JP2004358573A - ワイヤカット放電加工機の加工液処理装置 - Google Patents
ワイヤカット放電加工機の加工液処理装置 Download PDFInfo
- Publication number
- JP2004358573A JP2004358573A JP2003156997A JP2003156997A JP2004358573A JP 2004358573 A JP2004358573 A JP 2004358573A JP 2003156997 A JP2003156997 A JP 2003156997A JP 2003156997 A JP2003156997 A JP 2003156997A JP 2004358573 A JP2004358573 A JP 2004358573A
- Authority
- JP
- Japan
- Prior art keywords
- ion exchange
- exchange resin
- specific resistance
- resistance value
- life
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/36—Supply or regeneration of working media
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H1/00—Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
- B23H1/10—Supply or regeneration of working media
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Treatment Of Water By Ion Exchange (AREA)
Abstract
【課題】ワイヤカット放電加工機の加工液処理装置。
【解決手段】加工液をイオン交換樹脂を通るように流通させ、単位時間あたりの流量Lと、イオン交換樹脂への入口側と出口側での比抵抗値R1、R2を検出する。イオン交換樹脂のイオン交換能力Cは、C=(R2−R1)×Lで評価する。C、R1、R2、Lの推移はディスプレイに表示される。蓄積される推移データからCの推移を表わす1次式、多項式等を定め、設定された能力限界LIMITへの到達時点(寿命)TEを推定し、表示する。TEにやや先行して、予告アラームを出し、オペレータにイオン交換樹脂の取り替えを促す。
【選択図】 図9
【解決手段】加工液をイオン交換樹脂を通るように流通させ、単位時間あたりの流量Lと、イオン交換樹脂への入口側と出口側での比抵抗値R1、R2を検出する。イオン交換樹脂のイオン交換能力Cは、C=(R2−R1)×Lで評価する。C、R1、R2、Lの推移はディスプレイに表示される。蓄積される推移データからCの推移を表わす1次式、多項式等を定め、設定された能力限界LIMITへの到達時点(寿命)TEを推定し、表示する。TEにやや先行して、予告アラームを出し、オペレータにイオン交換樹脂の取り替えを促す。
【選択図】 図9
Description
【0001】
【発明の属する技術分野】
本発明は、イオン交換樹脂によるイオン交換を利用したワイヤカット放電加工機の加工液の処理装置に関する。
【0002】
【従来の技術】
周知のように、ワイヤカット放電加工機においては水などの加工液が使用されている。この場合、加工液の電気導伝率、即ち、比抵抗値が一定値に維持される様に厳しく管理される必要がある。もしも、加工液の比抵抗値が加工中に変動すると、放電加工を行う電気エネルギーを印加している電源供給側と、加工される被加工物との間の加工電圧の見え方(加工電圧測定値)が変化する。ワイヤカット放電加工では、一般に、加工電圧を指標に用いて送り速度を調節し、加工物の除去量が一定になる様に制御して、加工精度を維持しているため、加工電圧測定値が加工液の比抵抗値の変動によって変化することは、この制御に悪影響を与え、加工精度不良を起こす原因になる。
【0003】
特に、加工液の比抵抗値が極端に下がった場合には、被加工物(金属製)の放電部分(加工領域)以外の表面部分にも、電源供給側からの漏れ電流が流れ、電気的な腐食を起こし、製品にダメージを与えることになる。
加工液の比抵抗値の変化は、通常、時間経過とともに比抵抗値が低下する方向に起る。なぜならば、放電加工によって発生する加工屑や放電加工中に起る加工液の電気分解は、加工液の比抵抗値を下げる要因となり、また、蒸発した加工液を補うために新たに加工液を補充する為、比抵抗値の低い水道水を追加した場合も、加工液の比抵抗値が下がるからである。そこで、加工液をイオン交換樹脂を通るように流通させることで加工液の比抵抗値の低下を抑止する手法が従来より採用されている。通常、加工液のイオン交換樹脂への供給・通過はON/OFF制御され、OFF時に低下する加工液の比抵抗値をON時に所望の設定値付近まで戻すことを繰り返す方式で、加工液の比抵抗値が一定値に保持される。
【0004】
ここでイオン交換樹脂のイオン交換能力に経時劣化があり、新品に近いイオン交換樹脂では比抵抗値を急速に高める能力があるが、長時間使用して能力の落ちたイオン交換樹脂では、緩漫にしか比抵抗値を高めることができない。更に、能力を失ったイオン交換樹脂では、比抵抗を高める事が出来なくなる。
【0005】
従って、ワイヤカット放電加工機のオペレータは、イオン交換樹脂の劣化を正しく見極めることが必要になる。
【0006】
加工液の比抵抗値は抵抗検出器によって検出され、表示されているので、実際の現場では、オペレータがこの表示値に注意を払い、数時間にわたって加工液をイオン交換樹脂に通しても、表示されている比抵抗値がなかなか上昇してこない事や下がり続ける事を確認して、イオン交換樹脂の交換時期到来を判断している。
【0007】
しかしながら、この見極めはめんどうであり、夜間や休日の無人運転中には実行できない。もしも比抵抗値が下がったまま無人運転が続行されると、大量の加工不良品を発生させかねない。
【0008】
この様な事態を回避するために、加工液の比抵抗値を監視し、一定基準値(比抵抗保持設定値)を保持できなくなった場合に運転を強制的に停止する方法もある。しかし、この方法では、加工を突然に中断することになり、機械の稼働率低下や納期後れの問題を生じさせる原因になる。また、イオン交換樹脂のイオン交換能力の経時的な低下による加工液の比抵抗値の低下は、運転時間の経過に対して徐々にほぼ一定の勾配で起るのではなく、図1に示したように、イオン交換樹脂のイオン交換能力が高いうちは、イオン交換樹脂への加工液の供給のON/OFF制御によって比抵抗保持設定値に保持されているが、図2に示された能力低下限界に達すると、加工液の供給をONの状態にしても比抵抗値を保持出来ず、急激に比抵抗値が下がってしまう特徴がある。なお、この図1のグラフは後述する実施形態で、イオン交換装置の入口側で測った比抵抗値R1の推移の実測値に基づいてプロットされたものである。
【0009】
この場合、比抵抗値の急落を事前に予測することができず、突然、加工が中断されることになる。計器等でオペレータが加工液の比抵抗値を頻繁にチェックしても、比抵抗値の急落がいつごろ起るか事前に予測することは容易ではない。換言すれば、加工液の比抵抗値自体を単純に監視しても、イオン交換樹脂の寿命(残りの寿命;以下、同じ)は判らない。
【0010】
このような事情から、結局、現場ではかなり早めにイオン交換樹脂を交換することが多くなり、高価な樹脂が十分使用しないまま廃却されていた。言うまでもなく、これはランニングコストの上昇を招き、環境問題上も好ましくない。なお、このような問題を解決するための技術について、公知文献は見当らない。
【0011】
【発明が解決しようとする課題】
そこで、本発明の基本的な目的は、加工液をイオン交換樹脂を通るように流通させるようにしたワイヤカット放電加工機の加工液処理装置を改良し、イオン交換樹脂の寿命を簡便に知ることができるようにすることである。また、本発明はそのことを通して、ワイヤカット放電加工における加工不良の発生とランニングコストの上昇を防ぐとともに、環境に対する配慮を行なうことを目指すものである。
【0012】
【課題を解決するための手段】
本発明は、加工液をイオン交換樹脂を通るように流通させるようにしたワイヤカット放電加工機の加工液処理装置において、イオン交換樹脂のイオン交換能力を監視する監視手段を設け、この監視手段による監視結果に基づいて、イオン交換樹脂のイオン交換能力の表示や寿命の算出、表示などを行なえるようにすることで、上記技術課題を解決するものである。
【0013】
前述したように、イオン交換樹脂のイオン交換能力の経時的な低下による加工液の比抵抗値の低下は、ある時期から急落する性質があるが(図1を参照)、図2に示したように、イオン交換能力の経時的な低下自体は、時間経過とともに徐々に低下する性質がある。従って、この経時変化を表示するだけでも、オペレータはおおよその寿命を容易に把握できる。図2の例で言えば、オペレータは実線で表示された履歴カーブを見ることで、破線で示したような概略予測カーブをイメージし、予め樹脂交換の目安として定めた能力低下限界に達するまでの猶予時間を容易に推測できることになる。なお、この図2のグラフは後述する実施形態で、イオン交換能力=(R2−R1)×Lに基づいてプロットされたものである。ここで、R1=イオン交換樹脂の入口側で測った比抵抗値、R2=イオン交換樹脂の出口側で測った比抵抗値、L=イオン交換樹脂を通過する加工液の流量である。
【0014】
また、図2において破線で示したような予測カーブを装置内でソフトウェアを使って算出し、表示することもできる。この予測カーブの表示を行なえば、交換時期の到来はより容易且つ明確にオペレータに把握される。更に、能力低下限界に到達する時点を予測カーブと能力低下限界を表わす直線との交点として算出して寿命(要交換までの猶予時間)を直接表示することもできる。また、イオン交換樹脂の寿命に関して、寿命到来時あるいはその前(例えば1時間前)などに警告報知を行なうこともできる。
【0015】
オペレータにとって、イオン交換樹脂によって管理されている加工液の比抵抗値をチェックできるようにすることも、加工液の状態を確認する上で有用である。その場合、イオン交換樹脂への加工液入口側における加工液の比抵抗値を検出する入口側比抵抗値検出手段を設け、その検出結果に基づいて、加工液入口側における加工液の比抵抗値の履歴を表示することが好ましい。加工液入口側で比抵抗値を測ることで、最も比抵抗値が落ちた加工液の比抵抗値が判るからである。加工液入口側で測った比抵抗値が正常値であれば、加工液全体について比抵抗値が正常であると考えることができる。加工液出口側で比抵抗値を測った場合には、その比抵抗値が正常値であっても、残りの加工液についてが正常であるかやや疑わしくなる。但し、イオン交換樹脂からの加工液出口側における加工液の比抵抗値を検出する出口側比抵抗値検出手段を設け、その検出結果に基づいて、加工液出口側における加工液の比抵抗値の履歴を表示することも無駄ではない。特に、加工液入口側と出口側の加工液の比抵抗値の履歴を並行して表示すれば、それらの値や差からイオン交換樹脂の働き具合いを知る目安となる。
【0016】
イオン交換樹脂のイオン交換能力を求めるには、イオン交換樹脂を通過することによって比抵抗値がどの程度上昇したかを知れば良い。そのために、入口側比抵抗値検出手段の検出結果と出口側比抵抗値検出手段の検出結果が利用できる。但し、流量が変化すれば同じイオン交換能力があってもイオン交換樹脂通過前後の比抵抗値の上昇値は変わるので、流量変化を想定する場合には、イオン交換樹脂を通過する流量(単位時間当りの通過量)を知る必要がある。そのために、加工液の流路の適所に流量検出手段を設けることができる。
【0017】
具体的な算出式としては、例えば、入口側比抵抗値検出手段によって検出された比抵抗値をR1、出口側比抵抗値検出手段によって検出された比抵抗値をR2、イオン交換樹脂を通る流量(単位時間当り)をLとして、
イオン交換能力=(R2−R1)×L[Ω・cm・l/min ]を採用することができる。
【0018】
また、寿命予測には、このようにして測られたイオン交換樹脂のイオン交換能力のその後の推移を近似的に表わす予測式を定め、この予測式を用いて、イオン交換能力が予め定められた下限に到達する未来の時点までの猶予時間を予測するという手法が採用できる。この予測式は、例えば時間に関する1次式または多項式とすることができる。
【0019】
【発明の実施の形態】
図3は、本発明の1つの実施形態に係るワイヤカット放電加工機の加工液処理装置の全体配置(制御部は図示省略)の概略を示す図である。図4は、本発明のイオン交換処理装置部分の配置図である。また、図5は、制御部とこのイオン交換処理装置の各部との接続関係を表わすブロック図である。先ず図3に示したように、加工液処理装置には、4基のポンプP1〜P4が装備されている。これらポンプの内、先ずポンプP1は、清水槽から清水を吸い上げ、配管を通してこれを加工液として上ガイド及び下ガイドの部分から注ぐ。ポンプP2は、汚水槽から加工屑等を含んだ液を吸い上げ、加工屑等の異物を除去するフィルターFに通し、加工屑等の異物が除去された液を清水槽に戻す。
【0020】
また、ポンプP3は、水温管理及び比抵抗管理のための循環流を形成するために設けられるポンプである。ポンプP3により清水槽から吸い上げられた清水は、配管の途中で二つの流路に別れて流れる。一方の流路はクーラーCを通って清水槽へ戻り、他方の流路はイオン交換装置を通って清水槽へ戻るようになっている。加工液の温度管理にクーラーが使用されるのは、一般に加工液の温度は放電加工装置の稼働や室温の影響を受けて最適温度から上昇する方向に変化しようとするからである。
【0021】
クーラーCは、適所に設けた温度センサ(図示省略)の信号に基づいて、加工液の温度を最適値に保つよう制御される。イオン交換装置を通る循環路は、加工液の比抵抗値を管理するためのもので、詳細は図4以下を参照図に加えて後述する。ポンプP4は、汚水槽の上澄液(清水)を吸い上げ、配管を通してこれを加工槽の水溜として水溜必要時に加工槽に注水する。
【0022】
次に図4を参照して、比抵抗値管理に関連する流れについて説明する。符号1は加工液を貯留する加工液槽で、上述したように、ポンプP3を用いて加工液が吸い上げられ、加工液冷却装置や、加工物を加工する槽(加工槽)への補給水、イオン交換処理装置へ供給される。この時、必要に応じて、切替弁3が後述する制御により開かれ、加工液がイオン交換樹脂を充填したイオン交換装置4へも供給され、加工液槽1に戻る循環流路が形成される。通常、ポンプP3は、機械が稼動時には常に稼動し、加工液を加工液槽から吸い上げ、必要個所へ供給している。
【0023】
イオン交換装置4のイオン交換樹脂は、周知の作用により、同樹脂を通過する際に加工液中のイオンを交換し、加工液の電気伝導度を低下させる。言い換えれば、加工液の比抵抗値を上昇させる。イオン交換樹脂の通過前後の加工液の比抵抗値を検出するために、2個所に比抵抗検出器11、12が設けられている。比抵抗検出器11は、イオン交換樹脂の入口側における加工液の比抵抗値を検出するもので、その設置位置は、例えば、図示したように、加工液槽1のポンプ吸い上げ口近くに設けられるが、ポンプP3で吸い上げられた後の流路中(但し、切替弁3より手前側)の適所に設けられても良い。
【0024】
なお、加工液槽1のイオン交換装置出口側近くに設けることは、イオン交換樹脂の入口側における加工液の比抵抗値を正しく検出できなくなるので避けるべきである。一方、比抵抗検出器12は、イオン交換樹脂の出口側における加工液の比抵抗値を検出するもので、その設置位置は、例えば、図示したように、イオン交換装置4の下流側で加工液槽1へ到達するまでの途中に設けられる。
【0025】
そして、イオン交換装置4を通って流れる加工液の流量(単位時間当りの通過量)を検出するために、循環路の適所に流量計13が設けられている。本例では、流量計13は、比抵抗検出器12の下流側で加工液槽1への吐出口の手前に設けられている。
【0026】
上記の概要配置を有する加工液処理装置の諸要素、即ち、ポンプP3、切替弁3、比抵抗検出器11、12及び流量計13は、図5に示したように、各々制御部10に接続されている。また、後述する態様で諸データの表示、警告の報知等を行なうためのディスプレイ14、警報器(ブザーまたはランプ等)15が制御部10に接続されている。更に、キーボード、マウス等からなるマニュアル操作部16が制御部10に接続されており、後述する処理に関連するプログラムの編集、設定値の入力/変更、警報器のリセット等が行えるようになっている。
【0027】
制御部10は、例えばワイヤカット放電加工装置全体の制御装置を兼ねるものであっても良く、同制御装置の機能の一部を利用するものであっても良い。あるいは、加工液処理装置専用に用意されるものであっても良い。詳細は省略するが、制御部10は、CPU、メモリ、各要素との信号のやり取りのための入出力装置及びそのためのソフトウェア等を有するとともに、後述する態様で、諸データの表示、警告の報知等をディスプレイ14、警報器(ブザーまたはランプ等)15を用いて行なうためのソフトウェアが装備されている。
【0028】
制御部10は、切替弁3に対しては、ON/OFF制御を行い、ON時にはポンプP3で吸い上げられた加工液が、加工液冷却装置や、補給水に供給されると共に、イオン交換装置4にも供給され、OFF時には、加工液がイオン交換装置4に供給されない様に制御を行っている。但し、単位時間当りにイオン交換樹脂に供給される加工液の量については多少の変動がある。実際にポンプP3で吸い上げられてイオン交換装置を流れる流量は流量計13で検出され、その検出出力は制御部10のCPUからの指令によって随時取り込めるようになっている。
【0029】
切替弁3については、前述したように、イオン交換装置4へ供給される加工液の循環流路を遮断し「循環流路遮断状態」に切り替えられる。そうでない時には、「循環流路維持状態」とされる。
同様に、比抵抗検出器11、12の検出出力は制御部10のCPUからの指令によって随時取り込めるようになっている。
【0030】
以上のような構成と機能を前提に、加工液処理装置の運転態様について説明する。先ず、制御部10は、入口側での比抵抗値R1をチェックし、予め定められた値を上回っていれば、切替弁3を「循環流路遮断状態」として、イオン交換装置4へ加工液が送られないようにする。比抵抗値R1が予め定められた値を下回っていれば、切替弁3を「循環流路維持状態」として、図6のフローチャートに示した寿命管理の処理を開始する。但し、この処理と並行して、R1が予め定められた値を上回っているか否かのチェックを所定周期で行い、もし上回っていれば随時切替弁3を「循環流路遮断状態」とし、イオン交換装置4へ加工液が送られないようにする。そして、再びR1が予め定められた値を下回った時、切替弁3を「循環流路維持状態」として、イオン交換装置4へ加工液が送られるようにする。
【0031】
制御部10で行なわれる寿命管理の処理の各ステップの要点は下記の通りである。なお、制御部10では、イオン交換装置4の実質稼働時間を常時把握するために、短周期で切替弁3が「循環流路維持状態である経過時間」を繰り返し計算しているものとする。この経過時間値は、樹脂が新品に交換された時にオペレータのマニュアル操作によって“0”にリセットされる。
【0032】
ステップS1:流量計13、比抵抗検出器11、12の検出出力を順次取り込み、メモリに記憶する。
ステップS2:記憶された検出出力を使って、ディスプレイ14の画面上に、流量L、入口側比抵抗値R1、出口側比抵抗値R2の最新データを表示する。表示は、例えば図7に示したような2次元グラフ形式で行なう。但し、図7では、寿命到来以降の時点までの変化が描かれているが、実際には新品交換時からその時点(現在)までの諸量がグラフ表示される。入口側比抵抗値R1を例にとれば、前出の図1における実線カーブ部分が表示される。そして、その後の時間経過とともに、実線カーブ部分が破線部分を辿るように延びていく。
【0033】
ステップS3:現時点におけるイオン交換樹脂のイオン交換能力Cを計算する。イオン交換能力Cの算出式は、C=(R2−R1)×Lを用いることができる。但し、単位流量当りのイオン交換樹脂通過前後の比抵抗値の変化を表現する指標となる量を表わす限り、他の式を用いることもあり得る。例えばC’=(R2/R1)×Lを用いることも考えられる。後述するように、Cが0に近い値(LIMIT)に到達することでイオン交換樹脂の寿命到来が判る。もし、C’を採用すれば、C’が1に近い値(予め設定)に到達することでイオン交換樹脂の寿命到来が判る。
【0034】
ステップS4:ステップS3の計算結果を使って、ディスプレイ14の画面上に、イオン交換能力C(またはC’;以下、同様)の最新データを表示する。表示の例は、図7に示した通りである。但し、既述の通り、図7では寿命到来以降の時点までの変化が描かれているが、実際には新品交換時からその時点(現在)までのC値がグラフ表示される。即ち、C値については、前出の図2のグラフにおける実線カーブ部分が表示される。そして、その後の時間経過とともに、実線カーブ部分が破線部分を辿るように延びていく。
【0035】
なお、図7に示したように、画面には、入口側で測定した比抵抗値(「入口比抵抗」と表記)R1、出口側で測定した比抵抗値(「出口比抵抗」と表記)R2、イオン交換能力(「実能力」と表記)Cの推移の他、実用上のイオン交換能力の限界(「能力限界」と表記)が併せて表示される。また、グラフ表示に加えて、あるいは、グラフ表示に代えて、図8に示したような数値テーブル表示を行なっても良い。なお、テーブル中、Tは新品と交換時(リセット時)からの経過時間を表わしている。
【0036】
ステップS5:ステップS3で求めたイオン交換能力(実能力)Cが予め定めた能力限界LIMITを上回っていることを確認して、ステップS6へ進む。もし、C≦LIMITであれば、ステップS10へ進む。但し、通常は、このステップS5でノ−の判断出力が出る前に、後述するステップS9でノ−の判断出力が出る筈であるから、実際にステップS10へ進むことはまれである。考えられるケースとしては寿命がつきたイオン交換樹脂の交換をし忘れたまま運転を行なった場合がある。また、システム異常(例えば抵抗検出器の故障)などもあり得る。
【0037】
ステップS6:流量の積算値を計算し、予め定めた設定値L0 を越えているか否かチェックする。越えていればステップS7へ進み、越えていなければステップS1へ戻る。このステップの趣旨は、流量の積算値が余りに小さい初期段階では、履歴データの蓄積が十分でなく、後述する寿命計算の信頼性に問題が出るため、寿命計算のステップへ進まないことにある。一般に、そのような初期段階では寿命計算の必要性自体もないと考えられる。
【0038】
なお、流量積算値が設定値L0 を越えているか否かをディスプレイで表示しても良い。また、流量の変動は小さいと考えて、積算流量ではなく、経過時間に基準値を設定しておき、経過時間が基準値を越えたら履歴データの蓄積が十分であるとして、寿命計算のステップへ進むようにしても良い。
【0039】
ステップS7:加工液の寿命を推測するための計算を行なう。イオン交換樹脂の寿命を推測するには、イオン交換能力Cの変化の履歴から、イオン交換能力Cの推移を表わす近似式(例えば経過時間の1次式、多項式等)を定め、この近似式の値がLIMITに到達するまでの猶予時間を計算すれば良い。なお、流量の変動が大きい場合(例えばポンプ能力の切替がある場合)は、例えば基準流量での寿命の他に、「最大流量条件下の寿命」、「最小流量条件下の寿命」などを計算して(次ステップS8参照)表示すれば良い。
【0040】
図9は、寿命を求めるために1次式を用いる計算手法について説明する図である。先ず、前提となる基礎式は上述した式、イオン交換能力(実能力)C=(R2−R1)*Lである。ここで、流量Lはほぼ一定として、C(=Y)を時間Xに関する1次式Y=α*X+βで近似し、α、βを現在までのデータを用いて決定する。
【0041】
今、現在(T=T2)のR1、R2の値から上記式で計算されるイオン交換能力をC2とすれば、C2=α*T2+βである。また、現在から適当な時間過去に遡った時点T1(前述のステップS6でイエスの判断が出た後になるように予め設定しておく)のR1、R2の値から上記式で計算されるイオン交換能力をC1とすれば、C1=α*T1+βである。
【0042】
これらの式から、勾配α、切片βは下記式で求められる。
【0043】
α=(C2−C1)/(T2−T1)
β=(C1T2−C2T1)/(T2−T1)
従って、イオン交換能力を表わす近似式は下記(1)のようになる。
【0044】
一方、イオン交換能力の設定値LIMITに対応する直線式は、当然、
Y=LIMIT ・・・(2)
で表わされる。
【0045】
上記(1)、(2)を連立方程式として解けば、イオン交換能力の設定値LIMITに到達する時点(寿命時間)TEの予測値は、下記(3)式で求められる。
【0046】
猶予時間はTE−T2となる。TEの計算結果は、計算時T2とともにメモリに記憶される。
【0047】
実際の計算例として、LIMIT=1、T2=160時間、T1=60時間として、この計算方法を図8に示した数値例にあてはめると、下記のようになる。
勾配α=−0.0948
切片β=−18.168
現在の実能力C2=3
100時間前時点の実能力C1=12.48(図8では四捨五入して12.5と表記)
寿命(能力限界到達予測時点)TE=181.097(時間)
猶予時間TE−T2=21.097(時間)
即ち、残り21時間程度でイオン交換能力が限界に達すると予測される。
【0048】
ステップS8:ステップS7で計算した寿命TE、猶予時間TE−T2をディスプレイ14に表示する。上記の例で言えば、例えばTE=181.097(時間)TE−T2=21.097(時間)がディスプレイに表示される。また、近似式で予測される直線、カーブなどを例えば図2で示したような破線でグラフ表示すれば、オペレータによってより寿命を把握しやすくなる。時間軸上TEの位置を点滅マーク表示等で強調すれば更に便利である。
【0049】
ステップS9:猶予時間TE−T2が予め設定した予告警告時間T0 (例えば1時間)を下回っているか否か判断する。もし、下回っていればステップS11へ進み、下回っていなければステップS1に戻って処理を繰り返す。
【0050】
ステップS10:既に寿命到来あるいは他の異常の発生を意味するアラーム1を出力して処理を終了する。これにより、例えば警報器15の赤ランプ点滅、ブザー鳴動(レベルハイ)などでオペレータに事態を報知する。また、加工機自体の運転を停止させる信号をあわせて出力しても良い。
【0051】
ステップS11:寿命到来が迫っていることを意味するアラーム2を出力してステップS1に戻って処理を繰り返す。これに伴い、例えば警報器15の黄色ランプ点滅、ブザー鳴動(レベルロー)などでオペレータに事態を報知する。通常は、この段階でオペレータは運転を停止させ(処理も強制終了)、イオン交換樹脂を新品と取り替える。これにより、不良品が出ることが未然に防止される。また、むやみに早い時期にイオン交換樹脂を新品と取り替えて無駄を生むこともなくなる。図10は、この利点を図解で表わしている。図10中に示された従来の交換時期は実際には、オペレータが多分に勘に頼って決めるもので、信頼性が低い。こらに対して、本発明では、能力限界が客観的な指標で把握できるので、適切に交換時期が決定される。
【0052】
なお、以上の処理の実行中に入口側比抵抗値R1がイオン交換処理をされ比抵抗保持設定値より高くなりすぎた場合には、上述したように、ポンプP3からイオン交換装置4に加工液が供給されないように、切替弁3がOFF制御され、「循環流路遮断状態」に切り替えられる。この状態は、入口側比抵抗値R1が高すぎる状態が解消されるまで維持される。そのような循環流路遮断状態を含むケースにおける諸量(入口比抵抗値R1、出口比抵抗値R2、流量L、実能力C)の推移を図11に例示した。
【0053】
図11のグラフに示したように、切替弁3がOFF制御されている間はイオン交換処理がされず、またイオン交換樹脂の劣化は進行しないので、上記ステップS3で定められるイオン交換能力値Cは、その直前(前回の処理サイクル)で求められた値とする。以後、イオン交換装置4への加工液の供給が再開されるまで同じC値が採用され、ステップS4ではC値について、水平ラインが表示される。
【0054】
あるいは、「循環流路遮断状態」に同期させて経過時間の計数を停止し、C値等の表示を点滅輝点などで表示させておき、循環再開後、経過時間の計数を再開し、通常の表示に戻すことも可能である。この手法は、Cの推移を定める近似式の作成上都合が良い(水平ライン部分があると、近似式の作成時に水平ライン部分を除外するような修正計算が必要になる)。
【0055】
R1が基準値以下に戻ったら、切替弁3が循環流路形成状態に切替復帰し、イオン交換装置4への加工液供給が再開される。すると、その直後の処理サイクルから、上記ステップS3でのイオン交換能力値Cが計算され、C値の更新が再開される。ステップS4による表示は、水平ラインから更新されたC値に基いて表示される。
【0056】
また、上記の例では1次式でイオン交換能力の推移を予測したが、他の方式でイオン交換能力の推移を予測しても良い。例として、(A)多項式(ここでは2次式)を用いた方式と、(B)最小2乗近似による式を用いた方式について簡単に記しておく。
【0057】
(A)多項式(2次式)を用いた方式:
3つの時点(1つは現在で良い)T1、T2、T3について、実能力C1、C2、C3を使って下記の式を立てる。
【0058】
C1=αT12 +βT1+γ
C2=αT22 +βT2+γ
C3=αT32 +βT3+γ
そして、この3式をα、β、γに関する1次連立方程式とみて解き、α、β、γを定める。これにより、推測近似式Y=αX2 +βX+γが決まる。以後は、1次式の場合と同様に、Y=LIMITとの交点でTEが求められる。
【0059】
(B)最小2乗近似を用いた方式:
2つ以上の時点(1つは現在で良い)T1、T2、T3・・・Tnと実能力C1、C2、C3・・・・をCnを使って(T1、C1)、(T2、C2)、(T3、C3)・・・(Tn、Cn)について最小2乗近似法で直線を当てはめる。結果を記せば、下記(4)式で経過時間T(=X)における実能力(=Y)が表わされることになる。下記(5)、式(6)は下記(4)式中におけるTの平均(上付バーT)、Cの平均(上付バーC)の定義を表わしている。
【0060】
以後は、(4)式において、TをX、CをYと読みかえてY=LIMITとの交点でTEが求められる。
CEをイオン交換能力の下限値とすると、結果は、下記(7)式となる。
【0061】
【数1】
【0062】
以上の発明では、加工液の比抵抗値を用いてイオン交換能力を求めたが、電気伝導率を用いてイオン交換能力を求めても良い。
【0063】
【発明の効果】
本発明によれば、夜間や休日等の無人運転に入る前に寿命が来るかどうかの判断を行なうことが容易となり、加工精度不良を未然に防ぐことができるようになる。また、運転中にイオン交換樹脂の寿命が到来し、イオン交換能力が急落し、加工中断の事態に至るおそれもなくなる。更に、寿命が残っているイオン交換樹脂を無駄に交換する必要も無くなり、コスト上、環境保全上のメリットも得られることになる。
【図面の簡単な説明】
【図1】加工液の比抵抗値の経時的な変化と、比抵抗保持設定値による寿命管理について説明する図である。
【図2】イオン交換樹脂のイオン交換能力の経時的な変化と、寿命管理について説明する図である。
【図3】本発明の実施形態に係るワイヤカット放電加工機の加工液処理装置の全体配置の概略を示す図である。
【図4】本発明の実施形態に係るワイヤカット放電加工機のイオン交換装置の概略を示す図である。
【図5】図4に示したイオン交換装置について、制御部と他の各部との接続関係を表わしたブロック図である。
【図6】本発明の実施形態において、制御部で実行される処理について説明するフローチャートである。
【図7】本発明の実施形態における表示画面について説明する図である。
【図8】数値テーブル形式の表示について説明する図である。
【図9】寿命計算について説明する図である。
【図10】本発明と従来技術の差異について説明する図である。
【図11】切替弁がOFF制御される循環流路遮断状態を含むケースにおける諸量の推移について説明する図である。
【符号の説明】
1 加工液槽(清水槽)
3 切替弁
4 イオン交換装置(イオン交換樹脂を充填)
11 比抵抗検出器(入口側)
12 比抵抗検出器(出口側)
13 流量計
14 ディスプレイ
15 警報器
16 マニュアル操作部
C クーラー
F フィルタ(異物除去用)
P1〜P4 ポンプ
【発明の属する技術分野】
本発明は、イオン交換樹脂によるイオン交換を利用したワイヤカット放電加工機の加工液の処理装置に関する。
【0002】
【従来の技術】
周知のように、ワイヤカット放電加工機においては水などの加工液が使用されている。この場合、加工液の電気導伝率、即ち、比抵抗値が一定値に維持される様に厳しく管理される必要がある。もしも、加工液の比抵抗値が加工中に変動すると、放電加工を行う電気エネルギーを印加している電源供給側と、加工される被加工物との間の加工電圧の見え方(加工電圧測定値)が変化する。ワイヤカット放電加工では、一般に、加工電圧を指標に用いて送り速度を調節し、加工物の除去量が一定になる様に制御して、加工精度を維持しているため、加工電圧測定値が加工液の比抵抗値の変動によって変化することは、この制御に悪影響を与え、加工精度不良を起こす原因になる。
【0003】
特に、加工液の比抵抗値が極端に下がった場合には、被加工物(金属製)の放電部分(加工領域)以外の表面部分にも、電源供給側からの漏れ電流が流れ、電気的な腐食を起こし、製品にダメージを与えることになる。
加工液の比抵抗値の変化は、通常、時間経過とともに比抵抗値が低下する方向に起る。なぜならば、放電加工によって発生する加工屑や放電加工中に起る加工液の電気分解は、加工液の比抵抗値を下げる要因となり、また、蒸発した加工液を補うために新たに加工液を補充する為、比抵抗値の低い水道水を追加した場合も、加工液の比抵抗値が下がるからである。そこで、加工液をイオン交換樹脂を通るように流通させることで加工液の比抵抗値の低下を抑止する手法が従来より採用されている。通常、加工液のイオン交換樹脂への供給・通過はON/OFF制御され、OFF時に低下する加工液の比抵抗値をON時に所望の設定値付近まで戻すことを繰り返す方式で、加工液の比抵抗値が一定値に保持される。
【0004】
ここでイオン交換樹脂のイオン交換能力に経時劣化があり、新品に近いイオン交換樹脂では比抵抗値を急速に高める能力があるが、長時間使用して能力の落ちたイオン交換樹脂では、緩漫にしか比抵抗値を高めることができない。更に、能力を失ったイオン交換樹脂では、比抵抗を高める事が出来なくなる。
【0005】
従って、ワイヤカット放電加工機のオペレータは、イオン交換樹脂の劣化を正しく見極めることが必要になる。
【0006】
加工液の比抵抗値は抵抗検出器によって検出され、表示されているので、実際の現場では、オペレータがこの表示値に注意を払い、数時間にわたって加工液をイオン交換樹脂に通しても、表示されている比抵抗値がなかなか上昇してこない事や下がり続ける事を確認して、イオン交換樹脂の交換時期到来を判断している。
【0007】
しかしながら、この見極めはめんどうであり、夜間や休日の無人運転中には実行できない。もしも比抵抗値が下がったまま無人運転が続行されると、大量の加工不良品を発生させかねない。
【0008】
この様な事態を回避するために、加工液の比抵抗値を監視し、一定基準値(比抵抗保持設定値)を保持できなくなった場合に運転を強制的に停止する方法もある。しかし、この方法では、加工を突然に中断することになり、機械の稼働率低下や納期後れの問題を生じさせる原因になる。また、イオン交換樹脂のイオン交換能力の経時的な低下による加工液の比抵抗値の低下は、運転時間の経過に対して徐々にほぼ一定の勾配で起るのではなく、図1に示したように、イオン交換樹脂のイオン交換能力が高いうちは、イオン交換樹脂への加工液の供給のON/OFF制御によって比抵抗保持設定値に保持されているが、図2に示された能力低下限界に達すると、加工液の供給をONの状態にしても比抵抗値を保持出来ず、急激に比抵抗値が下がってしまう特徴がある。なお、この図1のグラフは後述する実施形態で、イオン交換装置の入口側で測った比抵抗値R1の推移の実測値に基づいてプロットされたものである。
【0009】
この場合、比抵抗値の急落を事前に予測することができず、突然、加工が中断されることになる。計器等でオペレータが加工液の比抵抗値を頻繁にチェックしても、比抵抗値の急落がいつごろ起るか事前に予測することは容易ではない。換言すれば、加工液の比抵抗値自体を単純に監視しても、イオン交換樹脂の寿命(残りの寿命;以下、同じ)は判らない。
【0010】
このような事情から、結局、現場ではかなり早めにイオン交換樹脂を交換することが多くなり、高価な樹脂が十分使用しないまま廃却されていた。言うまでもなく、これはランニングコストの上昇を招き、環境問題上も好ましくない。なお、このような問題を解決するための技術について、公知文献は見当らない。
【0011】
【発明が解決しようとする課題】
そこで、本発明の基本的な目的は、加工液をイオン交換樹脂を通るように流通させるようにしたワイヤカット放電加工機の加工液処理装置を改良し、イオン交換樹脂の寿命を簡便に知ることができるようにすることである。また、本発明はそのことを通して、ワイヤカット放電加工における加工不良の発生とランニングコストの上昇を防ぐとともに、環境に対する配慮を行なうことを目指すものである。
【0012】
【課題を解決するための手段】
本発明は、加工液をイオン交換樹脂を通るように流通させるようにしたワイヤカット放電加工機の加工液処理装置において、イオン交換樹脂のイオン交換能力を監視する監視手段を設け、この監視手段による監視結果に基づいて、イオン交換樹脂のイオン交換能力の表示や寿命の算出、表示などを行なえるようにすることで、上記技術課題を解決するものである。
【0013】
前述したように、イオン交換樹脂のイオン交換能力の経時的な低下による加工液の比抵抗値の低下は、ある時期から急落する性質があるが(図1を参照)、図2に示したように、イオン交換能力の経時的な低下自体は、時間経過とともに徐々に低下する性質がある。従って、この経時変化を表示するだけでも、オペレータはおおよその寿命を容易に把握できる。図2の例で言えば、オペレータは実線で表示された履歴カーブを見ることで、破線で示したような概略予測カーブをイメージし、予め樹脂交換の目安として定めた能力低下限界に達するまでの猶予時間を容易に推測できることになる。なお、この図2のグラフは後述する実施形態で、イオン交換能力=(R2−R1)×Lに基づいてプロットされたものである。ここで、R1=イオン交換樹脂の入口側で測った比抵抗値、R2=イオン交換樹脂の出口側で測った比抵抗値、L=イオン交換樹脂を通過する加工液の流量である。
【0014】
また、図2において破線で示したような予測カーブを装置内でソフトウェアを使って算出し、表示することもできる。この予測カーブの表示を行なえば、交換時期の到来はより容易且つ明確にオペレータに把握される。更に、能力低下限界に到達する時点を予測カーブと能力低下限界を表わす直線との交点として算出して寿命(要交換までの猶予時間)を直接表示することもできる。また、イオン交換樹脂の寿命に関して、寿命到来時あるいはその前(例えば1時間前)などに警告報知を行なうこともできる。
【0015】
オペレータにとって、イオン交換樹脂によって管理されている加工液の比抵抗値をチェックできるようにすることも、加工液の状態を確認する上で有用である。その場合、イオン交換樹脂への加工液入口側における加工液の比抵抗値を検出する入口側比抵抗値検出手段を設け、その検出結果に基づいて、加工液入口側における加工液の比抵抗値の履歴を表示することが好ましい。加工液入口側で比抵抗値を測ることで、最も比抵抗値が落ちた加工液の比抵抗値が判るからである。加工液入口側で測った比抵抗値が正常値であれば、加工液全体について比抵抗値が正常であると考えることができる。加工液出口側で比抵抗値を測った場合には、その比抵抗値が正常値であっても、残りの加工液についてが正常であるかやや疑わしくなる。但し、イオン交換樹脂からの加工液出口側における加工液の比抵抗値を検出する出口側比抵抗値検出手段を設け、その検出結果に基づいて、加工液出口側における加工液の比抵抗値の履歴を表示することも無駄ではない。特に、加工液入口側と出口側の加工液の比抵抗値の履歴を並行して表示すれば、それらの値や差からイオン交換樹脂の働き具合いを知る目安となる。
【0016】
イオン交換樹脂のイオン交換能力を求めるには、イオン交換樹脂を通過することによって比抵抗値がどの程度上昇したかを知れば良い。そのために、入口側比抵抗値検出手段の検出結果と出口側比抵抗値検出手段の検出結果が利用できる。但し、流量が変化すれば同じイオン交換能力があってもイオン交換樹脂通過前後の比抵抗値の上昇値は変わるので、流量変化を想定する場合には、イオン交換樹脂を通過する流量(単位時間当りの通過量)を知る必要がある。そのために、加工液の流路の適所に流量検出手段を設けることができる。
【0017】
具体的な算出式としては、例えば、入口側比抵抗値検出手段によって検出された比抵抗値をR1、出口側比抵抗値検出手段によって検出された比抵抗値をR2、イオン交換樹脂を通る流量(単位時間当り)をLとして、
イオン交換能力=(R2−R1)×L[Ω・cm・l/min ]を採用することができる。
【0018】
また、寿命予測には、このようにして測られたイオン交換樹脂のイオン交換能力のその後の推移を近似的に表わす予測式を定め、この予測式を用いて、イオン交換能力が予め定められた下限に到達する未来の時点までの猶予時間を予測するという手法が採用できる。この予測式は、例えば時間に関する1次式または多項式とすることができる。
【0019】
【発明の実施の形態】
図3は、本発明の1つの実施形態に係るワイヤカット放電加工機の加工液処理装置の全体配置(制御部は図示省略)の概略を示す図である。図4は、本発明のイオン交換処理装置部分の配置図である。また、図5は、制御部とこのイオン交換処理装置の各部との接続関係を表わすブロック図である。先ず図3に示したように、加工液処理装置には、4基のポンプP1〜P4が装備されている。これらポンプの内、先ずポンプP1は、清水槽から清水を吸い上げ、配管を通してこれを加工液として上ガイド及び下ガイドの部分から注ぐ。ポンプP2は、汚水槽から加工屑等を含んだ液を吸い上げ、加工屑等の異物を除去するフィルターFに通し、加工屑等の異物が除去された液を清水槽に戻す。
【0020】
また、ポンプP3は、水温管理及び比抵抗管理のための循環流を形成するために設けられるポンプである。ポンプP3により清水槽から吸い上げられた清水は、配管の途中で二つの流路に別れて流れる。一方の流路はクーラーCを通って清水槽へ戻り、他方の流路はイオン交換装置を通って清水槽へ戻るようになっている。加工液の温度管理にクーラーが使用されるのは、一般に加工液の温度は放電加工装置の稼働や室温の影響を受けて最適温度から上昇する方向に変化しようとするからである。
【0021】
クーラーCは、適所に設けた温度センサ(図示省略)の信号に基づいて、加工液の温度を最適値に保つよう制御される。イオン交換装置を通る循環路は、加工液の比抵抗値を管理するためのもので、詳細は図4以下を参照図に加えて後述する。ポンプP4は、汚水槽の上澄液(清水)を吸い上げ、配管を通してこれを加工槽の水溜として水溜必要時に加工槽に注水する。
【0022】
次に図4を参照して、比抵抗値管理に関連する流れについて説明する。符号1は加工液を貯留する加工液槽で、上述したように、ポンプP3を用いて加工液が吸い上げられ、加工液冷却装置や、加工物を加工する槽(加工槽)への補給水、イオン交換処理装置へ供給される。この時、必要に応じて、切替弁3が後述する制御により開かれ、加工液がイオン交換樹脂を充填したイオン交換装置4へも供給され、加工液槽1に戻る循環流路が形成される。通常、ポンプP3は、機械が稼動時には常に稼動し、加工液を加工液槽から吸い上げ、必要個所へ供給している。
【0023】
イオン交換装置4のイオン交換樹脂は、周知の作用により、同樹脂を通過する際に加工液中のイオンを交換し、加工液の電気伝導度を低下させる。言い換えれば、加工液の比抵抗値を上昇させる。イオン交換樹脂の通過前後の加工液の比抵抗値を検出するために、2個所に比抵抗検出器11、12が設けられている。比抵抗検出器11は、イオン交換樹脂の入口側における加工液の比抵抗値を検出するもので、その設置位置は、例えば、図示したように、加工液槽1のポンプ吸い上げ口近くに設けられるが、ポンプP3で吸い上げられた後の流路中(但し、切替弁3より手前側)の適所に設けられても良い。
【0024】
なお、加工液槽1のイオン交換装置出口側近くに設けることは、イオン交換樹脂の入口側における加工液の比抵抗値を正しく検出できなくなるので避けるべきである。一方、比抵抗検出器12は、イオン交換樹脂の出口側における加工液の比抵抗値を検出するもので、その設置位置は、例えば、図示したように、イオン交換装置4の下流側で加工液槽1へ到達するまでの途中に設けられる。
【0025】
そして、イオン交換装置4を通って流れる加工液の流量(単位時間当りの通過量)を検出するために、循環路の適所に流量計13が設けられている。本例では、流量計13は、比抵抗検出器12の下流側で加工液槽1への吐出口の手前に設けられている。
【0026】
上記の概要配置を有する加工液処理装置の諸要素、即ち、ポンプP3、切替弁3、比抵抗検出器11、12及び流量計13は、図5に示したように、各々制御部10に接続されている。また、後述する態様で諸データの表示、警告の報知等を行なうためのディスプレイ14、警報器(ブザーまたはランプ等)15が制御部10に接続されている。更に、キーボード、マウス等からなるマニュアル操作部16が制御部10に接続されており、後述する処理に関連するプログラムの編集、設定値の入力/変更、警報器のリセット等が行えるようになっている。
【0027】
制御部10は、例えばワイヤカット放電加工装置全体の制御装置を兼ねるものであっても良く、同制御装置の機能の一部を利用するものであっても良い。あるいは、加工液処理装置専用に用意されるものであっても良い。詳細は省略するが、制御部10は、CPU、メモリ、各要素との信号のやり取りのための入出力装置及びそのためのソフトウェア等を有するとともに、後述する態様で、諸データの表示、警告の報知等をディスプレイ14、警報器(ブザーまたはランプ等)15を用いて行なうためのソフトウェアが装備されている。
【0028】
制御部10は、切替弁3に対しては、ON/OFF制御を行い、ON時にはポンプP3で吸い上げられた加工液が、加工液冷却装置や、補給水に供給されると共に、イオン交換装置4にも供給され、OFF時には、加工液がイオン交換装置4に供給されない様に制御を行っている。但し、単位時間当りにイオン交換樹脂に供給される加工液の量については多少の変動がある。実際にポンプP3で吸い上げられてイオン交換装置を流れる流量は流量計13で検出され、その検出出力は制御部10のCPUからの指令によって随時取り込めるようになっている。
【0029】
切替弁3については、前述したように、イオン交換装置4へ供給される加工液の循環流路を遮断し「循環流路遮断状態」に切り替えられる。そうでない時には、「循環流路維持状態」とされる。
同様に、比抵抗検出器11、12の検出出力は制御部10のCPUからの指令によって随時取り込めるようになっている。
【0030】
以上のような構成と機能を前提に、加工液処理装置の運転態様について説明する。先ず、制御部10は、入口側での比抵抗値R1をチェックし、予め定められた値を上回っていれば、切替弁3を「循環流路遮断状態」として、イオン交換装置4へ加工液が送られないようにする。比抵抗値R1が予め定められた値を下回っていれば、切替弁3を「循環流路維持状態」として、図6のフローチャートに示した寿命管理の処理を開始する。但し、この処理と並行して、R1が予め定められた値を上回っているか否かのチェックを所定周期で行い、もし上回っていれば随時切替弁3を「循環流路遮断状態」とし、イオン交換装置4へ加工液が送られないようにする。そして、再びR1が予め定められた値を下回った時、切替弁3を「循環流路維持状態」として、イオン交換装置4へ加工液が送られるようにする。
【0031】
制御部10で行なわれる寿命管理の処理の各ステップの要点は下記の通りである。なお、制御部10では、イオン交換装置4の実質稼働時間を常時把握するために、短周期で切替弁3が「循環流路維持状態である経過時間」を繰り返し計算しているものとする。この経過時間値は、樹脂が新品に交換された時にオペレータのマニュアル操作によって“0”にリセットされる。
【0032】
ステップS1:流量計13、比抵抗検出器11、12の検出出力を順次取り込み、メモリに記憶する。
ステップS2:記憶された検出出力を使って、ディスプレイ14の画面上に、流量L、入口側比抵抗値R1、出口側比抵抗値R2の最新データを表示する。表示は、例えば図7に示したような2次元グラフ形式で行なう。但し、図7では、寿命到来以降の時点までの変化が描かれているが、実際には新品交換時からその時点(現在)までの諸量がグラフ表示される。入口側比抵抗値R1を例にとれば、前出の図1における実線カーブ部分が表示される。そして、その後の時間経過とともに、実線カーブ部分が破線部分を辿るように延びていく。
【0033】
ステップS3:現時点におけるイオン交換樹脂のイオン交換能力Cを計算する。イオン交換能力Cの算出式は、C=(R2−R1)×Lを用いることができる。但し、単位流量当りのイオン交換樹脂通過前後の比抵抗値の変化を表現する指標となる量を表わす限り、他の式を用いることもあり得る。例えばC’=(R2/R1)×Lを用いることも考えられる。後述するように、Cが0に近い値(LIMIT)に到達することでイオン交換樹脂の寿命到来が判る。もし、C’を採用すれば、C’が1に近い値(予め設定)に到達することでイオン交換樹脂の寿命到来が判る。
【0034】
ステップS4:ステップS3の計算結果を使って、ディスプレイ14の画面上に、イオン交換能力C(またはC’;以下、同様)の最新データを表示する。表示の例は、図7に示した通りである。但し、既述の通り、図7では寿命到来以降の時点までの変化が描かれているが、実際には新品交換時からその時点(現在)までのC値がグラフ表示される。即ち、C値については、前出の図2のグラフにおける実線カーブ部分が表示される。そして、その後の時間経過とともに、実線カーブ部分が破線部分を辿るように延びていく。
【0035】
なお、図7に示したように、画面には、入口側で測定した比抵抗値(「入口比抵抗」と表記)R1、出口側で測定した比抵抗値(「出口比抵抗」と表記)R2、イオン交換能力(「実能力」と表記)Cの推移の他、実用上のイオン交換能力の限界(「能力限界」と表記)が併せて表示される。また、グラフ表示に加えて、あるいは、グラフ表示に代えて、図8に示したような数値テーブル表示を行なっても良い。なお、テーブル中、Tは新品と交換時(リセット時)からの経過時間を表わしている。
【0036】
ステップS5:ステップS3で求めたイオン交換能力(実能力)Cが予め定めた能力限界LIMITを上回っていることを確認して、ステップS6へ進む。もし、C≦LIMITであれば、ステップS10へ進む。但し、通常は、このステップS5でノ−の判断出力が出る前に、後述するステップS9でノ−の判断出力が出る筈であるから、実際にステップS10へ進むことはまれである。考えられるケースとしては寿命がつきたイオン交換樹脂の交換をし忘れたまま運転を行なった場合がある。また、システム異常(例えば抵抗検出器の故障)などもあり得る。
【0037】
ステップS6:流量の積算値を計算し、予め定めた設定値L0 を越えているか否かチェックする。越えていればステップS7へ進み、越えていなければステップS1へ戻る。このステップの趣旨は、流量の積算値が余りに小さい初期段階では、履歴データの蓄積が十分でなく、後述する寿命計算の信頼性に問題が出るため、寿命計算のステップへ進まないことにある。一般に、そのような初期段階では寿命計算の必要性自体もないと考えられる。
【0038】
なお、流量積算値が設定値L0 を越えているか否かをディスプレイで表示しても良い。また、流量の変動は小さいと考えて、積算流量ではなく、経過時間に基準値を設定しておき、経過時間が基準値を越えたら履歴データの蓄積が十分であるとして、寿命計算のステップへ進むようにしても良い。
【0039】
ステップS7:加工液の寿命を推測するための計算を行なう。イオン交換樹脂の寿命を推測するには、イオン交換能力Cの変化の履歴から、イオン交換能力Cの推移を表わす近似式(例えば経過時間の1次式、多項式等)を定め、この近似式の値がLIMITに到達するまでの猶予時間を計算すれば良い。なお、流量の変動が大きい場合(例えばポンプ能力の切替がある場合)は、例えば基準流量での寿命の他に、「最大流量条件下の寿命」、「最小流量条件下の寿命」などを計算して(次ステップS8参照)表示すれば良い。
【0040】
図9は、寿命を求めるために1次式を用いる計算手法について説明する図である。先ず、前提となる基礎式は上述した式、イオン交換能力(実能力)C=(R2−R1)*Lである。ここで、流量Lはほぼ一定として、C(=Y)を時間Xに関する1次式Y=α*X+βで近似し、α、βを現在までのデータを用いて決定する。
【0041】
今、現在(T=T2)のR1、R2の値から上記式で計算されるイオン交換能力をC2とすれば、C2=α*T2+βである。また、現在から適当な時間過去に遡った時点T1(前述のステップS6でイエスの判断が出た後になるように予め設定しておく)のR1、R2の値から上記式で計算されるイオン交換能力をC1とすれば、C1=α*T1+βである。
【0042】
これらの式から、勾配α、切片βは下記式で求められる。
【0043】
α=(C2−C1)/(T2−T1)
β=(C1T2−C2T1)/(T2−T1)
従って、イオン交換能力を表わす近似式は下記(1)のようになる。
【0044】
一方、イオン交換能力の設定値LIMITに対応する直線式は、当然、
Y=LIMIT ・・・(2)
で表わされる。
【0045】
上記(1)、(2)を連立方程式として解けば、イオン交換能力の設定値LIMITに到達する時点(寿命時間)TEの予測値は、下記(3)式で求められる。
【0046】
猶予時間はTE−T2となる。TEの計算結果は、計算時T2とともにメモリに記憶される。
【0047】
実際の計算例として、LIMIT=1、T2=160時間、T1=60時間として、この計算方法を図8に示した数値例にあてはめると、下記のようになる。
勾配α=−0.0948
切片β=−18.168
現在の実能力C2=3
100時間前時点の実能力C1=12.48(図8では四捨五入して12.5と表記)
寿命(能力限界到達予測時点)TE=181.097(時間)
猶予時間TE−T2=21.097(時間)
即ち、残り21時間程度でイオン交換能力が限界に達すると予測される。
【0048】
ステップS8:ステップS7で計算した寿命TE、猶予時間TE−T2をディスプレイ14に表示する。上記の例で言えば、例えばTE=181.097(時間)TE−T2=21.097(時間)がディスプレイに表示される。また、近似式で予測される直線、カーブなどを例えば図2で示したような破線でグラフ表示すれば、オペレータによってより寿命を把握しやすくなる。時間軸上TEの位置を点滅マーク表示等で強調すれば更に便利である。
【0049】
ステップS9:猶予時間TE−T2が予め設定した予告警告時間T0 (例えば1時間)を下回っているか否か判断する。もし、下回っていればステップS11へ進み、下回っていなければステップS1に戻って処理を繰り返す。
【0050】
ステップS10:既に寿命到来あるいは他の異常の発生を意味するアラーム1を出力して処理を終了する。これにより、例えば警報器15の赤ランプ点滅、ブザー鳴動(レベルハイ)などでオペレータに事態を報知する。また、加工機自体の運転を停止させる信号をあわせて出力しても良い。
【0051】
ステップS11:寿命到来が迫っていることを意味するアラーム2を出力してステップS1に戻って処理を繰り返す。これに伴い、例えば警報器15の黄色ランプ点滅、ブザー鳴動(レベルロー)などでオペレータに事態を報知する。通常は、この段階でオペレータは運転を停止させ(処理も強制終了)、イオン交換樹脂を新品と取り替える。これにより、不良品が出ることが未然に防止される。また、むやみに早い時期にイオン交換樹脂を新品と取り替えて無駄を生むこともなくなる。図10は、この利点を図解で表わしている。図10中に示された従来の交換時期は実際には、オペレータが多分に勘に頼って決めるもので、信頼性が低い。こらに対して、本発明では、能力限界が客観的な指標で把握できるので、適切に交換時期が決定される。
【0052】
なお、以上の処理の実行中に入口側比抵抗値R1がイオン交換処理をされ比抵抗保持設定値より高くなりすぎた場合には、上述したように、ポンプP3からイオン交換装置4に加工液が供給されないように、切替弁3がOFF制御され、「循環流路遮断状態」に切り替えられる。この状態は、入口側比抵抗値R1が高すぎる状態が解消されるまで維持される。そのような循環流路遮断状態を含むケースにおける諸量(入口比抵抗値R1、出口比抵抗値R2、流量L、実能力C)の推移を図11に例示した。
【0053】
図11のグラフに示したように、切替弁3がOFF制御されている間はイオン交換処理がされず、またイオン交換樹脂の劣化は進行しないので、上記ステップS3で定められるイオン交換能力値Cは、その直前(前回の処理サイクル)で求められた値とする。以後、イオン交換装置4への加工液の供給が再開されるまで同じC値が採用され、ステップS4ではC値について、水平ラインが表示される。
【0054】
あるいは、「循環流路遮断状態」に同期させて経過時間の計数を停止し、C値等の表示を点滅輝点などで表示させておき、循環再開後、経過時間の計数を再開し、通常の表示に戻すことも可能である。この手法は、Cの推移を定める近似式の作成上都合が良い(水平ライン部分があると、近似式の作成時に水平ライン部分を除外するような修正計算が必要になる)。
【0055】
R1が基準値以下に戻ったら、切替弁3が循環流路形成状態に切替復帰し、イオン交換装置4への加工液供給が再開される。すると、その直後の処理サイクルから、上記ステップS3でのイオン交換能力値Cが計算され、C値の更新が再開される。ステップS4による表示は、水平ラインから更新されたC値に基いて表示される。
【0056】
また、上記の例では1次式でイオン交換能力の推移を予測したが、他の方式でイオン交換能力の推移を予測しても良い。例として、(A)多項式(ここでは2次式)を用いた方式と、(B)最小2乗近似による式を用いた方式について簡単に記しておく。
【0057】
(A)多項式(2次式)を用いた方式:
3つの時点(1つは現在で良い)T1、T2、T3について、実能力C1、C2、C3を使って下記の式を立てる。
【0058】
C1=αT12 +βT1+γ
C2=αT22 +βT2+γ
C3=αT32 +βT3+γ
そして、この3式をα、β、γに関する1次連立方程式とみて解き、α、β、γを定める。これにより、推測近似式Y=αX2 +βX+γが決まる。以後は、1次式の場合と同様に、Y=LIMITとの交点でTEが求められる。
【0059】
(B)最小2乗近似を用いた方式:
2つ以上の時点(1つは現在で良い)T1、T2、T3・・・Tnと実能力C1、C2、C3・・・・をCnを使って(T1、C1)、(T2、C2)、(T3、C3)・・・(Tn、Cn)について最小2乗近似法で直線を当てはめる。結果を記せば、下記(4)式で経過時間T(=X)における実能力(=Y)が表わされることになる。下記(5)、式(6)は下記(4)式中におけるTの平均(上付バーT)、Cの平均(上付バーC)の定義を表わしている。
【0060】
以後は、(4)式において、TをX、CをYと読みかえてY=LIMITとの交点でTEが求められる。
CEをイオン交換能力の下限値とすると、結果は、下記(7)式となる。
【0061】
【数1】
【0062】
以上の発明では、加工液の比抵抗値を用いてイオン交換能力を求めたが、電気伝導率を用いてイオン交換能力を求めても良い。
【0063】
【発明の効果】
本発明によれば、夜間や休日等の無人運転に入る前に寿命が来るかどうかの判断を行なうことが容易となり、加工精度不良を未然に防ぐことができるようになる。また、運転中にイオン交換樹脂の寿命が到来し、イオン交換能力が急落し、加工中断の事態に至るおそれもなくなる。更に、寿命が残っているイオン交換樹脂を無駄に交換する必要も無くなり、コスト上、環境保全上のメリットも得られることになる。
【図面の簡単な説明】
【図1】加工液の比抵抗値の経時的な変化と、比抵抗保持設定値による寿命管理について説明する図である。
【図2】イオン交換樹脂のイオン交換能力の経時的な変化と、寿命管理について説明する図である。
【図3】本発明の実施形態に係るワイヤカット放電加工機の加工液処理装置の全体配置の概略を示す図である。
【図4】本発明の実施形態に係るワイヤカット放電加工機のイオン交換装置の概略を示す図である。
【図5】図4に示したイオン交換装置について、制御部と他の各部との接続関係を表わしたブロック図である。
【図6】本発明の実施形態において、制御部で実行される処理について説明するフローチャートである。
【図7】本発明の実施形態における表示画面について説明する図である。
【図8】数値テーブル形式の表示について説明する図である。
【図9】寿命計算について説明する図である。
【図10】本発明と従来技術の差異について説明する図である。
【図11】切替弁がOFF制御される循環流路遮断状態を含むケースにおける諸量の推移について説明する図である。
【符号の説明】
1 加工液槽(清水槽)
3 切替弁
4 イオン交換装置(イオン交換樹脂を充填)
11 比抵抗検出器(入口側)
12 比抵抗検出器(出口側)
13 流量計
14 ディスプレイ
15 警報器
16 マニュアル操作部
C クーラー
F フィルタ(異物除去用)
P1〜P4 ポンプ
Claims (13)
- 加工液をイオン交換樹脂を通るように流通させるようにしたワイヤカット放電加工機の加工液処理装置であって、
前記イオン交換樹脂のイオン交換能力を監視する監視手段と、
前記監視手段による監視結果に基づいて、前記イオン交換樹脂のイオン交換能力を表示するイオン交換能力表示手段を備えたことを特徴とする、ワイヤカット放電加工機の加工液処理装置。 - 加工液をイオン交換樹脂を通るように流通させるようにしたワイヤカット放電加工機の加工液処理装置であって、
前記イオン交換樹脂のイオン交換能力を監視する監視手段と、
前記監視手段により求められたイオン交換能力の変化に基いて、前記イオン交換樹脂の寿命を予測する寿命予測手段と、
前記寿命予測手段によって予測された結果に基づいて、前記イオン交換樹脂の寿命を表示する寿命表示手段を備えたことを特徴とする、ワイヤカット放電加工機の加工液処理装置。 - 前記イオン交換樹脂の寿命に関して警告報知を行なう警告報知手段を備えたことを特徴とする、請求項2に記載されたワイヤカット放電加工機の加工液処理装置。
- 前記監視手段は、加工液が前記イオン交換樹脂を通過する前後の比抵抗値の変化に基づいて、前記イオン交換樹脂のイオン交換能力を求めることを特徴とする、請求項1〜請求項3のいずれか1項に記載されたワイヤカット放電加工機の加工液処理装置。
- 前記監視手段は、加工液が前記イオン交換樹脂を通過する前後の比抵抗値の変化と、前記イオン交換樹脂を通過する加工液の流量に基づいて、前記イオン交換樹脂のイオン交換能力を求めることを特徴とする、請求項1〜請求項3のいずれか1項に記載されたワイヤカット放電加工機の加工液処理装置。
- 前記イオン交換樹脂への加工液入口側における加工液の比抵抗値を検出する入口側比抵抗値検出手段と、
前記入口側比抵抗値検出手段による検出結果に基づいて、加工液入口側における加工液の比抵抗値の履歴を表示する入口側履歴表示手段を備えたことを特徴とする、請求項1〜請求項5の内のいずれか1項に記載されたワイヤカット放電加工機の加工液処理装置。 - 前記イオン交換樹脂からの加工液出口側における加工液の比抵抗値を検出する出口側比抵抗値検出手段と、
前記出口側比抵抗値検出手段による検出結果に基づいて、加工液出口側における加工液の比抵抗値の履歴を表示する出口側履歴表示手段を備えた、請求項1〜請求項6の内のいずれか1項に記載されたワイヤカット放電加工機の加工液処理装置。 - 加工液をイオン交換樹脂を通るように流通させるようにしたワイヤカット放電加工機の加工液処理装置であって、
前記イオン交換樹脂からの加工液出口側における加工液の比抵抗値を検出する出口側比抵抗値検出手段と、
前記イオン交換樹脂のイオン交換能力を監視する監視手段と、
前記監視手段により求められたイオン交換能力の変化に基いて、前記イオン交換樹脂の寿命を予測する寿命予測手段と、
前記寿命予測手段によって予測された結果に基づいて、前記イオン交換樹脂の寿命を表示する寿命表示手段を備え、
前記寿命予測手段は、前記監視手段による監視結果と、前記出口側比抵抗値検出手段による検出結果とに基づいて、前記イオン交換樹脂の寿命を予測することを特徴とする、ワイヤカット放電加工機の加工液処理装置。 - 前記イオン交換樹脂への加工液入口側における加工液の比抵抗値を検出する入口側比抵抗値検出手段を備え、
前記監視手段は、前記イオン交換樹脂のイオン交換能力を、前記入口側比抵抗値検出手段の検出結果と前記出口側比抵抗値検出手段の検出結果とに基づいて求めることを特徴とする、請求項8に記載されたワイヤカット放電加工機の加工液処理装置。 - 前記イオン交換樹脂への加工液入口側における加工液の比抵抗値を検出する入口側比抵抗値検出手段と、
前記イオン交換樹脂からの加工液出口側における加工液の比抵抗値を検出する出口側比抵抗値検出手段と、
前記イオン交換樹脂を通って流れる加工液の流量を検出する流量検出手段とを備え、
前記監視手段は、前記イオン交換樹脂のイオン交換能力を、前記入口側比抵抗値検出手段によって検出された比抵抗値をR1、前記出口側比抵抗値検出手段によって検出された比抵抗値をR2、前記流量検出手段によって検出された流量をLとして、
イオン交換能力=(R2−R1)×L[Ω・cm・l/min ]なる算出式に基づいて求めることを特徴とする、請求項5に記載されたワイヤカット放電加工機の加工液処理装置。 - 前記監視手段により求められたイオン交換能力の変化に基いて、前記イオン交換樹脂の寿命を予測する寿命予測手段と、
前記寿命予測手段によって予測された結果に基づいて、前記イオン交換樹脂の寿命を表示する寿命表示手段を備えたことを特徴とする、請求項10に記載されたワイヤカット放電加工機の加工液処理装置。 - 前記寿命予測手段は、前記監視手段による監視結果に基づいて、前記イオン交換樹脂のイオン交換能力のその後の推移を近似的に表わす予測式を定め、前記予測式を用いて、イオン交換能力が予め定められた下限に到達する未来の時点までの猶予時間を予測することを特徴とする、請求項2、請求項3、請求項8、請求項9または請求項11に記載されたワイヤカット放電加工機の加工液処理装置。
- 前記予測式は、時間に関する1次式または多項式である、請求項12に記載されたワイヤカット放電加工機の加工液処理装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003156997A JP2004358573A (ja) | 2003-06-02 | 2003-06-02 | ワイヤカット放電加工機の加工液処理装置 |
US10/855,530 US20040238417A1 (en) | 2003-06-02 | 2004-05-28 | Machining fluid treating device for wire-cut electric discharge machine |
EP04253256A EP1486281A1 (en) | 2003-06-02 | 2004-06-01 | Machining fluid treating device for wire-cut electric discharge machine |
CNA200410046170XA CN1572405A (zh) | 2003-06-02 | 2004-06-02 | 用于电火花线切割机的加工流体处理装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003156997A JP2004358573A (ja) | 2003-06-02 | 2003-06-02 | ワイヤカット放電加工機の加工液処理装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004358573A true JP2004358573A (ja) | 2004-12-24 |
Family
ID=33296762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003156997A Abandoned JP2004358573A (ja) | 2003-06-02 | 2003-06-02 | ワイヤカット放電加工機の加工液処理装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20040238417A1 (ja) |
EP (1) | EP1486281A1 (ja) |
JP (1) | JP2004358573A (ja) |
CN (1) | CN1572405A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010099809A (ja) * | 2008-10-27 | 2010-05-06 | Sodick Co Ltd | 放電加工方法および放電加工装置 |
WO2011074043A1 (ja) * | 2009-12-18 | 2011-06-23 | 三菱電機株式会社 | 液質調整装置及び液質調整方法並びにワイヤ放電加工装置 |
JP2016074057A (ja) * | 2014-10-06 | 2016-05-12 | ファナック株式会社 | フィルタの交換時期の予測機能を有するワイヤ放電加工機 |
EP3034223A1 (en) | 2014-12-17 | 2016-06-22 | Fanuc Corporation | Controller for wire electric discharge machine having consumable exchange function |
JP2021020290A (ja) * | 2019-07-30 | 2021-02-18 | ファナック株式会社 | 予測装置 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050218089A1 (en) * | 2004-03-30 | 2005-10-06 | General Electric Company | Flushing and filtering system for electroerosion machining |
TWI356734B (en) * | 2007-11-05 | 2012-01-21 | Au Optronics Corp | Ion exchange resin tower and detection method of l |
JP5199447B1 (ja) * | 2011-12-09 | 2013-05-15 | ファナック株式会社 | 回転軸を備えたワイヤ放電加工機 |
JP5232314B1 (ja) * | 2012-02-13 | 2013-07-10 | ファナック株式会社 | 加工液の温度制御機能を有するワイヤ放電加工機 |
JP2016055372A (ja) * | 2014-09-08 | 2016-04-21 | ファナック株式会社 | イオン交換装置の寿命判定機能を備えた放電加工機 |
EP3375556B1 (en) | 2017-03-15 | 2023-02-22 | Agie Charmilles SA | Self-learning filter lifetime estimation method |
JP6693980B2 (ja) * | 2018-02-01 | 2020-05-13 | ファナック株式会社 | ワイヤ放電加工機、および、ワイヤ放電加工機の制御方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4277332A (en) * | 1980-03-10 | 1981-07-07 | Gelman Sciences, Inc. | Water purifier |
JPS632620A (ja) * | 1986-06-18 | 1988-01-07 | Satake Eng Co Ltd | 放電加工装置 |
JPS62297020A (ja) * | 1986-06-18 | 1987-12-24 | Mitsubishi Electric Corp | 放電加工装置 |
JPH02131821A (ja) * | 1988-11-04 | 1990-05-21 | Fanuc Ltd | 状態表示を行うワイヤ放電加工装置 |
JP4600617B2 (ja) * | 2000-08-07 | 2010-12-15 | オルガノ株式会社 | 陰イオン交換樹脂の性能評価方法及び装置並びに復水脱塩装置 |
US6790362B2 (en) * | 2002-01-11 | 2004-09-14 | Culligan International Company | Efficiency mode for water softener |
-
2003
- 2003-06-02 JP JP2003156997A patent/JP2004358573A/ja not_active Abandoned
-
2004
- 2004-05-28 US US10/855,530 patent/US20040238417A1/en not_active Abandoned
- 2004-06-01 EP EP04253256A patent/EP1486281A1/en not_active Withdrawn
- 2004-06-02 CN CNA200410046170XA patent/CN1572405A/zh active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010099809A (ja) * | 2008-10-27 | 2010-05-06 | Sodick Co Ltd | 放電加工方法および放電加工装置 |
WO2011074043A1 (ja) * | 2009-12-18 | 2011-06-23 | 三菱電機株式会社 | 液質調整装置及び液質調整方法並びにワイヤ放電加工装置 |
JP5025826B2 (ja) * | 2009-12-18 | 2012-09-12 | 三菱電機株式会社 | 液質調整装置及び液質調整方法並びにワイヤ放電加工装置 |
US9056361B2 (en) | 2009-12-18 | 2015-06-16 | Mitsubishi Electric Corporation | Liquid-quality adjusting apparatus, liquid-quality adjusting method, and wire electric discharge machining apparatus |
JP2016074057A (ja) * | 2014-10-06 | 2016-05-12 | ファナック株式会社 | フィルタの交換時期の予測機能を有するワイヤ放電加工機 |
KR101837249B1 (ko) | 2014-10-06 | 2018-03-09 | 화낙 코퍼레이션 | 필터의 교환 시기의 예측 기능을 갖는 와이어 방전 가공기 |
US10179368B2 (en) | 2014-10-06 | 2019-01-15 | Fanuc Corporation | Wire electric discharge machine having estimation function for filter replacement timing |
EP3034223A1 (en) | 2014-12-17 | 2016-06-22 | Fanuc Corporation | Controller for wire electric discharge machine having consumable exchange function |
US10035206B2 (en) | 2014-12-17 | 2018-07-31 | Fanuc Corporation | Controller for wire electric discharge machine having consumable exchange function |
JP2021020290A (ja) * | 2019-07-30 | 2021-02-18 | ファナック株式会社 | 予測装置 |
JP7277303B2 (ja) | 2019-07-30 | 2023-05-18 | ファナック株式会社 | 予測装置 |
US11931841B2 (en) | 2019-07-30 | 2024-03-19 | Fanuc Corporation | Prediction device |
Also Published As
Publication number | Publication date |
---|---|
US20040238417A1 (en) | 2004-12-02 |
CN1572405A (zh) | 2005-02-02 |
EP1486281A1 (en) | 2004-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105478937B (zh) | 具有预测过滤器的更换时期的功能的线放电加工机 | |
JP2004358573A (ja) | ワイヤカット放電加工機の加工液処理装置 | |
JP5137359B2 (ja) | 排水ポンプの異常診断方法およびその装置 | |
JP4931996B2 (ja) | プロセス制御及びモニタリングシステムの診断法 | |
JP6309936B2 (ja) | クーラント監視機能を有する制御装置 | |
CN112105788B (zh) | 废水泵送站的警报管理模块 | |
JP2003214749A (ja) | 比例制御弁を備える恒温液体循環装置におけるメンテナンスの必要性を予測する予測システム | |
JP5699445B2 (ja) | 開放循環冷却水系の水処理薬品注入管理方法および装置 | |
CN109959413B (zh) | 一种水冷式铜排内冷却管堵塞故障预测装置及方法 | |
KR101928816B1 (ko) | 냉각수 관리 시스템 및 제어방법 | |
JP5698603B2 (ja) | ポンプ設備 | |
KR20160030050A (ko) | 방전 가공기 | |
CN219031914U (zh) | 一种阻垢剂自动加药控制装置 | |
JP2008241326A (ja) | 配管系設備における流量測定方法 | |
JP2008196889A (ja) | 水質計測システム | |
GB2270395A (en) | Water purification system | |
JP2019013896A (ja) | 水質管理システム及び水質管理方法 | |
JP7395851B2 (ja) | 診断装置 | |
JP2018040341A (ja) | ポンプ制御装置及びポンプ制御方法 | |
JPH0968170A (ja) | 下水処理場の汚水ポンプ制御装置 | |
JP4228410B2 (ja) | 水処理装置 | |
JP2022015010A (ja) | レーザ加工機の冷却水監視装置 | |
JPS5987014A (ja) | フイルタ−の目づまり検出装置 | |
CN117804768B (zh) | 废水阀的寿命测试方法及系统 | |
JP2019090362A (ja) | 防錆効果検知装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051101 |
|
A762 | Written abandonment of application |
Free format text: JAPANESE INTERMEDIATE CODE: A762 Effective date: 20051108 |