JP2004354041A - 炉内ガス循環ユニット - Google Patents

炉内ガス循環ユニット Download PDF

Info

Publication number
JP2004354041A
JP2004354041A JP2004139295A JP2004139295A JP2004354041A JP 2004354041 A JP2004354041 A JP 2004354041A JP 2004139295 A JP2004139295 A JP 2004139295A JP 2004139295 A JP2004139295 A JP 2004139295A JP 2004354041 A JP2004354041 A JP 2004354041A
Authority
JP
Japan
Prior art keywords
furnace
supply
furnace gas
heat storage
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004139295A
Other languages
English (en)
Other versions
JP4033851B2 (ja
Inventor
Toshiaki Hasegawa
敏明 長谷川
Susumu Mochida
晋 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Furnace Co Ltd
Original Assignee
Nippon Furnace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Furnace Co Ltd filed Critical Nippon Furnace Co Ltd
Priority to JP2004139295A priority Critical patent/JP4033851B2/ja
Publication of JP2004354041A publication Critical patent/JP2004354041A/ja
Application granted granted Critical
Publication of JP4033851B2 publication Critical patent/JP4033851B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Furnace Details (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

【課題】 位置的制約を受けず、炉体の任意の位置に配置することができ、炉内ガスの炉内循環又は攪拌を制御することができる炉内ガス循環ユニットを提供する。
【解決手段】 炉内ガス循環ユニット(1)は、給排口(20)を夫々備えた第1及び第2蓄熱装置(2A:2B)と、冷却後の炉内ガスを加圧し、蓄熱装置を介して炉内ガスを給排口に送出する循環ファン(4)と、導出位置又は噴射位置に切換可能な給排切換弁装置(3A:3B)とを有する。蓄熱装置は夫々、蓄熱体(21)を備え、蓄熱体は、炉内ガスとの伝熱接触により受熱し、炉内ガスを冷却するとともに、再導入流との伝熱接触により放熱し、再導入流を加熱する。実質的に同方向の再導入流が、複数の給排口により、炉内領域の特定部分に継続的に噴射される。
【選択図】 図1

Description

本発明は、炉内ガス再循環ユニットに関するものであり、より詳細には、炉体の任意の位置に配置することができ、炉内ガスの炉内循環又は攪拌を制御することができる炉内ガス循環ユニットに関するものである。
一般に、管式加熱炉、金属加熱炉、窯業焼成炉、金属溶融炉、ガス化溶融炉又はボイラー等の燃焼炉は、燃焼設備を備え、燃焼設備は、炭化水素系燃料を供給する燃料供給装置、燃焼用空気を供給する空気供給装置、燃料及び燃焼用空気を混合し且つ燃料を燃焼させるバーナー装置等を含む。バーナ装置が混合した燃料及び燃焼用空気は、拡散燃焼による火炎を炉内燃焼域に生成する。バーナー装置供給前における燃料及び燃焼用空気の予混合は、予期せぬ逆火現象を生じさせることが懸念されており、一般には採用されていない。
一般的な燃焼装置において燃料の完全燃焼を図るには、燃焼用空気の実際空気量は、燃料の理論空気量を超える過剰な空気比に設定する必要があり、このため、燃焼用空気及び燃料の混合比(空燃費)は、概ね14乃至15程度に設定される。例えば、燃焼装置に供給されるメタン燃料の燃料容積は、必要空気量の1/15程度に設定される。多くの燃焼設備は、このような流量差を有する燃料噴射流と空気流とを所望の如く混合すべく、旋回流型又は保炎板型等の保炎器を備える。保炎器は、燃料及び空気の混合域に配設され、着火可能な高温循環流を形成し、これにより、火炎の吹き消えを防止し、火炎の安定性を確保する。
このような従来の燃焼方法では、燃料流量に比して多量の空気流を炉内に吹込むことから、炉内に形成される火炎の特性、炉内ガス循環の性状等は、空気流の温度、流量、流速及び方向性等の制御により概ね決定され、炉内ガス循環及び火炎特性の制御には、自ずと限界が生じる。本発明者等は、炉内ガス循環及び火炎特性の制御性を改善すべく、炉外に導出した燃焼ガス(炉内ガス)、或いは、水蒸気を燃料とを混合し、炉内に噴射する燃料のモーメンタム(運動量)を増大する燃焼方法又は燃料供給方法を既に提案している(特開2001−124329号公報、特開2001−124205号公報参照)。
特開2001−124329号公報 特開2001−124205号公報
しかしながら、従来の燃焼方法は、炉内における燃料供給口、燃焼用空気供給口及び燃焼排ガス排気口の位置を特定することを前提としたものであり、炉内ガス循環及び火炎特性の制御は、あくまで、これらの供給口及び排気口の位置を特定した上で設計される。従って、燃料供給口、燃焼用空気供給口及び燃焼排ガス排気口の位置的制約を受けずに炉内ガス循環を制御することはできない。
これに対し、炉内ガスを攪拌する攪拌装置を炉内に配置し、炉内ガスを強制攪拌することも可能であるが、この場合、攪拌装置の駆動部又は駆動力伝達機構等が炉内の高温雰囲気に曝されるので、攪拌装置を特殊な耐熱性材料及び耐熱性機構により設計しなければならず、攪拌装置の初期設備費は、高額化する。現実には、攪拌装置の耐熱性及び耐久性を確保すること自体、困難であり、仮にこれを克服し得たとしても、炉内ガスを炉内ガスの直接的な攪拌により制御する場合、攪拌により生じる循環流の特性や、火炎に作用する循環流の作用等は、予測し難い。
また、従来、炉内ガスの酸素分圧(酸素濃度)は、バーナ装置による空気及び燃料の噴射状態、火炎の燃焼反応、燃焼ガスの炉内循環、被加熱物又は可燃物の酸化又は燃焼反応等に影響されるが、炉内の酸素分圧を積極的に制御することは困難である。仮に、多量の空気又は酸素を炉内に供給した場合、炉内の酸素分圧が急激に増大し、酸化又は燃焼反応が急激に変化し易く、また、低温(例えば、大気温)の空気又は酸素を炉内に吹込む場合、予測困難な炉内温度場の変化が生じ得る。他方、多量の炉内ガスをバーナー装置に再循環させると、燃焼反応が抑制され、燃焼雰囲気の変化、例えば、酸化燃焼雰囲気から還元燃焼雰囲気への変化などが生じる虞がある。
本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、燃料供給口、燃焼用空気供給口及び燃焼排ガス排気口の位置と関連した位置的制約を受けず、炉体の任意の位置に配置することができ、炉内ガスの炉内循環又は攪拌を制御することができる炉内ガス循環ユニットを提供することにある。
本発明は又、炉内温度場に影響を与えず炉内の燃焼雰囲気を可変制御することができる炉内ガス循環ユニットを提供することを目的とする。
本発明は、上記目的を達成すべく、炉内ガスを炉外に導出する導出口として機能するとともに、炉内ガスの再導入流を炉内に噴射する噴射口として機能する給排口を備えた第1及び第2蓄熱装置と、
冷却後の前記炉内ガスを加圧し、前記蓄熱装置を介して炉内ガスを前記給排口に送出する循環ファンと、
第1蓄熱装置を介して炉内ガスを炉外に導出し、第2蓄熱装置を介して再導入ガスを炉内に噴射する第1位置と、第2蓄熱装置を介して炉内ガスを炉外に導出し、第1蓄熱装置を介して再導入ガスを炉内に噴射する第2位置とに切換可能な給排切換弁装置とを有し、
前記第1及び第2蓄熱装置は夫々、前記炉内ガスとの伝熱接触により受熱し、前記炉内ガスを冷却するとともに、前記再導入流との伝熱接触により放熱し、該再導入流を加熱する蓄熱体を備え、
前記第1及び第2蓄熱装置の各給排口は、炉内領域の特定部分に実質的に同方向の前記再導入流を継続的に噴射するように、炉体の内壁面に並列且つ互いに接近して配置され、前記給排切換弁装置は、前記第1位置及び第2位置に交互に切換えられることを特徴とする炉内ガス循環ユニットを提供することにある。
本発明の炉内ガス循環ユニットは、炉の燃焼設備とは独立した構造を有し、燃料供給口、燃焼用空気供給口及び燃焼排ガス排気口の位置による位置的制約を受けず、従って、炉体の任意に位置に配置することができる。高温の炉内ガスは、蓄熱体により冷却され、給排切換弁装置及び循環ファンは、炉外に配置される。従って、給排切換弁装置及び循環ファンには、過大な熱応力が作用せず、循環ファンには、熱劣化による弊害が生じない。冷却した炉内ガスは、蓄熱体により再加熱され、炉内ガスと同等の温度で炉内に再導入される。再導入流の流速及び流量は、循環ファンの流量・圧力設定により可変制御することができる。
本発明は又、上記構成の炉内ガス循環ユニットにおいて、冷却後の炉内ガスに付加流体を添加する添加装置を更に有することを特徴とする炉内ガス循環ユニットを提供する。
付加装置は、炉内燃焼雰囲気を調整する酸化剤、水蒸気又は不活性ガス等を冷却後の炉内ガスに添加し、蓄熱装置は、付加流体を含む炉内ガスを加熱し、炉内に再導入する。炉内の燃焼雰囲気は、再導入流により調整され、しかも、再導入流は、蓄熱装置により加熱された後に炉内に噴射するので、炉内温度場の変化は生じ難い。従って、このような炉内ガス循環ユニットによれば、炉内温度場に実質的影響を与えずに炉内の燃焼雰囲気を制御することができる。
本発明は更に、上記構成の炉内ガス循環ユニットを使用した炉内燃焼方法において、
(1) 前記再導入流を炉内ガスに噴射して炉内ガス循環を活性化し、
(2) 前記再導入流を炉内火炎に向けて噴射して該火炎の到達距離、方向及び/又は火炎容積を制御し、
(3) 燃焼設備の燃料噴流及び空気噴流と混合衝突するように前記再導入流を炉内に噴射して燃料及び燃焼用空気の燃焼反応を制御し、或いは、
(4) 前記付加流体を添加した再導入流を炉内に噴射し、炉の燃焼設備が形成する炉内火炎の性状又は炉内燃焼雰囲気を制御することを特徴とする炉内燃焼方法を提供する。
本発明の上記構成によれば、燃料供給口、燃焼用空気供給口及び燃焼排ガス排気口の位置と関連した位置的制約を受けず、炉体の任意の位置に配置することができ、炉内ガスの炉内循環又は攪拌を制御することができる炉内ガス循環ユニットが提供される。
また、本発明によれば、付加流体添加装置を炉内ガス循環ユニットに更に設けることにより、炉内温度場に影響を与えず炉内の燃焼雰囲気を可変制御可能な炉内ガス循環ユニットが提供される。
本発明の好適な実施形態によれば、炉内ガス循環ユニットは、炉体と一体化して炉内壁面を形成する支持基板を更に有し、上記蓄熱装置は、蓄熱体を収容したケーシングを備える。ケーシングは、支持基板に一体的に支持される。上記給排切換弁装置は、各々の蓄熱装置に直列に連結され、各給排切換弁装置の切換時期を調整する制御装置が炉内ガス循環ユニットに更に設けられる。再導入流は、例えば、火炎又はその輻射熱の作用が直接に及び難い炉内領域の部分や、炉内のガス循環が生じ難い炉内領域の部分に噴射し、或いは、炉内ガスの滞留領域又は死水領域に噴射し、炉内対流伝熱による燃焼炉の加熱作用を向上する。再導入流は又、火炎、燃焼ガス流、燃料噴流又は燃焼用空気噴流に混合衝突し、火炎又は燃焼ガスの性状を変化させる。
炉内領域の特定部分に実質的に同方向の再導入流が継続的に噴射されるように、各再導入流の中心軸線同士の相対的な角度(又は各蓄熱装置の中心軸線がなす角度)は、好ましくは、20°〜−20°の範囲内、更に好ましくは、10°〜−10°の範囲内に制限され、給排口の中心間距離は、給排口の直径Dに対し、好ましくは、5D以下、更に好ましくは、3D以下に制限される。
好ましくは、炉内ガス循環ユニットは、第3蓄熱装置を更に有し、上記給排切換弁装置は、いずれか1つの蓄熱装置の給排口から再導入ガスを炉内に噴射し、他の2つ蓄熱装置の給排口から炉内ガスを導出するように切換制御される。更に好ましくは、炉内ガス循環ユニットは、第4蓄熱装置を更に有し、給排切換弁装置は、いずれか1つの蓄熱装置の給排口から再導入ガスを炉内に噴射し、他の3つ蓄熱装置の給排口から炉内ガスを導出するように切換制御される。給排口から噴射する再導入流の流速に対して、給排口から吸引される炉内ガス流の流速が1/2以下に低下し、給排口間のガス流のショートパスは、抑制される。
本発明の他の好適な実施形態によれば、炉内ガス循環ユニットは、冷却後の炉内ガスに付加流体を添加する添加装置を更に有する。好ましくは、付加流体として、空気、酸素、水蒸気及び/又は不活性ガスが上記再導入流に添加される。更に好ましくは、炉内ガス循環ユニットは、冷却後の炉内ガスの一部を系外に排気する排気手段を更に有する。
図1は、本発明の好適な実施形態を示す炉内ガス循環ユニットの縦断面図である。図1(A) には、炉内ガス循環ユニットの第1作動状態が示され、図1(B) には、炉内ガス循環ユニットの第2作動状態が示されている。
炉内ガス循環ユニット1は、蓄熱装置2(2A:2B)、給排切換弁装置3(3A:3B)及び循環ファン4を備え、蓄熱装置2及び給排切換弁装置3は、炉内領域9を区画する炉体91に配置される。蓄熱装置2は、蓄熱体ケース22内に蓄熱体21を収容した構造を有し、蓄熱体ケース22は、支持基板23を貫通する。支持基板23は、炉体91と同質の耐熱・耐火材料からなる。支持基板23は、炉体91と一体化し、炉内領域9に面する炉内壁面92を炉体91とともに形成する。
各蓄熱体21は、円柱形の外形を有するハニカム構造のセラミックス製蓄熱体からなり、多数の狭小流路を有する。蓄熱体21の各流路は、蓄熱装置2の軸線方向に蓄熱体21を貫通する。蓄熱体21は、リジェネレータ型熱交換器を構成し、0.9以上の温度効率を発揮する。この形式の熱交換器の構造は、例えば、本願出願人による特願平5-6911号(特開平6-213585号公報)等に詳細に開示されているので、更なる詳細な説明は、省略する。
蓄熱体ケース22は、支持基板23を貫通する金属製円筒形部材からなり、支持基板24に一体的に支持される。蓄熱体ケース22の先端部は、蓄熱体21の先端面から更に炉内側に延び、僅かに縮径して炉内領域9に開口する。蓄熱体ケース22の先端円形開口は、炉内ガス給排口20を構成する。給排口20は、炉内領域9の炉内ガスを吸引する炉内ガス吸引口として機能するとともに、加圧後の炉内ガスを炉内領域9に噴射する炉内ガス噴射口として機能する。
各蓄熱装置2と対応する各給排切換弁装置3は、蓄熱装置2と同軸上に整列し、支持基板23から炉外に突出する。各弁装置3は、弁機構30、炉内ガス導入口31、炉内ガス導出口32及び弁駆動装置33を備える。弁駆動装置33は、弁機構30を駆動して、弁機構30を導出位置又は導入位置に切換える。弁機構30は、導入ポート34又は導出ポート35を選択的に開閉制御可能な二位置制御弁として機能する。
循環ファン4の吐出口には、炉内ガス導入管41が接続され 炉内ガス導入管41は、導入管42、43に分岐し、導入管42、43は、各弁装置3の炉内ガス導入口31に夫々接続される。他方、循環ファン4の吸引口には、炉内ガス導出管46が接続され、炉内ガス導出管46は、導出管44、45に分岐し、導出管44、45は、各弁装置3の炉内ガス導出口32に夫々接続される。循環ファン4の吸引圧力は、炉内ガス導出管46、45、44、弁装置3及び蓄熱装置2を介して一方の給排口20に作用し、循環ファン4の給気押込み圧力は、導入管41、42、43、弁装置3及び蓄熱装置2を介して他方の給排口20に作用する。
図1(A)に示す第1作動状態では、第1弁装置3Aの弁機構30は、炉内ガス導入ポート34を閉鎖し且つ炉内ガス導出ポート35を開放した導出位置に位置し、第2弁装置3Bの弁機構30は、導入ポート34を開放し且つ導出ポート35を閉鎖した導入位置に位置する。炉内ガスは、循環ファンの吸引圧力下に、矢印で示す如く、第1蓄熱装置2Aの給排口20から第1蓄熱装置2A内に流入し、蓄熱体21の流路を通過して第1切換弁3A内に流入する。高温の炉内ガスは、蓄熱体21と伝熱接触して放熱し、降温する。同時に、蓄熱体21は、炉内ガスが保有する顕熱を受熱して昇温する。蓄熱体21との熱交換により冷却した炉内ガスは、第1弁装置3Aの導出口32及び導出管45、46を介して循環ファン4に吸引される。循環ファン4は、比較的低温の炉内ガスを加圧し、導入管41、42を介して第2弁装置3Bの導入口31に供給する。炉内ガスは、第2弁装置3Bから第2蓄熱装置2Bに流入し、蓄熱体21と伝熱接触する。蓄熱体21は、比較的低温の炉内ガスとの熱交換により放熱し、冷却する。同時に、炉内ガスは、蓄熱体21が保有する顕熱を受熱して昇温し、高温の再導入ガスとして第2蓄熱装置2Bの給排口20から炉内領域9に吹出す。昇温後の炉内ガスは、第1蓄熱装置2に流入する炉内ガスと概ね同等の温度を有する。
蓄熱装置2、弁装置3、循環ファン4、導出管44、45、46及び導入管41、42、43からなるガス循環回路を循環するガスの温度Ti、To、T1、T2は、例えば、以下のとおり設定される。
導出時の炉内ガス温度(給排口20) Ti=1200℃
蓄熱体通過後の炉内ガス温度(弁装置3) T1=200℃
弁装置導入時のガス温度(導入口31) T2=100〜150℃
再導入時のガス温度(給排口20) To=1150℃
なお、蓄熱体21通過後のガス温度T1と、弁装置3に導入するガス温度T2との相違(温度降下)は、主として、導出管44、45、46及び導入管41、42、43の管壁表面からの放熱に起因する。
図1(B)に示す第2作動状態では、第2弁装置3Bの弁機構30は、導入ポート34を閉鎖し且つ導出ポート35を開放した導出位置に位置し、第1弁装置3Aは、弁機構30により導入ポート34を開放し且つ導出ポート35を閉鎖した導入位置に位置する。炉内ガスは、循環ファン4の誘引圧力下に、矢印で示す如く、第2蓄熱装置2Bの給排口20に流入し、蓄熱体21、第2弁装置3B、導出管44、46を介して、循環ファン4に吸引され、循環ファン4により加圧され、導入管41、43、第1弁装置3A及び第1蓄熱装置2Aを介して、第1蓄熱装置2Aの給排口20から炉内領域9に吹出す。この循環回路において、炉内ガスは、第2蓄熱装置2Bの蓄熱体21と熱交換して冷却し、第1蓄熱装置2Aの蓄熱体21と熱交換して昇温する。第1蓄熱装置2Aの給排口20は、第2蓄熱装置2Bの給排口20に流入する炉内ガスと同等温度の再導入ガスを炉内領域9に噴射する。
上記循環回路は又、炉内ガスの一部を系外に排気する排気管47(破線で示す)を備える。排気管47は、導入管41に接続される。排気管47には、排気制御弁48が介装され、排気制御弁48は、蓄熱体21の過熱を防止すべく、所望により5〜10%程度の炉内ガスを大気等に排気する。
炉内ガス循環ユニット1は、弁駆動装置33、排気制御弁48及び循環ファン4の作動を制御する制御ユニットC/U(図1(A) のみに図示する) を備える。制御ユニットC/Uは、各弁駆動装置33の切換時期を協調制御し、各弁装置3の位相(導出位置又は導入位置)を逆位相に設定する。弁駆動装置33は、制御ユニットC/Uの制御下に所定時間毎に弁装置3の弁位置を切換え、炉内ガス循環ユニット1は、図1(A)に示す第1作動状態と、図1(B)に示す第2作動状態とを所定時間毎に交互に反復する。
弁装置3及び循環ファン4は、いずれの作動状態においても、蓄熱装置2で冷却した炉内ガスに接触するにすぎず、従って、弁装置3及び循環ファン4には、過大な熱応力が作用せず、これに伴う熱劣化の問題も発生しない。
図2及び図3は、給排切換弁装置3の各部構造を示す断面図であり、図2には、弁装置3の導出位置が示され、図3には、弁装置3の導入位置が示されている。
給排切換弁装置3は、給排管61、弁ハウジング51及び弁駆動装置33を直列に連結した構造を有する。弁駆動装置33は、支持部材58によって弁ハウジング51に一体的に取付けられたアクチュエータ50からなる。給排管61は、蓄熱体ケース22のフランジ部に気密連結され、炉内ガスの給排流路6を管内領域に形成する。導出ポート35を有するエルボ管36が給排流路6内に配置され、エルボ管36は、給排管61の管壁を貫通し、管外に突出する。エルボ管36の突出端に形成された接続フランジ部分は、導出管44、45を接続可能な炉内ガス導出口32を形成する。
弁ハウジング51は、給排管61の端部に気密連結され、炉内ガス再循環流の供給領域5がハウジング51内に形成される。弁ハウジング51は、ロッド挿通部52及び弁座部55を備える。アクチュエータ50のピストンロッド53が摺動可能にロッド挿通部52を貫通する。ピストンロッド53の先端部に固定された弁体54が弁座部55に着座する。給排管61、導出ポート35、弁体54、導入ポート34、弁座部55、アクチュエータ50、ロッド挿通部52及びピストンロッド53は、給排切換弁装置3の中心軸線CLを中心に同心状に配置される。導出ポート35、弁体54、導入ポート34及び弁座部55は、図1に示す弁機構30を構成する。
円形輪郭の導入ポート34が、弁座部55の中心に形成され、ピストンロッド53は、導入ポート34の中心部を貫通する。弁体54と気密接触可能な環状の着座部材56が、弁座部55に取付けられる。着座部材56は、給排流路6に面する弁座部55の面に配置される。ピストンロッド53の駆動側部分は、ロッド挿通部52を貫通して弁ハウジング51外に延び、アクチュエータ50内に延入する。アクチュエータ50は、流体圧作動型シリンダ装置(本例では、空気圧作動型シリンダ装置)からなり、作動流体回路(図示せず)がアクチュエータ5に接続されるとともに、制御ユニットC/Uの制御信号線59がアクチュエータ50の作動流体給排制御部(図示せず)に接続される。アクチュータ50の給排制御部は、制御信号線59を介して入力された制御信号に応答してピストンロッド53を伸縮し、上記の如く弁装置3を二位置制御する。
図2に示す弁装置3の導出位置では、アクチュエータ50は、アクチュエータ50内にピストンロッド53を引き込んでおり、弁体54は、弁座部55に着座し、弁体54及び着座部材56は、供給領域5及び給排流路6を通気不能に隔絶する。弁体54は、導出ポート35を完全に開放し、給排流路6は、炉内ガス導出口32と連通する。図1(A)に示す第1弁装置3A、図1(B)に示す第2弁装置3Bは、この導出位置の状態にある。
図3に示す弁装置3の導入位置では、アクチュエータ50は、ピストンロッド53をアクチュエータ50から伸長し、弁体54は、弁座部55から離座し、導出ポート35に着座する。弁体54及び導出ポート35は、給排流路6及び炉内ガス導出口32を通気不能に隔絶する。導入ポート34は完全に開放し、供給領域5は、給排流路6と連通する。図1(A)に示す第2弁装置3B、図1(B)に示す第1弁装置3Aは、この導入位置の状態にある。
図4は、本発明の他の実施形態を示す炉内ガス循環ユニットの縦断面図であり、図4(A) には、炉内ガス循環ユニットの第1作動状態が示され、図4(B) には、炉内ガス循環ユニットの第2作動状態が示されている。なお、図4以下の各図において、図1乃至図3に示す構成要素と実質的に同一又は同等の構成要素については、同一の参照符号が付されている。
図4に示す炉内ガス循環ユニット1は、枢動式開閉弁構造の弁体65を給排流路6に備える。開閉弁65は、回転可能な支軸66に固定され、支軸66は、アクチュエータ50の動力により回転する。開閉弁65は、支軸66の回転に従って、導出口31又は導入口32を選択的に開閉制御する。第1及び第2弁装置3A:3Bの各開閉弁65の位置は、逆位相に設定され、例えば、第1弁装置3Aが導出位置にあるとき、第2弁装置3Bは、導入位置をとり(図4(A))、第2弁装置3Bが導出位置にあるとき、第1弁装置3Aは、導入位置をとる(図4(B))。アクチュエータ50は、制御ユニットC/Uの制御下に所定時間毎に開閉弁65の位置を切換え、炉内ガス循環ユニット1は、図4(A)に示す第1作動状態と、図4(B)に示す第2作動状態とを所定時間毎に交互に反復する
図4に示す構造の弁装置3は、図2及び図3に示す弁構造に比べ、装置構造を小型化し且つ簡素化する上で有利に採用し得る。なお、図4に示す炉内ガス循環ユニット1の他の構造は、図1乃至図3に示す炉内ガス循環ユニットの各部構造と実質的に同じであるので、更なる詳細な説明は、省略する。
図5は、本発明の更に他の実施形態を示す炉内ガス循環ユニットの縦断面図である。
図5に示す炉内ガス循環ユニット1は、図1乃至図3に示す炉内ガス循環ユニットと同一構造の蓄熱装置2及び給排切換弁装置3を備え、循環回路の全体構成及び各部構造は、図1乃至図3に示す炉内ガス循環ユニット1と実質的に同一である。しかしながら、本実施形態の炉内ガス循環ユニット1は、循環回路内の炉内ガスに付加流体を添加する付加流体添加装置7を更に備える。添加装置7は、炉内ガス導入管41に介装される。付加流体供給管71が、添加装置7に接続され、制御弁72が、供給管71に介装される。
付加流体として、空気又は酸素、或いは、水蒸気が供給管71から添加装置7に供給される。炉内ガス循環ユニット1が吸引する炉内ガスは、一般に、0%〜10%の範囲の残存酸素濃度を有するにすぎず、また、炉内ガスの温度は、燃焼域の温度と実質的に等しく(Ti=1200℃)、依然としてかなりの高温である。炉内ガスは、蓄熱体21との熱交換により冷却し(T1=200℃)、導出管44、45、46の放熱により更に温度降下し、比較的低温の炉内ガスとして循環ファン4に吸引される。
循環ファン4は、炉内ガスを加圧し、炉内ガスは、循環ファン4の給気押込み圧力下に導入管41に送出される。添加装置7は、この炉内ガスに付加流体(空気又は酸素、或いは、水蒸気)を添加する。付加流体の添加量は、炉内ガス循環ユニット1の循環回路を循環する炉内ガス流量の5〜50%(重量比)の範囲内に設定され、制御弁72は、添加量を可変制御する。所望により、炉内ガスの一部が、排気制御弁48の制御下に排気管47(破線で示す)から系外に排気される。
再導入ガスは、付加流体の添加により、酸素量又は空気量、或いは、水蒸気量を調整した状態で蓄熱装置2の給排口20から炉内領域9に噴射する。酸素量又は空気量を調整した再導入ガスを炉内領域9に噴射することにより、炉内領域9の酸素分圧又は空気量を可変制御することができる。また、再導入ガスの噴流を火炎に差し向けることにより、炉内領域9の火炎帯の位置、ボリューム、方向性、或いは、燃焼反応自体を変化させることができる。逆に、再導入ガスの水蒸気量を増大することにより、炉内領域9の酸素分圧又は空気量を低減し、或いは、炉内に噴射した燃料に再導入ガスを混合衝突せしめ、燃料中の炭化水素を改質し、これにより、炉内燃焼反応の特性を変化させることが可能となる。
図6乃至図8は、炉内ガス循環ユニット1の給排パターンを示す正面図及び断面図である。
図6に示す炉内ガス循環ユニット1は、図1乃至図3に示す炉内ガス循環ユニットと同一であり、図6(B)及び図6(D)示す如く、上下一対の蓄熱装置2A:2B及び給排切換弁装置3A:3Bを備える。図6(A)及び図6(C)は、炉内領域から見た炉内ガス循環ユニット1の正面図であり、図6(B)及び図6(D)に示す炉内ガス循環ユニット1の各作動状態に夫々対応する。
図6(A)及び図6(B)に示す炉内ガス循環ユニット1の第1作動状態では、蓄熱装置2Aの給排口20は、炉内ガスを炉外に導出する導出口として機能し、蓄熱装置2Bの給排口20Bは、再導入ガスを炉内領域9に噴射する噴射口として機能する。他方、図6(C)及び図6(D)に示す炉内ガス循環ユニット1の第2作動状態では、蓄熱装置2Aの給排口20は、炉内ガスを炉内領域9に噴射する噴射口として機能し、蓄熱装置2Bの給排口20Bは、炉内ガスを炉外に導出する導出口として機能する。
制御ユニットC/Uは、アクチュエータ50の作動を制御し、給排切換弁装置3は、制御ユニットC/Uの制御下に導出位置及び導入位置の切換を所定時間毎に実行する。このような蓄熱装置2及び弁装置3の構成では、各給排口20の導出(吸引)流速及び噴射流速は、ほぼ等しい。なお、図6において、給排口20の導出(吸引)及び噴射の相違は、給排口20の明暗で表示されており、導出側(吸引側)の給排口20は、暗色で示され、噴射側の給排口20は、明色で示されている。
図7に示す炉内ガス循環ユニット1は、3箇所の給排口20を備えるとともに、これらの給排口20に相応する3機の蓄熱装置2A:2B:2C及び給排切換弁装置3A:3B:3Cを備える。各蓄熱装置2A:2B:2C及び各給排切換弁装置3A:3B:3Cの構造は、図1乃至図3に示すものと実質的に同一である。弁装置3A:3B:3Cは、単一の弁装置のみが噴射位置に位置し、他の2機の弁装置が導出位置に位置するように制御される。従って、3箇所の給排口20のうち、唯一の給排口が、再導入ガスを噴射する噴射口として機能し、他の2つの給排口が、炉内ガスを炉外に導出する導出口として機能する。弁装置3A:3B:3Cは又、3A→3B→3Cの順に噴射位置に切換えられる。従って、炉内ガス循環ユニット1は、図7(A)に示す第1作動状態では、蓄熱装置2Aの給排口20が噴射口として機能し、蓄熱装置2B:2Cの給排口20が導出口として機能し、図7(B)に示す第2作動状態では、蓄熱装置2Bの給排口20が噴射口として機能し、蓄熱装置2A:2Cの給排口20が導出口として機能し、更に、図7(C)に示す第3作動状態では、蓄熱装置2Cの給排口20が噴射口として機能し、蓄熱装置2A:2Bの給排口20が導出口として機能する。
この構成では、炉内領域9(図1)に開口する吸引側(導出側)開口の開口面積が、炉内領域9に開口する噴射側(導入側)開口の開口面積の2倍に設定されるので、噴射側開口を通過する炉内ガスの流速は、吸引側開口を通過する炉内ガスの流速の約2倍に高速化する。このような噴射流速の増大により、再導入ガス流に誘引される炉内ガス量が増加し、炉内ガス循環作用が更に活性化する。また、吸引流の流速低下により、噴射流が吸引側開口に誘引されるショートパス(短絡)作用を抑制することができる。
図8に示す炉内ガス循環ユニット1は、4箇所の給排口20を備えるとともに、これらの給排口20に対応する4機の蓄熱装置2A:2B:2C:2D及び給排切換弁装置3A:3B:3C:3Dを備える。各蓄熱装置2A:2B:2C:2D及び各給排切換弁装置3A:3B:3C:3Dの構造は、図1に示すものと実質的に同一である。弁装置3A:3B:3C:3Dは、単一の弁装置のみが噴射位置に位置し、他の3機の弁装置が導出位置に位置するように制御される。従って、給排口20のうち、唯一の給排口が、再導入ガスを炉内領域9に噴射する噴射口として機能し、他の3つの給排口が、炉内ガスを導出する導出口として機能する。弁装置3A:3B:3C:3Dは、3A→3B→3C→3Dの順に噴射位置に切換えられる。従って、炉内ガス循環ユニット1は、図7(A)に示す第1作動状態では、蓄熱装置2Aの給排口20が噴射口として機能し、蓄熱装置2B:2C:2Dの給排口20が導出口として機能し、図7(B)に示す第2作動状態では、蓄熱装置2Bの給排口20が噴射口として機能し、蓄熱装置2A:2C:2Dの給排口20が導出口として機能し、また、図7(C)に示す第3作動状態では、蓄熱装置2Cの給排口20が噴射口として機能し、蓄熱装置2A:2B:2Dの給排口20が導出口として機能し、更に、図7(D)に示す第4作動状態では、蓄熱装置2Dの給排口20が噴射口として機能し、蓄熱装置2A:2B:2Cの給排口20が導出口として機能する。
この構成では、炉内領域9(図1)に開口する吸引側(導出側)開口の開口面積が、炉内領域9に開口する噴射側(導入側)開口の開口面積の3倍となるので、噴射側開口を通過する炉内ガスの流速は、吸引側開口を通過する炉内ガスの流速の約3倍の流速に高速化する。このため、炉内ガス循環作用が活性化するとともに、前述のショートパス作用を確実に防止することができる。
以下、上記構成の炉内ガス循環ユニット1を備えた燃焼炉の実施例について説明する。
図9は、図5に示す炉内ガス循環ユニット1を備えた燃焼炉の構成を示す横断面図である。
燃焼炉は、炉体91内に形成された燃焼領域9を有し、燃焼領域9には、被加熱物95が配置される。燃焼炉には、被加熱物95を加熱するための燃焼設備として、バーナー8が配設される。バーナー8は、燃料供給設備、燃焼用空気供給設備、パイロットバーナ、保炎機構、燃焼制御装置等を備えた従来構成の燃焼炉用バーナーである。バーナー8の燃料及び燃焼用空気は、バーナータイル部分81から炉内領域9に噴出し、炉内領域9に火炎帯を形成する。なお、バーナー8として、ハニカム型蓄熱体又はペレット型蓄熱体等の蓄熱体を備えた交互燃焼式蓄熱型(リジェネレータ型)バーナーを採用しても良い。
バーナー8の燃料及び燃焼用空気が形成する火炎は、バーナー8の方向性、燃料噴射速度、空気噴射速度、空気比、バーナータイル部分81の形状、燃焼排ガス導出口の位置等により決定される。炉内ガス循環、火炎位置及び火炎性状等をバーナー8によってのみ制御するには自ずと限界があり、このため、炉内ガス循環ユニット1A:1Bが炉体91の適所に配置される。本例では、炉内ガス循環ユニット1Aは、燃焼炉の中心に対してバーナー8と対称な位置(対角線方向の位置)に配設され、炉内ガス循環ユニット1Bは、バーナー8を配置した炉壁と直交する炉壁に配設される。
炉内ガス循環ユニット1A:1Bは、一方の給排口20から炉内ガスを吸引し、蓄熱装置2により冷却し、冷却後の炉内ガスを循環ファン4により加圧し、他方の蓄熱装置2で再熱し、給排口20から炉内領域9に噴射する。炉内ガス循環ユニット1Aの噴射流は、高温の炉内ガスを付勢し、火炎と反対側に位置する被加熱物95の裏面側領域に炉内ガス流を差し向けるように炉内ガスに作用する。炉内ガス循環ユニット1Bの噴射流は、被加熱物95の裏面側領域に差し向けられた炉内ガスをバーナー8の火炎基部に向けて変向させるように炉内ガスを付勢する。この結果、炉内ガスの炉内循環が活性化し、炉内ガスの滞留領域又は死水領域が解消し、炉内領域9の温度場は、全域に亘って平準化する。
炉内ガス循環ユニット1A:1Bは又、吸引し且つ冷却した炉内ガスに対し、添加装置7により酸化剤(空気又は酸素)を添加する。また、炉内ガスの一部は、排気管47から系外に排気される。炉内ガスの酸素濃度が一般に0%〜10%であるのに対し、炉内ガス循環ユニット1A:1Bが噴射する炉内ガス噴流の酸素濃度は、例えば、5〜50%(重量比)に増加する。炉内ガスに対する酸化剤の添加量は、添加装置7によって制御される。炉内領域9を循環する炉内ガスに含まれる燃料未燃分は、炉内ガス循環ユニット1A:1Bの炉内ガス噴流と混合衝突し、燃焼・発熱する。また、添加装置7の酸化剤添加により、炉内ガスの酸素分圧は増大し、炉内の燃焼反応は、促進する。かくして、炉内ガス循環ユニット1A:1Bは、炉内循環促進手段、燃焼促進手段及び酸素分圧制御手段として機能する。
図10は、図9に示す燃焼炉の変形例を示す横断面図である。
被加熱物95の形態は、各燃焼炉の使用目的及び設計条件により相違する。図10に示す如く、変形した被加熱物95を加熱する場合、バーナー8の火炎帯の形状は、被加熱物95の輪郭に適したものに変形することが望ましい。従来のバーナー構造の場合、複数のバーナーを適所に配置することにより、被加熱物95に対する火炎の作用を調整し得るにすぎず、このため、燃料配管及び燃焼空気供給路等との関係より、各種配管及び機器類の配置に困難が生じ、設計自由度等に制約が生じていた。しかしながら、炉内ガス循環ユニット1は、このような系統の配管又は機器類の配置との関係では、設計上の制約が比較的少なく、任意の位置に配置することができる。
図10に示す燃焼炉では、炉内ガス循環ユニット1Aは、バーナー8を配置した炉壁と直交する炉壁に配設され、バーナー8が噴射する燃料及び燃焼用空気の噴流を被加熱物95に接近させる方向に変位させ、被加熱物95の形状に相応するように火炎形状を変形させる。炉内ガス循環ユニット1Bは、燃焼炉の中心に対してバーナー8と対称な位置(対角線方向の位置)に配設され、高温の炉内ガスを付勢し、火炎と反対側に位置する被加熱物95の裏面側領域に炉内ガス流を差し向けるように作用する。これにより、被加熱物95に対する火炎の作用を最適化するとともに、炉内ガス循環を活性化し、炉内温度場の温度平準化を図ることができる。所望により、添加装置7により再導入ガスに酸化剤等を添加し、炉内の燃焼反応を促進し、或いは、炉内雰囲気の酸素分圧を可変制御しても良い。
図11は、炉内ガス循環ユニットを備えた燃焼炉の他の実施例を示す横断面図である。
図11に示す燃焼炉は、図9に示す燃焼炉と同じく、燃焼領域9及びバーナー8を備える。バーナー8に隣接する炉体91の炉壁部分92は、バーナー8のバーナータイル部分81に対して所定角度をなして傾斜しており、この炉壁部分92には、図5に示す構造の炉内ガス循環ユニット1が配設される。
バーナー8は、燃料及び燃焼用空気をバーナータイル部分81から炉内領域9に噴出し、炉内ガス循環ユニット1は、一方の給排口20から炉内ガスを吸引して蓄熱装置2により冷却し、冷却後の炉内ガスを循環ファン4により加圧し、他方の蓄熱装置2で再熱して給排口20から炉内領域9に噴射する。
本実施例では、炉内ガス循環ユニット1は、前述のような炉内循環促進手段、燃焼促進手段及び酸素分圧制御手段としての作用に加えて、バーナー8の燃焼ガス運動量を増大するモーメンタム増大手段として有効に働く。即ち、バーナー8が噴射した燃料及び燃焼用空気は、炉内領域9で混合衝突し、燃焼・発熱するが、これに炉内ガス循環ユニット1の炉内噴流が更に混合衝突し、燃料及び燃焼用空気のモーメンタムは、増大する。炉内ガス循環ユニット1の炉内噴流は、バーナー8の燃料噴射流及び空気噴射流の方向に対して角度Θをなして衝突し、燃料及び空気の噴射流は、その運動量を増大し、火炎の到達距離を増大させる。
炉内ガス循環ユニット1は又、添加装置7により酸化剤(空気又は酸素)を調整した高温の炉内ガスを噴射し、バーナー8の燃料噴射流及び空気噴射流に混合衝突せしめる。炉内ガス循環ユニット1の炉内ガス流は、バーナー8の燃焼用空気を希釈し、燃焼用空気の酸素濃度を低下するので、火炎は、緩慢燃焼による比較的低温の火炎として炉内領域9に生成する。このような火炎は、窒素酸化物(NOx)の生成を抑制する上で有利であるのみならず、燃焼反応の拡散、火炎容積の拡大、火炎温度の低下・平準化、火炎の局部高温の防止等を図る上で有利である。
所望により、炉内ガス循環ユニット1は、吸引した炉内ガスに対して5〜50%の空気、或いは、更に多量の空気を混合しても良く、この場合、再導入ガスは、高温且つ高酸素分圧の酸化剤として炉内領域9に噴射する。炉内ガス循環ユニット1が噴射する炉内ガスは、バーナー8が炉内領域9に供給する燃料及び空気の噴流と衝突混合し、燃料の燃焼・発熱を促進する。
変形例として、炉内ガス循環ユニット1は、吸引した炉内ガスに対して水蒸気を添加しても良い。炉内ガスと混合した水蒸気は、蓄熱装置により加熱され、800℃以上の高温に加熱される。炉内ガス中の炭化水素及び未燃分は、水蒸気と反応し、改質され、適切な条件設定により、燃焼反応を変化させ又は最適化することができる。
図12は、炉内ガス循環ユニットと、炉内ガス循環ユニットと実質的に同様の構造を有する高温空気噴射装置とを備えた燃焼炉の実施例を示す横断面図である。
図12に示す燃焼炉のバーナー8は、燃料供給管89に接続された燃料噴射ノズル87を備えるとともに、燃焼用空気供給管74に接続された空気供給装置88を備える。空気供給管74は、空気供給用主管73に接続され、主管73は、給気ファン75に接続される。付加流体供給管71が、主管73から分岐し、炉内ガス循環ユニット1の添加装置7に接続される。炉内ガス循環ユニット1は、バーナー8を配置した炉壁に配設され、バーナー8の両側に対をなして左右対称に位置決めされる。
炉内ガス循環ユニット1は、前述の如く、炉内ガスの循環を促進し、燃焼反応を促進するとともに、炉内雰囲気の酸素分圧を制御する手段として機能する。前述の如く、炉内ガス循環ユニット1が噴射する再導入ガスは、バーナー8が噴射する燃焼ガスを補助し、その噴出運動量及び流れ方向の制御、或いは、混合促進等を図る。
本例の燃焼炉は更に、バーナー8と対向する炉壁に配置された高温空気噴射装置80を備える。高温空気噴射装置80は、炉内ガス循環ユニット1と酷似した構造を有し、ハニカム構造の蓄熱体を収容した蓄熱装置82、蓄熱装置82に直列に連結された切換弁装置83を備える。蓄熱装置82及び切換弁装置83の構造は、前述の蓄熱装置2及び弁装置3の構造と実質的に同一である。空気供給用主管73から分岐する給気管76、77が、弁装置83の給気口に接続され、排気ファン94の吸引口に接続された排気管78、79が、弁装置83の排気口に接続される。
図12に示す弁装置83の作動状態では、燃焼用空気が給気管76から弁装置83内の給気領域85に導入され、蓄熱装置82の蓄熱体と伝熱接触して800℃以上の高温に加熱され、高温の燃焼用空気として炉内領域9に噴射する。同時に、炉内ガスが、排気ファン94の排気誘引圧力下に蓄熱装置82の蓄熱体を通過して蓄熱体と伝熱接触し、冷却する。降温した炉内ガスは、弁装置83の給排領域86及び排気管79を介して排気ファン94に吸引され、系外に排気される。
図12に示す弁装置83の位置は、所定時間後に切換えられ、燃焼用空気は、給気管77から給気領域85に導入され、蓄熱装置82の蓄熱体と伝熱接触して800℃以上の高温燃焼用空気として炉内領域9に噴射し、炉内ガスは、排気ファン94の排気誘引圧力下に蓄熱装置82の蓄熱体を通過して蓄熱体と伝熱接触し、冷却し、給排領域86及び排気管78を介して排気ファン94に吸引され、系外に排気される。
弁装置83の位置は、60秒以下に設定された所定時間毎に交互に切換えられ、高温空気噴射装置80は、いずれか一方の蓄熱装置82から高温の燃焼用空気を炉内領域9に噴射し、他方の蓄熱装置82から炉内ガスを系外に排気する。
このような高温空気噴射装置80として、本発明の炉内ガス循環ユニットを使用しても良く、この場合、炉内ガス循環ユニットは、炉内ガスの全量を系外に排気して炉内ガスを付加流体(空気)に完全に置換するように制御される。
図13は、炉内ガス循環ユニット1を配設した管式加熱炉の実施例を示す横断面図である。
図13に示す管式加熱炉は、区画壁93により区画された第1炉内領域9’及び第2炉内領域9”を備え、炉内領域9’9”は、連通部を介して連続する。被加熱流体が流通する被加熱管96、97が炉内領域9’9”に夫々配置され、炉内領域9’9”を垂直に貫通する。このような管式加熱炉として、例えば、水蒸気改質炉又はエチレン分解炉等を例示し得る。
バーナー8が、炉内領域9’の炉壁に配置され、炉内領域9’内に火炎帯を形成し、火炎は、火炎方向に沿って炉内領域9’に配列した被加熱管96を加熱し、管内を流通する被加熱流体を加熱する。炉内領域9’の燃焼ガスは、連通部を介して炉内領域9”に流動し、排気口99の排ガス流路98を介して炉外に排気される。
炉内ガス循環ユニット1A:1Bが、炉内領域9”の炉壁に配置され、ユニット1A:1Bは、炉内ガスを吸引し且つ冷却し、加圧した後、再熱して炉内領域9”に噴射する。炉内領域9”には、被加熱管97が炉内ガス循環ユニット1A:1Bの噴射方向と平行に複数列に配列され、垂直な被加熱管97内には、被加熱流体が流通する。炉内領域9”内に流入した炉内ガスは、炉内ガス循環ユニット1A:1Bの循環作用により炉内領域9”を活発に循環し、各被加熱管97を均等に加熱する。
炉内ガス循環ユニット1A:1Bは又、炉内領域9”に流入した高温の炉内ガスが短絡的に排気口99に流入するのを阻止するとともに、高温の炉内ガスが効果的に被加熱管97を加熱するように炉内ガス循環を活性化し且つ炉内温度場を平準化する。これにより、被加熱管97の密度及び配置の設計自由度を向上するとともに、管式加熱炉の全体サイズを小型化することが可能となる。なお、炉内ガス循環ユニット1を炉内領域9’の炉壁に更に設けても良い。
図14は、炉内ガス循環ユニット1の各給排口20の方向性及び相対位置を説明するための概念図である。
図14(A)には、中心軸線をα方向及びβ方向に夫々配向した蓄熱装置2から構成される炉内ガス循環ユニット1が示されている。前述の如く、各蓄熱装置2の給排口20は、一方が炉内ガスを吸引し、他方が加圧・再熱後の炉内ガスを炉内に噴射するが、図14においては、説明を簡略化すべく、給排口20が同時に炉内ガスを炉内に噴射する状態が示されている。
給排口20の自由噴流Gの拡り角度(半角)θ2は、通常は、10°程度であると考えられる。蓄熱装置2の各中心軸線(方向α、β)の相対的な角度θ1が20°以下であれば、給排口20の噴流は、少なくとも部分的に平行の噴流を形成する。従って、給排口20の各中心軸線(方向α、β)の角度θ1は、20°〜−20°の範囲内に設定され、給排口20は、炉内領域の特定部分に対して実質的に同方向の再導入流を噴射する。好ましくは、角度θ1は、10°〜−10°の範囲内に設定される。
図14(B)には、給排口20の自由噴流Gの性状を示す概略側面図が示されている。
給排口20の直径を寸法値Dとした場合、中心軸線α:βに沿って給排口20から下流側に測定した距離が約4D〜5Dまでの領域には、噴流Gの中心部Fにポテンシャルコアと呼ばれる部分が形成される。この領域では、中心部Fは、給排口20の出口流速と実質的に同じ流速を維持する。給排口20からの距離が約5Dを超え、約10Dまでの範囲の領域は、遷移領域と呼ばれる領域であり、給排口20からの距離が約10Dを超える領域は、発達領域と呼ばれる領域である。一般に、噴流Gの流速は、発達領域では、かなり減衰する。従って、並列の噴流Gを同時に噴射した場合に発達領域で初めて合流するように各給排口20を配置するとすれば、各噴流Gは、互いの運動を干渉しない噴流、即ち、独立した別の噴流として把握される。
互いに接近して配置された給排口20に関し、各給排口20が同時に噴流Gを噴射すると仮定すると、図14(C)に示す中心軸線間の距離(x+D)が約3D以下の範囲(y≦5D)であれば、中心部Fにポテンシャルコアを形成している領域同士の合流が少なくとも部分的に生じ、中心軸線間の距離(x+D)が約3〜5Dの範囲(5D<y≦10D)であれば、遷移領域同士の合流が少なくとも部分的に生じる。いずれの場合であっても、発達領域で初めて合流する場合と異なり、噴流Gが周囲に与える影響は、単一の給排口から噴射した噴流の影響と同等であると考えることができる。従って、給排口20の中心間距離(x+D)は、好ましくは、5D以下、更に好ましくは、3D以下に設定され、例えば、3D〜5Dの範囲内に設定される。
なお、図14(C)に示す距離x、yの幾何学的関係は、以下のとおりである。
(i) y=5Dの場合
5D/0.5x=tan(90°−θ2) =tan 80°=5.6713
x=(5D/5.6713)/0.5=1.763D
x+D=2.763D=約3.0D
(ii) y=10Dの場合
10D/0.5x=tan80°=5.6713
x=(10D/5.6713)/0.5=3.47D
x+D=4.47D=約5D
以上、本発明の好適な実施形態及び実施例について詳細に説明したが、本発明は上記実施形態及び実施例に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変形又は変更が可能であり、該変形例又は変更例も又、本発明の範囲内に含まれるものであることは、いうまでもない。
例えば、アニーリング等を行う鉄鋼加熱炉や、トンネル型キルン等の窯業焼成炉に上記炉内ガス循環ユニットを使用しても良い。この場合、炉内ガス循環ユニットは、炉内循環の活性化や、炉内温度場の平準化を図るために使用し得るばかりでなく、不活性ガスの炉内導入、焼成雰囲気の調整等の如く、燃焼設備の使用目的に相応した用途に適応し得る。
また、上記実施例では、炉内ガス循環ユニットは、炉の側壁に配置されているが、炉内ガス循環ユニットは、炉体の底壁又は頂壁に配置しても良い。
更に、蓄熱体及び給排切換弁装置は、4機以下に限定されるものではなく、炉内ガス循環ユニットは、必要に応じて5機以上の蓄熱体及び給排切換弁装置を備えても良い。
本発明の炉内ガス循環ユニットは、管式加熱炉、金属加熱炉、窯業焼成炉、金属溶融炉、ガス化溶融炉又はボイラー等の燃焼炉に好ましく使用され、炉内ガス循環ユニットの作動により、炉内ガスの炉内循環又は攪拌、或いは、炉内の燃焼雰囲気は、制御される。
図1は、本発明の好適な実施形態を示す炉内ガス循環ユニットの縦断面図である。 図1に示す給排切換弁装置の各部構造を示す断面図であり、弁装置の導出位置が示されている。 図2と同じく、給排切換弁装置の各部構造を示す断面図であり、弁装置の導入位置が示されている。 本発明の他の実施形態を示す炉内ガス循環ユニットの縦断面図である。 本発明の更に他の実施形態を示す炉内ガス循環ユニットの縦断面図である。 炉内ガス循環ユニットの給排パターンを示す正面図及び断面図である。 炉内ガス循環ユニットの他の給排パターンを示す正面図及び断面図である。 炉内ガス循環ユニットの更に他の給排パターンを示す正面図及び断面図である。 図5に示す炉内ガス循環ユニットを備えた燃焼炉の構成を示す横断面図である。 図9に示す燃焼炉の変形例を示す横断面図である。 図5に示す炉内ガス循環ユニットを備えた燃焼炉の他の実施例を示す横断面図である。 炉内ガス循環ユニットと、炉内ガス循環ユニットと実質的に同様の構造を有する高温空気噴射装置とを備えた燃焼炉の実施例を示す横断面図である。 炉内ガス循環ユニットを配設した管式加熱炉の実施例を示す横断面図である。 炉内ガス循環ユニットの各給排口の方向性及び相対位置を説明するための概念図である。
符号の説明
1 炉内ガス循環ユニット
2 蓄熱装置
3 給排切換弁装置
4 循環ファン
9 炉内領域
20 炉内ガス給排口
21 蓄熱体
22 蓄熱体ケース
23 支持基板
30 弁機構
31 炉内ガス導入口
32 炉内ガス導出口
33 弁駆動装置
34 導入ポート
35 導出ポート
41、42、43 導入管
44、45、46 導出管
47 排気管
48 排気制御弁
91 炉体
92 炉内壁面

Claims (16)

  1. 炉内ガスを炉外に導出する導出口として機能するとともに、炉内ガスの再導入流を炉内に噴射する噴射口として機能する給排口を備えた第1及び第2蓄熱装置と、
    冷却後の前記炉内ガスを加圧し、前記蓄熱装置を介して炉内ガスを前記給排口に送出する循環ファンと、
    第1蓄熱装置を介して炉内ガスを炉外に導出し、第2蓄熱装置を介して再導入ガスを炉内に噴射する第1位置と、第2蓄熱装置を介して炉内ガスを炉外に導出し、第1蓄熱装置を介して再導入ガスを炉内に噴射する第2位置とに切換可能な給排切換弁装置とを有し、
    前記第1及び第2蓄熱装置は夫々、前記炉内ガスとの伝熱接触により受熱し、前記炉内ガスを冷却するとともに、前記再導入流との伝熱接触により放熱し、該再導入流を加熱する蓄熱体を備え、
    前記第1及び第2蓄熱装置の各給排口は、炉内領域の特定部分に実質的に同方向の前記再導入流を継続的に噴射するように、炉体の内壁面に並列且つ互いに接近して配置され、前記給排切換弁装置は、前記第1位置及び第2位置に交互に切換えられることを特徴とする炉内ガス循環ユニット。
  2. 炉体と一体化して炉内壁面を形成する支持基板を更に有し、前記蓄熱装置は、蓄熱体を収容したケーシングを備え、該ケーシングは、前記支持基板に一体的に支持されることを特徴とする請求項1に記載の炉内ガス循環ユニット。
  3. 第3蓄熱装置を更に有し、前記給排切換弁装置は、いずれか1つの前記蓄熱装置の給排口から再導入ガスを炉内に噴射し、他の2つ前記蓄熱装置の給排口から炉内ガスを導出するように切換制御されることを特徴とする請求項1又は2に記載の炉内ガス循環ユニット。
  4. 第4蓄熱装置を更に有し、前記給排切換弁装置は、いずれか1つの前記蓄熱装置の給排口から再導入ガスを炉内に噴射し、他の3つ前記蓄熱装置の給排口から炉内ガスを導出するように切換制御されることを特徴とする請求項3に記載の炉内ガス循環ユニット。
  5. 前記給排切換弁装置は、各々の前記蓄熱装置に直列に連結され、各給排切換弁装置の切換時期を調整する制御装置が更に設けられることを特徴とする請求項1乃至4のいずれか1項に記載の炉内ガス循環ユニット。
  6. 冷却後の炉内ガスに付加流体を添加する添加装置を更に有することを特徴とする請求項1乃至5のいずれか1項に記載の炉内ガス循環ユニット。
  7. 冷却後の炉内ガスの一部を系外に排気する排気手段を更に有することを特徴とする請求項1乃至6のいずれか1項に記載の炉内ガス循環ユニット。
  8. 請求項1乃至7のいずれか一項に記載の炉内ガス循環ユニットを使用した炉内燃焼方法において、
    前記再導入流を炉内領域に噴射し、炉内ガス循環を活性化することを特徴とする炉内燃焼方法。
  9. 炉内に配置された被加熱物の周辺に形成され且つ前記火炎又はその輻射熱の作用が直接に及ばない炉内領域の部分に前記再導入流を噴射し、前記被加熱物の被加熱作用を改善することを特徴とする請求項8に記載の炉内燃焼方法。
  10. 請求項1乃至7のいずれか一項に記載の炉内ガス循環ユニットを使用した炉内燃焼方法において、
    前記再導入流を炉内火炎に向けて噴射し、該火炎の到達距離、方向及び/又は火炎容積を制御することを特徴とする炉内燃焼方法。
  11. 請求項1乃至7のいずれか一項に記載の炉内ガス循環ユニットを使用した炉内燃焼方法において、
    炉内火炎を形成するための燃焼設備が炉内に噴射する燃料及び燃焼用空気と混合衝突するように前記再導入流を炉内に噴射し、前記燃料及び燃焼用空気の燃焼反応を制御することを特徴とする炉内燃焼方法。
  12. 請求項6又は7に記載の炉内ガス循環ユニットを使用した炉内燃焼方法において、
    前記付加流体を添加した再導入流を炉内に噴射し、炉の燃焼設備が形成する炉内火炎の性状又は炉内燃焼雰囲気を制御することを特徴とする炉内燃焼方法。
  13. 前記付加流体として、空気、酸素、水蒸気及び/又は不活性ガスが前記再導入流に添加されることを特徴とする請求項12に記載の炉内燃焼方法。
  14. 請求項3又は4に記載の炉内ガス循環ユニットを使用した炉内燃焼方法において、
    前記給排口から噴射する再導入流の流速に対して、前記給排口から吸引される炉内ガス流の流速を1/2以下に低下し、前記給排口の間のガス流のショートパスを防止することを特徴とする炉内燃焼方法。
  15. 前記再導入流の中心軸線の相対的な角度が、20°〜−20°の範囲内に制限されることを特徴とする請求項1乃至7のいずれか1項に記載の炉内ガス循環ユニット。
  16. 前記給排口の中心間距離は、該給排口の直径Dに対し、5D以下に設定されることを特徴とする請求項1乃至7又は15のいずれか1項に記載の炉内ガス循環ユニット。
JP2004139295A 2003-05-08 2004-05-10 炉内ガス循環ユニット Expired - Lifetime JP4033851B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004139295A JP4033851B2 (ja) 2003-05-08 2004-05-10 炉内ガス循環ユニット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003129710 2003-05-08
JP2004139295A JP4033851B2 (ja) 2003-05-08 2004-05-10 炉内ガス循環ユニット

Publications (2)

Publication Number Publication Date
JP2004354041A true JP2004354041A (ja) 2004-12-16
JP4033851B2 JP4033851B2 (ja) 2008-01-16

Family

ID=34067022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004139295A Expired - Lifetime JP4033851B2 (ja) 2003-05-08 2004-05-10 炉内ガス循環ユニット

Country Status (1)

Country Link
JP (1) JP4033851B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015210050A (ja) * 2014-04-28 2015-11-24 日本ファーネス株式会社 高温酸素燃焼装置及び高温酸素燃焼方法
JP2017083150A (ja) * 2015-10-30 2017-05-18 音羽電機工業株式会社 加熱炉及び加熱方法
CN106959014A (zh) * 2017-04-19 2017-07-18 项玮 工业炉蓄热式强制炉气循环装置
CN107014213A (zh) * 2017-04-19 2017-08-04 项玮 工业炉用蓄热式冲击传热装置
CN107036450A (zh) * 2017-04-19 2017-08-11 项玮 蓄热式高速冲击传热工业炉

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015210050A (ja) * 2014-04-28 2015-11-24 日本ファーネス株式会社 高温酸素燃焼装置及び高温酸素燃焼方法
JP2017083150A (ja) * 2015-10-30 2017-05-18 音羽電機工業株式会社 加熱炉及び加熱方法
CN106959014A (zh) * 2017-04-19 2017-07-18 项玮 工业炉蓄热式强制炉气循环装置
CN107014213A (zh) * 2017-04-19 2017-08-04 项玮 工业炉用蓄热式冲击传热装置
CN107036450A (zh) * 2017-04-19 2017-08-11 项玮 蓄热式高速冲击传热工业炉
CN106959014B (zh) * 2017-04-19 2019-04-05 项玮 工业炉蓄热式强制炉气循环装置
CN107014213B (zh) * 2017-04-19 2019-06-21 项玮 工业炉用蓄热式冲击传热装置
CN107036450B (zh) * 2017-04-19 2019-11-29 项玮 蓄热式高速冲击传热工业炉

Also Published As

Publication number Publication date
JP4033851B2 (ja) 2008-01-16

Similar Documents

Publication Publication Date Title
JP3460441B2 (ja) 燃焼装置および該燃焼装置を具備した熱設備
KR100827869B1 (ko) 연료공급장치 및 연료공급방법
KR100659678B1 (ko) 연소 방법 및 버너
KR20080086533A (ko) 촉매 또는 고온산화제가 배제된 불꽃 없는 연소를 위한시스템, 장치 및 방법
JPWO2008156146A1 (ja) 高温空気燃焼技術を用いた反応炉
JP4033851B2 (ja) 炉内ガス循環ユニット
JP2524025B2 (ja) 低カロリ―ガスの燃焼バ―ナ構造およびその燃焼方法
CN107504487B (zh) 连续弥散式燃烧装置及形成连续弥散燃烧的方法
PL196688B1 (pl) Grzejnik do pirolizy
JP4445222B2 (ja) 反応炉の燃焼制御方法及び反応炉
JP4863541B2 (ja) 燃焼装置及び燃焼方法
JP4248132B2 (ja) 燃料供給装置及び燃料供給方法
JP2002061806A (ja) 低NOx燃焼方法並びにバーナ
JP2007101129A (ja) 蓄熱式バーナ装置とその運転方法
JP6541050B2 (ja) 高温酸素燃焼装置及び高温酸素燃焼方法
JP3031908B1 (ja) 衝突撹拌式燃焼方法
JP2001124307A (ja) 無酸化還元燃焼方法並びにバーナ
JP4167608B2 (ja) 予混合ガス燃焼装置
JP3305506B2 (ja) 蓄熱燃焼装置
JP4643385B2 (ja) 高温気流発生装置
JP2000283418A (ja) 低NOxラジアントチューブバーナ及びその運転制御方法
KR20010061446A (ko) 복사전열관이 부착된 축열식 연소장치 및 이를 이용한질소 산화물 저감방법
SU1714294A1 (ru) Топка водогрейного котла
JP2003074834A (ja) 蓄熱式バーナ及びその燃焼方法
JP2000346314A (ja) 交互燃焼式蓄熱型バーナシステム及びそれを利用した加熱炉

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4033851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250