JP2004351749A - Propylene polymer multi-layer film for vapor deposition and multi-layer vapor deposited film - Google Patents

Propylene polymer multi-layer film for vapor deposition and multi-layer vapor deposited film Download PDF

Info

Publication number
JP2004351749A
JP2004351749A JP2003152279A JP2003152279A JP2004351749A JP 2004351749 A JP2004351749 A JP 2004351749A JP 2003152279 A JP2003152279 A JP 2003152279A JP 2003152279 A JP2003152279 A JP 2003152279A JP 2004351749 A JP2004351749 A JP 2004351749A
Authority
JP
Japan
Prior art keywords
propylene
layer
film
vapor
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003152279A
Other languages
Japanese (ja)
Other versions
JP4381722B2 (en
Inventor
Eiichi Taguchi
栄一 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohcello Co Ltd
Original Assignee
Tohcello Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohcello Co Ltd filed Critical Tohcello Co Ltd
Priority to JP2003152279A priority Critical patent/JP4381722B2/en
Publication of JP2004351749A publication Critical patent/JP2004351749A/en
Application granted granted Critical
Publication of JP4381722B2 publication Critical patent/JP4381722B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a propylene polymer multi-layer film for vapor deposition which shows improved adhesive properties with an inorganic compound-vapor deposited film, low temperature heat sealing properties, sealing performance and resistance to blocking/ripping without disturbing wettability, and to provide a multi-layer vapor-deposited film. <P>SOLUTION: The propylene polymer multi-layer film for vapor deposition is composed of a heat fusing layer obtained from a propylene/α-olefin copolymer (A) which shows a peak temperature (Tp) sought from a crystal fusion curve based on DSC being 110 to 140°C and the difference (Te - Ts) between a fusion initiating temperature (Ts) and a fusion ending temperature (Te) being less than 45°C and a vapor-deposited layer obtained from a propylene polymer (B). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は無機化合物蒸着膜との密着性、濡れ性阻害することなく、低温ヒートシール性、密封性が改良された蒸着用プロピレン系重合体多層フィルム及び多層蒸着フィルムに関する。
【0002】
【従来の技術】
ポリプロピレンフィルムは、低密度ポリエチレン、線状低密度ポリエチレン等のエチレン系重合体から得られるフィルムに比べて、ヒートシール強度、透明性、腰の強さ、耐ブロッキング性、耐熱性等に優れるので、菓子、パン、野菜、麺等の食品、或いはシャツ、ズボン等の衣料品を始めとする日用品等あらゆる分野の製品の包装材料として広く使用されている。さらにポリプロピレンフィルムのガス遮断性、防湿性を向上させる目的で、ポリ塩化ビニリデンをポリプロピレンフィルムの表面にコートしたり、ポリプロピレンフィルムにアルミニウムあるいは酸化アルミニウム等の無機化合物を蒸着することも広く行われている。
【0003】
ポリプロピレンフィルムへの蒸着膜の密着性を改良する方法として、さポリプロピレンフィルムにエチレンと炭素量3〜6のα−オレフィン0.25〜15重量%のランダム共重合体層を形成した上に金属層を形成した複層金属化包装用フィルム(例えば、特許文献1)、アイソタクティシティが高いポリプロピレン層とポリオレフィン系共重合体層からなるポリオレフィン系無延伸フィルムのポリプロピレンフィルム上に無機化合物を蒸着してなるフィルム(例えば、特許文献2)、ポリプロピレンフィルム上にポリエステルウレタン系樹脂からなる被膜層を設けてなるポリプロピレンフィルム(例えば、特許文献3)等種々提案されている。
【0004】
【特許文献1】
米国特許4、357、383号公報
【特許文献2】
特開平10−34846号公報公報(特許請求の範囲)
【特許文献3】
特開2001−54939号公報(特許請求の範囲)
【0005】
しかしながら、ポリプロピレンフィルムの表面にランダム共重合体層等を積層したフィルムは、ランダム共重合体に含まれる低結晶性成分あるいは低分子量成分が蒸着槽内で揮発することにより、密着性が阻害される虞があることから未だ無機化合物膜との密着性が充分とは言えず、又、ポリエステルウレタン系樹脂からなる被膜層を設けることにより密着性は改良されるが、ヒートシール性を持たせるためにポリプロピレンとしてエチレン等のα―オレフィンとのランダム共重合体を用いると、蒸着フィルムを巻き取った状態(ロール状フィルム)で保管している間にランダム共重合体に含まれている低結晶性成分あるいは低分子量成分が表面に染み出し、結果として相対する無機化合物蒸着膜の表面に転写され、蒸着フィルムの品質が低下する虞がある。
【0006】
【発明が解決しようとする課題】
そこで本発明は、無機化合物蒸着膜との密着性、濡れ性が阻害されずに、低温ヒートシール性、密封性、ブロッキング性、引裂性が改良された蒸着用プロピレン系重合体多層フィルム及び多層蒸着フィルムを得ることを目的として種々検討した。
【0007】
【課題を解決するための手段】
【発明の概要】
本発明は、DSCに基づく結晶融解曲線から求められたピーク温度(Tp)が110〜140℃及び融解開始温度(Ts)と融解終了温度(Te)との差(Te−Ts)が45℃未満のプロピレン・α―オレフィン共重合体(A)から得られる熱融着層及びプロピレン系重合体(B)から得られる被蒸着層からなることを特徴とする蒸着用プロピレン系重合体多層フィルム及び被蒸着層面に無機化合物が蒸着されてなる蒸着多層フィルムに関する。
【0008】
また本発明は、熱融着層を構成するプロピレン・α―オレフィン共重合体(A)がエチレン系重合体(C)、好ましくは高密度ポリエチレン(D)を5重量%以下含んでなる蒸着用プロピレン系重合体多層フィルム及び被蒸着層面に無機化合物が蒸着されてなる蒸着多層フィルムに関する。
【0009】
また本発明は、被蒸着層を構成するプロピレン系重合体(B)がエチレン系重合体(C)を35重量%以下、好ましくは高密度ポリエチレン(D)を5重量%以下、及び線状低密度ポリエチレン(E)を15〜25重量%の範囲で含んでなる蒸着用プロピレン系重合体多層フィルム及び被蒸着層面に無機化合物が蒸着されてなる蒸着多層フィルムに関する。
【0010】
また本発明は、DSCに基づく結晶融解曲線から求められたピーク温度(Tp)が110〜140℃及び融解開始温度(Ts)と融解終了温度(Te)との差(Te−Ts)が45℃未満のプロピレン・α―オレフィン共重合体(A)から得られる熱融着層、DSCに基づく結晶融解曲線から求められたピーク温度(Tp)が110〜140℃及び融解開始温度(Ts)と融解終了温度(Te)との差(Te−Ts)が45℃未満のプロピレン・α―オレフィン共重合体(A)若しくはプロピレン系重合体(B)から得られる中間層、及びプロピレン系重合体(B)から得られる被蒸着層からなる蒸着用プロピレン系重合体多層フィルム及び被蒸着層面に無機化合物が蒸着されてなる多層蒸着フィルムに関する。
【0011】
【発明の具体的説明】
プロピレン・α−オレフィンランダム共重合体(A)
本発明に係わるプロピレン・α−オレフィン共重合体(A)は、DSCに基づく結晶融解曲線から求められたピーク温度(Tp)が110〜140℃、好ましくは115〜130℃、融解開始温度(Ts)と融解終了温度(Te)との差(Te−Ts)が45℃未満、好ましくは30〜40℃の範囲にあり、好ましくは融解開始温度(Ts)とピーク温度(Tp)との差(Tp−Ts)が35℃未満、より好ましくは25〜34℃の範囲にある。プロピレン・α−オレフィン共重合体(A)のα―オレフィンの含有量は上記熱融解特性を有する限りとくに制限はされないが、通常はα―オレフィンの含有量は1.0〜20重量%、より好ましくは1.5〜15重量%の範囲にある。α―オレフィンとしては、エチレン、1−ブテン、1−ヘキセン、4−メチル・1−ペンテン、1−オクテン等が例示できる。これらの中では、エチレン及び/又は1−ブテンとのランダム共重合体が好ましい。又、MFR(メルトフローレート;ASTM D−1238 荷重2160g、温度230℃)はフィルムとすることができる限り特に限定はされないが、通常0.5〜10g/10分、好ましくは2〜5g/10分の範囲にある。本発明に係わるプロピレン・α−オレフィン共重合体(A)は通常、分子量分布(重量平均分子量Mwと数平均分子量Mnとの比で表される)が2〜3の範囲にある。
本発明に係わるプロピレン・α―オレフィン共重合体(A)は、蒸着用プロピレン系重合体多層フィルムの熱融着層及び中間層の原料となる。
本発明に係わるプロピレン・α−オレフィン共重合体(A)の上記ピーク温度(Tp)、融解開始温度(Ts)及び融解終了温度(Te)は以下の方法で測定した。プロピレン・α−オレフィン共重合体(A)約5mgを秤量し、セイコ−電子工業株式会社製の示差走査熱量計(タイプDSC220モジュ−ル)を用いて、昇温速度;10℃/分で200℃まで昇温し、200℃で5分間保持した後、降温速度;100℃/分で0℃まで冷却し、再度、昇温速度;10℃/分で0℃〜200℃まで昇温したときの融解曲線を測定し、かかる融解曲線から、ASTM D3419の方法に習い、融解曲線からピ−ク温度(Tp)、融解開始温度(Ts)、融解終了温度(Te)を求めた。尚、本発明では、ASTM D3419に記載の(Tpm1)を(Tp)、(Teim)を(Ts)及び(Tefm)を(Te)とした。
【0012】
プロピレン系重合体(B)
本発明に係わるプロピレン系重合体(B)は、プロピレンの単独重合体、またはプロピレンと10重量%以下、好ましくは5重量%以下のα−オレフィンとの共重合体、あるいは単独重合体と共重合体との組成物である。α−オレフィンは、プロピレン以外の通常炭素数2〜10のα−オレフィンであって、例えば、エチレン、1−ブテン、3−メチル−1−ブテン、1―ペンテン、3―メチル―1―ペンテン、4−メチル−1−ペンテン、1―へキセン、1―オクテン等を挙げることができる。これらα−オレフィンの中でも、得られる蒸着用プロピレン系重合体多層フィルムの剛性、耐熱性の面からプロピレン単独重合体が好ましい。かかるプロピレン重合体(B)は、フィルムとして成形できる限り、特に限定はされないが、MFR(メルトフローレート;ASTM D−1238 荷重2160g、温度230℃)が、通常0.1〜100g/10分、好ましくは1〜50g/10分の範囲にある。
本発明に係わるプロピレン重合体(B)は、蒸着用プロピレン系重合体多層フィルムの被蒸着層及び中間層の原料となる。
【0013】
エチレン系重合体(C)
本発明に係わるエチレン系重合体(C)は、通常、密度が0.900〜0.970g/cm3、好ましくは0.910〜0.960g/cm3、MFR(ASTM D1238 荷重2160g、温度190℃)が1〜50g/10分、好ましくは10〜30g/10分の、エチレンの単独重合体、若しくはエチレンと少量の炭素数が3〜10のα−オレフィン、例えばプロピレン、ブテン−1、ヘプテン−1、ヘキセン−1、オクテン−1、4−メチル−ペンテン−1とのランダム共重合体で、いわゆる、高圧法低密度ポリエチレン(HP−LDPE)、直鎖状あるいは線状低密度ポリエチレン(LLDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)と呼ばれているエチレンを主体とした重合体である。これらエチレン系重合体(C)は、単一の重合体であっても、二種以上のエチレン系重合体との組成物(混合物)であってもよい。
【0014】
高密度ポリエチレン(D)
本発明に係わる高密度ポリエチレン(D)は、前記エチレン系重合体(C)の範疇に含まれる重合体で、密度が0.940〜0.970g/cm、好ましくは0.950〜0.968g/cm、MFR(ASTM D1238 荷重2160g、温度190℃)が1〜50g/10分、好ましくは10〜30g/10分の、エチレンの単独重合体、若しくはエチレンと少量の炭素数が3〜10のα−オレフィン、例えばプロピレン、ブテン−1、ヘプテン−1、ヘキセン−1、オクテン−1、4−メチル−ペンテン−1とのランダム共重合体である。
【0015】
線状低密度ポリエチレン(E)
本発明に係わる線状低密度ポリエチレン(E)は、前記エチレン系重合体(C)の範疇に含まれる重合体で、密度が0.900〜0.935g/cm、好ましくは0.910〜0.930g/cm、MFR(ASTM D1238 荷重2160g、温度190℃)が1〜50g/10分、好ましくは10〜30g/10分の、エチレンと少量の炭素数が3〜10のα−オレフィン、例えばプロピレン、ブテン−1、ヘプテン−1、ヘキセン−1、オクテン−1、4−メチル−ペンテン−1とのランダム共重合体である。さらにかかる線状低密度ポリエチレンとしては、分子量分布(重量平均分子量:Mw、と数平均分子量:Mn、との比:Mw/Mnで表示)が通常1.5〜4.0、好ましくは1.8〜3.5の範囲にある。このMw/Mnはゲル透過クロマトグラフィー(GPC)によって測定できる。
又、線状低密度ポリエチレン(E)は、示差走査熱量計(DSC)の昇温速度10℃/分で測定した吸熱曲線から求めた鋭いピークが1個ないし複数個あり、該ピークの最高温度、すなわち融点が通常70〜130℃、好ましくは80〜120℃の範囲にある。
上記のような線状低密度ポリエチレン(E)は、シングルサイト触媒を用いた従来公知の製造法により調整することができる。たとえば線状低密度ポリエチレン(E)は、遷移金属のメタロセン化合物を含む触媒を用いて調整することができる。このメタロセン化合物を含む触媒は、(a)遷移金属のメタロセン化合物と、(b)有機アルミニウムオキシ化合物と、(c)担体とから形成されることが好ましく、さらに必要に応じて、これらの成分と(d)有機アルミニウム化合物および/または有機ホウ素化合物とから形成さていてもよい。
なお、このようなメタロセン化合物を含むオレフィン重合用触媒、および触媒を用いた線状低密度ポリエチレン(E)の調整方法は、たとえば特開平8−269270号公報に記載されている。
【0016】
プロピレン・α−オレフィン共重合体(A)の製造方法
本発明に係わるプロピレン・α−オレフィン共重合体(A)は種々公知の方法、例えば、典型的には固体状チタン触媒成分と有機金属化合物触媒成分から形成される触媒、あるいはこれら両成分および電子供与体から形成される触媒を用いて製造することができる。
【0017】
固体状チタン触媒成分としては、各種方法で製造された三塩化チタンまたは三塩化チタン組成物、あるいはマグネシウム、ハロゲン、電子供与体、好ましくは芳香族カルボン酸エステルまたはアルキル基含有エーテルおよびチタンを必須成分とする、比表面積が好適には100m/g以上の担体付チタン触媒成分が挙げられる。特に後者の担体付触媒成分を用いて製造された重合体が好適である。
有機金属化合物触媒成分としては、有機アルミニウム化合物が好適であり、具体的には、トリアルキルアルミニウム、ジアルキルアルミニウムハライド、アルキルアルミニウムセスキハライド、アルキルアルミニウムジハライドなどが挙げられる。これらの化合物のうち、好適な有機金属化合物触媒成分は、使用する上記チタン触媒成分の種類によって異なる。
電子供与体は、窒素、リン、イオウ、酸素、ケイ素、ホウ素などを含む有機化合物であり、好適な具体例としては、これらの元素を有する有機エステル、有機エーテルなどを挙げることができる。
担体付触媒成分を用いた重合体の製造方法に関しては、たとえば特開昭50−108385号、特開昭50−126590号、特開昭51−20297号、特開昭51−28189号、特開昭52−151691号などの各公報に開示されている。
【0018】
本発明に係わるプロピレン・α−オレフィン共重合体(A)は、特にはシングルサイト触媒を用いて製造することができる。シングルサイト触媒は、活性点が均一(シングルサイト)である触媒であり、例えばメタロセン触媒(いわゆるカミンスキー触媒)やブルックハート触媒などがあげられる。例えばメタロセン触媒は、メタロセン系遷移金属化合物と、有機アルミニウム化合物および上記メタロセン系遷移金属化合物と反応してイオン対を形成する化合物からなる群から選ばれる少なくとも一種の化合物とからなる触媒であり、無機物に担持されていてもよい。
前記メタロセン系遷移金属化合物としては、例えば特開平5−209014号、特開平6−100579号、特開平1−301704号、特開平3−193796号、特開平5−148284号、特開2000−20431号等に記載された化合物などがあげられる。
有機アルミニウム化合物としては、アルキルアルミニウム、または鎖状あるいは環状アルミノキサン等があげられる。上記鎖状あるいは環状アルミノキサンは、アルキルアルミニウムと水とを接触させることにより生成される。例えば重合時にアルキルアルミニウムを加えておいて、後で水を添加するか、あるいは錯塩の結晶水または有機、無機化合物の吸着水とアルキルアルミニウムとを反応させることにより得られる。
【0019】
前記メタロセン系遷移金属化合物と反応してイオン対を形成する化合物は、例えば特表平1−501950号、特開平3−207704号、特開2002−20431号等に記載された化合物などがあげられる。シングルサイト触媒を担持させる前記無機物としては、シリカゲル、ゼオライト、珪藻土等があげられる。重合方法としては、塊状重合、溶液重合、懸濁重合、気相重合等があげられる。これらの重合はバッチ法であっても連続法であっても良い。重合条件は通常、重合温度;−100〜+250℃、重合時間;5分〜10時間、反応圧力;常圧〜300Kg/cm(ゲージ圧)である。
【0020】
蒸着用プロピレン系重合体多層フィルム
本発明の蒸着用プロピレン系重合体多層フィルムは、DSCに基づく結晶融解曲線から求められたピーク温度(Tp)が110〜140℃及び融解開始温度(Ts)と融解終了温度(Te)との差(Te−Ts)が45℃未満のプロピレン・α―オレフィン共重合体(A)から得られる熱融着層及びプロピレン系重合体(B)から得られる被蒸着層からなる多層フィルムである。
熱融着層を構成するプロピレン・α―オレフィン共重合体(A)にエチレン系重合体(C)、より好ましくは高密度ポリエチレン(D)を5重量%以下、より好ましくは1〜3重量%含ませておくと、蒸着用プロピレン系重合体多層フィルム成形時に、フィルムへのロール跡の発生を抑制でき、成形直後でのフィルムのスリップ性、ブロッキング性が改良され、且つ、得られる蒸着用プロピレン系重合体多層フィルムの剛性、耐熱性が向上し蒸着加工時、更には蒸着されたフィルムのブロッキング性やロ−ル上に巻いた場合の巻き絞まり等がより改良され、製品としての品質が改良される。
被蒸着層を構成するプロピレン系重合体(B)にエチレン系重合体(C)、より好ましくは高密度ポリエチレン(D)を5重量%以下、より好ましくは1〜3重量%含ませておくと、無機化合物を蒸着した際の密着性をより強くすることができ、また、得られる蒸着用プロピレン系重合体多層フィルムの剛性、耐熱性が向上し蒸着加工時、更には蒸着されたフィルムのブロッキング性やロ−ル上に巻いた場合の巻き絞まり等がより改良され、製品としての品質が改良される。
また、他の態様として、被蒸着層を構成するプロピレン系重合体(B)にエチレン系重合体(C)を35重量%以下、より好ましくは5〜35重量%、さらに好ましくは15〜30重量%含ませておくと、無機化合物を蒸着した際の密着性をより強くすることができる。かかるエチレン系重合体(C)として特に、高密度ポリエチレン(D)を0.5〜5重量%、より好ましくは1〜4重量%及び線状低密度ポリエチレン(D)を15〜25重量%加えておくと、得られる蒸着用プロピレン系重合体フィルムの剛性、耐熱性が向上し蒸着加工時更には蒸着されたフィルムのブロッキング性やロ−ル状に巻いた場合の巻き絞まり等がより改良され、製品としての品質がより改良され、また、得られる蒸着用プロピレン系重合体多層フィルムの被蒸着層面に無機化合物を蒸着した際の常温時の密着性がより強く改良される。
【0021】
本発明の蒸着用プロピレン系重合体多層フィルムには、前記プロピレン・α―オレフィン共重合体(A)から得られる熱融着層と前記プロピレン系重合体(B)から得られる被蒸着層との間に、DSCに基づく結晶融解曲線から求められたピーク温度(Tp)が110〜140℃及び融解開始温度(Ts)と融解終了温度(Te)との差(Te−Ts)が45℃未満のプロピレン・α―オレフィン共重合体(A)若しくはプロピレン系重合体(B)から得られる中間層を設けておいてもよい。
かかる中間層としては、例えば、柔軟性に富んだ蒸着用プロピレン系重合体多層フィルムを得るには、中間層としてプロピレン・α―オレフィン共重合体(A)層を、剛性が求められる蒸着用プロピレン系重合体多層フィルムを得るには、中間層としてプロピレン系重合体(B)層を設ける等、用途に応じ中間層に用いる重合体を選択することにより、得られる多層フィルムの品質や加工性などを改良できる。
本発明の蒸着用プロピレン系重合体多層フィルムの厚さは用途に応じて種々選択され得るが、熱融着層と被蒸着層の二層フィルムの場合は、通常、熱融着層が1〜100μm、より好ましくは1〜20μm、被蒸着層が9〜400μm、より好ましくは19〜99μmで、全体の厚さが10〜500μm、より好ましくは20〜100μmの範囲にある。又、多層フィルムが、熱融着層、中間層及び被蒸着層の三層フィルムの場合は、通常、熱融着層が1〜100μm、より好ましくは1〜20μm、中間層が8〜498μm、より好ましくは18〜98μm、被蒸着層が1〜100μm、より好ましくは1〜20μmで、全体の厚さが10〜500μm、より好ましくは20〜100μmの範囲にある。
【0022】
本発明の蒸着用プロピレン系重合体多層フィルムは公知の種々公知のフィルム成形方法を採用し得る。熱融着層の原料としてプロピレン・α―オレフィン共重合体(A)に高密度ポリエチレン(D)、線状低密度ポリエチレン(E)等のエチレン系重合体(C)を添加した組成物を、被蒸着層の原料としてプロピレン系重合体(B)に高密度ポリエチレン(D)等のエチレン系重合体(C)を添加した組成物を用いる場合は、蒸着用プロピレン系重合体多層フィルム成形する前に、予め所定の範囲で各重合体成分を混合、溶融混練して得た組成物を用意しておいてもよいし、プロピレン・α−オレフィン共重合体(A)若しくはプロピレン系重合体(B)とその他の重合体を所定量計量して直接フィルム成形機に投入してもよい。二層あるいは三層フィルムを得る方法としては二層あるいは三層構造の多層ダイを用いて共押出し成形による方法が最も好ましい。
本発明の蒸着用プロピレン系重合体多層フィルムは蒸着層面及び/又はラミネート面に、無機化合物、基材層との接着性を改良するためにコロナ処理、火炎処理、プラズマ処理、プライマーコート処理等の表面処理を行っておいてもよい。
【0023】
多層蒸着フィルム
本発明の多層蒸着フィルムは、前記蒸着用プロピレン系重合体多層フィルムの被蒸着層上に、無機化合物を蒸着してなるフィルムである。かかる無機化合物としては、アルミニウム及び亜鉛等の金属、クロム、亜鉛、コバルト、アルミニウム、錫及び珪素等の無機酸化物、窒化物、酸化インジウム錫、チタン酸鉛等が挙げられる。
無機化合物の薄膜を蒸着用プロピレン系重合体多層フィルムの被蒸着層上に形成させる方法としては、化学蒸着(CVD)、低圧CVD及びプラズマCVD等の化学蒸着法、真空蒸着(反応性真空蒸着)、スパッタリング(反応性スパッタリング)及びイオンプレーティング(反応性イオンプレーティング)等の物理蒸着法(PVD)、低圧プラズマスプレイ及びプラズマスプレイ等のプラズマスプレイ法とが例示できる。
形成される無機化合物の薄膜の厚さは、通常50〜5000Å、好ましくは100〜2000Åの範囲である。5000Åを越えると耐屈曲性が低下するとなる虞があり、一方、50Å未満では充分な耐ガスバリア性が得られない虞がある。
【0024】
本発明の多層蒸着フィルムは、そのまま包装用フィルムとして用いることもできるが、他のフィルム基材と積層してもよい、かかるフィルム基材としては、熱可塑性樹脂からなるシート状またはフィルム状の基材が挙げられる。かかる熱可塑性樹脂としては、種々公知の熱可塑性樹脂、例えば、ポリオレフィン(ポリエチレン、ポリプロピレン、ポリ4−メチル・1−ペンテン、ポリブテン等)、ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等)、ポリアミド(ナイロン−6、ナイロン−66、ポリメタキシレンアジパミド等)、ポリ塩化ビニル、ポリイミド、エチレン・酢酸ビニル共重合体、ポリアクリロニトリル、ポリカーボネート、ポリスチレン、アイオノマー、あるいはこれらの混合物等を例示することができる。これらのうちでは、ポリプロピレン、ポリエチレンテレフタレート、ポリアミド等、延伸性、透明性が良好な熱可塑性樹脂が好ましい。又、かかる熱可塑性樹脂フィルムからなる基材は、無延伸フィルムであっても、延伸フィルムであっても良い。中でも、ニ軸延伸フィルムが剛性、透明性等に優れているので好ましい。
又、フィルム基材の片面あるいは両面に、無機化合物との接着性を改良するために例えば、コロナ処理、火炎処理、プラズマ処理、アンダーコート処理、プライマーコート処理、フレーム処理等の表面活性化処理を行っておいてもよい。フィルム基材の厚さは、通常5〜50μm、好ましくは9〜30μmの範囲にある。フィルム基材は必要に応じて印刷を施しておいてもよい。
【0025】
【発明の効果】
本発明の蒸着用プロピレン系重合体多層フィルムは、特定のプロピレン・α―オレフィン共重合体(A)から構成されているので、従来のプロピレン系ランダム共重合体に比べて、非晶性成分あるいは低分子量成分等の揮発成分が少ないので、蒸着槽内の汚れが少なく、無機化合物蒸着膜との密着性及び濡れ性等を阻害しない。
本発明の多層蒸着フィルムは、上記特性に加え、低温ヒートシール性、耐ブロッキング性、引裂き性が良好である。
本発明の多層蒸着フィルムは、かかる特徴を活かして、スナック菓子、キャンディ−、クッキ−、冷凍食品、パン、野菜、麺等の食品、或いはシャツ、ズボン等の衣料品を始めとする日用品等あらゆる分野の製品の包装材料として広く使用出来る。
【0026】
【実施例】
次に本発明を、実施例を通して説明するが、本発明はそれら実施例によって限定されるものではない。
【0027】
本発明における各種試験法および評価法は次の通りである。
なお、ヒートシール強度、アルミニウム密着強度の評価を行なう前に、実施例及び比較例で得られた多層蒸着フィルムの蒸着面に、厚さ25μmの二軸延伸ポリプロピレンフィルムをエステル系接着剤ドライラミネ−ションにより積層し、40℃×48時間エ−ジングして、測定用の積層フィルムを用意した。
(1)ヒートシール強度(N/15mm)
測定用の積層フィルムの熱融着層面を重ね合せ、所定の温度で、幅10mmのシールバーにより、0.2MPaの圧力で0.5秒間、上部シ−ルバ−温度を所定の温度、下部シ−ルバ−温度は70℃一定状態で、フィルムの流れ方向に対して直角方向にヒートシールした後放冷した。これから15mm幅の試験片を切り取りクロスヘッド速度300mm/分でヒートシール部を剥離し、その強度をヒートシール強度とした。
(2)アルミニウム密着強度(g/15mm)
測定用の積層フィルムの熱融着層に二軸延伸ポリプロピレンフィルムからなるテ−プを貼り、所定の温度で、幅10mmのシールバーにより、0.2MPaの圧力で0.5秒間、上部シ−ルバ−温度を所定の温度、下部シ−ルバ−温度は70℃一定状態で、フィルムの流れ方向に対して直角方向にヒートシールバ−を用いて熱を加えた後放冷した。これから15mm幅の試験片を切り取りクロスヘッド速度300mm/分でT型剥離法により、熱を加えた部分のアルミニウム蒸着層と多層フイルムとの間を剥離したときの強度を測定し、アルミニウム密着強度とした。
(3)幅方向(TD)の易引裂性強度(N)
易引裂性強度を測定する前に、予め多層フィルムを38℃オ−ブン中で15時間エ−ジングした後放冷した。フィルムの蒸着加工を施さないフィルムから幅方向(TD)65mm×流れ方向(MD)50mm幅の短冊状の試験片を5枚切り取る。株式会社東洋精機製作所製の軽荷重引裂試験機を用い、フルスケ−ル1.96N条件で引裂強度をn=5で評価し、平均値を易引裂強度力(N)とした。フルスケ−ル1.96N条件で引き裂けない場合は1.96N以上とした。
(4)ブロッキング性(N/5.2cm
ブロッキング性を測定する前に、予め多層フィルムを38℃のオ−ブン中で15時間エ−ジングした後放冷した。蒸着加工を施さないフィルムから20mm×100mm幅の短冊状の試験片を切り取り、熱融着性面を重ね合せたものを5個ずつ作製し、試験片の中央付近で十字方向に直角に市販のプレパラ−トではさむ。試験片とプレパラ−トが重なった5.2cm2の面積部分に4kgの荷重を掛け、所定の温度条件で2日間エ−ジングした後、放冷する。その後熱融着層面を重ね合せたものをクロスヘッド速度300mm/分で剪断剥離を行い、最大強度をブロッキング力とした。ブロッキング力をn=5で評価し、平均値をブロッキング力(N/5.2cm)とした。
【0028】
実施例及び比較例で使用した重合体は次の通りである。
(1) プロピレン・エチレンランダム共重合体(PER)
エチレン含有量:3.1重量%、Ts:94.0℃、Tp:126.6℃、Te:131.4℃、Te−Ts:37.4℃、Tp−Ts:32.6℃、Mw/Mn:2.7及びMFR:7g/10分(230℃)。
(2) プロピレン・エチレン・1−ブテンランダム共重合体(PEBR)
エチレン含有量:2.2重量%、1−ブテン含有量:2.0重量%、Ts:95.4℃、Tp:139.3℃、Te:150.3℃、Te−Ts:54.9℃、Tp−Ts:43.9℃、Mw/Mn:3.9及びMFR:7g/10分(230℃)。
(3)高密度ポリエチレン(HDPE)
密度:0.965g/cm、Tm:135℃、MFR:17.0g/10分(190℃)。
(4)線状低密度ポリエチレン(LL)
密度:0.920g/cm、Tm:120℃、MFR:8.0g/10分(190℃)。
(5)プロピレン単独重合体(PP)
融点:160℃、MFR:7.0/10分(230℃)
【0029】
実施例1
熱融着層として、PER:97.6重量%及びHDPE:2.4重量%とをドライブレンドしたプロピレン系重合体組成物を、中間層として、PP:100重量%を、被蒸着層としてPP:97.2重量%及びHDPE:2.8重量%、を夫々用意して別個の押出機に供給し、Tダイ法によって熱融着層/中間層/被蒸着層からなる三層共押出積層フイルムで、被蒸着層にライン上で直接コロナ処理を直後で40dyn/cm以上処理して、蒸着用プロピレン系重合体多層フィルムを得た。フィルムの総厚は25μmで、各層の厚みは熱融着層:中間層:被蒸着層=3.5μm:18.5μm:3.0μmであった。
抵抗加熱方式ベルジャー型蒸着装置(真空機工社製、小型真空蒸着装置VPC−260)を用い、得られた蒸着用プロピレン系重合体多層フィルムの蒸着層上にアルミニウムの厚みが約450Åになるように蒸着し、多層蒸着フィルムを得た。
得られた蒸着用プロピレン系重合体多層フィルム及び多層蒸着フイルムを前記記載の方法で評価した。結果を表1に示す。
【0030】
比較例1
実施例1に代えて、熱融着層としてPEBR:97.6重量%及びHDPE:2.4重量%とをドライブレンドしたプロピレン系重合体組成物を、中間層としてPP:100重量%を、被蒸着層としてPP:97.2重量%及びHDPE:2.8重量%をドライブレンドしたプロピレン系重合体組成物を夫々用意して別個の押出機に供給し、Tダイ法によって熱融着層/中間層/被蒸着層からなる三層共押出積層フイルムで、蒸着層にライン上で直接コロナ処理を直後で40dyn/cm以上処理して、蒸着用プロピレン系重合体多層フィルムを得る以外は、実施例1と同様に行い、蒸着用プロピレン系重合体多層フィルム及び多層蒸着フイルムを得た。結果を表1に示す。
【0031】
実施例2
熱融着層として、PER:97.6重量%及びHDPE:2.4重量%とをドライブレンドしたプロピレン系重合体組成物を、中間層として、PER:100重量%を、被蒸着層としてPP:78.0重量%及びLL:20.0重量%、HDPE:2.0重量%、を夫々用意して別個の押出機に供給し、Tダイ法によって熱融着層/中間層/被蒸着層からなる三層共押出積層フイルムで、被蒸着層にライン上で直接コロナ処理を直後で40dyn/cm以上処理して、蒸着用プロピレン系重合体多層フィルムを得た。フィルムの総厚は20μmで、各層の厚みは熱融着層:中間層:被蒸着層=2.8μm:14.8μm:2.4μmであった。
抵抗加熱方式ベルジャー型蒸着装置(真空機工社製、小型真空蒸着装置VPC−260)を用い、得られた蒸着用プロピレン系重合体多層フィルムの蒸着層上にアルミニウムの厚みが約450Åになるように蒸着し、多層蒸着フィルムを得た。
得られた蒸着用プロピレン系重合体多層フィルム及び多層蒸着フイルムを前記記載の方法で評価した。結果を表1に示す。
【0032】
比較例2
実施例2に代えて、熱融着層としてPEBR:97.6重量%及びHDPE:2.4重量%とをドライブレンドしたプロピレン系重合体組成物を、中間層としてPEBR:100重量%を、被蒸着層としてPP:78.0重量%及びLL:20.0重量%、HDPE:2.0重量%をドライブレンドしたプロピレン系重合体組成物を夫々用意して別個の押出機に供給し、Tダイ法によって熱融着層/中間層/被蒸着層からなる三層共押出積層フイルムで、蒸着層にライン上で直接コロナ処理を直後で40dyn/cm以上処理して、蒸着用プロピレン系重合体多層フィルムを得る以外は、実施例2と同様に行い、蒸着用プロピレン系重合体多層フィルム及び多層蒸着フイルムを得た。結果を表1に示す。
【0033】
【表1】

Figure 2004351749
【0034】
表1に示した結果から、本発明のプロピレン・α―オレフィン共重合体(A)から得られる熱融着層を有する多層蒸着フイルム(実施例1、2)は、従来のプロピレン・α―オレフィン共重合体から得られる熱融着層を有する多層蒸着フイルム(比較例1、2)に比べ、低温ヒートシール性、易引裂き性及び耐ブロッキング性に優れていることが明らかである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a propylene-based polymer multilayer film for vapor deposition and a multilayer vapor-deposited film having improved low-temperature heat sealability and sealability without inhibiting adhesion and wettability with an inorganic compound vapor-deposited film.
[0002]
[Prior art]
Polypropylene film is excellent in heat seal strength, transparency, stiffness, blocking resistance, heat resistance, etc., compared to films obtained from ethylene polymers such as low density polyethylene and linear low density polyethylene, It is widely used as a packaging material for products in all fields such as foods such as confectionery, bread, vegetables, noodles, and daily necessities such as clothing such as shirts and pants. Further, for the purpose of improving the gas barrier properties and moisture-proof properties of the polypropylene film, it is also widely practiced to coat polyvinylidene chloride on the surface of the polypropylene film or to deposit an inorganic compound such as aluminum or aluminum oxide on the polypropylene film. .
[0003]
As a method for improving the adhesion of the vapor-deposited film to the polypropylene film, a metal layer is formed on a polypropylene film by forming a random copolymer layer of ethylene and 0.25 to 15% by weight of an α-olefin having 3 to 6 carbon atoms. Inorganic compounds are vapor-deposited on a multi-layer metallized packaging film (e.g., Patent Document 1) formed with a polyolefin-based unstretched polypropylene film composed of a polypropylene layer having a high isotacticity and a polyolefin-based copolymer layer. And the like (for example, Patent Document 2) and a polypropylene film in which a coating layer made of a polyester urethane-based resin is provided on a polypropylene film (for example, Patent Document 3).
[0004]
[Patent Document 1]
U.S. Pat. No. 4,357,383 [Patent Document 2]
Japanese Patent Application Laid-Open No. H10-34846 (Claims)
[Patent Document 3]
JP 2001-54939 A (Claims)
[0005]
However, a film in which a random copolymer layer or the like is laminated on the surface of a polypropylene film has a low crystallinity component or a low molecular weight component contained in the random copolymer volatilized in a vapor deposition tank, so that adhesion is inhibited. The adhesion with the inorganic compound film cannot be said to be sufficient because there is a possibility that the adhesion may be improved by providing a coating layer made of a polyester urethane-based resin. When a random copolymer with α-olefin such as ethylene is used as the polypropylene, the low crystalline component contained in the random copolymer during storage of the deposited film in a rolled state (roll film) Alternatively, low molecular weight components are oozed to the surface, and consequently transferred to the surface of the opposite inorganic compound vapor-deposited film, resulting in poor quality of the vapor-deposited film. There is a possibility to be.
[0006]
[Problems to be solved by the invention]
Thus, the present invention provides a propylene-based polymer multilayer film for vapor deposition and multilayer vapor deposition with improved low-temperature heat-sealing properties, sealing properties, blocking properties, and tearability without inhibiting adhesion and wettability with an inorganic compound vapor-deposited film. Various studies were conducted for the purpose of obtaining a film.
[0007]
[Means for Solving the Problems]
Summary of the Invention
The present invention has a peak temperature (Tp) of 110 to 140 ° C. determined from a crystal melting curve based on DSC, and a difference (Te−Ts) between a melting onset temperature (Ts) and a melting end temperature (Te) of less than 45 ° C. A propylene-based polymer multilayer film for vapor deposition comprising a heat-fusible layer obtained from the propylene-α-olefin copolymer (A) and a layer to be vapor-deposited obtained from the propylene-based polymer (B). The present invention relates to a vapor-deposited multilayer film formed by vapor-depositing an inorganic compound on a vapor-deposited layer surface.
[0008]
Further, the present invention provides a vapor deposition method wherein the propylene / α-olefin copolymer (A) constituting the heat-sealing layer contains 5% by weight or less of an ethylene-based polymer (C), preferably a high-density polyethylene (D). The present invention relates to a propylene-based polymer multilayer film and a vapor-deposited multilayer film obtained by vapor-depositing an inorganic compound on the surface of a layer to be vapor-deposited.
[0009]
Further, in the present invention, the propylene-based polymer (B) constituting the layer to be deposited contains the ethylene-based polymer (C) in an amount of 35% by weight or less, preferably the high-density polyethylene (D) in an amount of 5% by weight or less, and The present invention relates to a propylene-based polymer multilayer film for vapor deposition comprising 15 to 25% by weight of polyethylene (E) and a vapor-deposited multilayer film formed by vapor-depositing an inorganic compound on the surface of a layer to be vapor-deposited.
[0010]
Further, in the present invention, the peak temperature (Tp) determined from the crystal melting curve based on DSC is 110 to 140 ° C., and the difference (Te−Ts) between the melting onset temperature (Ts) and the melting end temperature (Te) is 45 ° C. Heat-fused layer obtained from a propylene / α-olefin copolymer (A) having a peak temperature (Tp) of 110 to 140 ° C. and a melting onset temperature (Ts) determined from a crystal melting curve based on DSC. An intermediate layer obtained from a propylene / α-olefin copolymer (A) or a propylene-based polymer (B) having a difference (Te-Ts) from the end temperature (Te) of less than 45 ° C., and a propylene-based polymer (B ).
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Propylene / α-olefin random copolymer (A)
The propylene / α-olefin copolymer (A) according to the present invention has a peak temperature (Tp) determined from a crystal melting curve based on DSC of 110 to 140 ° C, preferably 115 to 130 ° C, and a melting start temperature (Ts). ) And the melting end temperature (Te) are less than 45 ° C., preferably in the range of 30 to 40 ° C., preferably the difference between the melting onset temperature (Ts) and the peak temperature (Tp). Tp-Ts) is less than 35C, more preferably in the range of 25-34C. The α-olefin content of the propylene / α-olefin copolymer (A) is not particularly limited as long as it has the above-mentioned heat melting property, but usually the α-olefin content is 1.0 to 20% by weight, Preferably it is in the range of 1.5 to 15% by weight. Examples of the α-olefin include ethylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene and the like. Among these, a random copolymer with ethylene and / or 1-butene is preferred. The MFR (melt flow rate; ASTM D-1238, load 2160 g, temperature 230 ° C.) is not particularly limited as long as it can be formed into a film, but is usually 0.5 to 10 g / 10 min, preferably 2 to 5 g / 10 min. In the range of minutes. The propylene / α-olefin copolymer (A) according to the present invention usually has a molecular weight distribution (expressed by a ratio between the weight average molecular weight Mw and the number average molecular weight Mn) in the range of 2-3.
The propylene / α-olefin copolymer (A) according to the present invention is a raw material for the heat-sealing layer and the intermediate layer of the propylene polymer multilayer film for vapor deposition.
The peak temperature (Tp), melting start temperature (Ts) and melting end temperature (Te) of the propylene / α-olefin copolymer (A) according to the present invention were measured by the following methods. About 5 mg of the propylene / α-olefin copolymer (A) is weighed, and is weighed at 200 ° C. at a rate of 10 ° C./min using a differential scanning calorimeter (type DSC220 module) manufactured by Seiko Electronics Co., Ltd. When the temperature was raised to 0 ° C. and maintained at 200 ° C. for 5 minutes, the temperature was lowered to 0 ° C. at a rate of 100 ° C./min, and then the temperature was raised again from 0 ° C. to 200 ° C. at a rate of 10 ° C./min. Was measured according to the method of ASTM D3419, and a peak temperature (Tp), a melting start temperature (Ts), and a melting end temperature (Te) were determined from the melting curve. In the present invention, (Tpm1) described in ASTM D3419 is (Tp), (Teim) is (Ts), and (Tefm) is (Te).
[0012]
Propylene polymer (B)
The propylene-based polymer (B) according to the present invention is a homopolymer of propylene, a copolymer of propylene with 10% by weight or less, preferably 5% by weight or less of α-olefin, or a copolymer with propylene. It is a composition with coalescence. The α-olefin is an α-olefin having usually 2 to 10 carbon atoms other than propylene, for example, ethylene, 1-butene, 3-methyl-1-butene, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene and the like can be mentioned. Among these α-olefins, a propylene homopolymer is preferred from the viewpoint of the rigidity and heat resistance of the obtained propylene polymer multilayer film for vapor deposition. The propylene polymer (B) is not particularly limited as long as it can be molded as a film, but has an MFR (melt flow rate; ASTM D-1238, 2160 g load, temperature 230 ° C.) of usually 0.1 to 100 g / 10 min. Preferably it is in the range of 1 to 50 g / 10 minutes.
The propylene polymer (B) according to the present invention is a raw material for a layer to be deposited and an intermediate layer of a propylene polymer multilayer film for vapor deposition.
[0013]
Ethylene polymer (C)
The ethylene polymer (C) according to the present invention generally has a density of 0.900 to 0.970 g / cm3, preferably 0.910 to 0.960 g / cm3, and MFR (ASTM D1238, load 2160 g, temperature 190 ° C). Is 1 to 50 g / 10 min, preferably 10 to 30 g / 10 min, or a homopolymer of ethylene, or ethylene and a small amount of an α-olefin having 3 to 10 carbon atoms, for example, propylene, butene-1, heptene-1 Hexene-1, octene-1, 4-methyl-pentene-1 random copolymer, so-called high-pressure low-density polyethylene (HP-LDPE), linear or linear low-density polyethylene (LLDPE), It is a polymer mainly composed of ethylene, which is called medium density polyethylene (MDPE) or high density polyethylene (HDPE). These ethylene polymers (C) may be a single polymer or a composition (mixture) with two or more ethylene polymers.
[0014]
High density polyethylene (D)
The high-density polyethylene (D) according to the present invention is a polymer included in the category of the ethylene-based polymer (C), and has a density of 0.940 to 0.970 g / cm 3 , preferably 0.950 to 0.5 g / cm 3 . 968 g / cm 3 , MFR (ASTM D1238, load 2160 g, temperature 190 ° C.) of 1 to 50 g / 10 min, preferably 10 to 30 g / 10 min, ethylene homopolymer or ethylene and small carbon number of 3 to 3 A random copolymer with 10 α-olefins, for example, propylene, butene-1, heptene-1, hexene-1, octene-1, 4-methyl-pentene-1.
[0015]
Linear low density polyethylene (E)
The linear low-density polyethylene (E) according to the present invention is a polymer included in the category of the ethylene-based polymer (C) and has a density of 0.900 to 0.935 g / cm 3 , preferably 0.910 to 0.935 g / cm 3 . 0.930 g / cm 3 , MFR (ASTM D1238, load 2160 g, temperature 190 ° C.) 1 to 50 g / 10 min, preferably 10 to 30 g / 10 min, ethylene and a small amount of α-olefin having 3 to 10 carbon atoms For example, a random copolymer with propylene, butene-1, heptene-1, hexene-1, octene-1, and 4-methyl-pentene-1. Further, such a linear low-density polyethylene has a molecular weight distribution (expressed as a ratio of weight average molecular weight: Mw and number average molecular weight: Mn: Mw / Mn) of usually 1.5 to 4.0, preferably 1. It is in the range of 8-3.5. This Mw / Mn can be measured by gel permeation chromatography (GPC).
The linear low-density polyethylene (E) has one or more sharp peaks obtained from an endothermic curve measured at a heating rate of 10 ° C./min by a differential scanning calorimeter (DSC). That is, the melting point is usually in the range of 70 to 130 ° C, preferably 80 to 120 ° C.
The linear low-density polyethylene (E) as described above can be prepared by a conventionally known production method using a single-site catalyst. For example, linear low-density polyethylene (E) can be prepared using a catalyst containing a metallocene compound of a transition metal. The catalyst containing the metallocene compound is preferably formed from (a) a metallocene compound of a transition metal, (b) an organoaluminum oxy compound, and (c) a carrier. (D) It may be formed from an organic aluminum compound and / or an organic boron compound.
An olefin polymerization catalyst containing such a metallocene compound and a method for preparing a linear low-density polyethylene (E) using the catalyst are described in, for example, JP-A-8-269270.
[0016]
Method for producing propylene / α-olefin copolymer (A) The propylene / α-olefin copolymer (A) according to the present invention can be produced by various known methods, for example, typically a solid titanium catalyst component. And an organometallic compound catalyst component, or a catalyst formed from both components and an electron donor.
[0017]
As the solid titanium catalyst component, titanium trichloride or a titanium trichloride composition produced by various methods, or magnesium, a halogen, an electron donor, preferably an aromatic carboxylic acid ester or an alkyl group-containing ether and titanium are essential components. A titanium catalyst component with a carrier having a specific surface area of preferably 100 m 2 / g or more is exemplified. In particular, a polymer produced using the latter catalyst component with a carrier is preferred.
As the organometallic compound catalyst component, an organoaluminum compound is preferable, and specific examples include trialkylaluminum, dialkylaluminum halide, alkylaluminum sesquihalide, and alkylaluminum dihalide. Among these compounds, suitable organometallic compound catalyst components differ depending on the type of the titanium catalyst component used.
The electron donor is an organic compound containing nitrogen, phosphorus, sulfur, oxygen, silicon, boron, and the like, and preferable specific examples include organic esters and organic ethers having these elements.
With respect to a method for producing a polymer using a catalyst component with a carrier, for example, JP-A-50-108385, JP-A-50-126590, JP-A-51-20297, JP-A-51-28189, It is disclosed in each gazette such as JP-A-52-151691.
[0018]
The propylene / α-olefin copolymer (A) according to the present invention can be produced particularly using a single-site catalyst. The single-site catalyst is a catalyst having a uniform active site (single-site), and examples thereof include a metallocene catalyst (so-called Kaminski catalyst) and a Brookhart catalyst. For example, a metallocene catalyst is a catalyst comprising a metallocene-based transition metal compound and at least one compound selected from the group consisting of an organoaluminum compound and a compound which forms an ion pair by reacting with the metallocene-based transition metal compound. May be carried.
Examples of the metallocene transition metal compound include, for example, JP-A-5-209014, JP-A-6-100579, JP-A-1-301704, JP-A-3-193796, JP-A-5-148284, and JP-A-2000-20431. And the like.
Examples of the organoaluminum compound include alkylaluminum, and a chain or cyclic aluminoxane. The chain or cyclic aluminoxane is produced by bringing alkylaluminum into contact with water. For example, it can be obtained by adding alkyl aluminum during polymerization and adding water later, or reacting water of crystallization of a complex salt or water of adsorption of an organic or inorganic compound with alkyl aluminum.
[0019]
Examples of the compound which reacts with the metallocene-based transition metal compound to form an ion pair include compounds described in JP-A-1-501950, JP-A-3-207704, JP-A-2002-20431, and the like. . Examples of the inorganic substance supporting the single-site catalyst include silica gel, zeolite, and diatomaceous earth. Examples of the polymerization method include bulk polymerization, solution polymerization, suspension polymerization, and gas phase polymerization. These polymerizations may be a batch method or a continuous method. The polymerization conditions are usually: polymerization temperature; -100 to + 250 ° C, polymerization time: 5 minutes to 10 hours, reaction pressure: normal pressure to 300 kg / cm 2 (gauge pressure).
[0020]
Propylene-based polymer multilayer film for vapor deposition The propylene-based polymer multilayer film for vapor deposition of the present invention has a peak temperature (Tp) determined from a crystal melting curve based on DSC of 110 to 140 ° C and a melting start temperature ( (Ts) and the melting end temperature (Te), the difference (Te-Ts) between the propylene / α-olefin copolymer (A) and the propylene-based polymer (B) obtained from the propylene / α-olefin copolymer (A) having a difference of less than 45 ° C. Is a multi-layer film comprising a layer to be deposited.
Ethylene polymer (C), more preferably high-density polyethylene (D) is 5% by weight or less, more preferably 1-3% by weight, in propylene / α-olefin copolymer (A) constituting the heat-sealing layer. When included, it is possible to suppress the occurrence of roll marks on the film at the time of forming the propylene-based polymer multilayer film for vapor deposition, to improve the slip property and blocking property of the film immediately after molding, and to obtain the obtained propylene for vapor deposition. The rigidity and heat resistance of the base polymer multilayer film have been improved, and the blocking properties of the deposited film and the tightening of the roll when rolled on a roll have been further improved during deposition processing, and the quality as a product has been improved. Is done.
When the propylene-based polymer (B) constituting the layer to be deposited contains the ethylene-based polymer (C), more preferably 5% by weight or less, more preferably 1 to 3% by weight, of the high-density polyethylene (D). In addition, it is possible to further enhance the adhesion when the inorganic compound is deposited, and to improve the rigidity and heat resistance of the obtained propylene-based polymer multilayer film for deposition, and to perform the deposition processing, and furthermore, to block the deposited film. The properties and the tightness when wound on a roll are further improved, and the quality as a product is improved.
In another embodiment, the propylene-based polymer (B) constituting the layer to be deposited contains the ethylene-based polymer (C) in an amount of 35% by weight or less, more preferably 5 to 35% by weight, and still more preferably 15 to 30% by weight. %, The adhesion at the time of vapor deposition of the inorganic compound can be further enhanced. Particularly, as the ethylene polymer (C), 0.5 to 5% by weight, more preferably 1 to 4% by weight of the high-density polyethylene (D) and 15 to 25% by weight of the linear low-density polyethylene (D) are added. In addition, the rigidity and heat resistance of the obtained propylene polymer film for vapor deposition are improved, and the blocking property of the vapor-deposited film during the vapor deposition process and the curling when rolled in a roll form are further improved. Further, the quality as a product is further improved, and the adhesion at room temperature when an inorganic compound is vapor-deposited on the surface of the layer to be vapor-deposited of the obtained propylene-based polymer multilayer film for vapor deposition is further improved.
[0021]
The propylene-based polymer multilayer film for vapor deposition of the present invention comprises a heat-fused layer obtained from the propylene / α-olefin copolymer (A) and a layer to be vapor-deposited obtained from the propylene-based polymer (B). In the meantime, the peak temperature (Tp) obtained from the crystal melting curve based on DSC is 110 to 140 ° C., and the difference (Te−Ts) between the melting onset temperature (Ts) and the melting end temperature (Te) is less than 45 ° C. An intermediate layer obtained from the propylene / α-olefin copolymer (A) or the propylene-based polymer (B) may be provided.
As such an intermediate layer, for example, in order to obtain a propylene-based polymer multilayer film for vapor deposition having high flexibility, a propylene / α-olefin copolymer (A) layer is used as the intermediate layer, and propylene for vapor deposition for which rigidity is required. In order to obtain a multi-layer polymer film, the quality and processability of the obtained multi-layer film can be determined by selecting the polymer used for the intermediate layer according to the intended use, such as providing a propylene polymer (B) layer as the intermediate layer. Can be improved.
The thickness of the propylene-based polymer multilayer film for vapor deposition of the present invention can be variously selected depending on the application, but in the case of a two-layer film of a heat-fused layer and a layer to be vapor-deposited, the heat-fused layer usually has a thickness of 1 to 4. The thickness is 100 μm, more preferably 1 to 20 μm, the layer to be deposited is 9 to 400 μm, more preferably 19 to 99 μm, and the total thickness is in the range of 10 to 500 μm, more preferably 20 to 100 μm. When the multilayer film is a three-layer film of a heat-sealing layer, an intermediate layer, and a layer to be vapor-deposited, the heat-sealing layer usually has a thickness of 1 to 100 μm, more preferably 1 to 20 μm, and the intermediate layer has a thickness of 8 to 498 μm. The thickness is more preferably 18 to 98 µm, the layer to be deposited is 1 to 100 µm, more preferably 1 to 20 µm, and the total thickness is in the range of 10 to 500 µm, more preferably 20 to 100 µm.
[0022]
The propylene polymer multilayer film for vapor deposition of the present invention can employ various known film forming methods. A composition obtained by adding an ethylene-based polymer (C) such as a high-density polyethylene (D) or a linear low-density polyethylene (E) to a propylene / α-olefin copolymer (A) as a raw material of the heat-sealing layer, When a composition in which an ethylene polymer (C) such as a high-density polyethylene (D) is added to a propylene polymer (B) as a raw material of a layer to be deposited is used, before forming a propylene polymer multilayer film for evaporation. In advance, a composition obtained by mixing and melt-kneading each polymer component in a predetermined range may be prepared, or a propylene / α-olefin copolymer (A) or a propylene-based polymer (B ) And other polymers may be weighed in predetermined amounts and directly charged into a film forming machine. As a method for obtaining a two-layer or three-layer film, a method by coextrusion using a multilayer die having a two-layer or three-layer structure is most preferable.
The propylene-based polymer multilayer film for vapor deposition according to the present invention may be formed on a vapor-deposited layer surface and / or a laminated surface with an inorganic compound, a corona treatment, a flame treatment, a plasma treatment, a primer coat treatment or the like in order to improve the adhesion to the base material layer. Surface treatment may be performed.
[0023]
Multilayer evaporation film The multilayer evaporation film of the present invention is a film formed by evaporating an inorganic compound on the layer to be evaporated of the propylene polymer multilayer film for evaporation. Examples of such inorganic compounds include metals such as aluminum and zinc, chromium, zinc, cobalt, aluminum, inorganic oxides such as tin and silicon, nitrides, indium tin oxide, and lead titanate.
As a method of forming a thin film of an inorganic compound on a layer to be deposited of a propylene-based polymer multilayer film for vapor deposition, chemical vapor deposition (CVD), chemical vapor deposition methods such as low-pressure CVD and plasma CVD, and vacuum vapor deposition (reactive vacuum vapor deposition) And physical vapor deposition (PVD) such as sputtering (reactive sputtering) and ion plating (reactive ion plating), and plasma spraying such as low-pressure plasma spraying and plasma spraying.
The thickness of the formed inorganic compound thin film is generally in the range of 50 to 5000 °, preferably 100 to 2000 °. If it exceeds 5000 °, the bending resistance may decrease, while if it is less than 50 °, sufficient gas barrier resistance may not be obtained.
[0024]
The multilayer vapor-deposited film of the present invention can be used as it is as a packaging film, but may be laminated with another film substrate. As such a film substrate, a sheet-like or film-like substrate made of a thermoplastic resin is used. Materials. Examples of such thermoplastic resins include various known thermoplastic resins, for example, polyolefins (polyethylene, polypropylene, poly-4-methyl-1-pentene, polybutene, etc.), polyesters (polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc.), Examples include polyamides (nylon-6, nylon-66, polymeta-xylene adipamide, etc.), polyvinyl chloride, polyimide, ethylene / vinyl acetate copolymer, polyacrylonitrile, polycarbonate, polystyrene, ionomer, and mixtures thereof. be able to. Among these, thermoplastic resins having good stretchability and transparency, such as polypropylene, polyethylene terephthalate, and polyamide, are preferable. The substrate made of such a thermoplastic resin film may be a non-stretched film or a stretched film. Among them, a biaxially stretched film is preferable because it has excellent rigidity and transparency.
Also, on one or both sides of the film substrate, for example, a surface activation treatment such as a corona treatment, a flame treatment, a plasma treatment, an undercoat treatment, a primer coat treatment, a frame treatment, etc. may be performed to improve the adhesiveness with the inorganic compound. You may go. The thickness of the film substrate is usually in the range of 5 to 50 μm, preferably 9 to 30 μm. The film base may be printed as needed.
[0025]
【The invention's effect】
Since the propylene-based polymer multilayer film for vapor deposition of the present invention is composed of a specific propylene / α-olefin copolymer (A), it has an amorphous component or Since there are few volatile components such as low molecular weight components, there is little contamination in the vapor deposition tank and the adhesion and wettability with the inorganic compound vapor deposited film are not impaired.
The multilayer vapor-deposited film of the present invention has good low-temperature heat sealability, blocking resistance, and tearability in addition to the above properties.
The multilayer vapor-deposited film of the present invention takes advantage of such features to provide various fields such as snacks, candy, cookie, frozen food, bread, vegetables, noodles, etc., or clothing such as shirts, pants, etc. Can be widely used as packaging material for products.
[0026]
【Example】
Next, the present invention will be described through examples, but the present invention is not limited to these examples.
[0027]
Various test methods and evaluation methods in the present invention are as follows.
Before the evaluation of the heat seal strength and the aluminum adhesion strength, a biaxially stretched polypropylene film having a thickness of 25 μm was applied to the vapor-deposited surfaces of the multilayer vapor-deposited films obtained in Examples and Comparative Examples by ester-based adhesive dry lamination. And aged at 40 ° C. for 48 hours to prepare a laminated film for measurement.
(1) Heat seal strength (N / 15mm)
The surface of the heat-sealing layer of the laminated film for measurement is overlapped, and the upper sealer temperature is set to a predetermined temperature and the lower sealer is set at a predetermined temperature for 0.5 second at a pressure of 0.2 MPa by a seal bar having a width of 10 mm. The temperature of the film was kept constant at 70 ° C., and the film was heat-sealed at right angles to the flow direction of the film and allowed to cool. From this, a 15 mm wide test piece was cut out and the heat seal portion was peeled off at a crosshead speed of 300 mm / min, and the strength was defined as heat seal strength.
(2) Aluminum adhesion strength (g / 15mm)
A tape made of a biaxially stretched polypropylene film is adhered to the heat-sealing layer of the laminated film for measurement, and the upper sheet is sealed at a predetermined temperature by a seal bar having a width of 10 mm at a pressure of 0.2 MPa for 0.5 seconds. The rubber temperature was kept at a predetermined temperature, the lower sealer temperature was kept constant at 70 ° C., and heat was applied using a heat seal bar in a direction perpendicular to the film flow direction, followed by cooling. From this, a test piece having a width of 15 mm was cut out, and the strength at the time of peeling between the aluminum deposited layer and the multilayer film in the heated portion by a T-type peeling method at a crosshead speed of 300 mm / min was measured. did.
(3) Easy tear strength (N) in width direction (TD)
Before measuring the easy tear strength, the multilayer film was previously aged in a 38 ° C. oven for 15 hours and then allowed to cool. Five strip-shaped test pieces having a width of 65 mm in the width direction (TD) and a width of 50 mm in the flow direction (MD) are cut out from the film on which the film is not subjected to the vapor deposition processing. Using a light load tear tester manufactured by Toyo Seiki Seisaku-sho, Ltd., the tear strength was evaluated at n = 5 under the condition of full scale 1.96 N, and the average value was taken as the easy tear strength (N). When the film was not torn under the full scale 1.96N condition, the value was 1.96N or more.
(4) Blocking property (N / 5.2 cm 2 )
Before measuring the blocking property, the multilayer film was aged in an oven at 38 ° C. for 15 hours and then allowed to cool. A rectangular test piece of 20 mm x 100 mm width was cut out from a film that was not subjected to a vapor deposition process, and five pieces each having a heat-fusible surface superimposed were prepared. Prepare with a slide. A load of 4 kg is applied to a 5.2 cm 2 area where the test piece and the preparation overlap, aged at a predetermined temperature condition for 2 days, and then allowed to cool. Then, the heat-fused layer surfaces were superposed and sheared off at a crosshead speed of 300 mm / min, and the maximum strength was defined as the blocking force. The blocking force was evaluated at n = 5, and the average value was defined as the blocking force (N / 5.2 cm 2 ).
[0028]
The polymers used in the examples and comparative examples are as follows.
(1) Propylene-ethylene random copolymer (PER)
Ethylene content: 3.1% by weight, Ts: 94.0 ° C, Tp: 126.6 ° C, Te: 131.4 ° C, Te-Ts: 37.4 ° C, Tp-Ts: 32.6 ° C, Mw / Mn: 2.7 and MFR: 7 g / 10 min (230 ° C.).
(2) Propylene / ethylene / 1-butene random copolymer (PEBR)
Ethylene content: 2.2% by weight, 1-butene content: 2.0% by weight, Ts: 95.4 ° C, Tp: 139.3 ° C, Te: 150.3 ° C, Te-Ts: 54.9 C, Tp-Ts: 43.9 C, Mw / Mn: 3.9 and MFR: 7 g / 10 min (230 C).
(3) High density polyethylene (HDPE)
Density: 0.965 g / cm 3 , Tm: 135 ° C., MFR: 17.0 g / 10 min (190 ° C.).
(4) Linear low density polyethylene (LL)
Density: 0.920 g / cm 3 , Tm: 120 ° C., MFR: 8.0 g / 10 min (190 ° C.).
(5) Propylene homopolymer (PP)
Melting point: 160 ° C, MFR: 7.0 / 10 minutes (230 ° C)
[0029]
Example 1
A propylene-based polymer composition obtained by dry blending 97.6% by weight of PER and 2.4% by weight of HDPE as a heat-sealing layer, 100% by weight of PP as an intermediate layer, and PP as a layer to be deposited. : 97.2% by weight and HDPE: 2.8% by weight were separately supplied to separate extruders, and three-layer coextrusion lamination comprising a heat-fused layer / intermediate layer / deposited layer by a T-die method. The film to be deposited was directly corona-treated on the line on the line immediately after the treatment by 40 dyn / cm or more to obtain a propylene-based polymer multilayer film for vapor deposition. The total thickness of the film was 25 μm, and the thickness of each layer was heat-fused layer: intermediate layer: deposited layer = 3.5 μm: 18.5 μm: 3.0 μm.
Using a resistance heating type bell jar type vapor deposition device (manufactured by Vacuum Kiko Co., Ltd., small vacuum vapor deposition device VPC-260), the thickness of aluminum was about 450 mm on the vapor deposition layer of the obtained propylene polymer multilayer film for vapor deposition. It vapor-deposited, and obtained the multilayer vapor-deposited film.
The obtained propylene polymer multilayer film for vapor deposition and the multilayer vapor-deposited film were evaluated by the methods described above. Table 1 shows the results.
[0030]
Comparative Example 1
Instead of Example 1, a propylene-based polymer composition obtained by dry blending 97.6% by weight of PEBR and 2.4% by weight of HDPE as a heat sealing layer, and 100% by weight of PP as an intermediate layer, A propylene-based polymer composition in which 97.2% by weight of PP and 2.8% by weight of HDPE were dry-blended as a layer to be vapor-deposited was separately supplied to a separate extruder. Except for obtaining a propylene-based polymer multilayer film for vapor deposition, a three-layer co-extruded laminated film consisting of / intermediate layer / layer to be vapor-deposited, and directly subjecting the vapor-deposited layer to a corona treatment of 40 dyn / cm or more immediately on line to obtain a vapor-deposited propylene polymer multilayer film. In the same manner as in Example 1, a propylene-based polymer multilayer film for vapor deposition and a multilayer vapor-deposited film were obtained. Table 1 shows the results.
[0031]
Example 2
A propylene-based polymer composition obtained by dry blending 97.6% by weight of PER and 2.4% by weight of HDPE as a heat sealing layer, 100% by weight of PER as an intermediate layer, and PP as a layer to be deposited. : 78.0% by weight, LL: 20.0% by weight, and HDPE: 2.0% by weight, which were supplied to separate extruders, and were heat-sealed / intermediate / deposited by the T-die method. Using a three-layer co-extruded laminated film composed of layers, the layer to be vapor-deposited was directly corona-treated on the line immediately after 40 dyn / cm or more to obtain a propylene-based polymer multilayer film for vapor deposition. The total thickness of the film was 20 μm, and the thickness of each layer was heat-fused layer: intermediate layer: deposited layer = 2.8 μm: 14.8 μm: 2.4 μm.
Using a resistance heating type bell jar type vapor deposition device (manufactured by Vacuum Kiko Co., Ltd., small vacuum vapor deposition device VPC-260), the thickness of aluminum was about 450 mm on the vapor deposition layer of the obtained propylene polymer multilayer film for vapor deposition. It vapor-deposited, and obtained the multilayer vapor-deposited film.
The obtained propylene polymer multilayer film for vapor deposition and the multilayer vapor-deposited film were evaluated by the methods described above. Table 1 shows the results.
[0032]
Comparative Example 2
Instead of Example 2, a propylene-based polymer composition obtained by dry blending 97.6% by weight of PEBR and 2.4% by weight of HDPE as a heat sealing layer, and 100% by weight of PEBR as an intermediate layer, A propylene-based polymer composition obtained by dry-blending 78.0% by weight of PP, 20.0% by weight of LL, and 2.0% by weight of HDPE as a layer to be deposited was prepared and supplied to a separate extruder. A three-layer co-extruded laminated film composed of a heat-sealing layer / intermediate layer / layer to be deposited by a T-die method. A propylene-based polymer multilayer film for vapor deposition and a multilayer vapor-deposited film were obtained in the same manner as in Example 2 except that a combined multilayer film was obtained. Table 1 shows the results.
[0033]
[Table 1]
Figure 2004351749
[0034]
From the results shown in Table 1, the multilayer vapor-deposited films having a heat-sealing layer obtained from the propylene / α-olefin copolymer (A) of the present invention (Examples 1 and 2) are the same as those of the conventional propylene / α-olefin. It is apparent that the low-temperature heat-sealing property, the easy tearing property and the blocking resistance are superior to the multilayer vapor-deposited films having the heat-sealing layer obtained from the copolymer (Comparative Examples 1 and 2).

Claims (9)

DSCに基づく結晶融解曲線から求められたピーク温度(Tp)が110〜140℃及び融解開始温度(Ts)と融解終了温度(Te)との差(Te−Ts)が45℃未満のプロピレン・α―オレフィン共重合体(A)から得られる熱融着層及びプロピレン系重合体(B)から得られる被蒸着層からなることを特徴とする蒸着用プロピレン系重合体多層フィルム。A peak temperature (Tp) determined from a crystal melting curve based on DSC of 110 to 140 ° C., and a difference (Te−Ts) between the melting start temperature (Ts) and the melting end temperature (Te) of less than 45 ° C. propylene · α. -A propylene-based polymer multilayer film for vapor deposition comprising a heat-fused layer obtained from the olefin copolymer (A) and a layer to be vapor-deposited obtained from the propylene-based polymer (B). 熱融着層を構成するプロピレン・α―オレフィン共重合体(A)がエチレン系重合体(C)を5重量%以下含んでなる請求項1記載の蒸着用プロピレン系重合体多層フィルム。The propylene-based polymer multilayer film for vapor deposition according to claim 1, wherein the propylene / α-olefin copolymer (A) constituting the heat-sealing layer contains 5% by weight or less of the ethylene-based polymer (C). エチレン系重合体(C)が、高密度ポリエチレン(D)である請求項2記載の蒸着用プロピレン系重合体多層フィルム。The propylene-based polymer multilayer film for vapor deposition according to claim 2, wherein the ethylene-based polymer (C) is a high-density polyethylene (D). 被蒸着層を構成するプロピレン系重合体(B)がエチレン系重合体(C)を35重量%以下含んでなる請求項1記載の蒸着用プロピレン系重合体多層フィルム。The propylene-based polymer multilayer film for vapor deposition according to claim 1, wherein the propylene-based polymer (B) constituting the layer to be deposited contains 35% by weight or less of the ethylene-based polymer (C). エチレン系重合体(C)が、高密度ポリエチレン(D)及び/又は線状低密度ポリエチレン(E)である請求項4記載の蒸着用プロピレン系重合体多層フィルム。The propylene-based polymer multilayer film for vapor deposition according to claim 4, wherein the ethylene-based polymer (C) is a high-density polyethylene (D) and / or a linear low-density polyethylene (E). 被蒸着層を構成するプロピレン系重合体(B)が高密度ポリエチレン(D)を5重量%以下及び線状低密度ポリエチレン(E)を15〜25重量%の範囲で含んでなる請求項5記載の蒸着用プロピレン系重合体多層フィルム。The propylene polymer (B) constituting the layer to be deposited contains 5% by weight or less of high-density polyethylene (D) and 15 to 25% by weight of linear low-density polyethylene (E). A propylene polymer multilayer film for vapor deposition. 被蒸着層を構成するプロピレン系重合体(B)が高密度ポリエチレン(D)を5重量%以下含んでなる請求項5記載の蒸着用プロピレン系重合体多層フィルム。The propylene polymer multilayer film for vapor deposition according to claim 5, wherein the propylene polymer (B) constituting the layer to be deposited contains 5% by weight or less of high-density polyethylene (D). 請求項1〜7の何れかに記載の蒸着用プロピレン系重合体多層フィルムの熱融着層と被蒸着層との間に、DSCに基づく結晶融解曲線から求められたピーク温度(Tp)が110〜140℃及び融解開始温度(Ts)と融解終了温度(Te)との差(Te−Ts)が45℃未満のプロピレン・α―オレフィン共重合体(A)若しくはプロピレン系重合体(B)から得られる中間層が積層されてなる蒸着用プロピレン系重合体多層フィルム。The peak temperature (Tp) obtained from the crystal melting curve based on DSC between the heat-fused layer and the layer to be vapor-deposited of the propylene polymer multilayer film for vapor deposition according to claim 1 is 110. From propylene / α-olefin copolymer (A) or propylene-based polymer (B) having a melting point temperature (Ts) of up to 140 ° C and a difference (Te-Ts) between melting start temperature (Te) and melting end temperature (Te) of less than 45 ° C. A propylene polymer multilayer film for vapor deposition obtained by laminating the obtained intermediate layers. 請求項1〜8の何れかに記載の蒸着用プロピレン系重合体多層フィルムの被蒸着層面に無機化合物が蒸着されてなる多層蒸着フィルム。A multilayer vapor-deposited film obtained by vapor-depositing an inorganic compound on a surface of a layer to be vapor-deposited of the propylene-based polymer multilayer film for vapor deposition according to claim 1.
JP2003152279A 2003-05-29 2003-05-29 Propylene polymer multilayer film for vapor deposition and multilayer vapor deposition film Expired - Lifetime JP4381722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003152279A JP4381722B2 (en) 2003-05-29 2003-05-29 Propylene polymer multilayer film for vapor deposition and multilayer vapor deposition film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003152279A JP4381722B2 (en) 2003-05-29 2003-05-29 Propylene polymer multilayer film for vapor deposition and multilayer vapor deposition film

Publications (2)

Publication Number Publication Date
JP2004351749A true JP2004351749A (en) 2004-12-16
JP4381722B2 JP4381722B2 (en) 2009-12-09

Family

ID=34047533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003152279A Expired - Lifetime JP4381722B2 (en) 2003-05-29 2003-05-29 Propylene polymer multilayer film for vapor deposition and multilayer vapor deposition film

Country Status (1)

Country Link
JP (1) JP4381722B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005092612A1 (en) * 2004-03-26 2005-10-06 Toyo Boseki Kabushiki Kaisaha Heat-sealable layered polypropylene resin film and package
JP2008065061A (en) * 2006-09-07 2008-03-21 Jsr Corp Optical film, method of manufacturing the same, polarizer, and liquid crystal panel
JP2008155527A (en) * 2006-12-25 2008-07-10 Denki Kagaku Kogyo Kk Laminate
US7879439B2 (en) 2004-03-18 2011-02-01 Toyo Boseki Kabushiki Kaisha Polypropylene laminate film, and package comprising the same
US8043712B2 (en) 2005-04-28 2011-10-25 Toyo Boseki Kabushiki Kaisha Heat-sealable multilayer polypropylene resin film and packaging material
JP2013075439A (en) * 2011-09-30 2013-04-25 Dic Corp Easily tearable multilayer film, method for manufacturing the same, and packaging material using the film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879439B2 (en) 2004-03-18 2011-02-01 Toyo Boseki Kabushiki Kaisha Polypropylene laminate film, and package comprising the same
WO2005092612A1 (en) * 2004-03-26 2005-10-06 Toyo Boseki Kabushiki Kaisaha Heat-sealable layered polypropylene resin film and package
US9085124B2 (en) 2004-03-26 2015-07-21 Toyo Boseki Kabushiki Kaisha Heat-sealable layered polypropylene resin film and package
US8043712B2 (en) 2005-04-28 2011-10-25 Toyo Boseki Kabushiki Kaisha Heat-sealable multilayer polypropylene resin film and packaging material
JP2008065061A (en) * 2006-09-07 2008-03-21 Jsr Corp Optical film, method of manufacturing the same, polarizer, and liquid crystal panel
JP2008155527A (en) * 2006-12-25 2008-07-10 Denki Kagaku Kogyo Kk Laminate
JP2013075439A (en) * 2011-09-30 2013-04-25 Dic Corp Easily tearable multilayer film, method for manufacturing the same, and packaging material using the film

Also Published As

Publication number Publication date
JP4381722B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
WO2007015415A1 (en) Polypropylene resin composition, film or sheet, stretched film obtained from such film or sheet, multilayer body, and stretched film obtained from such multilayer body
JP2023073314A (en) Food packaging film and food package
JPH01304937A (en) Laminated film
JP4187092B2 (en) Biaxially stretched moisture-proof polypropylene film
JP4381722B2 (en) Propylene polymer multilayer film for vapor deposition and multilayer vapor deposition film
WO2007074838A1 (en) Monolayer polypropylene film and use thereof
JP7355591B2 (en) Stretched film and its uses
JP4467268B2 (en) Propylene-based polymer laminate film for vapor deposition and vapor deposition laminate film
JP5068959B2 (en) Resin composition for sealant, sealant film, and laminate
JP4535484B2 (en) Heat-fusible propylene polymer film, laminated film and use thereof
JP4574952B2 (en) Propylene polymer film for vapor deposition and vapor deposition film
JP4240370B2 (en) Biaxially oriented polypropylene multilayer film
JP2004136565A (en) Thermally fusible propylene polymer laminated film and use thereof
JP4446427B2 (en) Heat-fusible propylene polymer film, laminated film and use thereof
JP4314146B2 (en) Resin composition for sealant and easy heat sealable sealant film obtained therefrom
TW202222586A (en) Film with reduced alcohol permeability, and packaging material and package including said film with reduced alcohol permeability
JP4520719B2 (en) Heat-fusible propylene polymer laminated film and use thereof
JP4535483B2 (en) Heat-fusible propylene polymer laminated film and use thereof
JP2003170555A (en) Biaxially stretched multilayer polypropylene film
JP4318175B2 (en) Heat-fusible propylene polymer laminated film and use thereof
JP4039558B2 (en) Heat-fusible propylene polymer film, laminated film and package
JP4651993B2 (en) Easy-cut laminated film
JP4954432B2 (en) Heat-fusible propylene polymer laminated film and use thereof
JP4491246B2 (en) Resin composition for sealant and sealant film obtained therefrom
JP4726394B2 (en) Heat-fusible propylene polymer laminated film and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4381722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term