-05-17 2002-05-17 身体領域内の標的の深さ、輝度およびサイズを決定するための方法および装置

Country Status (9)

Country Link
US (4) US7403812B2 (ja)
EP (1) EP1402243B1 (ja)
JP (1) JP4259879B2 (ja)
KR (1) KR20040012844A (ja)
AT (1) ATE336717T1 (ja)
AU (1) AU2002303819B2 (ja)
CA (1) CA2447262A1 (ja)
DE (1) DE60213993T2 (ja)
WO (1) WO2002093143A2 (ja)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040012844A (ko) 2001-05-17 2004-02-11 제노젠 코퍼레이션 신체영역내의 표적 깊이, 휘도 및 크기의 결정 방법 및 장치
US7599731B2 (en) * 2002-07-16 2009-10-06 Xenogen Corporation Fluorescent light tomography
US7616985B2 (en) * 2002-07-16 2009-11-10 Xenogen Corporation Method and apparatus for 3-D imaging of internal light sources
US8090431B2 (en) * 2003-03-10 2012-01-03 University Of Iowa Research Foundation Systems and methods for bioluminescent computed tomographic reconstruction
US7190991B2 (en) * 2003-07-01 2007-03-13 Xenogen Corporation Multi-mode internal imaging
CA2544283A1 (en) 2003-10-31 2005-05-12 Art Recherches Et Technologies Avancees Inc./Art Advanced Research Techn A time-domain method and apparatus for determining the depth and concentration of a fluorophore in a turbid medium
JP4327738B2 (ja) * 2005-01-18 2009-09-09 株式会社東芝 生体光計測装置及び生体光計測方法
CN100406874C (zh) * 2005-06-20 2008-07-30 北京源德生物医学工程有限公司 半自动微孔板单光子计数仪的门组件
CN101304684A (zh) * 2005-11-10 2008-11-12 皇家飞利浦电子股份有限公司 用于光荧光层析成像的吸收和散射图重构
GR1005346B (el) * 2005-12-20 2006-11-02 Ιδρυμα Τεχνολογιας Και Ερευνας Αφαιρεση συνοριακων επιφανειων σε διαχυτα μεσα
JPWO2007074923A1 (ja) * 2005-12-27 2009-06-04 オリンパス株式会社 発光測定装置並びに発光測定方法
US7865226B2 (en) * 2006-02-03 2011-01-04 Chiodo Chris D Specimen positioning system for imaging machines
EP2001352A4 (en) * 2006-03-17 2010-04-07 Univ Duke MODEL OF FLUORESCENCE IN A DISORDER MEDIUM BASED ON THE MONTE CARLO METHOD AND SYSTEMS FOR USING THE SAME TO DETERMINE THE INTRINSIC FLUORESCENCE OF A DISORDER MEDIUM
EP2005173A4 (en) * 2006-03-30 2011-03-16 Univ Duke OPTICAL ANALYSIS SYSTEM FOR INTRA-OPERATIVE EVALUATION OF TUMOR MARGINS
EP1865430A3 (en) * 2006-06-05 2009-09-23 Cambridge Research & Instrumentation, Inc. Monte Carlo simulation using GPU units on personal computers
US10335038B2 (en) * 2006-08-24 2019-07-02 Xenogen Corporation Spectral unmixing for in-vivo imaging
WO2008024986A2 (en) * 2006-08-24 2008-02-28 Xenogen Corporation Apparatus and methods for determining optical tissue properties
US10775308B2 (en) * 2006-08-24 2020-09-15 Xenogen Corporation Apparatus and methods for determining optical tissue properties
US7990545B2 (en) * 2006-12-27 2011-08-02 Cambridge Research & Instrumentation, Inc. Surface measurement of in-vivo subjects using spot projector
WO2008103486A1 (en) * 2007-02-23 2008-08-28 Duke University Scaling method for fast monte carlo simulation of diffuse reflectance spectra
FR2917831B1 (fr) * 2007-06-25 2009-10-30 Super Sonic Imagine Sa Procede de caracterisation rheologique d'un milieu viscoelastique
EP2194878A2 (en) * 2007-09-27 2010-06-16 Duke University Optical assay system with a multi-probe imaging array
WO2009043045A1 (en) * 2007-09-28 2009-04-02 Duke University Systems and methods for spectral analysis of a tissue mass using an instrument, an optical probe, and a monte carlo or a diffusion algorithm
US8509879B2 (en) * 2007-11-06 2013-08-13 The Regents Of The University Of California Apparatus and method for widefield functional imaging (WiFI) using integrated structured illumination and laser speckle imaging
JP5257891B2 (ja) * 2007-12-05 2013-08-07 富士フイルム株式会社 画像処理システムおよびプログラム
WO2010042249A2 (en) * 2008-04-24 2010-04-15 Duke University A diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering
EP2291640B1 (en) 2008-05-20 2018-12-26 University Health Network Device and method for fluorescence-based imaging and monitoring
JP5250342B2 (ja) * 2008-08-26 2013-07-31 富士フイルム株式会社 画像処理装置およびプログラム
KR101011002B1 (ko) * 2008-09-11 2011-01-26 주식회사 효성 가스절연기기
JP2010088627A (ja) * 2008-10-07 2010-04-22 Canon Inc 生体情報処理装置および生体情報処理方法
EP2501288B1 (en) * 2009-11-19 2016-12-21 Modulated Imaging Inc. Method and apparatus for analysis of turbid media via single-element detection using structured illumination
US9091637B2 (en) 2009-12-04 2015-07-28 Duke University Smart fiber optic sensors systems and methods for quantitative optical spectroscopy
US20120041302A1 (en) * 2010-08-16 2012-02-16 Caliper Life Sciences, Inc. Portable imaging subject cartridge
US8901516B2 (en) 2010-09-01 2014-12-02 Spectral Instruments Imaging, LLC Excitation light source assembly
EP2612134B1 (en) 2010-09-01 2019-10-23 Spectral Instruments Imaging, LLC Methods and systems for producing visible light and x-ray image data
US8729502B1 (en) 2010-10-28 2014-05-20 The Research Foundation For The State University Of New York Simultaneous, single-detector fluorescence detection of multiple analytes with frequency-specific lock-in detection
WO2012141563A1 (es) * 2011-04-15 2012-10-18 Joel Gerardo Diaz Sanchez Colpoestereoscopio de fototerapia dinámica por dos vías para diagnóstico y tratamiento de las enfermedades del tracto genital femenino
US20130085385A1 (en) * 2011-05-23 2013-04-04 George A. Luiken Surgical lighting sources for use with fluophore-tagged monoclonal antibodies or fluorophore-tagged tumor avid compounds
US9314218B2 (en) * 2011-06-20 2016-04-19 Caliper Life Sciences, Inc. Integrated microtomography and optical imaging systems
MY166969A (en) * 2011-11-30 2018-07-26 Institute Of Tech Petronas Sdn Bhd Methodology for determining concentration of the types of melanin pigment in the skin
US20140357950A1 (en) * 2012-01-18 2014-12-04 Joel Gerardo Diaz Sanchez Photodynamic diagnosis stereo colposcope (pdd) for female genital tract diseases and early detection of neoplastic lesion
CN105190308B (zh) 2012-11-07 2021-05-28 调节成像公司 用于测量混浊样本的设备和方法
US9261349B2 (en) * 2012-11-08 2016-02-16 Kabushiki Kaisha Topcon Optical imaging apparatus, optical imaging method, apparatus for setting characteristics of a light source, and method for setting characteristics of a light source
CN106714670A (zh) 2014-07-24 2017-05-24 大学健康网络 用于诊断目的的数据的收集和分析
WO2017136656A1 (en) 2016-02-04 2017-08-10 Northwestern University Methods and systems for identifying non-penetrating brain injuries
WO2018217922A1 (en) * 2017-05-26 2018-11-29 Branson Ultrasonics Corporation Simultaneous laser welding with control by profiling
WO2019040830A1 (en) 2017-08-24 2019-02-28 Northwestern University SYSTEMS AND METHODS FOR THE ACUTE EVALUATION OF TRAUMATIC BRAIN INJURIES
CN108401457A (zh) * 2017-08-25 2018-08-14 深圳市大疆创新科技有限公司 一种曝光的控制方法、装置以及无人机
US11689707B2 (en) * 2018-09-20 2023-06-27 Shoppertrak Rct Llc Techniques for calibrating a stereoscopic camera in a device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06129984A (ja) * 1992-07-20 1994-05-13 Hamamatsu Photonics Kk 散乱吸収体内部の吸収情報計測装置及び方法
JPH08136448A (ja) * 1994-11-07 1996-05-31 Hamamatsu Photonics Kk 散乱吸収体内の散乱特性・吸収特性の測定方法及び装置
JPH09504964A (ja) * 1993-10-29 1997-05-20 ザ・トラスティーズ・オブ・ザ・ユニバーシティ・オブ・ペンシルベニア 拡散光を用いた対象物撮像
WO1998034533A1 (en) * 1996-08-23 1998-08-13 Purdue Research Foundation Imaging of light scattering tissues with fluorescent contrast agents
JPH10510626A (ja) * 1994-12-02 1998-10-13 ノン−インヴェイシヴ テクノロジイ,インク. 生物学的組織の検査のための光学技術
JPH11173976A (ja) * 1997-12-12 1999-07-02 Hamamatsu Photonics Kk 光ct装置及び画像再構成方法
JP2000500228A (ja) * 1995-08-24 2000-01-11 パーデュー・リサーチ・ファンデーション 組織およびその他のランダム媒体における蛍光寿命に基づく撮像および分光分析

Family Cites Families (200)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4341957A (en) 1975-11-26 1982-07-27 Analytical Radiation Corporation Fluorescent antibody composition for immunofluorometric assay
JPS60256443A (ja) * 1984-05-31 1985-12-18 オムロン株式会社 画像計測装置
US4761071A (en) 1984-11-06 1988-08-02 Baron William S Apparatus and method for determining corneal and scleral topography
US4687352A (en) 1984-12-29 1987-08-18 Brother Kogyo Kabushiki Kaisha Printer with an image reader
US4772453A (en) 1985-03-01 1988-09-20 Lisenbee Wayne F Luminiscence measurement arrangement
US4687325A (en) 1985-03-28 1987-08-18 General Electric Company Three-dimensional range camera
US5205291A (en) 1988-11-08 1993-04-27 Health Research, Inc. In vivo fluorescence photometer
US5353799A (en) 1991-01-22 1994-10-11 Non Invasive Technology, Inc. Examination of subjects using photon migration with high directionality techniques
US5148022A (en) 1989-02-15 1992-09-15 Hitachi, Ltd. Method for optically inspecting human body and apparatus for the same
SE8900612D0 (sv) 1989-02-22 1989-02-22 Jonas Johansson Vaevnadskarakterisering utnyttjande ett blodfritt fluorescenskriterium
CA2042075C (en) 1991-05-08 2001-01-23 Branko Palcic Endoscopic imaging system
US5769792A (en) 1991-07-03 1998-06-23 Xillix Technologies Corp. Endoscopic imaging system for diseased tissue
JP2970967B2 (ja) 1991-11-20 1999-11-02 浜松ホトニクス株式会社 蛍光性プローブ試薬を用いた細胞内イオン濃度測定法
US5242441A (en) 1992-02-24 1993-09-07 Boaz Avitall Deflectable catheter with rotatable tip electrode
US5452723A (en) * 1992-07-24 1995-09-26 Massachusetts Institute Of Technology Calibrated spectrographic imaging
US5949077A (en) 1992-08-10 1999-09-07 Alfano; Robert R. Technique for imaging an object in or behind a scattering medium
US5746210A (en) * 1993-02-26 1998-05-05 David A. Benaron Device and method for detection, localization, and characterization of inhomogeneities in turbid media
DE4338758C2 (de) 1992-11-13 2001-08-09 Scimed Life Systems Inc Katheteranordnung
US5334193A (en) 1992-11-13 1994-08-02 American Cardiac Ablation Co., Inc. Fluid cooled ablation catheter
US5414258A (en) 1993-11-22 1995-05-09 Angstrom Technologies, Inc. Apparatus and method for calibration of fluorescence detectors
DE4411017C2 (de) 1994-03-30 1995-06-08 Alexander Dr Knuettel Optische stationäre spektroskopische Bildgebung in stark streuenden Objekten durch spezielle Lichtfokussierung und Signal-Detektion von Licht unterschiedlicher Wellenlängen
US5650135A (en) 1994-07-01 1997-07-22 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive localization of a light-emitting conjugate in a mammal
US6649143B1 (en) 1994-07-01 2003-11-18 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive localization of a light-emitting conjugate in a mammal
IL110538A0 (en) 1994-08-02 1994-11-11 Oren Aharon Tomographic imaging system
US5672881A (en) 1994-09-14 1997-09-30 Glyko, Inc. Charge-coupled device imaging apparatus
US5840572A (en) 1994-10-11 1998-11-24 United States Of America As Represented By The Secretary Of The Navy Bioluminescent bioassay system
US5705807A (en) 1994-10-24 1998-01-06 Nissan Motor Co., Ltd. Photo detecting apparatus for detecting reflected light from an object and excluding an external light componet from the reflected light
AU4594796A (en) 1994-11-25 1996-06-19 Yuriy Alexandrov System and method for diagnosis of living tissue diseases
JP2675532B2 (ja) 1994-12-20 1997-11-12 株式会社バイオセンサー研究所 化学発光測定装置
US5636299A (en) 1994-12-28 1997-06-03 Lockheed Missiles & Space Company, Inc. Hybrid luminescent device and method for imaging penetrating radiation
US5594253A (en) 1994-12-28 1997-01-14 Lockheed Missiles And Space Company, Inc. Hybrid luminescent device for imaging of ionizing and penetrating radiation
US6540981B2 (en) 1997-12-04 2003-04-01 Amersham Health As Light imaging contrast agents
US5813988A (en) 1995-02-03 1998-09-29 Research Foundation Time-resolved diffusion tomographic imaging in highly scattering turbid media
US6070583A (en) * 1995-02-21 2000-06-06 Massachusetts Institute Of Technology Optical imaging of tissue using inelastically scattered light
US5919140A (en) 1995-02-21 1999-07-06 Massachusetts Institute Of Technology Optical imaging using time gated scattered light
US5710429A (en) 1995-04-06 1998-01-20 Alfano; Robert R. Ultrafast optical imaging of objects in or behind scattering media
US6230046B1 (en) 1995-05-16 2001-05-08 The United States Of America As Represented By The Secretary Of The Air Force System and method for enhanced visualization of subcutaneous structures
US7328059B2 (en) 1996-08-23 2008-02-05 The Texas A & M University System Imaging of light scattering tissues with fluorescent contrast agents
JP2879003B2 (ja) 1995-11-16 1999-04-05 株式会社生体光情報研究所 画像計測装置
CA2163914A1 (en) 1995-11-28 1997-05-29 Andre Parent Method and apparatus for detecting malignancies in living tissue
EP0812149A2 (en) * 1995-12-22 1997-12-17 Koninklijke Philips Electronics N.V. Device for localizing an object in a turbid medium
GB2309368B (en) 1996-01-18 1999-09-15 Hamamatsu Photonics Kk An optical computer tomographic apparatus and image reconstruction method using optical computer tomography
US5738101A (en) 1996-01-18 1998-04-14 The Regents Of The University Of California Optical imaging through turbid media with a degenerate four-wave mixing correlation time gate
IL117241A (en) 1996-02-23 2000-09-28 Talia Technology Ltd Three dimensional imaging apparatus and a method for use thereof
US6108576A (en) * 1996-03-18 2000-08-22 The Research Foundation Of City College Of New York Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media
US8349602B1 (en) 1996-04-19 2013-01-08 Xenogen Corporation Biodetectors targeted to specific ligands
US5988862A (en) * 1996-04-24 1999-11-23 Cyra Technologies, Inc. Integrated system for quickly and accurately imaging and modeling three dimensional objects
US5867250A (en) 1996-05-03 1999-02-02 Baron; William S. Apparatus and method for optically mapping front and back surface topographies of an object
JP3442220B2 (ja) 1996-05-15 2003-09-02 シスメックス株式会社 光散乱媒体中物体の可視化光学システム
US5864633A (en) * 1996-05-17 1999-01-26 Therma-Wave, Inc. Method and apparatus for optical data analysis
US6026173A (en) 1997-07-05 2000-02-15 Svenson; Robert H. Electromagnetic imaging and therapeutic (EMIT) systems
DE69739988D1 (de) 1996-07-10 2010-10-21 Perkinelmer Singapore Pte Ltd Verbessertes abbildungssystem zur fluoreszenzanalyse
US5812310A (en) 1996-10-16 1998-09-22 Applied Precision, Inc. Orthogonal high accuracy microscope stage
DE29621183U1 (de) * 1996-12-06 1997-02-20 Eder Gmbh Maschfab Franz Vorrichtung zum Abscheiden von Flüssigkeiten und/oder Feststoffen oder Gasen mit anderem spezifischem Gewicht aus einem Gasstrom
GB9626825D0 (en) 1996-12-24 1997-02-12 Crampton Stephen J Avatar kiosk
US5963658A (en) * 1997-01-27 1999-10-05 University Of North Carolina Method and apparatus for detecting an abnormality within a host medium
US5936739A (en) 1997-01-29 1999-08-10 Sandia Corporation Gated frequency-resolved optical imaging with an optical parametric amplifier
US6208886B1 (en) 1997-04-04 2001-03-27 The Research Foundation Of City College Of New York Non-linear optical tomography of turbid media
US7048716B1 (en) * 1997-05-15 2006-05-23 Stanford University MR-compatible devices
US5943129A (en) 1997-08-07 1999-08-24 Cambridge Research & Instrumentation Inc. Fluorescence imaging system
US6069698A (en) 1997-08-28 2000-05-30 Olympus Optical Co., Ltd. Optical imaging apparatus which radiates a low coherence light beam onto a test object, receives optical information from light scattered by the object, and constructs therefrom a cross-sectional image of the object
US6316215B1 (en) 1999-12-27 2001-11-13 Edwin L. Adair Methods of cancer screening utilizing fluorescence detection techniques and selectable imager charge integration periods
ES2137879B1 (es) 1997-12-02 2000-08-16 Francisco Soria Melguizo S A Sistema analizador de imagenes producidas por reacciones bacterianas.
DE59809883D1 (de) 1997-12-23 2003-11-13 Siemens Ag Verfahren und vorrichtung zur aufnahme eines dreidimensionalen abstandsbildes
US6364829B1 (en) 1999-01-26 2002-04-02 Newton Laboratories, Inc. Autofluorescence imaging system for endoscopy
US6267722B1 (en) * 1998-02-03 2001-07-31 Adeza Biomedical Corporation Point of care diagnostic systems
US6205347B1 (en) 1998-02-27 2001-03-20 Picker International, Inc. Separate and combined multi-modality diagnostic imaging system
US6549288B1 (en) 1998-05-14 2003-04-15 Viewpoint Corp. Structured-light, triangulation-based three-dimensional digitizer
US6252623B1 (en) 1998-05-15 2001-06-26 3Dmetrics, Incorporated Three dimensional imaging system
US6242743B1 (en) 1998-08-11 2001-06-05 Mosaic Imaging Technology, Inc. Non-orbiting tomographic imaging system
AU6048599A (en) 1998-09-18 2000-04-10 Cellomics, Inc. A system for cell-based screening
US6615061B1 (en) * 1998-11-23 2003-09-02 Abbott Laboratories Optical sensor having a selectable sampling distance for determination of analytes
JP3585753B2 (ja) 1998-12-15 2004-11-04 富士写真フイルム株式会社 撮影システム
US6175407B1 (en) 1998-12-17 2001-01-16 Identix Incorporated Apparatus and method for optically imaging features on the surface of a hand
WO2000036106A2 (en) 1998-12-17 2000-06-22 Xenogen Corporation Non-invasive evaluation of physiological response in a mammal
US6610503B1 (en) 1999-03-17 2003-08-26 Xenogen Corporation Animal models for predicting sepsis mortality
WO2000055882A1 (en) 1999-03-18 2000-09-21 Cambridge Research & Instrumentation Inc. High-efficiency multiple probe imaging system
US7107116B2 (en) 1999-03-29 2006-09-12 Genex Technologies, Inc. Diffuse optical tomography system and method of use
US6167297A (en) 1999-05-05 2000-12-26 Benaron; David A. Detecting, localizing, and targeting internal sites in vivo using optical contrast agents
US20030026762A1 (en) * 1999-05-05 2003-02-06 Malmros Mark K. Bio-spectral imaging system and methods for diagnosing cell disease state
US6264610B1 (en) 1999-05-05 2001-07-24 The University Of Connecticut Combined ultrasound and near infrared diffused light imaging system
US6415051B1 (en) 1999-06-24 2002-07-02 Geometrix, Inc. Generating 3-D models using a manually operated structured light source
JP2001017379A (ja) 1999-07-09 2001-01-23 Fuji Photo Film Co Ltd 蛍光診断装置
US6219566B1 (en) * 1999-07-13 2001-04-17 Photonics Research Ontario Method of measuring concentration of luminescent materials in turbid media
US6750964B2 (en) 1999-08-06 2004-06-15 Cambridge Research And Instrumentation, Inc. Spectral imaging methods and systems
EP1208367A4 (en) 1999-08-06 2007-03-07 Cambridge Res & Instrmnt Inc DEVICE FOR SPECTRAL FIGURE
AU2589500A (en) 1999-09-03 2001-04-10 Xenogen Corporation Targeting constructs and transgenic animals produced therewith
IT1313918B1 (it) * 1999-10-12 2002-09-26 Sergio Zambelli Dispositivo per il collegamento di una trave a pilastri, o elementistrutturali portanti simili, per la realizzazione di edifici,
US6381302B1 (en) 2000-07-05 2002-04-30 Canon Kabushiki Kaisha Computer assisted 2D adjustment of stereo X-ray images
US6710770B2 (en) 2000-02-11 2004-03-23 Canesta, Inc. Quasi-three-dimensional method and apparatus to detect and localize interaction of user-object and virtual transfer device
US7581191B2 (en) 1999-11-15 2009-08-25 Xenogen Corporation Graphical user interface for 3-D in-vivo imaging
US6603552B1 (en) 1999-12-22 2003-08-05 Xillix Technologies Corp. Portable system for detecting skin abnormalities based on characteristic autofluorescence
US6337353B1 (en) 2000-01-04 2002-01-08 Exxonmobil Research And Engineering Company Activation of hydrocarbon synthesis catalysts with hydrogen and ammonia
JP3553451B2 (ja) 2000-02-18 2004-08-11 独立行政法人 科学技術振興機構 光干渉断層像観測装置
US6775567B2 (en) 2000-02-25 2004-08-10 Xenogen Corporation Imaging apparatus
US6566143B2 (en) 2000-02-25 2003-05-20 Cambridge Research & Instrumentation, Inc. Multiple label fluorescence polarization assay system and method
US6377353B1 (en) 2000-03-07 2002-04-23 Pheno Imaging, Inc. Three-dimensional measuring system for animals using structured light
JP3999437B2 (ja) 2000-03-10 2007-10-31 富士フイルム株式会社 光断層画像化装置
US6429943B1 (en) * 2000-03-29 2002-08-06 Therma-Wave, Inc. Critical dimension analysis with simultaneous multiple angle of incidence measurements
US6618152B2 (en) 2000-05-09 2003-09-09 Fuji Photo Film Co., Ltd. Optical coherence tomography apparatus using optical-waveguide structure which reduces pulse width of low-coherence light
US6748259B1 (en) * 2000-06-15 2004-06-08 Spectros Corporation Optical imaging of induced signals in vivo under ambient light conditions
US6693710B1 (en) 2000-06-16 2004-02-17 Cambridge Research & Instrumentation Inc. Polarization imaging system
US7056728B2 (en) * 2000-07-06 2006-06-06 Xenogen Corporation Compositions and methods for use thereof in modifying the genomes of microorganisms
SE519734C2 (sv) 2000-07-07 2003-04-01 Axis Ab Bildförändringsanordning för en bildalstrande apparat samt metod och digitalkamera till densamma
EP1301118B1 (en) 2000-07-14 2006-09-06 Xillix Technologies Corp. Compact fluorescence endoscopy video system
US6597931B1 (en) * 2000-09-18 2003-07-22 Photonify Technologies, Inc. System and method for absolute oxygen saturation
US6394965B1 (en) 2000-08-15 2002-05-28 Carbon Medical Technologies, Inc. Tissue marking using biocompatible microparticles
JP2002095663A (ja) 2000-09-26 2002-04-02 Fuji Photo Film Co Ltd センチネルリンパ節光断層画像取得方法および装置
US7383076B2 (en) 2000-11-27 2008-06-03 The General Hospital Corporation Fluorescence-mediated molecular tomography
US6615063B1 (en) 2000-11-27 2003-09-02 The General Hospital Corporation Fluorescence-mediated molecular tomography
KR20040012844A (ko) 2001-05-17 2004-02-11 제노젠 코퍼레이션 신체영역내의 표적 깊이, 휘도 및 크기의 결정 방법 및 장치
US6919919B2 (en) 2002-02-06 2005-07-19 Xenogen Corporation Light calibration device for use in low level light imaging systems
US8078268B2 (en) 2001-06-28 2011-12-13 Chemimage Corporation System and method of chemical imaging using pulsed laser excitation and time-gated detection to determine tissue margins during surgery
US7113217B2 (en) 2001-07-13 2006-09-26 Xenogen Corporation Multi-view imaging apparatus
US6694159B2 (en) 2001-07-16 2004-02-17 Art, Advanced Research Technologies Inc. Choice of wavelengths for multiwavelength optical imaging
WO2004065943A1 (en) 2003-01-22 2004-08-05 Art, Advanced Research Technologies, Inc. Simultaneous acquisition of different time-gates in tpsf-based optical imaging
US6678049B1 (en) 2001-07-16 2004-01-13 Art, Advanced Research Technologies Inc. Optical detection system and method
US7428434B2 (en) 2001-07-27 2008-09-23 The Regents Of The Univeristy Of California Quantitative broadband absorption and scattering spectroscopy in turbid media by combined frequency-domain and steady state methodologies
US6775349B2 (en) 2001-10-23 2004-08-10 Washington Univ. In St. Louis System and method for scanning near-field optical tomography
US6899675B2 (en) 2002-01-15 2005-05-31 Xillix Technologies Corp. Fluorescence endoscopy video systems with no moving parts in the camera
US7474399B2 (en) 2002-02-22 2009-01-06 Xenogen Corporation Dual illumination system for an imaging apparatus and method
EP1485011B1 (en) 2002-03-12 2013-02-13 Beth Israel Deaconess Medical Center Medical imaging systems
US6958815B2 (en) 2002-03-19 2005-10-25 The Regents Of The University Of California Method and apparatus for performing quantitative analysis and imaging surfaces and subsurfaces of turbid media using spatially structured illumination
US6924893B2 (en) 2002-05-13 2005-08-02 Marine Biological Laboratory Enhancing polarized light microscopy
EP2410315B1 (en) 2002-06-04 2020-04-01 Visen Medical, Inc. Imaging volumes with arbitrary geometries in contact and non-contact tomography
US6628747B1 (en) 2002-06-21 2003-09-30 Washington University In St. Louis System and method for dual-beam internal reflection tomography
US7016717B2 (en) 2002-07-05 2006-03-21 The Regents Of The University Of California Near-infrared spectroscopic tissue imaging for medical applications
US6618463B1 (en) 2002-07-09 2003-09-09 Washington University System and method for single-beam internal reflection tomography
US7599731B2 (en) 2002-07-16 2009-10-06 Xenogen Corporation Fluorescent light tomography
US7616985B2 (en) 2002-07-16 2009-11-10 Xenogen Corporation Method and apparatus for 3-D imaging of internal light sources
US20040027659A1 (en) 2002-08-08 2004-02-12 Messerschmidt Robert G. Sample holder
US20040085536A1 (en) 2002-11-01 2004-05-06 Schotland John Carl Tomography system and method using nonlinear reconstruction of scattered radiation
US6992762B2 (en) 2002-11-11 2006-01-31 Art Advanced Research Technologies Inc. Method and apparatus for time resolved optical imaging of biological tissues as part of animals
EP1593095B1 (en) 2003-02-05 2019-04-17 The General Hospital Corporation Method and system for free space optical tomography of diffuse media
US7720525B2 (en) 2003-03-12 2010-05-18 New Art Advanced Research Technologies Inc. Method and apparatus for combining continuous wave and time domain optical imaging
WO2004113889A1 (en) 2003-06-20 2004-12-29 The Texas A & M University System Method and system for near-infrared fluorescence contrast-enhanced imaging with area illumination and area detection
US7034303B2 (en) 2003-06-27 2006-04-25 Washington University System and method of image reconstruction for optical tomography with limited data
US8473035B2 (en) 2003-09-15 2013-06-25 Beth Israel Deaconess Medical Center Medical imaging systems
US7920908B2 (en) 2003-10-16 2011-04-05 David Hattery Multispectral imaging for quantitative contrast of functional and structural features of layers inside optically dense media such as tissue
CA2544283A1 (en) 2003-10-31 2005-05-12 Art Recherches Et Technologies Avancees Inc./Art Advanced Research Techn A time-domain method and apparatus for determining the depth and concentration of a fluorophore in a turbid medium
KR20070004821A (ko) 2004-03-11 2007-01-09 더 제너럴 하스피탈 코포레이션 형광 단백질을 사용하는 단층 촬영 영상을 위한 방법 및시스템
US20080234225A1 (en) 2004-03-15 2008-09-25 John Lezdey Method of treatment
DE102004030550A1 (de) 2004-06-24 2006-01-19 Siemens Ag Bildgebendes Tomographiegerät mit zumindest zwei unter Systemwinkel angeordneten Aufnahmesystemen und Verfahren für ein derartiges Tomographiegerät zur Bestimmung der Systemwinkel der Aufnahmesysteme
US7239383B2 (en) 2004-06-30 2007-07-03 Chemimage Corporation Method and apparatus for spectral modulation compensation
US7394053B2 (en) 2004-09-09 2008-07-01 Beth Israel Deaconess Medical Center, Inc. Systems and methods for multi-modal imaging having a spatial relationship in three dimensions between first and second image data
KR101269455B1 (ko) 2004-09-10 2013-05-30 더 제너럴 하스피탈 코포레이션 광 간섭 영상화를 위한 시스템 및 방법
US7812324B2 (en) 2004-10-18 2010-10-12 Macquarie University Fluorescence detection
WO2006062895A2 (en) 2004-12-06 2006-06-15 Cambridge Research And Instrumentation, Inc. Systems and methods for in-vivo optical imaging and measurement
WO2006063246A1 (en) 2004-12-08 2006-06-15 The General Hospital Corporation System and method for normalized fluorescence or bioluminescence imaging
US7859671B2 (en) 2004-12-30 2010-12-28 Art, Advanced Research Technologies Inc. Method for determining optical properties of turbid media
US7729750B2 (en) 2005-01-20 2010-06-01 The Regents Of The University Of California Method and apparatus for high resolution spatially modulated fluorescence imaging and tomography
ATE527619T1 (de) 2005-01-27 2011-10-15 Cambridge Res & Instrumentation Inc Klassifizierung der bildeigenschaften
US8044996B2 (en) 2005-05-11 2011-10-25 Xenogen Corporation Surface construction using combined photographic and structured light information
US10231624B2 (en) 2005-08-10 2019-03-19 Nov Adaq Technologies Ulc Intra-operative head and neck nerve mapping
US20070122344A1 (en) 2005-09-02 2007-05-31 University Of Rochester Medical Center Office Of Technology Transfer Intraoperative determination of nerve location
US8504140B2 (en) 2008-04-08 2013-08-06 Bruker Biospin Corporation Apparatus and method for fluorescence imaging and tomography using spatially structured illumination
WO2007040459A1 (en) 2005-10-06 2007-04-12 Nanyang Technological University Eliminating fluorescene background noise
US7420151B2 (en) 2005-10-17 2008-09-02 Novadaq Technologies Inc. Device for short wavelength visible reflectance endoscopy using broadband illumination
US8320650B2 (en) 2005-11-30 2012-11-27 Lawrence Livermore National Security, Llc In vivo spectral micro-imaging of tissue
WO2007109678A2 (en) 2006-03-20 2007-09-27 Baylor College Of Medicine Method and system for non-contact fluorescence optical tomography with patterned illumination
US9220411B2 (en) 2006-06-01 2015-12-29 The General Hospital Corporation In-vivo optical imaging method including analysis of dynamic images
WO2008076467A2 (en) 2006-07-03 2008-06-26 Beth Israel Deaconess Medical Center, Inc. Intraoperative imaging methods
US8078265B2 (en) 2006-07-11 2011-12-13 The General Hospital Corporation Systems and methods for generating fluorescent light images
FR2904691B1 (fr) 2006-08-02 2009-03-06 Commissariat Energie Atomique Procede et dispositif de reconstruction 3d de la distribution d'elements fluorescents.
US20080161744A1 (en) 2006-09-07 2008-07-03 University Of Rochester Medical Center Pre-And Intra-Operative Localization of Penile Sentinel Nodes
US8554087B2 (en) 2006-09-18 2013-10-08 The Trustees Of Dartmouth College System and method for imaging objects through turbid media
US9080977B2 (en) 2006-10-23 2015-07-14 Xenogen Corporation Apparatus and methods for fluorescence guided surgery
EP2120684B1 (en) 2006-12-22 2015-09-09 Washington University High performance imaging system for diffuse optical tomography and associated method of use
US8498695B2 (en) 2006-12-22 2013-07-30 Novadaq Technologies Inc. Imaging system with a single color image sensor for simultaneous fluorescence and color video endoscopy
JP4954699B2 (ja) 2006-12-28 2012-06-20 オリンパス株式会社 蛍光内視鏡システム
US20080177140A1 (en) 2007-01-23 2008-07-24 Xillix Technologies Corp. Cameras for fluorescence and reflectance imaging
US8063386B2 (en) 2007-01-30 2011-11-22 Ge Healthcare Bio-Sciences Corp. Time resolved fluorescent imaging system
US8314406B2 (en) 2007-04-06 2012-11-20 The General Hospital Corporation Systems and methods for optical imaging using early arriving photons
US8134554B1 (en) 2007-05-04 2012-03-13 Topcon Medical Systems, Inc. Method and apparatus for spatially mapping three-dimensional optical coherence tomography data with two-dimensional images
US7692160B2 (en) 2007-05-31 2010-04-06 General Electric Company Method and system of optical imaging for target detection in a scattering medium
WO2008157790A2 (en) 2007-06-20 2008-12-24 The Trustees Of Dartmouth College Pulsed lasers in frequency domain diffuse optical tomography and spectroscopy
CN102036599B (zh) 2008-03-18 2013-06-19 诺瓦达克技术公司 用于组合的全色反射和近红外成像的成像系统
US20090236541A1 (en) 2008-03-24 2009-09-24 General Electric Company System and Methods for Optical Imaging
US20100210931A1 (en) 2008-04-04 2010-08-19 Modulate Imaging Inc. Method for performing qualitative and quantitative analysis of wounds using spatially structured illumination
US10219742B2 (en) 2008-04-14 2019-03-05 Novadaq Technologies ULC Locating and analyzing perforator flaps for plastic and reconstructive surgery
DE102008045634A1 (de) 2008-09-03 2010-03-04 Ludwig-Maximilians-Universität München Wellenlängenabstimmbare Lichtquelle
US7675045B1 (en) 2008-10-09 2010-03-09 Los Alamos National Security, Llc 3-dimensional imaging at nanometer resolutions
WO2010090673A1 (en) 2009-01-20 2010-08-12 The Trustees Of Dartmouth College Method and apparatus for depth-resolved fluorescence, chromophore, and oximetry imaging for lesion identification during surgery
US8254650B2 (en) 2009-02-27 2012-08-28 General Electric Company System and method for contrast enhancement of time-resolved fluorescence images
US20120049088A1 (en) 2009-03-06 2012-03-01 The Trustees Of Columbia University In The City Of New York Systems, methods and computer-accessible media for hyperspectral excitation-resolved fluorescence tomography
US20100241058A1 (en) 2009-03-19 2010-09-23 Ahmed Syed Yosuf Oct guided tissue ablation
JP5449816B2 (ja) 2009-03-26 2014-03-19 オリンパス株式会社 画像処理装置、画像処理プログラムおよび画像処理装置の作動方法
EP2501288B1 (en) 2009-11-19 2016-12-21 Modulated Imaging Inc. Method and apparatus for analysis of turbid media via single-element detection using structured illumination
JP5356191B2 (ja) 2009-11-26 2013-12-04 オリンパス株式会社 蛍光観察装置
CA2784576C (en) 2009-12-15 2020-01-07 Shuming Nie System and methods for providing real-time anatomical guidance in a diagnostic or therapeutic procedure
JP5506443B2 (ja) 2010-02-10 2014-05-28 オリンパス株式会社 蛍光観察装置
EP2359745A1 (en) 2010-02-12 2011-08-24 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Method and device for multi-spectral photonic imaging
JP5484997B2 (ja) 2010-04-12 2014-05-07 オリンパス株式会社 蛍光観察装置および蛍光観察装置の作動方法
US20110261175A1 (en) 2010-04-22 2011-10-27 General Electric Company Multiple channel imaging system and method for fluorescence guided surgery
US20110261179A1 (en) 2010-04-22 2011-10-27 General Electric Company Imaging system for fluorescence guided surgery based on fixed magnification lens and digital zoom
US8436321B2 (en) 2010-05-21 2013-05-07 Li-Cor, Inc. Optical background suppression systems and methods for fluorescence imaging
JP5498282B2 (ja) 2010-07-06 2014-05-21 オリンパス株式会社 蛍光観察装置
US20130087719A1 (en) 2010-08-13 2013-04-11 Lumos Technology Co., Ltd. Light source device for time-delayed detection of fluorescence, and image pick-up system and method
US9066657B2 (en) 2010-11-23 2015-06-30 General Electric Company Methods and systems of optical imaging for target detection in a scattering medium
US8692998B2 (en) 2011-04-11 2014-04-08 The Regents Of The University Of California Apparatus and method for light emission detection for in-depth imaging of turbid media

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06129984A (ja) * 1992-07-20 1994-05-13 Hamamatsu Photonics Kk 散乱吸収体内部の吸収情報計測装置及び方法
JPH09504964A (ja) * 1993-10-29 1997-05-20 ザ・トラスティーズ・オブ・ザ・ユニバーシティ・オブ・ペンシルベニア 拡散光を用いた対象物撮像
JPH08136448A (ja) * 1994-11-07 1996-05-31 Hamamatsu Photonics Kk 散乱吸収体内の散乱特性・吸収特性の測定方法及び装置
JPH10510626A (ja) * 1994-12-02 1998-10-13 ノン−インヴェイシヴ テクノロジイ,インク. 生物学的組織の検査のための光学技術
JP2000500228A (ja) * 1995-08-24 2000-01-11 パーデュー・リサーチ・ファンデーション 組織およびその他のランダム媒体における蛍光寿命に基づく撮像および分光分析
WO1998034533A1 (en) * 1996-08-23 1998-08-13 Purdue Research Foundation Imaging of light scattering tissues with fluorescent contrast agents
JP2002511778A (ja) * 1997-02-07 2002-04-16 ザ・テキサス・エイ・アンド・エム・ユニバーシティ・システム 蛍光造影剤を用いた光散乱組織の撮像
JPH11173976A (ja) * 1997-12-12 1999-07-02 Hamamatsu Photonics Kk 光ct装置及び画像再構成方法

Also Published As

Publication number Publication date
AU2002303819B2 (en) 2007-03-01
EP1402243B1 (en) 2006-08-16
DE60213993D1 (de) 2006-09-28
CA2447262A1 (en) 2002-11-21
WO2002093143A3 (en) 2004-01-08
US20100262019A1 (en) 2010-10-14
US20120150026A1 (en) 2012-06-14
JP4259879B2 (ja) 2009-04-30
US8180435B2 (en) 2012-05-15
WO2002093143A2 (en) 2002-11-21
EP1402243A2 (en) 2004-03-31
US7403812B2 (en) 2008-07-22
KR20040012844A (ko) 2004-02-11
US8825140B2 (en) 2014-09-02
ATE336717T1 (de) 2006-09-15
US7764986B2 (en) 2010-07-27
DE60213993T2 (de) 2007-03-15
US20070270697A1 (en) 2007-11-22
US20030002028A1 (en) 2003-01-02

Similar Documents

Publication Publication Date Title
JP4259879B2 (ja) 身体領域内の標的の深さ、輝度およびサイズを決定するための方法および装置
AU2002303819A1 (en) Method and apparatus for determining target depth, brightness and size within a body region
US7804075B2 (en) Method and system for tomographic imaging using fluorescent proteins
JP3819032B2 (ja) 組織およびその他のランダム媒体における蛍光寿命に基づく撮像および分光分析
US8676302B2 (en) Systems and methods for multi-spectral bioluminescence tomography
Anastasopoulou et al. Comprehensive phantom for interventional fluorescence molecular imaging
Qin et al. New optical molecular imaging systems
WO2005089637A9 (en) Method and system for tomographic imaging using fluorescent proteins
JP2006513400A (ja) 内部の光源を3d撮像するための方法および装置
Wang et al. Overview of bioluminescence tomography-a new molecular imaging modality
JP3958798B2 (ja) 蛍光造影剤を用いた光散乱組織の撮像
Ihara et al. Fluorescence detection of deep intramucosal cancer excited by green light for photodynamic diagnosis using protoporphyrin IX induced by 5-aminolevulinic acid: an ex vivo study
US10775308B2 (en) Apparatus and methods for determining optical tissue properties
Boutet et al. Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis
Szyc et al. Development of a handheld fluorescence imaging camera for intraoperative sentinel lymph node mapping
WO2008024986A2 (en) Apparatus and methods for determining optical tissue properties
EP1797818A2 (en) Method and system for tomographic imaging using fluorescent proteins
Abou-Elkacem et al. High accuracy of mesoscopic epi-fluorescence tomography for non-invasive quantitative volume determination of fluorescent protein-expressing tumours in mice
EP1707944A2 (en) Method and apparatus for determining target depth, brightness and size within a body region
Guggenheim et al. Development of a multi-view, multi-spectral bioluminescence tomography small animal imaging system
WO2015037055A1 (ja) 蛍光画像取得装置
Nikkhah ICCD Camera Based Temperature Modulated Fluorescence Tomography
Behm Experimental set-up for near infrared fluorescence measurements during surgery
Alrubaiee et al. Fluorescence optical tomography using independent component analysis to detect small targets in turbid media
Imaging Raman and Fluorescence in

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080609

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080909

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080917

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081008

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4259879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term