JP2004514418A - 周術期ゲノムプロファイリングの方法および組成物 - Google Patents

周術期ゲノムプロファイリングの方法および組成物 Download PDF

Info

Publication number
JP2004514418A
JP2004514418A JP2002512426A JP2002512426A JP2004514418A JP 2004514418 A JP2004514418 A JP 2004514418A JP 2002512426 A JP2002512426 A JP 2002512426A JP 2002512426 A JP2002512426 A JP 2002512426A JP 2004514418 A JP2004514418 A JP 2004514418A
Authority
JP
Japan
Prior art keywords
subject
assay
dna
sample
genomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002512426A
Other languages
English (en)
Inventor
ホーガン カーク
Original Assignee
ホーガン カーク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホーガン カーク filed Critical ホーガン カーク
Publication of JP2004514418A publication Critical patent/JP2004514418A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Abstract

本発明は、被験者の周術期ゲノムスクリーニングの方法、特に麻酔および他の周術期もしくは手術中の治療および処置に対する反応を示すマーカーの周術期スクリーニングの方法に関する。本発明は、スクリーニング法に使用される組成物も提供する。本発明の方法および組成物は、このような処置に使用される薬物投与または手法に対する被験者の反応を予測する遺伝情報を反映させるために、被験者の医学的治療または外科的治療に合わせる際に使用される。

Description

【0001】
発明の分野
本発明は、被験者の周術期ゲノムスクリーニングの方法、特に麻酔および他の周術期もしくは手術中の治療および処置に対する反応を示すマーカーの周術期ゲノムスクリーニングの方法に関する。本発明は、スクリーニング法に使用される組成物も提供する。
【0002】
発明の背景
外科手術は多くの命を救うが、外科手術の合併症による死亡率および罹患率は高い。外科手術および麻酔に関連した合併症には、感染症、大量出血、血栓症、悪心および嘔吐、ならびに麻酔反応などがある。このような合併症により入院率が上昇し、術後の回復が遅れ、またときには死に至ることがある。麻酔に対する反応は、このような合併症の一例である。
【0003】
局所麻酔、部位麻酔、および全身麻酔の使用は、外科手術中に疼痛を予防するため、ならびに患者を安全かつ安定に維持するために必要である。麻酔の手法および特定の麻酔薬には多くの選択肢がある。麻酔法、薬剤、用量の選択は、外科手術または処置の種類、現行の他の薬物投与、および患者の基礎疾患または素因に依存する。それにもかかわらず、患者170人中約1人が麻酔に関連した合併症を生じ、2500人に1人の外科手術による死亡者を、麻酔に関連した合併症に結びつけることができる(Dan Med Bull.、41:319 [1994])。多くの合併症は、施行者の過誤の結果ではなく、むしろ既存の技術による不適切な診断といったシステムの過誤である。システムの過誤は、臨床診療で生じる全過誤の最大88%を占めると推定されている(LiangおよびCullen、Anesthesiology、91:609 [1999])。
【0004】
麻酔関連合併症の一つが悪性高熱(MH)である。MHは、麻酔薬投与時に重度の制御不能の発熱を生じる常染色体優性形質である。5000人に1人〜15,000人に1人の小児、および50,000人に1人の成人に、引き金となる麻酔薬に応じたMHがみられる。迅速な治療を行わないと、不整脈、腎不全を生じる場合があり、死に至ることもある。MHは特定の解毒薬ダントロレンナトリウムで治療されるが、最良の介入は予防である。麻酔を行う前に患者が同定されれば、MHのリスクのない別の麻酔薬が選択される。リスクのある患者は、麻酔反応の家族歴により、または患者自身の過去の麻酔反応により、まれに同定される。決定的で簡便な診断スクリーニング法はない。
【0005】
局所麻酔薬および関連化合物を代謝する酵素に欠損がある被験者は、このような薬物を外科手術前、外科手術中、または外科手術後に投与した場合にほとんど反応しない場合がある。例えば、一般にサクシニルコリンまたはミバクリウムなどの麻酔薬とともに投与される筋弛緩薬は、麻酔から覚めた後の患者で長期的な麻痺状態および無呼吸を生じることがある。ブチリルコリンエステラーゼ遺伝子(BChE)の変異によって生じる麻痺は常染色体劣性形質として遺伝する。唯一の治療法は、人工呼吸および鎮静剤の投与を麻痺が沈静化するまで(30分〜8時間)行うことである。またBChEはエステル型局所麻酔薬の代謝に関与する。したがってBChEに変異があると、エステル型局所麻酔薬を使用した場合に、代謝および毒性発現の遅延が生じることもある。BChEを測定する生化学的アッセイ法は高額で長時間を要し、また精度が悪い。BChE変異の決定的で迅速なスクリーニングアッセイ法はない。
【0006】
また、一般に外科的処置時に投与されるさまざまな薬物を代謝するシトクロムP450酵素に変異をもつ被験者には、特定の薬物(例えばモルヒネ誘導体および抗不整脈薬)を活性化または代謝することができないために有害作用が発現することがある。合併症は、他の薬剤に変更したり用量を調節したりすることで避けることができる。
【0007】
外科手術中に投与される薬物に対する反応は外科手術による合併症だけではない。合併症は術後の回復期に生じることもある。一つの重篤な術後合併症は、動脈性低血圧、代謝性アシドーシス、全身血管抵抗の低下、頻呼吸、および臓器の機能不全を特徴とする、感染に起因する全身性反応である敗血症である。敗血症は、ヒトおよび他の動物の罹病および死亡の主な原因である。400,000〜500,000件の敗血症の症例が、1991年に米国だけで100,000〜175,000人の命を奪ったことが推定されている。過去数十年間に重篤な感染症の治療法が大きく進歩しているにもかかわらず、敗血症の発生率および死亡率は上昇傾向にある(Wolff、New Eng. J. Med.、324:486〜488 [1991])。TNFα遺伝子のTNF2対立遺伝子をもつ被験者は敗血症にかかりやすくなり、敗血症による術後死亡率が高い(Mira、JAMA 282:561〜568 [1999])。しかし唯一のアッセイ法であるサイトカイン産生を直接測定する方法は多額の費用がかかり、一時的であり、また扱いにくい。TNF2対立遺伝子の有無を調べる決定的で迅速なスクリーニングアッセイ法はない。
【0008】
麻酔薬、関連薬剤、および他の治療因子を適切に選択することは、合併症の発症率と、外科手術に関連した罹患率および死亡率の低下につながる。外科手術による合併症のリスクを予測する簡便で迅速なアッセイ法が必要とされている。
【0009】
発明の概要
本発明は、被験者の周術期ゲノムスクリーニングの方法、特に麻酔ならびに他の周術期もしくは手術中の治療および処置に対する反応を示すマーカーの周術期スクリーニングの方法に関する。本発明は、スクリーニング法に使用される組成物も提供する。
【0010】
いくつかの態様では、本発明は、以下の段階を含む方法を提供する:周術期の被験者の試料(例えば組織試料または遺伝情報)を提供する段階;2種またはそれ以上の遺伝マーカーを検出するアッセイ法を提供する段階;および試料を対象にアッセイ法を行って手術計画の選択に使用されるゲノムプロファイルを作成する段階。いくつかの態様では、計画は外科的処置中における麻酔の実施であり;他の態様では、計画は医学的処置中における麻酔の実施である。いくつかの態様では、麻酔は全身麻酔である。他の態様では、麻酔は部位麻酔である。いくつかの態様では、外科的処置は非侵襲的な外科手術である。他の態様では、外科的処置は侵襲的な外科手術である。
【0011】
いくつかの態様では、本発明のゲノムプロファイルは薬力学的リスクに関する情報を含む。他の態様では、ゲノムプロファイルは薬物動態学的リスクに関する情報を含む。別の態様では、ゲノムプロファイルは発症前診断を含む。さらに別の態様では、ゲノムプロファイルは確認された併発疾患の鑑別診断に関する情報を含む。
【0012】
いくつかの態様では、検出される2種またはそれ以上の遺伝マーカーは、BChE、CYP2D6、MTHFR、MS、CBS、第V因子ライデン、プロトロンビン、RYR1、CACNA1S、およびCPT 2からなる群より選択される2種またはそれ以上の遺伝子に変異を含む。
【0013】
本発明は、以下の段階を含む方法も提供する:被験者の試料を提供する段階;2種またはそれ以上の遺伝マーカーを検出するアッセイ法を提供する段階;および試料を対象にアッセイ法を行って医学的治療の計画の選択に使用されるゲノムプロファイルを作成する段階。いくつかの態様では試料は、以下からなる群より選択される時間枠で被験者から採取される:医学的処置の実施前、医学的処置の実施中、および医学的処置の実施後。いくつかの態様では医学的治療は非外科的である。また他の態様では医学的治療は外科的である。
【0014】
本発明はさらに、以下の段階を含む方法を提供する:被験者の試料を提供する段階;薬理学的反応に関連する2種またはそれ以上の遺伝マーカーを検出するアッセイ法を提供する段階;アッセイ法に含まれる試料を検討してゲノムプロファイルを作成する段階;および被験者を対象に、ゲノムプロファイルを元にした条件で外科的処置を行う段階。いくつかの態様では、薬理学的反応は麻酔性である。いくつかの態様では、処置の条件は麻酔薬の選択である。いくつかの態様では、2種またはそれ以上の遺伝マーカーは、BChE、CYP2D6、MTHFR、MS、CBS、第V因子ライデン、プロトロンビン、RYR1、CACNA1S、およびCPT 2からなる群より選択される2種またはそれ以上の遺伝子の変異である。
【0015】
本発明はまた、周術期の被験者のゲノムプロファイルを作成する、医学的な計画を示す2種またはそれ以上の遺伝マーカーを含むアッセイ法を含む系をさらに提供する。いくつかの態様では、計画は外科的な計画である。また他の態様では計画は外科手術中における麻酔の実施である。
【0016】
いくつかの態様では、ゲノムプロファイルは薬力学的リスクに関する情報を含む。他の態様では、ゲノムプロファイルは薬物動態学的リスクに関する情報を含む。いくつかの態様では、ゲノムプロファイルは発症前診断を含む。他の態様では、ゲノムプロファイルは確認された併発疾患に関する情報を含む。
【0017】
発明の一般的な説明
本発明は、被験者の周術期ゲノムスクリーニングの方法、特に麻酔および他の周術期もしくは手術中の治療および処置に対する反応を示すマーカーの周術期スクリーニングの方法に関する。本発明は、スクリーニング法に使用される組成物も提供する。
【0018】
本発明は、外科的領域で現在存在しない新しい診断方法を提供する。本発明の周術期ゲノムプロファイルの情報を提供するような技術は現在ない。実際には外科的領域の現状は、周術期の検査を減らしたり実施しなかったりすることである。したがって本発明は、代替法のない問題に対する回答を提供する。周術期リスクに対する被験者の遺伝的な寄与を定量する競合する手法がない場合は、対立遺伝子(例えば既知の対立遺伝子)を、ゲノムプロファイルを一括して決定する明確な選択カテゴリーおよび選択基準にしたがって(例えば既知の方法で)検討する。
【0019】
歴史的には、広範囲のスクリーニングパネル(例えば血液および尿検査、EKG、ならびに胸部X線)が外科手術前にルーチンに実施されていた。しかし現行の手順は、麻酔または外科手術に関して過去に生じた問題を単に患者に尋ねるものである。常にというわけではないが、ときには粗い理学的検査が実施されることもある。比較的健康な患者を対象とした臨床検査の使用は、一般に減らされるか、または実施されない傾向にある。中止の理由には、スクリーニング検査にかかる費用、精度の悪さや特異性の欠如、結果に応じた治療法の変更に関する不確実性、ならびに偶然見つかった所見に応じて侵襲的な精密検査をすることにより将来起こる恐れのある害などがある。現在の麻酔学の教科書では実際に、患者の術前評価法としてのルーチンな臨床検査で得られる利益はないと最近の研究で報告されていることが強調されている。このような教科書では、病歴の聴取で示されたときにのみに検査を減らすことで最適な費用−利益をふまえた戦略が得られることを強調している(例えばR.D Miller(編)、「麻酔(Anesthesia)」、第5版、Churchill Livingstone、[2000]、824〜883を参照)。
【0020】
本発明は、医学のさまざまな分野(例えば麻酔および外科手術)を遺伝学と統合する。本発明の周術期ゲノム検査は、現在利用されている検査用パネルとは極めて対照的である。本発明の周術期ゲノムプロファイルでは、術前臨床検査から離れる動きに至る上述の多くの問題が解決される。周術期ゲノムプロファイルは費用および時間の面から効率がよい。組み入れられるマーカーは、精度、特異性、および予測値をふまえて選択される。本発明の周術期プロファイルにより、医学的処置または外科的処置を受ける各患者に対する治療選択肢の個別化が可能となる。
【0021】
パネルアッセイ法による術前の全患者を対象とした検査を行うことで、まれではあるが有用なマーカーの検査が可能となる。例えば多くの対立遺伝子を含むアッセイ法は、たとえ対立遺伝子がまれであっても、十分な数の被験者において陽性結果が得られてアッセイ法が価値あるものとなる。本発明の周術期ゲノムパネルでは、複数の対立遺伝子から予測される条件の相加効果および相乗効果の検出による利点も提供される。このような周術期ゲノムパネルではまた、ホモ接合変異とヘテロ接合変異との区別を可能とする利点も提供される。
【0022】
いくつかの態様ではマーカーにより、麻酔、または麻酔時に投与される薬剤を含むがこれらに限定されない他の薬物投与に対する被験者の反応(例えば麻痺または薬物中毒などの合併症に至る代謝の欠損)が予測される。いくつかの態様では、このようなマーカーにより、麻酔関連合併症(例えば悪性高熱)に対する被験者のリスクが予測される。いくつかの態様ではマーカーにより、外科手術後の回復中の被験者に生じる恐れのある合併症(例えば血栓症または敗血症のリスク)が予測される。
【0023】
マーカーはまた、時間的および費用的に効率のよい方法で変化させて、外科手術による望ましくない合併症を排除または軽減することが可能な選択を考慮して選択される。例えば実施者は、特定の麻酔薬または鎮痛薬を選択して、生命を脅かす反応を避けることができる。したがって任意のマーカーに対して負の結果が得られれば、同等の治療上の有用性が正の結果としてもたらされる可能性がある。例えば被験者が、救急蘇生時に使用される任意の薬物に反応しないことを示すマーカーをもつことがわかれば、薬物投与にかかる貴重な時間が失われない。また被験者に基礎疾患がないことがわかれば、そのような条件を、鑑別診断の計画時に考慮される条件から除去して、救命的な介入を始める前の時間を短縮することができる。
【0024】
いくつかの態様では、周術期ゲノムプロファイルから得られた情報を用いて、被験者の予後または生存の見込みが決定される。いくつかの態様では、このような情報を用いて最も安全かつ有効な外科的処置を選択する。いくつかの態様では、このような情報を用いて術後モニタリングの程度(例えば被験者を同日に帰すか、もしくは一晩入院させるか、または被験者を集中治療室に収容するかしないか)を決定する。例えば術後合併症のリスクのあることがわかった被験者は、(例えば集中治療室で)慎重にモニタリングを行うことで救命的な介入を可能な限り早く開始することができる。
【0025】
本発明の周術期ゲノムプロファイルにより提供される情報は、プロファイルが外科手術の開始時に利用できない状況(例えば診断から外科手術までの時間が短い緊急外科手術の場合)であっても臨床医にとって有用である。ゲノムプロファイルが外科的処置中に完了すれば、治療過程を同時点で必要に応じて変更することができる。また術後回復に関連する情報は術後においても有用である。
【0026】
いくつかの態様では、本発明は、治療選択に関連する遺伝データを収集、処理、利用、送信する統合された電子的システム(例えばウェブを利用したシステム)をさらに提供する(本発明のいくつかの態様における情報の流れの概要は図1を参照)。したがって本発明は、救命的かつ費用を抑える情報を、現行の診断方法と比べて迅速に実施者に提供する。
【0027】
定義
本発明の理解を促すために、いくつかの用語を以下に定義する。
【0028】
「遺伝子」という用語は、ポリペプチドまたは前駆体の生産に必要なコード配列を含む核酸(例えばDNAまたはRNA)の配列を意味する。ポリペプチドは、完全長もしくは断片に所望の活性もしくは機能的特性(例えば酵素活性やリガンド結合性など)が保持されている限りは、完全長のコード配列、またはコード配列の一部にコードされている場合がある。この用語は、構造遺伝子のコード領域、および5’末端もしくは3’末端の両方に約1 kbの距離をおいて、遺伝子が完全長のmRNAの長さに対応するコード領域に隣接して位置する配列も含む。コード領域の5’側に位置する配列、およびmRNA上に存在する配列は5’非翻訳配列と呼ばれる。コード領域の3’側すなわち下流に位置する配列、およびmRNA上に存在する配列は3’非翻訳配列と呼ばれる。「遺伝子」という用語は、cDNAの形態およびゲノムの形態双方を含む。ゲノムの形態、または遺伝子のクローンには、「イントロン」または「介在領域」または「介在配列」と呼ばれる非コード配列で分断されたコード領域が含まれる。イントロンとは、核RNA(hnRNA)に転写される遺伝子のセグメントである。またイントロンはエンハンサーなどの制御配列を含む場合がある。イントロンは、核転写物または一次転写物から除去、すなわち「スプライスアウト」される。したがってイントロンはメッセンジャーRNA(mRNA)転写物中には存在しない。このようなmRNAは翻訳中に機能して、新生ポリペプチドに含まれるアミノ酸の配列または順序を特定化する。
【0029】
本明細書に列挙された「アミノ酸配列」が、天然のタンパク質分子のアミノ酸配列を意味する場合は、「アミノ酸配列」および同様の用語(「ポリペプチド」または「タンパク質」等)は、このようなアミノ酸配列を、列挙されたタンパク質分子に関連する完全な天然のアミノ酸配列に制限することを意味するものではない。
【0030】
イントロンを含むことに加えて、ゲノム状の遺伝子が、RNA転写物上に存在する配列の5’末端および3’末端の両側に位置する配列を含む場合もある。このような配列は、「隣接」配列または「隣接」領域と呼ばれる(このような隣接配列はmRNA転写物上に存在する非翻訳配列に対して5’側もしくは3’側に位置する)。5’側の隣接領域は、遺伝子の転写を制御したり影響を及ぼしたりするプロモーターやエンハンサーなどの制御配列を含む場合がある。3’側の隣接領域は、転写の終結、転写後の切断、およびポリアデニル化を誘導する配列を含む場合がある。
【0031】
「野生型」という用語は、天然の供給源から単離された遺伝子または遺伝子産物の特徴をもつ遺伝子または遺伝子産物を意味する。野生型の遺伝子は、集団中に極めて頻繁に認められるので、「正常」遺伝子または「野生型」遺伝子と任意に呼ばれる。これとは対照的に「修飾型」、「変異型」、および「バリアント」という用語は、野生型の遺伝子または遺伝子産物と比較したときに配列および/または機能の特性の変化(特徴の変化)を示す遺伝子または遺伝子産物を意味する。天然の変異型が単離可能なことはわかっている。つまりこれらは、野生型の遺伝子または遺伝子産物と比較したときに特性が変化したという事実によって同定される。
【0032】
本明細書で使用される「〜をコードする核酸分子」、「〜をコードするDNA配列」、および「〜をコードするDNA」という表現は、デオキシリボ核酸の鎖に沿ったデオキシリボヌクレオチドの順序または配列を意味する。このようなデオキシリボヌクレオチドの順序は、ポリペプチド(タンパク質)鎖に沿ったアミノ酸の順序を決定する。したがってDNA配列はアミノ酸配列をコードする。
【0033】
DNA分子は「5’末端」および「3’末端」をもつと言うことができる。これはモノヌクレオチドが反応して、モノヌクレオチドペントース環の一つの5’リン酸が近傍の3’酸素にホスホジエステル結合を介して一方向性に連結されるようにオリゴヌクレオチドまたはポリヌクレオチドを作るためである。したがってオリゴヌクレオチドまたはポリヌクレオチドの末端は、5’側リン酸がモノヌクレオチドペントース環の3’側酸素に連結されていない場合に「5’末端」と呼ばれ、また3’側酸素が後続のモノヌクレオチドペントース環の5’側リン酸に連結されていない場合に「3’末端」と呼ばれる。本明細書で使用されるように核酸配列は、たとえそれが長いオリゴヌクレオチドまたはポリヌクレオチドの内部に存在する場合であっても5’末端および3’末端をもつと言われることがある。直鎖状または環状のDNA分子のいずれかにおいては、別個の配列が、「下流」すなわち3’側の配列の「上流」すなわち5’側にあると言われる。このような用語の使い方は、転写がDNA鎖に沿って5’から3’へ進むという事実を反映している。連結された遺伝子の転写を誘導するプロモーター配列およびエンハンサー配列は一般に、コード領域の5’側または上流に位置する。しかしエンハンサー配列は、プロモーター配列およびコード領域の3’側に位置する場合でも作用することがある。転写終結シグナルおよびポリアデニル化シグナルは、コード領域の3’側すなわち下流に位置する。
【0034】
本明細書で使用される「遺伝子をコードするヌクレオチド配列を有するオリゴヌクレオチド」、「遺伝子をコードするヌクレオチド配列を有するポリヌクレオチド」という表現は、遺伝子のコード領域、言い換えると、遺伝子産物をコードする核酸配列を含む核酸配列を意味する。コード領域は、cDNA、ゲノムDNA、またはRNAのいずれかの状態で存在する場合がある。DNAの状態で存在するときは、オリゴヌクレオチドまたはポリヌクレオチドは1本鎖(センス鎖)または2本鎖の場合がある。エンハンサー/プロモーター、スプライス部位、ポリアデニル化シグナルなどの適切な制御配列は、転写の適切な開始、および/または一次RNA転写物の正確なプロセシングを可能とすることが必要な場合に、遺伝子のコード領域に近接して位置する場合がある。あるいは本発明の発現ベクターに使用されるコード領域は、内因性のエンハンサー/プロモーター、スプライス部位、介在配列、ポリアデニル化シグナルなどの配列、または内因性および外因性の制御配列の組み合わせを含む場合がある。
【0035】
本明細書で使用される「制御配列」という用語は、核酸配列の発現のいくつかの局面を制御する遺伝因子を意味する。例えばプロモーターは、使用可能に連結されたコード領域の転写の開始を促す制御配列である。他の制御配列にはスプライシングシグナル、ポリアデニル化シグナル、終止シグナルなどがある。
【0036】
本明細書で使用される「相補的」または「相補性」という用語は、塩基対合の規則によって関連づけられるポリヌクレオチド(ヌクレオチドの配列)に関して使用される。例えば配列「5’−A−G−T−3’」は、配列「3’−T−C−A−5’」と相補的である。相補性は、核酸の塩基の一部のみが塩基対合の規則にしたがってマッチする場合に部分的な場合がある。または核酸間に「完全な」相補性もしくは「全体的な」相補性がある場合がある。核酸鎖間の相補性の程度は、核酸鎖間のハイブリダイゼーションの効率および強度に大きく影響する。これは、核酸間の結合の影響を受ける増幅反応、ならびに検出法に特に重要である。
【0037】
「相同性」という用語は、相補性の程度を意味する。部分的な相同性または完全な相同性(すなわち同一性)がある。部分的に相補的な配列は、完全に相補的な配列と標的核酸とのハイブリッド形成を少なくとも部分的に抑制する配列であり、機能的な表現である「実質的に相同である」を使用することを意味する。標的配列に対して完全に相補的な配列のハイブリダイゼーションの抑制は、ハイブリダイゼーションアッセイ法(サザンブロットまたはノーザンブロット、溶液ハイブリダイゼーションなど)で、低ストリンジェンシー条件で調べることができる。実質的に相同な配列またはプローブは、低ストリンジェンシー条件で標的に対して完全に相同な配列の結合(ハイブリダイゼーション)と競合し、また結合を抑制する。これは、低ストリンジェンシー条件が非特異的な結合を許容するというわけではない。低ストリンジェンシー条件は、2つの配列の相互の結合が特異的(選択的)な相互作用であることを必要とする。非特異的な結合の不在は、部分的な程度の相補性も欠く(例えば同一性が約30%未満の)第2の標的を用いて検証することができる。非特異的な結合が不在の場合、このようなプローブは第2の非相補的な標的とハイブリッドを形成しないと思われる。
【0038】
cDNAまたはゲノムクローンなどの2本鎖の核酸配列に関して使用される場合に、「実質的に相同である」という表現は、2本鎖核酸配列のいずれかの鎖または両方の鎖と、上述の低ストリンジェンシー条件でハイブリッドを形成可能な任意のプローブを意味する。
【0039】
遺伝子は、一次RNA転写物の選択的スプライシングで作製される複数のRNA種を生じることがある。同じ遺伝子のスプライスバリアントであるcDNAは、配列が同一の領域または完全な相同性をもつ領域(両cDNA上に同じエキソンまたは同じエキソンの一部の存在を示す)、および完全に同一でない領域(例えばcDNA 1上にエキソン「A」が存在し、cDNA 2が別のエキソン「B」を含むこと示す)を含む。2種のcDNAは配列が同一な領域を含むので、いずれも両cDNA上にある配列を含む遺伝子の全体または遺伝子の一部に由来するプローブとハイブリッドを形成する。したがって2種のスプライスバリアントは、このようなプローブに対し、または相互に実質的に相同である。
【0040】
1本鎖の核酸配列に関して使用される「実質的に相同である」という表現は、1本鎖の核酸配列と、上述の低ストリンジェンシー条件でハイブリッドを形成する(すなわち相補物である)任意のプローブを意味する。
【0041】
本明細書で使用される「ハイブリダイゼーション」という用語は、相補的な核酸を対合させることに関して使用される。ハイブリダイゼーションの有無およびハイブリダイゼーションの強度(核酸間の会合の強度)は、核酸間の相補性の程度、関与する条件のストリンジェンシー、形成されるハイブリッドのT、および核酸内のG:C比などの因子の影響を受ける。
【0042】
本明細書で使用される「T」という用語は「溶解温度」に関して使用される。溶解温度とは、2本鎖の核酸分子集団の半分が解離して1本鎖になるときの温度である。核酸のTを計算するための方程式は当技術分野で周知である。標準的な参考文献に示されている通り、T値の簡単な推定値は以下の方程式で計算することができる:T=81.5+0.41(%G+C)、左式で核酸は1 M NaClの水溶液中に存在する(例えばAndersonおよびYoung、Quantitative Filter Hybridization、「核酸ハイブリダイゼーション(Nucleic Acid Hybridization)」[1985]を参照)。他の参考文献には、Tの計算に構造特性ならびに配列特性を考慮に入れた、より洗練された計算式が記載されている。
【0043】
本明細書で使用される「ストリンジェンシー」という用語は、核酸ハイブリダイゼーションを実施する際の温度、イオン強度、および他の化合物(有機溶媒など)の存在の条件に関して使用される。「ストリンジェンシー」条件が、上記の複数のパラメータを個別に、または一括して変えることで変更できることを当業者であれば理解すると思われる。「高ストリンジェンシシー」条件では、核酸の対合は、出現頻度が高い相補的核酸配列をもつ核酸断片間だけで生じる(例えば「高ストリンジェンシシー」条件におけるハイブリダイゼーションは、約85〜100%の同一性、好ましくは約70〜100%の同一性をもつ相同物間で生じる)。中ストリンジェンシー条件では、核酸の対合は、出現頻度が中頻度の相補的塩基配列をもつ核酸間で生じる(例えば「中ストリンジェンシー」条件におけるハイブリダイゼーションは、約50〜70%の同一性をもつ相同物間で生じる)。したがって「弱い」または「低」ストリンジェンシー条件が、相補的配列の出現頻度が通常少ない、遺伝学的に離れた生物に由来する核酸に必要とされることがある。
【0044】
「増幅」とは、鋳型の特異性が関与する核酸の複製の特別な場合である。これは非特異的な鋳型の複製(鋳型に依存するが特定の鋳型には依存しない複製)とは対照的である。鋳型の特異性は、本明細書では、複製の忠実度(適切なポリヌクレオチド配列の合成)、およびヌクレオチド(リボまたはデオキシリボ)の特異性とは区別される。鋳型の特異性は、「標的」の特異性に関して記載されることが多い。標的配列は、他の核酸と選別されることが求められる意味において「標的」である。増幅法は、このような選別を目的に主に設計されている。
【0045】
鋳型の特異性は、大部分の増幅法において酵素を選択することによって達成される。増幅用酵素は、使用条件において、核酸の異種混合物中で特定の核酸配列のみを処理する酵素である。例えばQβレプリカーゼの場合、MDV−1 RNAがレプリカーゼの特異的な鋳型である(Kacianら、Proc. Natl. Acad. Sci. USA、69:3038 [1972])。他の核酸は、この増幅用酵素では複製されない。同様にT7 RNA ポリメラーゼの場合は、この増幅用酵素は自身のプロモーターに対してストリンジェントな特異性をもつ(Chamberlinら、Nature、228:227 [1970])。T4 DNAリガーゼの場合、同酵素は、オリゴヌクレオチド基質またはポリヌクレオチド基質と鋳型との間の連結境界にミスマッチがある場合には、2つのオリゴヌクレオチドまたはポリヌクレオチドを連結しない(WuおよびWallace、Genomics、4:560 [1989])。最後にTaqポリメラーゼおよびPfuポリメラーゼは、高温で機能する能力をもつことから、プライマーが結合する配列、すなわちプライマーによって指定される配列に高い特異性を示すことがわかっている。高温はプライマーと標的配列とのハイブリダイゼーションに好ましく、標識配列以外の配列とのハイブリダイゼーションには好ましくない熱力学的な条件となる(H.A. Erlich(編)、「PCR技術(PCR Technology)」、Stockton Press [1989])。
【0046】
本明細書で使用される「増幅可能な核酸」という表現は、任意の増幅法で増幅可能な核酸に関して使用される。「増幅可能な核酸」は通常、「試料鋳型」を含むことが想定されている。
【0047】
本明細書で使用される「試料鋳型」という用語は、「標的」(後で定義)の存在について分析される試料に由来する核酸を意味する。これとは対照的に「バックグラウンド鋳型」は、試料中に存在する場合もあれば存在しない場合もある試料鋳型以外の核酸に関して使用される。バックグラウンド鋳型の存在は多くの場合望ましくない。これは持ち越しの結果であるか、または試料から精製されることが求められる混入核酸の存在のために生じることがある。例えば、検出される以外の生物に由来する核酸が試験試料中にバックグラウンドとして存在する場合がある。
【0048】
本明細書で使用される「プライマー」という用語は、核酸鎖に相補的なプライマー伸長産物の合成が誘導される条件(すなわちヌクレオチドおよびDNAポリメラーゼなどの誘導性分子が存在し、温度およびpHが適切である条件)におかれた場合に合成の開始点として作用する能力がある、制限酵素で切断後の精製物中に天然に存在するオリゴヌクレオチドか、または合成的に作られるオリゴヌクレオチドを意味する。このようなプライマーは、最大の増幅効率を達成するために好ましくは1本鎖であるが、2本鎖の場合もある。2本鎖の場合、プライマーは、最初に鎖の分離の処理を受けた後に伸長産物の調製に使用される。好ましくは、このようなプライマーはオリゴデオキシリボ核酸である。プライマーは、誘導性分子の存在下で伸長産物の合成を開始するために十分長くなくてはならない。プライマーの正確な長さは、温度、プライマーの供給源、および使用される方法などの多くの因子によって変わる。
【0049】
本明細書で使用される「プローブ」という用語は、別の対象オリゴヌクレオチドとハイブリッドを形成する能力を有する、制限酵素で切断後の精製物中に天然に存在するオリゴヌクレオチドか、または合成、組換え、またはPCRによる増幅で生産されるオリゴヌクレオチド(ヌクレオチドの配列)を意味する。プローブは1本鎖の場合もあれば2本鎖の場合もある。プローブは、特定の遺伝子配列の検出、同定、および単離に有用である。本発明に使用される任意のプローブが任意の「レポーター分子」で標識されて、酵素系(例えばELISAならびに酵素を用いる組織化学的アッセイ法)、蛍光系、放射能系、および発光系を含むがこれらに限定されない任意の検出系で検出されることが想定される。本発明が任意の特定の検出系または標識の制限を受けることは意図されない。
【0050】
ポリメラーゼ連鎖反応に関して使用される、本明細書で使用される「標的」という用語は、ポリメラーゼ連鎖反応に使用されるプライマーが結合する核酸領域を意味する。したがって「標的」は、他の核酸配列とは区別されることが求められる。「セグメント」は、標的配列内にある核酸領域と定義される。
【0051】
本明細書で使用される「ポリメラーゼ連鎖反応」(「PCR」)という用語は、クローニングまたは精製を行うことなくゲノムDNAの混合物中の標的配列セグメントの濃度を高める方法について記載された、参照として本明細書に組み入れられるマリス(K.B. Mullis)による米国特許第4,683,195号、第4,683,202号、および第4,965,188号に記載された方法を意味する。標的配列のこのような増幅過程は、大量の2種のオリゴヌクレオチドプライマーを、所望の標的配列を含むDNA混合物に導入し、次にDNAポリメラーゼの存在下における正確な一連の熱サイクルを行う段階を含む。2種のプライマーは、2本鎖標的配列の個々の鎖に相補的である。増幅を達成するために、混合物を変性させ、次に標的分子内にある相補的な配列にプライマーをアニーリングさせる。アニーリングに続いてプライマーをポリメラーゼで伸長させ、相補鎖の新しい対を形成させる。変性、プライマーのアニーリング、およびポリメラーゼによる伸長の段階を数回繰り返して行い(すなわち変性、アニーリング、および伸長で1回の「サイクル」を構成し、多数回の「サイクル」を行う)、所望の標的配列の高濃度の増幅セグメントを得る。所望の標的配列の増幅されたセグメントの長さは、相互のプライマーの相対的な位置によって決定されるので、この長さは制御可能なパラメータである。上記過程の反復性の局面により、この方法は「ポリメラーゼ連鎖反応」(以降「PCR」と記載)と呼ばれる。標的配列の所望の増幅セグメントが混合物中で(濃度に関して)主な配列となるので、これは「PCRで増幅された」と表現される。
【0052】
PCRにより、ゲノムDNAに含まれる特定の標的配列の1コピーの、多種多様な方法(例えば標識プローブを用いたハイブリダイゼーション;ビオチン化されたプライマーの取り込み後におけるアビジン−酵素コンジュゲートによる検出;32P標識デオキシヌクレオチド三リン酸(dCTPまたはdATPなど)の増幅セグメントへの取り込み)による、検出可能なレベルまでの増幅が可能となる。またゲノムDNAに関しては、任意のオリゴヌクレオチド配列またはポリヌクレオチド配列を適切な一組のプライマー分子で増幅することができる。特に、PCR過程そのもので作製された増幅セグメントは、それ自体が後のPCR増幅に対する効率のよいプライマーとなる。
【0053】
本明細書で使用される「PCR産物」、「PCR断片」、および「増幅産物」とは、2回またはそれ以上の、変性、アニーリング、および伸長のPCR段階のサイクルが完了した後における、結果として生じた化合物の混合物を意味する。以上の用語は、1種またはそれ以上の標的配列の1種またはそれ以上のセグメントが増幅されている場合を含む。
【0054】
本明細書で使用される「増幅用試薬」という用語は、プライマー、核酸鋳型、および増幅用酵素以外の、増幅に必要な試薬(デオキシリボヌクレオチド三リン酸や緩衝液など)を意味する。典型的には増幅用試薬は、他の反応成分とともに、反応容器内(試験管やマイクロウェルなど)に配置され、また含まれる。
【0055】
本明細書で使用される「逆転写酵素」または「RT−PCR」という用語は、出発材料がmRNAである、ある形式のPCRを意味する。出発材料のmRNAは、逆転写酵素を用いることで相補的DNAすなわち「cDNA」に酵素的に変換される。次にcDNAは、「PCR」反応の「鋳型」として用いられる。
【0056】
本明細書で使用される「制限エンドヌクレアーゼ」および「制限酵素」という用語は、いずれも2本鎖DNAを特定のヌクレオチド配列もしくはその近傍で切断する細菌由来の酵素を意味する。
【0057】
本明細書で使用される「アンチセンス」という用語は、特定のRNA配列(例えばmRNA)に相補的なRNA配列に関して使用される。この定義には、細菌による遺伝子制御にかかわるアンチセンスRNA(「asRNA」)分子が含まれる。アンチセンスRNAは、コード鎖の合成を可能とするウイルスプロモーターに対して逆方向に対象遺伝子をスプライシングすることによる合成を含む、任意の方法で作製することができる。胚に導入されると、このような転写後の鎖は、胚によって生産された天然のmRNAと結合して2本鎖を形成する。2本鎖は次に、mRNAの後続の転写または翻訳をブロックする。このようにして、変異型の表現型を作出することができる。「アンチセンス鎖」という用語は、「センス」鎖に相補的な核酸の鎖に関して使用される。(−)の記号(「負」を意味する)は、アンチセンス鎖を意味する記号として使用され、(+)の記号は、センス(「正」を意味する)鎖を意味する記号として使用されることがある。
【0058】
「単離されたオリゴヌクレオチド」、または「単離されたポリヌクレオチド」のように、核酸に関して使用される「単離された」という表現は、同定されて天然の供給源中で通常共存する少なくとも1種の混入核酸から分離された核酸配列を意味する。単離された核酸は、天然に存在する状態とは異なる状態または状況で存在する。これとは対照的に、非単離核酸とは、天然に存在する状況にみられるDNAおよびRNAなどの核酸である。例えば任意のDNA配列(例えば遺伝子)は、宿主細胞の染色体上で隣接遺伝子の近傍に存在する。また特定のタンパク質をコードする特定のmRNA配列などのRNA配列は、多数のタンパク質をコードする数多くの他のmRNAとの混合物として細胞内に存在する。しかし単離された核酸は、核酸が、天然の細胞とは異なる染色体上の位置にある、またはそれ以外では、天然に存在する配列とは異なる核酸配列に隣接する、任意のタンパク質を通常発現する細胞に含まれる核酸も含む。単離された核酸、オリゴヌクレオチド、またはポリヌクレオチドは、1本鎖形態または2本鎖形態で存在することがある。単離された核酸、オリゴヌクレオチド、またはポリヌクレオチドを使用してタンパク質を発現させる場合は、オリゴヌクレオチドまたはポリヌクレオチドは、最小のセンス鎖すなわちコード鎖を含む(オリゴヌクレオチドまたはポリヌクレオチドが1本鎖であってもよい)が、センス鎖とアンチセンス鎖の両方を含むことがある(オリゴヌクレオチドまたはポリヌクレオチドが2本鎖であってもよい)。
【0059】
本明細書で使用される「染色体の一部」という表現は、染色体の特定の部分を意味する。染色体は細胞遺伝学者により、以下のように部位またはセクションに分けられている:染色体の(セントロメアに対して)短い方の腕は「短(p)」腕と呼ばれ、長い方の腕は「長(q)」腕と呼ばれる。各腕は次に第1領域および第2領域と呼ばれる2つの領域に分けられる(第1領域がセントロメアに近い)。各領域はさらにバンドに分けられる。バンドはさらにサブバンドに分けられる。例えばヒトの第11染色体の11p15.5という部分は、第11染色体(11)上の短腕(p)の第1領域(1)の第5バンド(5)の第5サブバンド(.5)に位置する部分である。染色体の一部は「変化を受ける」ことがある。例えば全体が欠失のために消失したり、再編成されたりする場合がある(例えば反復領域の変化による逆位、転座、拡張、または短縮)。欠失の場合は、染色体の特定部分に相同なプローブとハイブリッドを形成させる(特異的に結合させる)試みが負の結果を生じることがある(染色体の一部が失われていることが疑われる遺伝的材料を含む試料にはプローブが結合できない)。したがって、染色体の特定の部分に相同なプローブのハイブリダイゼーションを用いることで、染色体の部分における変化を検出することができる。
【0060】
「染色体に関連した配列」とういう表現は、染色体の調製物(例えば中期染色体の拡散したもの)、染色体DNAを含む試料から抽出された核酸(例えばゲノムDNAの調製物);染色体上に位置する遺伝子の転写で生成されるRNA(例えばhnRNAおよびmRNA)、ならびに染色体上に位置するDNAから転写されたRNAのcDNAコピーを意味する。染色体に関連した配列は、サザンブロットおよびノーザンブロットにおけるプロービング、および上記調製物に含まれる核酸に相同な配列を含むプローブを用いたRNA、DNA、もしくは中期染色体に対するインサイチューハイブリダイゼーションを含む数多くの手法で検出される。
【0061】
構造遺伝子に関して使用される、本明細書で使用される「コード領域」という用語は、mRNA分子の翻訳の結果として新生ポリペプチドに含まれるアミノ酸をコードするヌクレオチド配列を意味する。真核生物のコード領域は、先頭のメチオニンをコードするヌクレオチドのトリプレット「ATG」と5’側で接しており、また停止コドンを指定する3つのトリプレット(TAA、TAG、TGA)の一つと3’側で接触している。
【0062】
本明細書で使用される「精製された」、または「精製する」という表現は、試料から混入物を除去することを意味する。例えば試料(例えば血液や精液)に含まれる核酸は、試料に含まれる混入性のタンパク質および小分子を除去することで精製される。核酸は任意の適切な方法で精製することができる。
【0063】
本明細書で使用される「組換えDNA分子」という用語は、分子生物学的手法で連結されたDNAのセグメントを含むDNA分子を意味する。
【0064】
(「任意のヌクレオチド配列の一部」などというように)あるヌクレオチド配列に関して本明細書で使用される「一部」という用語は、ヌクレオチド配列の断片を意味する。断片の範囲は4ヌクレオチド〜全ヌクレオチド−1ヌクレオチドの場合がある。
【0065】
本明細書で使用される「組換えタンパク質」または「組換えポリペプチド」という用語は、組換えDNA分子から発現されるタンパク質分子を意味する。
【0066】
あるタンパク質に関して本明細書で使用される「天然のタンパク質」という用語は、ベクター配列にコードされたアミノ酸残基を含まない。すなわち天然のタンパク質は、天然の状態で存在するタンパク質中に存在するアミノ酸のみを含む。天然のタンパク質は、組換え手法で作られる場合があるほか、天然の供給源から単離される場合がある。
【0067】
(「任意のタンパク質の一部」などというように)あるタンパク質に関して本明細書で使用される「一部」という用語は、対象タンパク質の断片を意味する。断片の範囲は4アミノ酸残基〜全アミノ酸配列−1アミノ酸の場合がある。
【0068】
「サザンブロット」という用語は、アガロースゲルまたはポリアクリルアミドゲル上において、DNAを大きさにしたがって分けた後に、DNAをゲルからニトロセルロースメンブレンやナイロンメンブレンなどの固相支持体へ移すDNA分析法を意味する。固定化されたDNAを次に標識プローブで処理し、使用したプローブに相補的なDNA種を検出する。このようなDNAは制限酵素で切断してから電気泳動を行うことができる。電気泳動後のDNAを固相支持体に移す前に、または固相支持体に移す際に部分的に脱プリン化して変性させることができる。サザンブロットは分子生物学者にとって標準的な手法である(Sambrook ら、「分子クローニング:実験マニュアル(Molecular Cloning: A Laboratory Manual)」、Cold Spring Harbor Press、NY、pp9.31〜9.58 [1989])。
【0069】
本明細書で使用される「ノーザンブロット」という用語は、アガロースゲル上でRNAを電気泳動し、RNAを大きさにしたがって分けた後に、RNAをゲルからニトロセルロースメンブレンやナイロンメンブレンなどの固相支持体に移すRNA分析法を意味する。固定化されたRNAを次に標識プローブで処理し、使用したプローブに相補的なRNA種を検出する。ノーザンブロットは分子生物学者にとって標準的な手法である(Sambrookら、前掲、pp7.39〜7.52 [1989])。
【0070】
「ウェスタンブロット」という用語は、ニトロセルロースメンブレンまたはナイロンメンブレンなどの支持体上に固定化されたタンパク質(またはポリペプチド)の分析法を意味する。タンパク質をアクリルアミドゲルに泳動して分離した後に、タンパク質をゲルからニトロセルロースメンブレンやナイロンメンブレンなどの固相支持体へ移す。固定化されたタンパク質を次に、対象抗原に反応性を有する抗体に曝露させる。抗体の結合は、放射標識抗体の使用を含むさまざまな方法で検出することができる。
【0071】
本明細書で使用される「抗原決定基」という用語は、特定の抗体と接触させる抗原の一部(すなわちエピトープ)を意味する。タンパク質またはタンパク質の断片を宿主動物の免疫化に使用すると、タンパク質の多数の領域が、タンパク質の任意の領域または3次元構造に特異的に結合する抗体の産生を誘導することがある。このような領域または構造は抗原決定基と呼ばれる。抗原決定基は、抗体と結合する完全な抗原(すなわち免疫応答の誘導に使用される「免疫原」)と競合する場合がある。
【0072】
本明細書で使用される「導入遺伝子」という用語は、授精直後の卵または初期胚に導入することで生物内に配置される外来遺伝子を意味する。「外来遺伝子」という用語は、実験的操作によって動物のゲノムに導入される任意の核酸(例えば遺伝子配列)を意味し、導入された遺伝子が天然遺伝子と同じ位置に存在しない限りは、動物に存在する遺伝子配列を含む場合がある。
【0073】
本明細書で使用される「ベクター」という用語は、DNAセグメントを一つの細胞から別の細胞に移す核酸分子に関して使用される。「輸送体」という用語は、ときに「ベクター」と互換的に使用される。
【0074】
本明細書で使用される「発現ベクター」という用語は、特定の宿主生物で、所望のコード配列、および使用可能に連結されたコード配列の発現に必要な適切な核酸配列を含む組換えDNA分子を意味する。原核生物における発現に必要な核酸配列は通常、プロモーター、オペレーター(任意選択)、およびリボソーム結合部位を含むほか、他の配列を含むこともある。真核細胞は、プロモーター、エンハンサー、ならびに終結シグナル、およびポリアデニル化シグナルを使用することが知られている。
【0075】
「過剰発現」、および「過剰発現する」という表現、および文法的に等価な表現は、遺伝子の転写および翻訳を意味する。このような転写および翻訳はインビボまたはインビトロで行われる。
【0076】
本明細書で使用される「トランスフェクション」という用語は、外来DNAの真核細胞への導入を意味する。トランスフェクションは、リン酸カルシウム−DNA共沈殿、DEAE−デキストランによるトランスフェクション、ポリブレンによるトランスフェクション、エレクトロポレーション、マイクロインジェクション、リポソーム融合、リポフェクション、プロトプラスト融合、レトロウイルス感染、および微粒子銃を含む、当技術分野で周知のさまざまな手段で達成される場合がある。
【0077】
「安定なトランスフェクション」、または「安定にトランスフェクトされた」という表現は、外来DNAの導入細胞ゲノムへの導入および組込みを意味する。「安定なトランスフェクタント」という表現は、ゲノムDNAに安定に組み込まれた外来DNAを有する細胞を意味する。
【0078】
「一過性のトランスフェクション」、または「一過的にトランスフェクトされた」という表現は、外来DNAが細胞に導入されるが、同DNAがトランスフェクトされた細胞のゲノムに組み込まれない導入を意味する。このような外来DNAは、トランスフェクト細胞の核内で数日間維持される。この期間中、外来DNAは、染色体上の内因性遺伝子の発現を支配する調節的制御を受ける。「一過性のトランスフェクタント」という表現は、外来DNAが取り込まれてはいるが、同DNAが組み込まれていない細胞を意味する。
【0079】
「リン酸カルシウム共沈殿」という用語は、核酸を細胞内に導入する手法を意味する。核酸の細胞への取り込みは、核酸をリン酸カルシウム−核酸の共沈殿として存在させることで促進される。グラハム(Graham)およびエブ(Van Der Eb)による当初の手法(GrahamおよびVan Der Eb、Virol.、52:456 [1973])は、複数の研究グループにより、特定の種類の細胞を対象とした条件を最適化するように修正されている。当技術分野では、このような数多くの修正の存在を承知している。
【0080】
本明細書で使用される「任意のポリヌクレオチド配列を含む組成物」とは、任意のポリヌクレオチド配列を含む任意の組成物を広く意味する。このような組成物は水溶液を含む場合がある。ポリペプチドまたはその断片をコードするポリヌクレオチド配列を含む組成物は、ハイブリダイゼーション用のプローブとして使用することができる。この場合、ポリヌクレオチド配列は、典型的には塩類(例えばNaCl)、界面活性剤(例えばSDS)、および他の成分(例えばデンハルト溶液、ドライミルク、サケ精子DNAなど)を含む水溶液中で使用される。
【0081】
本明細書で使用される「周術期」という用語は、外科手術を行う周辺の時期を意味する。この用語は「外科手術」前、「外科手術」中、および「外科手術」後の期間を含む。「周術期」の期間は、外科手術の実施を最初に検討するとき(例えば患者の外科手術の計画をたてるとき)に始まり、および外科手術後の回復が完了するとき(例えば治療を行う術者のサービスがそれ以上必要でないとき)に終わる。
【0082】
本明細書で使用される「外科手術(surgery)」、および関連する用語である「外科手術の(surgical)」、「外科手術(surgical operation)」、または「外科手術による介入」という表現は、組織の切開が関与する医学的処置を意味する。
【0083】
本明細書で使用される「外科手術前」という表現は、外科手術直前の期間を意味する。「外科手術前」の期間は一般に、外科手術を受ける被験者の準備を行うために使われる。「外科手術前」の期間には、関連する検査およびスクリーニングが実施される場合がある。「外科手術前」の期間が、外科手術に先立つ特定の量の時間を制限することは意図されない。場合によっては、外科手術前は、外科手術に先立つ数時間〜数分の任意の期間である(例えば緊急外科手術または救急外科手術の場合)。別の場合では、「外科手術前」の期間は、外科手術に先立つ数日または数週間である(緊急でない外科手術または待機的な外科手術の場合)。
【0084】
本明細書で使用される「医学的処置」という用語は、医療従事者(例えば医師もしくは医師補助者、看護士もしくは開業看護士、または獣医師を含むがこれらに限定されない医療従事者)によって実施される任意の臨床的処置または診断的処置を意味する。
【0085】
本明細書で使用される「侵襲的な外科手術」という用語は、大型の切開を必要とする「外科的処置」を意味する。侵襲的な外科手術は「全身麻酔」を必要とすることがある。本明細書で使用される「非侵襲的な外科手術」という用語は、最小限の切開を必要とする「外科的処置」を意味する。「非侵襲的な外科手術」は、意識下鎮静に加えて「部位麻酔」または「局所麻酔」の下で行われることがある。「非侵襲的な外科手術」はまた、外来診療で行う処置として実施される場合がある。
【0086】
本明細書で使用される「麻酔薬」という用語は、感覚喪失の可逆的な状態を誘導する薬剤を意味する。「麻酔薬」はときに、一時的な意識喪失および麻痺を生じることがある。「麻酔薬」は、疼痛を予防するために「外科手術」中に使用されることがある。
【0087】
本明細書で使用される「局所(local)麻酔」という用語は、身体の一部の感覚を短時間なくす麻酔を意味する(身体の別の部分には影響しない)。「局所麻酔」が被験者に対して行われる際に、被験者は通常意識を失わない。「局所麻酔薬」の例には、ブピバカインおよびリドカインが含まれるがこれらに限定されない。
【0088】
本明細書で使用される「部位(regional)麻酔」という用語は、身体の一部の感覚を最長数時間にわたってなくす麻酔を意味する(身体の別の部分には影響しない)。「部位麻酔」が被験者に対して行われる際に、被験者は通常意識を失わない。「部位麻酔」の例には、脊髄または硬膜外への麻酔薬の投与が含まれるがこれらに限定されない。
【0089】
本明細書で使用される「全身麻酔」という用語は、全身の感覚を「外科手術」中になくす麻酔を意味する。「全身麻酔」は、処置を通して(例えば静脈または気管を介して)連続的に行われる。「全身麻酔」が被験者に対して行われる際に、被験者は通常意識を失う。また「全身麻酔」は、人工呼吸(例えば挿管によるもの)を必要とする場合がある。
【0090】
本明細書で使用される「ゲノムの」という表現は、「被験者」の遺伝的構成(ゲノムまたは遺伝子)に関する。例えば「ゲノムプロファイル」は、任意の「被験者」の遺伝子に関する一連の情報(例えば特定の一連の変異または「SNP」の有無)を意味する。本明細書で使用される「周術期ゲノムプロファイリング」という用語は、「周術期」の期間に作成される「ゲノムプロファイル」を意味する。
【0091】
本明細書で使用される「薬剤」という用語は、生理学的作用、「薬剤反応」を有する化合物(例えば無機分子またはタンパク質)を意味する。「薬剤」の例には薬物(drugまたはmedication)がある。本明細書で使用される「薬力学的リスク」という用語は、「被験者」における、「薬剤」に対する異常な規模の臨床反応のリスクを意味する。本明細書で使用される「薬物動態学的リスク」という用語は、「被験者」における、「薬剤」の異常な吸収、代謝(例えば利用されないか、または極めて速く利用される)、分布、および排泄のリスクを意味する。
【0092】
本明細書で使用される「発症前診断」という用語は、症状が現れる前における医学的状態または疾患の診断を意味する。場合によっては「発症前診断」では、遺伝病または遺伝的な素因を診断する。
【0093】
「症候性疾患の鑑別診断」というように本明細書で使用される「鑑別診断」という用語は、外面的には互いに似ている(例えば同じ徴候または症状を示す)可能性があるが、基礎となる原因が異なることで、個別の介入を必要とする複数の疾患を区別することを意味する。
【0094】
本明細書で使用される「併発疾患」という用語は、同疾患に対して「医学的」処置または「外科的」処置が指示されないが、任意の「医学的」処置または「外科的」処置中に特定の局面(例えば麻酔薬または鎮痛薬の投与)に関連する可能性のある状態を意味する。
【0095】
本明細書で使用される「医学的処置を選択する」、または「外科手術」の場合に「外科的処置を選択する」という表現は、「薬剤」、「麻酔薬」の種類、または「外科手術」の種類の選択を含むがこれらに限定されない「医学的」処置または「外科的」処置中に施行される治療を意味する。
【0096】
本明細書で使用される「マーカー」という用語は、変化または変異(例えばヌクレオチドの変化)を同定するための基準点(例えば染色体の1点)を意味する。本明細書で使用される「遺伝マーカー」という用語は、その変化が遺伝子型または表現型の変化(例えば変異もしくは多型)を引き起す、(例えば染色体上、ウイルス核酸上、またはミトコンドリア核酸上の)1点を意味する。「遺伝マーカー」の一例は「SNP」である。
【0097】
本明細書で使用される「SNP」、または「単一ヌクレオチド多型」という用語は、生物体(例えばヒト)ゲノムの特定の位置における1塩基の変化を意味する。「SNP」は、遺伝子をコードしないゲノムの一部に位置する場合がある。あるいは「SNP」は、遺伝子のコード領域に位置する場合がある。この場合「SNP」は、それが位置するタンパク質の構造および機能を変化させることがある。場合によっては「SNP」は、医学的処置または外科手術に対する個体の反応(例えば麻酔薬または鎮痛薬に対する反応)に影響することがある。多くの「SNP」の位置および配列は、公的データベース(例えばNCBIのdbSNP(http://www.ncbi.nlm.nih.gov/SNP/)を参照)、ならびに民間データベースで公開されている。
【0098】
本明細書で使用される「アッセイ法」という用語は、「遺伝マーカー」を検出する方法を意味する。アッセイ法により1種または複数の「遺伝マーカー」(例えば「SNP」)を検出することができる。いくつかのアッセイ法では「ゲノムプロファイル」が作成される。
【0099】
本明細書で使用される「試料」という用語は広い意味で使用される。一つの意味では、この用語は、組織試料または核酸試料を意味する。別の意味では、この用語は、任意の供給源から得られた標本または培養物を含むことを意味する。生物試料は動物(ヒトを含む)から得られる場合があり、体液、固体、組織、および気体を含む。生物試料は、血漿や血清などの血液製剤を含むがこれらに限定されない。「試料」は遺伝情報の場合もある。例えば被験者の配列データは記憶装置(例えばディスク)に保存される。このような例は、本発明に使用可能な試料の種類を制限すると解釈すべきでない。
【0100】
本明細書で使用される「被験者」という用語は、「医学的」処置または「外科的」処置を受けている動物(例えばヒト)を意味する。「被験者」はヒトの場合もあれば、ヒト以外の動物の場合もある。
【0101】
発明の詳細な説明
本発明は、周術期ゲノムスクリーニングの方法および組成物を提供する。いくつかの態様では、ゲノムスクリーニングは、被験者の麻酔関連合併症リスクに関連した変異および多型を検討するように設計される。他の態様では、周術期ゲノムスクリーンは、心臓手術(例えば血管形成術やバイパス手術)、脳手術、腹部手術(例えば腎臓移植または肝臓移植)、乳房切断術、骨髄移植、膀胱手術、腸手術(例えば結腸または腸管の膀胱外科手術)、肺手術、脊髄手術、美容外科手術および再建手術、胆嚢手術、整形外科手術、ならびに小児外科手術(あらゆる種類)を含むがこれらに限定されない他の種類の外科手術、外科的治療、および外科的処置に関連した特定の変異または多型を検討するように設計される。関連技術の当業者であれば、本発明が、上記以外の他の外科的手法を目的とした周術期ゲノムプロファイルを含むことを理解すると思われる。
【0102】
周術期ゲノムプロファイルに含めるマーカーは、特定の基準を元に選択される。変異または多型の配列、ならびに変異対立遺伝子をもつことによる臨床転帰は既知であるはずである。好ましい態様では、マーカーは、代替的な診断検査法が現在ない場合、または利用可能な検査法が周術期スクリーニングに適していない場合に選択される。特に好ましい態様ではマーカーは、治療の臨床経過が、変異または多型の有無に応じて変更できるように選択される。
【0103】
任意のゲノムプロファイルに含めるマーカーの選択に続いて、検出のアッセイ法が提供される。いくつかの態様では、このようなアッセイ法は、直接的な配列決定アッセイ法である。他の態様では、アッセイ法は断片長多型アッセイ法である。いくつかの好ましい態様では、アッセイ法はハイブリダイゼーションアッセイ法である。いくつかの好ましい態様では、アッセイ法は、酵素を用いた手法による検出を組み入れたハイブリダイゼーションアッセイ法である。他の好ましい態様では、アッセイ法はMALDI−TOF質量分光光度アッセイ法である。しかし、本発明のゲノムプロファイルは、特定配列の検出を可能とする任意の検出法とともに使用され、核酸ハイブリダイゼーションに依存するか、または依存しない可能性がある、将来開発されるであろう検出法に適用することができる。いくつかの態様では、マーカーを選択する段階、検出アッセイ法を実施する段階、ならびにデータを被験者および臨床医に送信する段階は、統合型電子システム(例えばウェブシステム)にまとめられている。
【0104】
I.ゲノムプロファイル用マーカーの選択
本発明の周術期ゲノムプロファイルを作成するために、プロファイルに含めるマーカーを最初に選択する。このようなマーカーの配列は既知であるはずである。好ましい態様では、マーカーは、関連する表現型をもつことが既知である任意の遺伝子における変異である。大量の配列データおよび既知の変異または多型は既知でありアクセス可能である。好ましい態様では、マーカーは、周術期治療に関連する情報を提供する有用性を目安に選択される。
【0105】
A.配列データ
本発明のいくつかの態様では、遺伝マーカーは単一ヌクレオチド多型(「SNP」)である。既知のSNPは、公的データベースおよび民間のデータベースから入手することができる(上述)。他の態様では、マーカーは変異である(例えばヌクレオチドの欠失または挿入)。いくつかの態様では、マーカーはスプライスバリアントである。他の態様では、マーカーはミトコンドリアDNAの変異である。
【0106】
既知のSNPに加えて、大量の遺伝子の野生型および変異型の対立遺伝子を説明したさまざまなヌクレオチド配列情報が、以下を含むがこれらに限定されない公的データベースから入手することができる;DbEST(http://www.ncbi.nlm.nih.gov/dbES);EBI/EMBL(http://www.ebi.ac.uk/mutations);EBI(http://www.ebi.ac.uk/ebi_home.html);EMBL(http://www.ebi.ac.uk/queries/queries.html);GDB(http://www.gdb.org/gdb/gdbtop.html);GeneCards(http://bioinformatics.weizmann.ac.il/cards/index.html);GeneClinics(http://www.geneclinics.org);Genethon(http://www.genethon.fr/genethon_en.html);GSDB(http://www.ncgr.org);HGP(http://www.ornl.gov/TechResources/Human_Genome/home.html);Human Gene Mutation Database(http://www.uwcm.ac.uk/uwcm/mg/search);NCBI(http://www.ncbi.nlm.nih.gov/);OMIM(http://www.ncbi.nlm.nih.gov/Omim/);PubMed(http://www.ncbi.nlm.nih.gov/PubMed/);Research Tools(NCBI)(http://www.ncbi.nlm.nih.gov/SCIENCE96/ResTools.html);RHdb(http://www.ebi.ac.uk/RHdb);スタンフォードヒトゲノムセンター(http://www.shgc.stanford.edu/);HUGO(http://www.gene.ucl.ac.uk/hugo);TIGR(http://www.tigr.org/);米国立ヒトゲノム研究所(NHGR)(http://www.nhgri.nih.gov/);ホワイトヘッド研究所ゲノムセンター(http://www.genome.wi.mit.edu/);Unigene(http://www.ncbi.nlm.nih.gov/Unigene/index.html);オクラホマ大学(http://www.dnal.chem.ou.edu/index.html);およびWEHI(http://wehih.wehi.edu.au/srs/srsc/)。当業者であれば、ヌクレオチド配列データが、公的データベースおよび民間データベースを含むがこれらに限定されない別の供給先から入手可能であるほか、実験的に入手可能であることも理解すると思われる。
【0107】
B.マーカーの選択基準
本発明の好ましい態様では、周術期ゲノムプロファイル用に選択される遺伝マーカーは、特定の医学的処置または外科的処置に合わせられる。マーカーは、分析的妥当性、臨床的妥当性、臨床的有用性、および商業的価値を含むがこれらに限定されない複数の基準を元に選択される。
【0108】
本発明のいくつかの態様では、マーカーは、分析的妥当性(例えば特定の検出法を用いたときの検出精度)を元に選択される。マーカーはまた臨床的妥当性、またはその予測作用(例えばマーカーが治療の特定の局面に対する被験者の反応を正確に予測する)を元に選択されることもある。検討対象となるすべての変異および多型の配列は入手可能であるはずである。複数のSNPまたは変異のマーカーについては、各ヌクレオチド変化の表現型の転帰が既知であることが好ましい。マーカーが、病歴、理学的検査、または非ゲノムアッセイ法などの別の検出法により、素因が決定できないこと(例えば安価に、または効率よく決定できないこと)を元に選択されることも好ましい。
【0109】
本発明のいくつかの態様では、マーカーは、被験者が負う費用または不便さに別の治療法がほとんど影響しないか、または全く影響しないことを考慮して選択される。したがってマーカーは、偽陰性結果(元の治療法が実施され、アッセイ法が実施されなかったと想定した場合と患者の状況が変わらない)、または偽陽性結果(別の治療法が費用およびリスクに関して元の治療法と等価である)が、被験者の転帰に有害な影響を及ぼさないことを考慮して選択される。
【0110】
いくつかの態様では、周術期ゲノムプロファイルは2種またはそれ以上のマーカーを含む。他の態様では、周術期ゲノムプロファイルは5種またはそれ以上のマーカーを含む。いくつかの態様では、周術期ゲノムプロファイルは10種またはそれ以上のマーカーを含む。いくつかの好ましい態様では、周術期ゲノムプロファイルは20種またはそれ以上のマーカーを含む。他の好ましい態様では、周術期ゲノムプロファイルは50種またはそれ以上のマーカーを含む。いくつかの特に好ましい態様では、周術期ゲノムプロファイルは100種またはそれ以上のマーカーを含む。しかしアッセイ法の有用性は、含まれるマーカーの数ではなく、個々のマーカーまたはマーカーの組み合わせによって予測される転帰によって主に決定される。
【0111】
特に好ましい態様では、マーカーは、治療法の変更に使用可能な情報(すなわちマーカーに臨床的有用性がある)を提供するように選択される。例えば被験者が、外科的処置中に一般に投与される複数の薬物の1種にほとんど反応しない素因があることがわかっている場合、実施者は別の薬物を選択することができる。特に重要なマーカーは、費用または投与の容易さの面が等価である別の治療法が交換可能であるために救命につながったり、高額の費用のかかる、生命を脅かす外傷の数を減らせたりする素因に対するマーカーである(任意のマーカーを含めることは商業的価値を有する利点を追加する)。またマーカーは、負の結果(例えば基礎疾患の不在)に臨床的有用性があること(例えば疾患の鑑別診断の補助となる)をふまえて選択される。
【0112】
いくつかの態様では、ゲノムプロファイルに対するマーカーの追加または控除は実験的に決定される。例えば、あるマーカーが、治療の任意の成分に対する被験者の反応と良好に相関しないと判断される場合、そのマーカーは除かれる。新しいマーカーを含めることも実験的に決定される場合がある。例えば、ある新しいマーカーが、単独または他のマーカーを組み合わせることで良好な予測能をもつことがわかった場合、このマーカーをゲノムプロファイルに追加する。
【0113】
C.マーカーのカテゴリー
いくつかの好ましい態様では、被験者の遺伝薬理学的リスク(薬理化合物に対する反応)を測定するマーカーが含まれる。いくつかの態様では、被験者の薬力学的リスク(薬剤によって誘導される異常な規模の反応;例えば麻酔薬に対する悪性高熱、またはβ1作動薬に対する異常なβ1アドレナリン受容体反応で緩和しない気管支痙攣)のマーカーが周術期ゲノムプロファイルに含まれる。さらに別の好ましい態様では、被験者の薬物動態学的反応(薬物の過剰投与または有効性の欠如をもたらす、薬物の異常な吸収、分布、代謝、および排泄;例えば、さまざまな薬物の代謝に影響するシトクロムP450変異)を予測するマーカーが周術期ゲノムプロファイルに含まれる。
【0114】
いくつかの好ましい態様では、診断的有用性のあるマーカーが周術期ゲノムプロファイルに含まれる。いくつかの好ましい態様では、外科的処置に関連する、既存の状態であるが非症候性の状態を同定するマーカー(例えば外科手術に反応して現れることがあるQT延長症候群または鎌状赤血球形成傾向)が周術期ゲノムプロファイルに含まれる。
【0115】
別の好ましい態様では、外見的に相互に似ているが、外科手術中に異なる介入を必要とする場合がある症候性障害の鑑別診断を決定するマーカーが含まれる。この例には周期性麻痺、または複数のポルフィリン症の複数の種類が含まれるがこれらに限定されない。
【0116】
いくつかの態様では、周術期スクリーニングアッセイ法は、実施される特定の外科的処置(例えば移植レシピエント、心臓の手術、またはルーチンの外来手術)に合わせたマーカーを含む。いくつかの態様では、周術期ゲノムプロファイルは、特定のグループにおける被験者に固有のマーカー(例えば年齢、人種的背景、性別)を含む。
【0117】
いくつかの態様では、ゲノムプロファイルに含まれるマーカーは、ハプロタイプ、または任意の被験者群(例えば血縁関係にある家族)に固有の遺伝子に含まれる天然の多型である。一部のハプロタイプは、任意の薬剤に対する反応(例えば任意の薬物に対する反応の欠損)を予測する。
【0118】
いくつかの態様では、実施される外科的処置に特異的でないが、外科手術および関連処置の一般的な転帰を予測する他のマーカーが含まれる。例にはアミノグリコシドによる耳毒性、APOε4、創傷治癒にかかわるサイトカイン、敗血症リスク(TNFα)、血液型、凝固因子、および血栓症のリスクに対するマーカーなどが含まれるがこれらに限定されない。いくつかの態様では、周術期スクリーニングアッセイ法は、主要な外科的応用に関するゲノムプロファイルに無関係であるが、緊急的な介入を必要とする合併症の場合に関連する他の検査法(例えば血液型の決定)を含む。いくつかの態様では、周術期ゲノムプロファイルは、固有のゲノム識別子(例えば一連の多型性の非コードSNP)を含むので、特定の被験者に特異的な遺伝データの達成および追跡するための安全で正確な内部標準を提供する。
【0119】
D.特定のマーカーの応用および介入
本発明のいくつかの態様では、麻酔(全身、部位、または局所)に対する被験者の反応の周術期スクリーニングのゲノムプロファイルが作成される。好ましい態様では、マーカーは、特定の麻酔に対する被験者の反応だけでなく、麻酔とともに行われる特定の麻酔もしくは薬物投与に対する被験者の反応に影響を及ぼす可能性がある既知または未知の既存の状態も予測するものが選択される。いくつかの好ましい態様では、ゲノムプロファイルは、実施されている特定の外科的処置に合わせたマーカーをさらに含む。
【0120】
麻酔反応に対する周術期スクリーニングを含む好ましい態様では、麻酔とともに一般に行われる特定の麻酔または薬物投与(例えば筋弛緩剤または鎮痛剤)に対する反応用のマーカーが選択される。いくつかの態様では、BChE遺伝子上の変異に関するマーカーが周術期ゲノムプロファイルに含まれる。BChEの欠損を予測するマーカーは既知である(例えばLa Duら、Cell. and Molec. Neurobiol.、11:79 [1991]を参照)。BChEに唯一利用可能なアッセイ法は、長時間を要し、高額の費用がかかるためにルーチンの周術期スクリーニングには含まれない生化学的アッセイ法である。また被験者がBChE欠損を予測するマーカーを含むことがわかっている場合は、費用または不便さを増すことなく、別の薬物と容易に交換することができる。
【0121】
いくつかの態様では、デブリソキン代謝のマーカー(シトクロムP450)の欠損が周術期ゲノムプロファイルに含まれる。特定の薬物の薬物動態を破壊することが知られているCYP2D6遺伝子の欠損が報告されている(例えばSachseら、Am. J. Hum. Genet.、60: 284 [1997]を参照)。CYP2D6の変異を対象とした現在の生化学的アッセイ法は、費用があまりにも多くかかり、また極めて不便なので周術期スクリーニングに含まれない。P450代謝の低下または活性化に関する被験者の素因がわかれば、他の薬物投与に交換したり用量を調節したりすることで、有害な薬物反応を容易に避けることができる。
【0122】
また、いくつかの態様では、亜酸化窒素毒性、または亜酸化窒素に関連したホモシステイン血症に対する感受性(例えばシスタチオンβシンターゼ遺伝子、MTHFR遺伝子、およびメチオニンシンターゼ遺伝子上の変異)を含むがこれらに限定されない薬物代謝に関連する別の欠損に対するマーカーも周術期ゲノムプロファイルに含まれる。いくつかの態様では、麻酔にほとんど反応しない可能性を高くする基礎状態をもつ被験者を同定するマーカーも周術期ゲノムプロファイルに含まれる。例えば、いくつかの態様では悪性高熱(MH)に対するマーカーがゲノムプロファイルに含まれる。MHを予測する変異は当技術分野で周知である(例えばVladutiuら、Am J. Hum. Genet、29: A5 [1998];Monnierら、Am. J. Hum. Genet、60:1316 [1997]を参照)。またMHに唯一利用可能な診断検査法は、筋肉試料を必要とする、費用の高いインビトロ拘縮テストである(例えばBrandtら、Hum. Mol. Genet.、8:2055 [1999]を参照)。またMHを予防するための有効な別の治療法がある。被験者がMHリスクの上昇を予測するマーカーをもつことがわかれば、MHを誘導することが既知の麻酔薬を避ける。また被験者にダントロレンを投与してMHを予防することができる。
【0123】
いくつかの態様では、症候性でない可能性があるが、それでも麻酔に対する反応に作用する可能性のある遺伝病のマーカーも含まれる。例えば、遺伝性催不整脈障害のマーカーも含まれる(例えばPrioriら、Circulation、99:518 [1999]を参照)。遺伝性催不整脈障害の一つが、心室の再分極の異常な延長と悪性の心室性頻脈性不整脈の高いリスクを特徴とするQT延長症候群である。高い身体的ストレスがかかる期間(例えば外科手術および麻酔)は、感受性のある患者で発作の引き金となることがある。QT延長症候群を予測するマーカーをもつ個体を同定することができれば、術者は心臓異常の徴候について個体をより密接にモニタリングし、悪化性の薬物を避け、また難治性の律動が生じる前に治療を行うことが可能となる。
【0124】
いくつかの態様では、周術期ゲノムプロファイルは、血栓症(凝血)のリスクを増大または低下することがわかっている血液凝固タンパク質または血小板欠乏(例えばメチレンテトラヒドロ葉酸レダクターゼ、メチオニンシンターゼ、シスタチオンβシンターゼ、第V因子ライデン、およびプロトロンビン)のマーカーを含む。静脈血栓症の多くの症例は外科手術または他の外傷に関与し、治療および罹病に高額の費用がかかる。すべての血栓症の約50%が遺伝性である(Brick、Seminars in Thrombosis and Hemostatis、25:251 [1999])。血栓症のリスクを増大することがわかっているこのような遺伝子の変異および多型は同定されている(例えばFrosstら、Nature Genet.、10:111 [1995];Harmonら、Genet. Epidemiol.、17:298 [1999];Tsaiら、Am. J. Hum. Genet、59:1262 [1996];Simoniら、New Eng. J. Med、336:399 [1997];DeStefanoら、New Eng. J. Mod.、341:801 [1999]を参照)。被験者に血栓症のリスクがあることがわかれば、別の麻酔または薬物投与を選択することができる。予防的治療(例えば抗凝固薬、ポジショニング、および圧迫器具)、ならびに、より詳細なモニタリングにより、血栓の発生率および重症度を低下させることができる。
【0125】
いくつかの態様では、凝固障害に特異的なマーカー(出血および関連発作のリスクの増大を予測するマーカー)が周術期ゲノムプロファイルに含まれる。このような例には、組織プラスミノーゲン活性化因子(TPA)、PAI−1、およびフィブリノーゲンの多型などが含まれるがこれらに限定されない。患者の出血リスクが高いことがわかれば、早期介入を可能とする特定の術後モニタリングを実施することができる。また出血を悪化させるリスクの低い薬剤を使用することができる。
【0126】
いくつかの態様では、血小板表面結合分子(例えばGP IIb/IIIaフィブリノーゲン結合部位)、内皮機能、および炎症(サイトカイン)の多型のマーカーが周術期ゲノムプロファイルに含まれる。これらの因子の多型は、心筋梗塞(MI;心臓発作)のリスクの上昇を示すことがある。被験者がMIのリスク上昇を示すマーカーをもつことがわかれば、予防または介入に適切な薬剤を選択し、MIの徴候について選択的に患者をモニタリングすることができる。
【0127】
いくつかの態様では、麻酔または他の管理の選択に影響を及ぼす可能性のある他の基礎状態のマーカーが含まれる。例および変更される選択には、特発性の肥大型大動脈弁下狭窄(例えば陽性変力薬の回避)、拡張型心筋症(例えば陰性変力薬の回避)、アンチトリプシン欠損症(例えば肺の合併症の詳細なモニタリング)、ヘモクロマトーシス(例えば輸血の回避)、レーバー視神経萎縮(例えばニトロプルシドナトリウムの回避)、鎌状赤血球形成傾向、およびサラセミア(例えば貧血の詳細なモニタリング)が周術期ゲノムプロファイルに含まれるがこれらに限定されない。いくつかの態様では、特定の麻酔に対する個体の反応(例えば周期性四肢麻痺症の分類[カリウムの回避もしくは投与の決定に影響する]、またはポルフィリン症の種類[チオペンタールナトリウムの回避または投与の決定に影響する])に影響を及ぼす可能性のある併存疾患のマーカーが含まれる。
【0128】
いくつかの好ましい態様では、周術期ゲノムプロファイルは、任意の外科的処置の選択に特異的なマーカーをさらに含む。例えば心肺バイパス手術を受けている被験者は、アポリポタンパク質E対立遺伝子の有無について検討される。患者がE−ε4対立遺伝子をもつこと(認知機能の術後低下のリスクの上昇を示す)がわかれば、バイパス処置以外の処置を施行することができる(例えば侵襲性が極めて小さい、心臓の動きを止めない状態における手術、および小規模の開胸もしくは小規模の胸骨切開、およびプレッシャープレート型安定器を用いる、人工心肺を使用しない冠動脈バイパス手術)。
【0129】
また、いくつかの別の態様では、創傷治癒因子、サイトカイン、および抗生物質毒性の素因を含むがこれらに限定されない別の一般的な外科手術関連変数が関与するマーカーの検査も含まれる。いくつかの態様では、血清型(例えば特異的なマーカーについてはYamamotoら、Nature、345:229 [1990]を参照)、およびアレルギーの素因(例えば抗生物質またはラテックスに対する素因)を含むがこれらに限定されない一般的なゲノム関連変数のマーカーが含まれる。いくつかの態様では、緊急時の介入の選択に影響するマーカー(例えばβアドレナリン作動性気管支拡張薬または血清型)に対する反応の欠損)が周術期ゲノムプロファイルに含まれる。いくつかの態様では、外科手術に影響する可能性のある病原体感染(例えばB型肝炎ウイルスおよびC型肝炎ウイルス)のマーカーが含まれる。
【0130】
さらに別の態様では、敗血症の素因を示すマーカー(例えばTNF対立遺伝子)を含むがこれらに限定されない、外科手術からの回復中に起こりうる合併症を予測するマーカーが含まれる。TNFαのTNF2対立遺伝子は、敗血症の重症度の上昇と関連している。被験者がTNF2対立遺伝子をもつことがわかれば、術後の集中治療によるモニタリングを強化して、敗血症による死亡を抑えることができる。また実施者はTNF2対立遺伝子の存在を、敗血症リスクの低い非外科的治療法を選択する際の因子の一つとして使用することができる。いくつかの態様では、敗血症感染の発症に関連することが既知である病原体に対するマーカー(例えば血流中に細菌DNAが存在する)が周術期ゲノムプロファイルに含まれる。当業者であれば、周術期治療に有用な別のマーカーを前述の周術期ゲノムプロファイルに含めることができることを理解すると思われる。
【0131】
II.ゲノムプロファイルを作成するためのアッセイ法
特定のSNPおよび変異が任意の周術期ゲノムパネルに対して決定されれば、プロファイルが作成される。ゲノムプロファイルは、被験者のDNA試料(例えば組織試料または遺伝子情報試料)中にSNPおよび変異を検出することで作成される。多型または変異を検出するアッセイ法は、直接配列決定アッセイ法、断片多型アッセイ法、ハイブリダイゼーションアッセイ法、およびコンピュータを利用したデータ解析を含むがこれらに限定されない複数のカテゴリーに分類される。これらのアッセイ法の複数の変形形態を実施するためのプロトコルおよび市販のキットまたはサービスがある。いくつかの態様では、アッセイ法は、組み合わせたりハイブリッド型として実施される(例えば複数のアッセイ法で使用される異なる試薬または手法を組み合わせて一つのアッセイ法とする)。
【0132】
A.直接配列決定アッセイ法
本発明のいくつかの態様では、ゲノムプロファイルは直接配列決定法で作成される。このアッセイ法では、最初にDNA試料を任意の適切な方法で被験者から単離する。いくつかの態様では、対象領域は適切なベクターにクローン化されて、宿主細胞(例えば細菌)内で成長させることで増幅される。他の態様では、対象領域に含まれるDNAはPCRで増幅される。
【0133】
増幅後、対象領域のDNA(例えば対象となるSNPまたは変異を含む領域)の配列を、放射性マーカーのヌクレオチドを用いたマニュアルの配列決定法、または自動配列決定法を含むがこれらに限定されない任意の適切な方法で決定する。配列決定で得られた結果は任意の適切な方法で表示する。この配列を調べ、任意のSNPまたは変異の有無を判定する。
【0134】
B.断片長多型アッセイ法
本発明のいくつかの態様では、ゲノムプロファイルは、断片長多型アッセイ法で作成される。断片長多型アッセイ法では、一連の位置におけるDNAの切断に基づく固有のDNAバンドパターンを酵素(例えば制限酵素またはCLEAVASE I [Third Wave Technologies、Madison、WI]酵素)を用いて作製する。SNPまたは変異を含む試料に由来するDNA断片は、野生型とは異なるバンドパターンを生じる。
【0135】
1.RFLPアッセイ法
本発明のいくつかの態様では、ゲノムプロファイルは、制限酵素切断断片長多型アッセイ法(RFLP)で作成される。最初に対象領域をPCRで単離する。次にPCR産物を、任意の多型について固有の長さの断片を生じることがわかっている制限酵素で切断する。制限酵素で切断したPCR産物をアガロースゲル電気泳動で分離し、臭化エチジウム染色で可視化する。断片長は、分子量マーカー、および野生型および変異型の対照から得られた断片と比較する。
【0136】
2.CFLPアッセイ法
他の態様では、ゲノムプロファイルは、CLEAVASE断片長多型アッセイ法で作成される(CFLP;Third Wave Technologies、Madison、WI;例えば参照として本明細書に組み入れられる米国特許第5,843,654号;第5,843,669号;第5,719,208号;および第5,888,780号を参照)。このアッセイ法は、1本鎖のDNAが自身で折りたたまれ、DNA分子の正確な配列に対して高度に個別の高次構造をとると考えられるという観察に基づいている。このような2次構造には、1本鎖領域が2本鎖DNAのヘアピンと並列した、DNAの部分的2本鎖領域がある。CLEAVASE I酵素は、構造特異的な熱安定性のヌクレアーゼであり、1本鎖領域と2本鎖領域の間を認識して切断する。
【0137】
最初に対象領域を例えばPCRで単離する。次いでDNA鎖を加熱して分離する。次に、反応物を冷却すると鎖間に2次構造が形成される。このPCR産物を次にCLEAVASE I酵素で処理して、任意のSNPまたは変異に固有の一連の断片を得る。CLEAVASE酵素で処理したPCR産物を(例えばアガロースゲル電気泳動で)分離して検出し、(例えば臭化エチジウムによる染色で)可視化する。断片長を、分子量マーカー、および野生型および変異型の対照から得られた断片と比較する。
【0138】
C.ハイブリダイゼーションアッセイ法
本発明の好ましい態様では、ゲノムプロファイルは、ハイブリダイゼーションアッセイ法で作成される。ハイブリダイゼーションアッセイ法では、任意のSNPまたは変異の有無が、試料に由来するDNAがもつ、相補的DNA分子(例えばオリゴヌクレオチドプローブ)とハイブリッドを形成する能力を元に判定される。ハイブリダイゼーションおよび検出のさまざまな手法を用いたさまざまなハイブリダイゼーションアッセイ法がある。アッセイ法の選択に関して以下に説明する。
【0139】
1.ハイブリダイゼーションの直接検出
いくつかの態様では、対象配列(例えばSNPまたは変異)に対するプローブのハイブリダイゼーションは、結合状態のプローブを可視化することで直接検出される(例えばノーザンアッセイ法またはサザンアッセイ法;例えばAusubelら(編)、「分子生物学における最新プロトコール(Current Protocols in Molecular Biology)」、John Wiley & Sons、NY [1991]を参照)。これらのアッセイ法では、ゲノムのDNA(サザン法)またはRNA(ノーザン法)を被験者から単離する。次にDNAまたはRNAを、ゲノム中をまれにしか切断せず、アッセイ法の任意の対象マーカー近傍に切断部位がない一連の制限酵素で切断する。次にDNAまたはRNAを(例えばアガロースゲル上で)分離してメンブレンに移す。(例えば放射性ヌクレオチドを取り込ませることで)標識したプローブ、または検出対象のSNPもしくは変異に特異的なプローブを、低ストリンジェンシー条件、中ストリンジェンシー条件、高ストリンジェンシー条件でメンブレンに接触させる。未結合状態のプローブを除き、結合の存在を、標識プローブを可視化することで検出する。
【0140】
2.「DNAチップ」アッセイ法によるハイブリダイゼーションの検出
本発明のいくつかの態様では、ゲノムプロファイルは、DNAチップハイブリダイゼーションアッセイ法で作成される。このアッセイ法では、一連のオリゴヌクレオチドプローブを固相支持体に結合させる。オリゴヌクレオチドプローブは、任意のSNPまたは変異に対して固有なものとなるように設計される。対象DNA試料をDNA「チップ」に接触させてハイブリダイゼーションを検出する。
【0141】
いくつかの態様では、DNAチップアッセイ法はGeneChip(Affymetrix、Santa Clara、CA;例えば参照として本明細書に組み入れられる米国特許第6,045,996号;第5,925,525号;および第5,858,659号を参照)アッセイ法である。GeneChipの手法では、「チップ」に結合させたオリゴヌクレオチドプローブの小型化された高密度のアレイが使用される。プローブアレイは、固相化学合成法と、半導体産業で使用されているフォトリトグラフィー技術(photolithographic fabrication technology)を組み合わせた、アフィメトリックス(Affymetrix)社の光誘導型化学合成工程で製造される。一連のフォトリトグラフィーマスクを用いてチップの露出部位を決定した後に、特定の化学合成工程を行う。この工程で、各プローブがアレイの所定の位置にある、オリゴヌクレオチドの高密度のアレイが構築される。複数のプローブアレイが、大きなガラス製ウェーハ上に同時に合成される。次にウェーハを角切りにし、個々のプローブアレイを、射出成形されたプラスチックカートリッジ中に集積し、環境から保護してハイブリダイゼーションを行う空間として機能させる。
【0142】
分析対象の核酸を単離し、PCRで増幅し、蛍光レポーター基で標識する。標識DNAを次に流体ステーション(fluidics station)を用いてアレイとインキュベートする。次にアレイをスキャナーに挿入し、ハイブリダイゼーションのパターンを検出する。ハイブリダイゼーションのデータは、プローブアレイに結合した状態の標的に既に取り込まれた蛍光レポーター基から放出される光として収集する。標的に完全にマッチするプローブは一般に、ミスマッチのあるプローブと比べて強力なシグナルを放出する。アレイ上の各プローブの配列および位置は相補性から既知であるので、プローブアレイに接触させた標的核酸の内容を決定することができる。
【0143】
他の態様では、電子レベルで捕捉されたプローブ(Nanogen、San Diego、CA)を含むDNAマイクロチップが使用される(例えば参照として本明細書に組み入れられる米国特許第6,017,696号;第6,068,818号;および第6,051,380号を参照)。マイクロエレクトロニクスを利用したNanogenの技術は、荷電性分子の、半導体マイクロチップ上の指定試験部位への、または同部位からの活発な移動および濃縮が可能となっている。任意のSNPまたは変異に固有のDNA捕捉用プローブは、マイクロチップ上の特定の部位に電子的に配置されるか、または「アドレス指定される」。DNAは強い負電荷をもつので、正電荷領域に電子的に移動することが可能である。
【0144】
最初に、マイクロチップ上の試験部位または試験部位の列を正電荷で電子的に活性化させる。次に、DNAプローブを含む溶液をマイクロチップ上に注ぐ。負に帯電したプローブは、正電荷を帯びた部位に速やかに移動し、そこで濃縮され、マイクロチップ上の部位に化学的に結合される。次にマイクロチップを洗浄し、別個のDNAプローブを含む別の溶液を、特異的に結合したDNAプローブのアレイが完成するまで添加してゆく。
【0145】
次に試験試料を対象に、どのDNA捕捉プローブが、試験試料に含まれる相補的DNA(例えばPCRで増幅された対象遺伝子)とハイブリッドを形成したかを判定することで、標的分子の有無を分析する。電子電荷を用いて、マイクロチップ上の1か所または複数の試験部位に標的分子を動かして濃縮することもある。各試験部位における試料DNAの電子密度が高いと、試料DNAと、相補的な捕捉プローブとの速やかなハイブリダイゼーションが促進される(ハイブリダイゼーションは分単位で起こる)。すべての未結合状態のDNA、または非特異的に結合したDNAを各部位から除くためには、部位の極性または電荷を負に逆転することで、未結合状態のDNAまたは非特異的に結合したDNAを捕捉プローブからはがして溶液中に強制的に戻す。レーザーを利用した蛍光スキャナーを使用して結合を検出する。
【0146】
さらに別の態様では、表面張力の差による、平坦な表面(チップ)上の流体の分離に基づくアレイ技術(ProtoGene、Palo Alto、CA)が利用されている(例えば参照として本明細書に組み入れられる米国特許第6,001,311号;第5,985,551号;および第5,474,796号を参照)。ProtoGene社の技術は、化学的コーティングによって生じた表面張力の差により平坦な表面上で流体が分離可能であるという事実を元にしている。分離後は、オリゴヌクレオチドプローブが、試薬のインクジェット印刷によりチップ上で直接合成される。表面張力で決定される反応部位をもつアレイを、X/Yトランスレーションステージ上に、4組の圧電素子ノズル(それぞれ4種の標準的なDNA塩基に対応する)の下にマウントする。トランスレーションステージをアレイの列に沿って動かし、適切な試薬を各反応部位に注入する。例えばAアミダイトは、アミダイトAが合成段階中に結合する部位のみに注入する(他の塩基についても同様)。共通の試薬および洗浄液を注入して表面全体を満たした後にスピンして除く。
【0147】
対象となるSNPまたは変異に固有なDNAプローブを、ProtoGene社の技術を用いてチップに結合させる。このチップを次に、PCRで増幅した対象遺伝子に接触させる。ハイブリッドを形成させた後に未結合状態のDNAを除き、任意の適切な方法(例えば、取り込まれた蛍光基の蛍光の脱消光による方法)でハイブリダイゼーションを検出する。
【0148】
さらに別の態様では、ゲノムプロファイルの作成に「ビーズアレイ」を使用する(Illumina、San Diego、CA;例えば参照として本明細書に組み入れられる国際公開公報第99/67641号および第00/39587号を参照)。Illumina社は、光ファイバー束と、自己集合してアレイになるビーズを結びつけた「BEAD ARRAY」技術を利用している。個々の光ファイバー束は、束の直径に応じて数千本〜数万本の繊維を含む。ビーズは、任意のSNPまたは変異の検出に特異的なオリゴヌクレオチドで被覆する。ビーズのバッチをまとめて、アレイに特異的なプールとする。アッセイ法を実施する際には、「BEAD ARRAY」を、調製済みの被験者試料(例えばDNA)に接触させる。ハイブリダイゼーションは任意の適切な方法で検出する。
【0149】
3.ハイブリダイゼーションの酵素的検出
本発明のいくつかの態様では、ゲノムプロファイルは、特定の構造を酵素で切断することでハイブリダイゼーションを検出するアッセイ法で作成される(INVADERアッセイ法、Third Wave Technologies;例えば参照として本明細書に組み入れられる米国特許第5,846,717号;第6,001,567号;第5,985,557号;および第5,994,069号を参照)。INVADERアッセイ法では、構造特異的な酵素を用いて特定のDNA配列およびRNA配列を検出し、重複するオリゴヌクレオチドプローブのハイブリダイゼーションで形成された複合体を切断する。温度を上昇し、また1種のプローブを過剰に使用することで、複数のプローブが、温度サイクルを行うことなく存在する各標的配列に関して切断されるようになる。切断されたプローブは次に、第2の標識プローブの切断を誘導する。第2のプローブオリゴヌクレオチドは、内部色素で消光されるフルオレセインで5’末端を標識したものとすることができる。切断されると、脱消光したフルオレセイン標識産物を、標準的な蛍光プレートリーダーで検出することができる。
【0150】
INVADERアッセイ法では、増幅されなかったゲノムDNA中の特定の変異およびSNPが検出される。単離されたDNA試料を、SNP/変異配列または野生型配列いずれかに特異的な第1のプローブと接触させてハイブリッドを形成させる。次に、第1のプローブに特異的で、フルオレセイン標識を含む第2のプローブとハイブリッドを形成させ、酵素を添加する。結合は蛍光プレートリーダーで検出し、試験試料のシグナルを既知の正負の対照と比較する。
【0151】
いくつかの態様では、結合状態のプローブのハイブリダイゼーションをTaqManアッセイ法で検出する(PE Biosystems、Foster City、CA;例えば参照として本明細書に組み入れられる米国特許第5,962,233号および第5,538,848号を参照)。このアッセイ法はPCR反応中に実施する。TaqManアッセイ法では、AMPLITAQ GOLD DNAポリメラーゼの5’−3’エキソヌクレアーゼ活性を利用する。任意の対立遺伝子または変異に特異的なプローブをPCR反応に含める。このプローブは、5’レポーター色素(例えば蛍光色素)、および3’消光色素をもつオリゴヌクレオチドを含む。PCR中に、このプローブが標的と結合すると、AMPLITAQ GOLDポリメラーゼの5’−3’ヌクレオチド鎖切断活性が、レポーター色素と消光色素の間でプローブを切断する。レポーター色素と消光色素が分離すると蛍光が強くなる。このシグナルは、各PCRサイクルで蓄積されるので、蛍光光度計でモニタリングすることができる。
【0152】
さらに別の態様では、ゲノムプロファイルは、SNP−ITプライマー伸長アッセイ法で作成される(Orchid Biosciences、Princeton、NJ;例えば参照として本明細書に組み入れられる米国特許第5,952,174号および第5,919,626号を参照)。このアッセイ法では、特別に合成されたDNAプライマーおよびDNAポリメラーゼを用いて、SNPの位置であることが疑われる部分でDNA鎖を1塩基ずつ選択的に伸長させることでSNPが同定される。対象領域中のDNAを増幅して変性させる。次にポリメラーゼ反応をマイクロフルイディックス(microfluidics)と呼ばれる小型システムで行う。検出は、SNPまたは変異の位置であることが疑われるヌクレオチドに標識を添加することで行う。標識のDNAへの取り込みは、任意の適切な方法で検出することができる(例えばヌクレオチドがビオチン標識を含む場合は、検出は、ビオチンに特異的な蛍光標識された抗体によって行われる)。
【0153】
D.質量分光アッセイ法
いくつかの態様では、MassARRAYシステム(Sequenom、San Diego、CA)を用いてゲノムプロファイルが作成される(例えば参照として本明細書に組み入れられる米国特許第6,043,031号;第5,777,324号;および第5,605,798号を参照)。DNAは血液試料から標準的な手順で単離する。次に、対象の変異またはSNPを含む特定のDNA領域(約200塩基対の長さ)をPCRで増幅する。増幅断片を次に1本鎖を介して固体表面に結合させ、固定されなかった鎖を標準的な変性法および洗浄法で除く。残りの固定化されなかった1本鎖は次に自動酵素反応の鋳型となり、遺伝子型に特異的な診断的産物を生じる。
【0154】
微量の酵素産物(典型的には5〜10 nL)を次にSpectroCHIPアレイに移し、SpectroREADER質量分析器による自動分析を行う。各スポットには、分配した診断的産物とマトリックスを形成する光吸収性の結晶を事前にロードしておく。MassARRAYシステムは、MALDI−TOF(マトリックス支援レーザー脱離イオン化−飛行時間型)質量分析を利用する。脱離として知られる工程では、マトリックスにレーザービームに由来するパルスを照射する。レーザービームのエネルギーがマトリックスに移り、マトリックスが気化して、少量の診断的産物がフライトチューブ中に放出される。診断的産物は、次に電場パルスをフライトチューブにかけると電荷を帯び、フライトチューブ内を検出器に向かって飛行する。電場パルスを印加してから、診断的産物が検出器と衝突するまでの時間は飛行時間に関連する。これは産物の分子量の極めて正確な尺度である。というのは、分子の質量は、大きな分子より早く飛行する小さな分子の飛行時間に直接相関するからである。アッセイ法全体は数千分の1秒で完了するので、試料を、反復データ採取を含む総時間3〜5秒で分析することができる。次にSpectroTYPERソフトウェアで計算し、記録し、比較を行い、一つの試料につき3秒の速度で遺伝子型の結果が返される。
【0155】
E.コンピュータを利用したデータ解析
本発明のいくつかの態様では、周術期ゲノムプロファイルは、遺伝情報試料(例えば保存された核酸配列情報)を対象としたコンピュータを利用したデータ解析で作成される。試料を任意の時点(例えば出生時)に被験者から採取し、配列情報を(例えばDNA配列決定により)作成し、この情報を(例えばポータブルチップ上にデジタル情報として)保存する。周術期に、被験者の配列情報を事前に選択されたマーカー用のコンピュータプログラムでスキャンする。このようにしてレポート(例えば周術期ゲノムプロファイル)が作成される。
【0156】
III.データの解析および送信
本発明のいくつかの好ましい態様では、周術期ゲノムプロファイリングで作成された情報は、統合および自動化されて送信される。本発明のいくつかの態様における情報の流れの概要を示すダイアグラムを図1に示す。図1は、特定の基準が、周術期ゲノムプロファイルが作成されたか否かの判定、またどのように作成されたかについて考慮される場合があることを示している。具体的には、このような判定は、外科手術が予定されている被験者がゲノムプロファイリングの候補となるか否かについてなされる(例えばゲノムプロファイルの情報内容に応じて変わる可能性のある処置を受ける)。分析的妥当性も評価される。特にゲノムプロファイルの作成に使用される方法は、特定の応用および実用性に関する有用情報(術者の安全性、費用効果、有効性)の提供能力を元に選択される。最後に特定のプロファイリングアッセイ法の妥当性が、臨床的有用性(例えば遺伝子型に関連した表現型の予測の提供能力)に関して評価される。適切な候補被験者、アッセイ法の手法、およびアッセイ法が選択されたら、被験者から採取したゲノム標本(例えば組織試料または所定の遺伝情報)を、選択した特定の遺伝マーカーを用いたアッセイ技術の対象とすることでゲノムプロファイルを作成する。例えば被験者は、試料(例えば血液、組織、または遺伝情報)を周術期に(例えば外科手術の数週間前に医院または救急治療室で)提供することがあり、この試料を使用して、適切なアッセイ法でゲノムプロファイルを作成する。本発明のいくつかの態様では、このようなデータを電子通信システム(例えばインターネットを利用した方法)を用いて作成し、処理し、および/または管理する。
【0157】
いくつかの態様では、コンピュータを利用した分析プログラムを用いて、ゲノムプロファイルから作成された生データ(例えば任意のSNPまたは変異の有無)を、臨床医用に予測値のあるデータ(例えば異常な薬剤反応の確率、基礎疾患の有無、または既往症の鑑別診断)に翻訳する。臨床医(例えば外科医または麻酔科医)は、適切な手段で予測データを評価することができる。したがって、いくつかの好ましい態様では、本発明は、遺伝学または分子生物学の素養がない可能性が高い臨床医が、ゲノムプロファイルの生データを理解することを必要としないという一層の利点を提供する。このようなデータは極めて有用な状態で臨床医に直接提示される。臨床医は、この情報を直ちに利用して被験者の周術期治療を最適化することができる。
【0158】
本発明は、医療従事者および被験者から、または医療従事者および被験者へ向けた、情報の受理、処理、および伝達が可能な任意の方法を対象とする。図2は、試料(例えば組織試料または遺伝情報)が、臨床医、被験者、または研究者に有用なデータに形状を変える経過を示している。例えば本発明のいくつかの態様では、試料が被験者から得られ、ゲノムプロファイリングサービス(例えば医療機関の臨床検査室やゲノムプロファイリング企業など)に委託されて生データが作成される。試料が組織または他の生物試料を含む場合、被験者が医療センターを訪れて、回収された試料をゲノムプロファイリングセンターに送付するか、または被験者が試料を自身で採取して、それをゲノムプロファイリングセンターに直接送付する場合がある。試料が、過去に決定された遺伝情報(例えば配列情報やSNPまたは変異の情報など)を含む場合は、このような情報は、被験者によってゲノムプロファイリングサービスに直接送られる場合がある(例えば遺伝情報が記載された情報カードがコンピュータでスキャンされて、データが電子通信システムを介してゲノムプロファイリングセンターのコンピュータに送信される)。ゲノムプロファイリングサービスによって受信された試料は処理され、被験者が受ける予定の医学的処置または外科的処置の仕様に合致したゲノムプロファイル(すなわちゲノムデータ)が作成される。
【0159】
ゲノムプロファイルデータは次に、処置を行う臨床医による解釈に適した形式に変換される。例えば、生の配列データを提供するのではなく、変換された形式が、臨床医が使用する可能性のあるさまざまな治療選択肢、または特定の治療選択肢の推奨としてリスク評価用に提示される場合がある。このようなデータは適切な方法で臨床医に提示されることがある。例えば、いくつかの態様では、ゲノムプロファイリングサービスは、臨床医用に(例えば治療時に)印刷可能な、またはコンピュータのモニター上に臨床医に向けて表示可能なレポートを作成する。
【0160】
このようなシステムの一つの例示的な態様は、緊急外科手術の条件で使用される。例えば被験者から採取された試料は、緊急治療を必要とする被験者と医療関係者との最初の接触時に直ちに採取されることがある(例えば緊急対応チームにより事故現場で採取される)。このような試料は、医療センターの救急治療室に被験者が搬送途上の救急車両内で適切な検出法で処理される場合がある。このようなアッセイ法で作成されたデータは、救急車両内にあるコンピュータシステムでゲノムプロファイルに変換される場合があるほか、遠隔地にあるコンピュータシステムに送信されて処理される場合がある。ゲノムプロファイルが作成されたら、治療を行う医師にレポートが送られて、救急治療室への被験者の到着に先立って、外科手術前の準備(例えば適切な薬物の選択)が行われる場合があるほか、情報が治療開始後に到着した場合には、手順が外科手術中に変更される場合がある。
【0161】
いくつかの態様では、ゲノム情報(例えば組織試料または遺伝情報)は、治療が行われる場所または地域の施設で最初に分析される。次に生データが中心処理施設に送られて、さらに分析が行われ、ゲノムデータおよび臨床医用または患者用のデータとなる。中央処理施設は、プライバシー(すべてのゲノムデータは一貫したセキュリティプロトコルにしたがって中心となる施設に保存される)、迅速さ、およびデータ分析の均一性に関する利点を提供する。中心処理施設は次に、外科手術後におけるデータの行先をコントロールすることができる。例えば中心施設は電子通信システムを用いることで、データを臨床医、被験者、または研究者に提供することができる。
【0162】
医学的処置または外科的処置に続き、被験者の試料およびゲノムプロファイルで作成されたデータは、複数の経路の一つをたどることになる。試料およびゲノムデータの行先は、選択に関する項目一覧を(例えば電子的に)提示される被験者により決定される。試料は、破棄されたり、アーカイブ化されたり、または研究使用のために寄贈されたりすることがある。ゲノムデータは、臨床医以外の誰の目に触れることなく破棄される場合がある(臨床医は条件付きで閲覧することがある)。データの破棄は、被験者のプライバシーを守るために望ましい場合がある。ヒトが被験者の場合は、被験者は、将来の使用のためにデータに対するアクセスを要求することができる。ヒト以外の被験者の場合は、被験者の看護人(例えば飼い主)が、将来の使用のためにデータにアクセスすることができる。いくつかの態様では、被験者は、電子通信システムを用いてデータに直接アクセスすることができる。被験者は、結果を元に介入またはカウンセリングをさらに選択することができる。いくつかの態様では、データは研究用に使用される。例えば、データを使用して、ゲノムプロファイルへのマーカーの組み入れまたは除外が最適化される場合がある。
【0163】
本発明は、経験的な結果を選択的にモニタリングおよび追跡するための固有のシステムを提供する。例えば、本発明のゲノムプロファイルを用いて選択された特定の治療選択肢が成功するか失敗するかということは、データベースにまとめられて、プロファイルを作成してレポートを作成するためのより正確なシステムを経験的に決定することができる。このようなデータは、アッセイ法に使用される特定のマーカーが転帰を特に予測することを示すほか、過去に予測能が考慮されていた他のマーカーの価値が限られていることを示す場合がある。このようなモニタリングシステムおよび追跡システムを用いることで、本発明のゲノムプロファイルは絶えず洗練されて結果の改善につながる。医療施設によるこのようなシステムを使用することで、治療の標準が改善される一方、医療ビジネスの管理における高い効率と優れた予測可能性が生み出される。したがって本発明は、救命関連情報を入手して分析し、また流通させるための、調和が取れて時宜を得た、また費用効果に優れたシステムを提供する。
【0164】
実験関連記述
以下の実施例は、本発明の特定の好ましい対象および局面を証明し、また説明する目的で提供され、その範囲を制限することを意図しない。
【0165】
実験に関する以下の開示では以下の省略形を使用する:μM(マイクロモル);mol(モル);mmol(ミリモル);μmol(マイクロモル);nmol(ナノモル);g(グラム);mg(ミリグラム);μg(マイクログラム);ng(ナノグラム);lもしくはL(リットル);ml(ミリリットル);μl(マイクロリットル);cm(センチメートル);mm(ミリメートル);μm(マイクロメートル);nm(ナノメートル);℃(摂氏);U(単位)、mU(ミリ単位);min.(分);%(パーセント);PEG(ポリエチレングリコール);kb(キロ塩基対);bp(塩基対);PCR(ポリメラーゼ連鎖反応);Third Wave Technologies(Third Wave Technologies、Madison、WI);Beckman(Beckman Coulter、Fullerton、CA);Gentra Systems(Gentra Systems、Minneapolis、MN); MJ Research(MJ Research、Watertown、MA);およびNEB(New England Biolabs、Beverly、MA)。
【0166】
麻酔マーカーに関する周術期ゲノムスクリーニング
この実施例では、麻酔および関連薬物に対する患者の反応に関する周術期ゲノムスクリーニングのプロファイルの作成について説明する。外来手術のために来院し、同意を得た成人を対象に、表1〜4に記載された変数に関するスクリーニングを行った。表1はブチリルコリンエステラーゼ欠損(ブチリルコリンエステラーゼ遺伝子(BChE)の変異)のマーカーを示す。表2はデブリソキン代謝障害を示すマーカーを示す。表3には血栓形成のリスク上昇を示すマーカーを挙げる。メチレンテトラヒドロ葉酸レダクターゼ遺伝子(MTHFR)、メチオニンシンターゼ遺伝子(MS)、シスタチオニンβシンターゼ遺伝子(CBS)、第V因子ライデン遺伝子(第V因子ライデン)、およびプロトロンビン遺伝子の変異を示す。表4には悪性高熱のリスク上昇を示すマーカーを挙げる。
【0167】
患者から10 mlの血液試料を採取する。白血球DNAを、クエン酸で抗凝固処理した血液のバフィーコートからGentra Systems Puregene Isolationキットを用いて製造業者の指示書にしたがって抽出する。DNA試料は、Beckman DU06分光光度計を用いてUV分光光度法で定量する。
【0168】
上記の変異および多型についてDNAのスクリーニングを、標準的方法によるPCR−制限断片長多型(RFLP)アッセイ法で行う。対象領域に含まれるDNAをPCRで増幅する。PCR反応は、MJ Research PTC−200サーモサイクラーで行う。次に断片を、任意の多型について固有の長さの断片を生じることがわかっている制限酵素(NEB)で切断する。制限酵素で切断したPCR産物をアガロースゲル電気泳動で分離し、臭化エチジウムで染色して可視化する。断片長は分子量マーカー(NEB)と比較する。
【0169】
RFLP分析に加えて、flapエンドヌクレアーゼアッセイ法でDNA試料を分析する(INVADER、Third Wave Technologies;例えばKwiatkowskiら、Molecular Diagnosis、4:353 [1999]を参照)。変異型対立遺伝子と野生型対立遺伝子には別の反応を行う。個々の反応は3回行う。個々の対立遺伝子について、8 μlの一次反応混合物(5 μl 16% PEG、2 μl 100 mM MOPS、および1 μl 0.5 μM 一次特異的オリゴヌクレオチド)のアリコートを96ウェルの反応用マイクロプレート(MJ Research)に分注する。DNA標的を含まない対照反応も行い、野生型DNA、変異型DNA、およびヘテロ接合の対照DNAの試料を、PCRで増幅した既知のゲノム対照から得る。試料を5分間95℃でサーモサイクラー(MJ Research PTC−200)でインキュベートする。次に温度を63℃に下げ、5 μlの適切なプローブ反応混合物を各ウェルに添加する。この試料を次に63℃で120分間インキュベートする。
【0170】
2次反応を次に、野生型と変異型を対象としたアッセイ法で共通試薬を用いて行う。インキュベートした反応物を56℃に冷却し、5 μl(1 μl HO、0.5 μl 100 mM MOPS、0.5 μl 75 mM MgCl、1 μl 30 μl アレスター、1 μl 2次DNA標的、および1 μl FRETプローブ)の2次反応混合物を添加する。この反応物を56℃で120分間インキュベートする。175 μlの10 mM EDTAを添加して反応を停止させ、各180 μlの反応物をマイクロタイタープレートに移して、CytoFluor Series 4000蛍光マルチウェルプレートリーダー(励起波長=485 nm、放出波長=530 nm)で読み取らせる。
【0171】
RFLPとflapエンドヌクレアーゼアッセイ法の間に差が認められたら、適切な蛍光色素ターミネーターを用いてABI 377型自動シーケンサーで直接配列を決定して解決する。
【0172】
ゲノムプロファイルの結果をふまえて、鎮痛薬および麻酔薬の選択、術後のモニタリング、ならびに追加的な薬物投与または治療法を含む、患者の治療について適切な決定を下す。
【0173】
【表1】ブチリルコリンエステラーゼ欠損マーカー
Figure 2004514418
【0174】
【表2】デブリソキン代謝不良マーカー
Figure 2004514418
【0175】
【表3】血栓形成のマーカー
Figure 2004514418
【0176】
【表4】悪性高熱のマーカー
Figure 2004514418
【0177】
本明細書で言及されたすべての出版物および特許は参照として本明細書に組み入れられる。記載された本発明の組成物および方法に、本発明の範囲および精神から離れることなく、さまざまな修正および変更がなされることは当業者に明らかである。本発明は特定の好ましい態様に関連して記載されているが、本発明が、このような特定の態様に過度に制限されるべきでないことが理解されるべきである。実際に、医学、薬学、診断学、および分子生物学、または関連分野の当業者に明らかな本発明を実施する上で説明された様式のさまざまな修正が特許請求の範囲内にあることが意図とされる。
【図面の簡単な説明】
【図1】本発明のいくつかの態様における情報の流れの概要。
【図2】本発明のいくつかの態様における試料から作成されるゲノム試料およびデータの流れ。

Claims (20)

  1. 以下の段階を含む方法:
    a)i)周術期の被験者に由来する試料と、
    ii)2種またはそれ以上の遺伝マーカーを検出するアッセイ法とを提供する段階、および
    b)試料をアッセイ法の対象として、手術計画の選択に使用されるゲノムプロファイルを作成する段階。
  2. 計画が外科的処置中における麻酔の実施を含む、請求項1記載の方法。
  3. 麻酔が全身麻酔である、請求項2記載の方法。
  4. 麻酔が部位麻酔である、請求項2記載の方法。
  5. 外科的処置が非侵襲的な外科手術である、請求項2記載の方法。
  6. 外科的処置が侵襲的な外科手術である、請求項2記載の方法。
  7. 計画が医学的処置中における麻酔の実施を含む、請求項1記載の方法。
  8. ゲノムプロファイルが薬力学的リスクに関する情報を含む、請求項1記載の方法。
  9. ゲノムプロファイルが薬物動態学的リスクに関する情報を含む、請求項1記載の方法。
  10. ゲノムプロファイルが発症前診断を含む、請求項1記載の方法。
  11. ゲノムプロファイルが併発疾患の鑑別診断に関する情報を含む、請求項1記載の方法。
  12. 2種またはそれ以上の遺伝マーカーがBChE、CYP2D6、MTHFR、MS、CBS、第V因子ライデン、プロトロンビン、RYR1、CACNA1S、およびCPT 2からなる群より選択される2種またはそれ以上の遺伝子の変異を含む、請求項1記載の方法。
  13. 以下の段階を含む方法:
    a)i)被験者に由来する試料と
    ii)2種またはそれ以上の遺伝マーカーを検出するアッセイ法とを提供する段階、および
    b)試料をアッセイ法の対象として、医学的処置計画の選択に使用されるゲノムプロファイルを作成する段階。
  14. 試料が以下からなる時間枠で被験者から採取される、請求項13記載の方法:医学的処置を実施する前、医学的処置を実施している間、および医学的処置を実施した後。
  15. 医学的治療が非外科的である、請求項14記載の方法。
  16. 医学的治療が外科的である、請求項14記載の方法。
  17. 以下の段階を含む方法:
    a)i)被験者に由来する試料と、
    ii)薬剤反応に関連した2種またはそれ以上の遺伝マーカーを検出するアッセイ法とを提供する段階、
    b)アッセイ法における試料が、ゲノムプロファイルを作成することを検討する段階、および
    c)被験者を対象に外科的処置を行う段階であって、その処置の条件がゲノムプロファイルに基づく段階。
  18. 薬剤反応が麻酔薬に対する反応である、請求項17記載の方法。
  19. 処置の条件が麻酔薬の選択である、請求項18記載の方法。
  20. 2種またはそれ以上の遺伝マーカーがBChE、CYP2D6、MTHFR、MS、CBS、第V因子ライデン、プロトロンビン、RYR1、CACNA1S、およびCPT 2からなる群より選択される2種またはそれ以上の遺伝子の変異を含む、請求項17記載の方法。
JP2002512426A 2000-07-11 2001-07-10 周術期ゲノムプロファイリングの方法および組成物 Pending JP2004514418A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US61388700A 2000-07-11 2000-07-11
PCT/US2001/041331 WO2002006536A2 (en) 2000-07-11 2001-07-10 Methods and compositions for perioperative genomic profiling

Publications (1)

Publication Number Publication Date
JP2004514418A true JP2004514418A (ja) 2004-05-20

Family

ID=24459064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002512426A Pending JP2004514418A (ja) 2000-07-11 2001-07-10 周術期ゲノムプロファイリングの方法および組成物

Country Status (9)

Country Link
US (2) US20020110823A1 (ja)
EP (3) EP1816214B1 (ja)
JP (1) JP2004514418A (ja)
AT (2) ATE349551T1 (ja)
AU (1) AU2001281318A1 (ja)
DE (2) DE60125596T2 (ja)
DK (1) DK1816214T3 (ja)
ES (1) ES2309892T3 (ja)
WO (1) WO2002006536A2 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6773885B1 (en) * 2000-09-29 2004-08-10 Integrated Dna Technologies, Inc. Compositions and methods for visual ribonuclease detection assays
US20020187483A1 (en) * 2001-04-20 2002-12-12 Cerner Corporation Computer system for providing information about the risk of an atypical clinical event based upon genetic information
US7983848B2 (en) * 2001-10-16 2011-07-19 Cerner Innovation, Inc. Computerized method and system for inferring genetic findings for a patient
US20130246079A1 (en) * 2012-03-14 2013-09-19 Mark A. Hoffman Determining a potential for atypical clinical events when selecting clinical agents
US20030198985A1 (en) * 2002-02-22 2003-10-23 Hogan Kirk J. Assay for nitrous oxide neurologic syndrome
JP2005519264A (ja) * 2002-02-27 2005-06-30 サード・ウェーブ・テクノロジーズ・インク 表面修飾、リンカー結合、および重合方法
EP1567670A1 (en) * 2002-12-02 2005-08-31 Solexa Limited Recovery of original template
US20040185481A1 (en) * 2003-02-06 2004-09-23 Canon Kabushiki Kaisha Testing method using DNA microarray
US20050064436A1 (en) * 2003-09-24 2005-03-24 Barrett Michael T. Methods and compositions for identifying patient samples
US8538704B2 (en) * 2003-10-06 2013-09-17 Cerner Innovation, Inc. Computerized method and system for inferring genetic findings for a patient
US7439019B2 (en) 2003-11-03 2008-10-21 Duke University Methods of identifying individuals at risk of perioperative bleeding, renal dysfunction
US9944985B2 (en) 2011-11-30 2018-04-17 Children's Hospital Medical Center Personalized pain management and anesthesia: preemptive risk identification and therapeutic decision support
KR101419753B1 (ko) * 2012-10-16 2014-07-17 안형준 개인 단일 염기 다형성에 기반한 개인별 부작용 최소화 약물 검색 시스템 및 그 방법
CN106460042A (zh) 2014-02-24 2017-02-22 儿童医院医学中心 用于个性化疼痛管理的方法与组合物
GB201409851D0 (en) * 2014-06-03 2014-07-16 Convergence Pharmaceuticals Diagnostic method
WO2017059427A1 (en) * 2015-10-02 2017-04-06 Children's National Medical Center Methods for monitoring and determining the prognosis of strokes, peripheral vascular disease, shock, and sickle cell disease and its complications
CN106957903B (zh) * 2016-11-01 2019-09-20 上海泽因生物科技有限公司 一种检测叶酸代谢关键酶基因多态性位点基因分型试剂盒和其检测方法
WO2018136728A1 (en) 2017-01-20 2018-07-26 Children's Hospital Medical Center Methods and compositions relating to oprm1 dna methylation for personalized pain management
CN108624660A (zh) * 2018-02-08 2018-10-09 新开源云扬(广州)医疗科技有限公司 一种Hcy代谢关键酶的快速检测试剂盒及检测方法
CN108642138B (zh) * 2018-05-02 2021-11-30 广东药科大学 一种检测叶酸代谢相关基因遗传信息的方法及试剂盒
CN109055512A (zh) * 2018-10-07 2018-12-21 浙江数问生物技术有限公司 一种检测人mthfr和mtrr基因多态性的试剂盒及其检测方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4965188A (en) 1986-08-22 1990-10-23 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences using a thermostable enzyme
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US5380645A (en) * 1989-03-16 1995-01-10 The Johns Hopkins University Generalized method for assessment of colorectal carcinoma
US5925525A (en) 1989-06-07 1999-07-20 Affymetrix, Inc. Method of identifying nucleotide differences
CA1341094C (en) * 1989-09-25 2000-09-05 Ronald G. Worton Diagnosis for malignant hyperthermia
US5474796A (en) 1991-09-04 1995-12-12 Protogene Laboratories, Inc. Method and apparatus for conducting an array of chemical reactions on a support surface
US5994069A (en) 1996-01-24 1999-11-30 Third Wave Technologies, Inc. Detection of nucleic acids by multiple sequential invasive cleavages
US5846717A (en) 1996-01-24 1998-12-08 Third Wave Technologies, Inc. Detection of nucleic acid sequences by invader-directed cleavage
US6017696A (en) 1993-11-01 2000-01-25 Nanogen, Inc. Methods for electronic stringency control for molecular biological analysis and diagnostics
US6051380A (en) 1993-11-01 2000-04-18 Nanogen, Inc. Methods and procedures for molecular biological analysis and diagnostics
US5843654A (en) 1992-12-07 1998-12-01 Third Wave Technologies, Inc. Rapid detection of mutations in the p53 gene
US5888780A (en) 1992-12-07 1999-03-30 Third Wave Technologies, Inc. Rapid detection and identification of nucleic acid variants
US5719028A (en) * 1992-12-07 1998-02-17 Third Wave Technologies Inc. Cleavase fragment length polymorphism
US5605798A (en) 1993-01-07 1997-02-25 Sequenom, Inc. DNA diagnostic based on mass spectrometry
US5858659A (en) 1995-11-29 1999-01-12 Affymetrix, Inc. Polymorphism detection
US6045996A (en) 1993-10-26 2000-04-04 Affymetrix, Inc. Hybridization assays on oligonucleotide arrays
US6068818A (en) 1993-11-01 2000-05-30 Nanogen, Inc. Multicomponent devices for molecular biological analysis and diagnostics
US5538848A (en) 1994-11-16 1996-07-23 Applied Biosystems Division, Perkin-Elmer Corp. Method for detecting nucleic acid amplification using self-quenching fluorescence probe
WO1995021271A1 (en) 1994-02-07 1995-08-10 Molecular Tool, Inc. Ligase/polymerase-mediated genetic bit analysistm of single nucleotide polymorphisms and its use in genetic analysis
CA2134838A1 (en) 1994-09-12 1996-03-13 Lawson Gibson Wideman Silica reinforced rubber composition
DE69632870T2 (de) * 1995-03-17 2005-07-14 John Wayne Cancer Institute, Santa Monica Nachweis von melanomenmetastasen unter verwendung eines mehrfachmarker-tests
US5985557A (en) 1996-01-24 1999-11-16 Third Wave Technologies, Inc. Invasive cleavage of nucleic acids
US6678669B2 (en) * 1996-02-09 2004-01-13 Adeza Biomedical Corporation Method for selecting medical and biochemical diagnostic tests using neural network-related applications
US5777324A (en) 1996-09-19 1998-07-07 Sequenom, Inc. Method and apparatus for maldi analysis
US6001311A (en) 1997-02-05 1999-12-14 Protogene Laboratories, Inc. Apparatus for diverse chemical synthesis using two-dimensional array
US5919626A (en) 1997-06-06 1999-07-06 Orchid Bio Computer, Inc. Attachment of unmodified nucleic acids to silanized solid phase surfaces
US6267722B1 (en) * 1998-02-03 2001-07-31 Adeza Biomedical Corporation Point of care diagnostic systems
ATE347102T1 (de) * 1998-02-25 2006-12-15 Us Health Zellulare anordnungen für schnelle molekulare profilidentifizierung
EP2360271A1 (en) 1998-06-24 2011-08-24 Illumina, Inc. Decoding of array sensors with microspheres
US6429027B1 (en) 1998-12-28 2002-08-06 Illumina, Inc. Composite arrays utilizing microspheres
US6844156B2 (en) * 1999-10-19 2005-01-18 The United States Of America As Represented By The Department Of Veterans Affairs Methods for identifying a preferred liver transplant donor

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
JPN6010063566, Acta Anaesthesiol. Scand., vol. 39, pages 139−141 (1995) *
JPN6010063567, Ann. Hum. Genet., vol. 64, pages 307−320 (Epub. Feb. 2000) *
JPN6010063568, Am. J. Hum. Genet., vol. 60, pages 1316−1325 (1997) *
JPN6010063570, Science, vol. 286, pages 487−491 (1999) *
JPN6010063572, Cell. Mol. Neurobiol., vol. 11, pages 79−89 (1991) *
JPN6010063573, Genomics, vol. 14, pages 562−566 (1992) *
JPN6010063575, Eur. J. Hum. Genet., vol. 8, pages 149−152 (Feb. 2000) *
JPN6010063576, 血液・腫瘍科,第40巻,第502−508頁(2000年6月28日) *
JPN6010063577, 血液・免疫・腫瘍,第4巻,第459−464頁(1999年) *
JPN6010063578, 実験医学,第12巻,第1497−1501頁(1994年) *

Also Published As

Publication number Publication date
EP1930447A2 (en) 2008-06-11
DE60125596D1 (de) 2007-02-08
DE60134591D1 (de) 2008-08-07
US20110183335A1 (en) 2011-07-28
ATE399216T1 (de) 2008-07-15
WO2002006536A2 (en) 2002-01-24
ES2309892T3 (es) 2008-12-16
EP1366185B1 (en) 2006-12-27
EP1930447A3 (en) 2008-06-25
EP1366185B9 (en) 2007-10-17
ATE349551T1 (de) 2007-01-15
DE60125596T2 (de) 2007-10-04
WO2002006536A3 (en) 2003-09-18
EP1366185A2 (en) 2003-12-03
EP1816214A1 (en) 2007-08-08
AU2001281318A1 (en) 2002-01-30
EP1816214B1 (en) 2008-06-25
US20020110823A1 (en) 2002-08-15
DK1816214T3 (da) 2008-10-27

Similar Documents

Publication Publication Date Title
US20110183335A1 (en) Methods and compositions for perioperative genomic profiling
KR20100016525A (ko) 녹내장 진행 리스크의 판정 방법
US5879884A (en) Diagnosis of depression by linkage of a polymorphic marker to a segment of chromosome 19P13 bordered by D19S247 and D19S394
AU2006220604A1 (en) Diagnostic and therapeutic target for macular degeneration
US20060188875A1 (en) Human genomic polymorphisms
EP1731608A1 (en) Marker gene for arthrorheumatism test
JP2010502205A (ja) Gtpシクロヒドロラーゼ1遺伝子(gch1)中の疼痛保護的ハプロタイプの診断のためのsnpの使用
US20030032099A1 (en) Methods for predicting susceptibility to obesity and obesity-associated health problems
WO2000058519A2 (en) Charaterization of single nucleotide polymorphisms in coding regions of human genes
EP2002265B1 (en) Diagnostic gene
US20030008301A1 (en) Association between schizophrenia and a two-marker haplotype near PILB gene
JP2007516719A (ja) 一塩基多型を含む二型糖尿病に関与するポリヌクレオチド、それを含むマイクロアレイ及び診断キット、並びにそれを利用したポリヌクレオチドの分析方法
US20030232365A1 (en) BDNF polymorphisms and association with bipolar disorder
US9752195B2 (en) TTC8 as prognostic gene for progressive retinal atrophy in dogs
KR102158723B1 (ko) Spcs3 유전자의 단일염기다형성을 포함하는 뇌동맥류 진단용 snp 마커
KR102158719B1 (ko) Loc102724084 유전자의 단일염기다형성을 포함하는 뇌동맥류 진단용 snp 마커
KR102158716B1 (ko) Arhgap32 유전자의 단일염기다형성을 포함하는 뇌동맥류 진단용 snp 마커
KR102158725B1 (ko) Mink1 유전자의 단일염기다형성을 포함하는 뇌동맥류 진단용 snp 마커
JP4317376B2 (ja) 糖尿病性腎症遺伝子の検出方法
US20030087798A1 (en) Atopy-associated sequence variants on chromosome 12
WO2001087231A2 (en) Methods and compositions for the diagnosis of schizophrenia
WO2001080719A2 (en) Methods and composition for the diagnosis of schizophrenia
JP2001526897A (ja) 気分障害遺伝子
WO2003087309A2 (en) Bdnf polymorphisms and association with bipolar disorder
WO2001077387A1 (en) DIAGNOSIS OF SCHIZOPHRENIA BY LINKAGE OF A POLYMORPHIC MARKER TO A SEGMENT OF CHROMOSOME 1q22 BORDERED BY D1S2705 AND D1S1679

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080227

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101108

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110207

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110912