JP7355591B2 - Stretched film and its uses - Google Patents

Stretched film and its uses Download PDF

Info

Publication number
JP7355591B2
JP7355591B2 JP2019187672A JP2019187672A JP7355591B2 JP 7355591 B2 JP7355591 B2 JP 7355591B2 JP 2019187672 A JP2019187672 A JP 2019187672A JP 2019187672 A JP2019187672 A JP 2019187672A JP 7355591 B2 JP7355591 B2 JP 7355591B2
Authority
JP
Japan
Prior art keywords
stretched film
propylene
melting point
present
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019187672A
Other languages
Japanese (ja)
Other versions
JP2021063162A (en
Inventor
達也 奥
公憲 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2019187672A priority Critical patent/JP7355591B2/en
Publication of JP2021063162A publication Critical patent/JP2021063162A/en
Application granted granted Critical
Publication of JP7355591B2 publication Critical patent/JP7355591B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Packages (AREA)
  • Wrappers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

本発明は、低温熱収縮性を有し、熱収縮率に優れ、かつ自然収縮率が低く、引張弾性率が高い延伸フィルムおよびその用途に関する。 The present invention relates to a stretched film that has low-temperature heat shrinkability, excellent heat shrinkage rate, low natural shrinkage rate, and high tensile modulus, and uses thereof.

食品包装に用いる延伸フィルムの用途の一つであるシュリンクフィルムは、ポリ塩化ビニル、ポリエチレン、ポリプロピレン等の熱可塑性樹脂が用いられている。ポリ塩化ビニルシュリンクフィルムは収縮性、透明性に優れるが、環境への問題が懸念されている。ポリエチレンシュリンクフィルムは収縮性や耐突き刺し強度に優れるものの、透明性、剛性、耐熱性等は高くない。一方、ポリプロピレンシュリンクフィルムは透明性、耐熱性、剛性に優れるが、成形に高温を要し、収縮性に乏しいという問題がある。 Thermoplastic resins such as polyvinyl chloride, polyethylene, and polypropylene are used for shrink films, which are one of the applications of stretched films used in food packaging. Although polyvinyl chloride shrink film has excellent shrinkability and transparency, there are concerns about environmental issues. Although polyethylene shrink film has excellent shrinkability and puncture resistance, it does not have high transparency, rigidity, heat resistance, etc. On the other hand, although polypropylene shrink film has excellent transparency, heat resistance, and rigidity, it requires high temperatures for molding and has poor shrinkability.

かかる問題点の解決方法として、低融点化したポリプロピレン(プロピレン・α‐オレフィンランダム共重合体)を主材、もしくは改質材として用いることで収縮率を向上させる方法が提案されている(たとえば、特許文献1、2)。さらには、柔軟性や収縮性を改良する方法として、プロピレン系重合体に、ポリブテン系重合体を加えたオレフィン系重合体組成物を使用する方法が提案されている(たとえば、特許文献3~5)。 As a solution to this problem, a method has been proposed in which the shrinkage rate is improved by using polypropylene (propylene/α-olefin random copolymer) with a lower melting point as the main material or modifier (for example, Patent Documents 1, 2). Furthermore, as a method for improving flexibility and shrinkage, a method has been proposed that uses an olefin polymer composition in which a polybutene polymer is added to a propylene polymer (for example, Patent Documents 3 to 5 ).

一方で、提案された手法においては、主材の弾性率や融点が低いために、フィルムの弾性率すなわちコシに乏しく、製膜後経時での自然収縮が発生する恐れがあることから、後工程における作業性に難点が残る。これを解決する方法として、主材に高剛性かつ高融点なポリプロピレンを用いることが考えられるが、加熱収縮率が不足する問題が生じる。 On the other hand, in the proposed method, because the elastic modulus and melting point of the main material are low, the elastic modulus of the film, that is, the stiffness, is poor, and there is a risk of natural shrinkage occurring over time after film formation. Difficulties remain in terms of workability. One possible solution to this problem is to use polypropylene, which has high rigidity and a high melting point, as the main material, but this poses the problem of insufficient heat shrinkage.

特開2003-306587号公報JP2003-306587A 特開2004-155482号公報Japanese Patent Application Publication No. 2004-155482 特開平11-245350号公報Japanese Patent Application Publication No. 11-245350 特開平10-272747号公報Japanese Patent Application Publication No. 10-272747 特開2015-174882号公報Japanese Patent Application Publication No. 2015-174882

本発明の目的は、低温熱収縮性を有し、熱収縮率に優れ、かつ自然収縮率が低く、引張弾性率が高い延伸フィルムを得ることにある。 An object of the present invention is to obtain a stretched film that has low-temperature heat shrinkability, excellent heat shrinkage rate, low natural shrinkage rate, and high tensile modulus.

本発明は、示差走査熱量測定(DSC)により測定した融点(Tm)が150~180℃の範囲にあるプロピレン系重合体(A)を40~90質量%、および示差走査熱量測定(DSC)により測定した融点(Tm)が120℃未満または融点が観測されないプロピレン系共重合体(B)を10~60質量%〔但し、(A)と(B)の合計を100質量%とする。〕含む重合体組成物からなる縦方向(MD)の引張弾性率が1.5GPa以上であることを特徴とする延伸フィルムに係る。 The present invention contains 40 to 90% by mass of a propylene polymer (A) having a melting point (Tm) in the range of 150 to 180°C as measured by differential scanning calorimetry (DSC), and 10 to 60% by mass of a propylene copolymer (B) with a measured melting point (Tm) of less than 120° C. or no observed melting point [however, the total of (A) and (B) is 100% by mass. ] This relates to a stretched film characterized in that the tensile modulus in the machine direction (MD) is 1.5 GPa or more and is made of a polymer composition containing the present invention.

本発明の延伸フィルムは、低温熱収縮性を有し、加熱収縮率に優れ、かつ自然収縮率が低く、引張弾性率が高いので、食品包装材等に好適に用い得る。 The stretched film of the present invention has low-temperature heat shrinkability, excellent heat shrinkage rate, low natural shrinkage rate, and high tensile modulus, so it can be suitably used for food packaging materials and the like.

<プロピレン系重合体(A)>
本発明の延伸フィルムを形成する重合体組成物の成分の一つであるプロピレン系重合体(A)は、示差走査熱量測定(DSC)により測定した融点(Tm)が140~180℃の範囲、好ましくは150~170℃の範囲にある。
<Propylene polymer (A)>
The propylene polymer (A), which is one of the components of the polymer composition forming the stretched film of the present invention, has a melting point (Tm) in the range of 140 to 180°C as measured by differential scanning calorimetry (DSC), Preferably it is in the range of 150 to 170°C.

本発明に係わるプロピレン系重合体(A)の示差走査熱量測定(DSC)による融点(Tm)の測定は、実施例に記載する方法で行った値である。
本発明に係わるプロピレン系重合体(A)は、通常、プロピレンから導かれる構成単位が50モル%を超え、好ましくは60モル%以上、より好ましくは70モル%以上である。
The melting point (Tm) of the propylene polymer (A) according to the present invention was measured by differential scanning calorimetry (DSC) using the method described in the Examples.
The propylene polymer (A) according to the present invention usually contains more than 50 mol% of structural units derived from propylene, preferably 60 mol% or more, and more preferably 70 mol% or more.

本発明に係わるプロピレン系重合体(A)は、プロピレンの単独重合体(ホモポリプロピレン)であっても、プロピレンと炭素原子数2~20のα-オレフィン(ただしプロピレンを除く)とのランダム共重合体であっても、プロピレンブロック共重合体であっても良い。 The propylene polymer (A) according to the present invention may be a propylene homopolymer (homopolypropylene) or a random copolymer of propylene and an α-olefin having 2 to 20 carbon atoms (excluding propylene). It may be a combination or a propylene block copolymer.

本発明に係わるプロピレン系重合体(A)は、延伸製膜後の引張弾性率が1.5GPa以上のものを得るため、プロピレン単独重合体であることがより好ましい。
プロピレンと共重合させる炭素数が2~20のα-オレフィンとしては、例えば、エチレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンが挙げられる。二種類以上のα-オレフィンを用いることも好ましい形態の一つである。
The propylene polymer (A) according to the present invention is more preferably a propylene homopolymer in order to obtain a tensile modulus of 1.5 GPa or more after film formation by stretching.
Examples of α-olefins having 2 to 20 carbon atoms to be copolymerized with propylene include ethylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, Examples include 1-octene, 1-decene, 1-dodecene, 1-tetracene, 1-hexadecene, 1-octadecene, and 1-eicosene. One preferable embodiment is to use two or more types of α-olefins.

本発明に係わるプロピレン系重合体(A)は、延伸製膜後の引張弾性率が1.5GPa以上のものを得るため、アイソタクティックプロピレン系重合体が好ましい。アイソタクティックプロピレン系重合体とは、NMR法により測定したアイソタクティックペンタッド分率が0.9以上、好ましくは0.95以上であるプロピレン系重合体である。このアイソタクティックペンタッド分率を百分率で表すと90%以上、好ましくは95%以上である。 The propylene polymer (A) according to the present invention is preferably an isotactic propylene polymer in order to obtain a tensile modulus of 1.5 GPa or more after stretching film formation. The isotactic propylene polymer is a propylene polymer whose isotactic pentad fraction measured by NMR is 0.9 or more, preferably 0.95 or more. This isotactic pentad fraction, expressed as a percentage, is 90% or more, preferably 95% or more.

アイソタクティックペンタッド分率(mmmm分率)は、13C-NMRを使用して測定される分子鎖中のペンタッド分率単位でのアイソタクティック連鎖の存在割合を示すものであり、プロピレンモノマー単位が5個連続してメソ結合した連鎖の中心にあるプロピレンモノマー単位の分率である。具体的には、13C-NMRスペクトルで観測されるメチル炭素領域の全吸収ピーク中に占めるmmmmピークの分率として算出される。 The isotactic pentad fraction (mmmm fraction) indicates the proportion of isotactic chains present in the pentad fraction unit in the molecular chain measured using 13 C-NMR, and is It is the fraction of propylene monomer units at the center of a chain of five consecutive meso-bonded units. Specifically, it is calculated as the fraction of the mmmm peak in the total absorption peak in the methyl carbon region observed in the 13 C-NMR spectrum.

mmmm分率は、13C-NMRスペクトルにおけるPmmmm(プロピレン単位が5単位連続してアイソタクティック結合した部位における第3番目のメチル基に由来する吸収強度)およびPw(プロピレン単位の全メチル基に由来する吸収強度)の吸収強度から下記式により求められる。
mmmm分率=Pmmmm/Pw
The mmmm fraction is defined as Pmmmm (absorption intensity derived from the third methyl group at the site where five propylene units are consecutively bonded isotactically) and Pw (total methyl groups of the propylene units) in the 13 C-NMR spectrum. It is determined by the following formula from the absorption intensity of the derived absorption intensity).
mmmm fraction=Pmmmm/Pw

NMR測定は、NMR測定装置を用いて例えば次のようにして行われる。すなわち、試料0.35gをヘキサクロロブタジエン2.0mLに加熱溶解させる。この溶液をグラスフィルター(G2)で濾過した後、重水素化ベンゼン0.5mLを加え、内径10mmのNMRチューブに装入する。そして120℃で13C-NMR測定を行う。積算回数は10,000回以上とする。 NMR measurement is performed using an NMR measuring device, for example, as follows. That is, 0.35 g of the sample is heated and dissolved in 2.0 mL of hexachlorobutadiene. After filtering this solution through a glass filter (G2), 0.5 mL of deuterated benzene was added, and the solution was placed in an NMR tube with an inner diameter of 10 mm. Then, 13 C-NMR measurement is performed at 120°C. The cumulative number of times shall be 10,000 or more.

本発明に係わるプロピレン系重合体(A)は、メルトフローレート(MFR)〔ASTM D1238、230℃、2.16kg荷重下)は、後述のプロピレン系重合体(B)と混合して得られる重合体組成物がフィルム形成能を有する限り特に限定はされないが、0.1~10g/10分が好適であり、中でも0.5~8g/10分が特に好適である。このような範囲であれば、フィルム成形が良好である。 The propylene polymer (A) according to the present invention has a melt flow rate (MFR) [ASTM D1238, 230°C, under a load of 2.16 kg] of a polymer obtained by mixing with the propylene polymer (B) described below. There is no particular limitation as long as the combined composition has film-forming ability, but 0.1 to 10 g/10 minutes is preferred, and 0.5 to 8 g/10 minutes is particularly preferred. Within this range, film formation is good.

《プロピレン系重合体(A)の製造方法》
本発明に係るプロピレン系重合体(A)は、通常、ポリプロピレンとして、製造・販売されているオレフィン系重合体の一種であり、種々公知の製造方法、例えば、チーグラー・ナッタ系触媒、メタロセン系触媒などの公知の触媒の存在下に、モノマーを気相法、バルク法、スラリー法などの公知の重合法により製造し得る。
<<Production method of propylene polymer (A)>>
The propylene polymer (A) according to the present invention is a type of olefin polymer that is usually produced and sold as polypropylene, and can be produced using various known production methods, such as Ziegler-Natta catalysts and metallocene catalysts. The monomer can be produced by a known polymerization method such as a gas phase method, a bulk method, or a slurry method in the presence of a known catalyst such as.

<プロピレン系共重合体(B)>
本発明の延伸フィルムを形成する重合体組成物の成分の一つであるプロピレン系共重合体(B)は、示差走査熱量測定(DSC)により測定した融点(Tm)が120℃未満または融点が観測されない。
<Propylene copolymer (B)>
The propylene copolymer (B), which is one of the components of the polymer composition forming the stretched film of the present invention, has a melting point (Tm) of less than 120°C or a melting point measured by differential scanning calorimetry (DSC). Not observed.

本発明に係わるプロピレン系共重合体(B)は、好ましくは、示差走査熱量測定(DSC)により測定した融点(Tm)が110℃以下である。
本発明に係わるプロピレン系共重合体(B)は、好ましくは、13C-NMRで測定されるトリアドタクティシティ(mm分率)が85%以上、より好ましくは90~98%の範囲にある。
The propylene copolymer (B) according to the present invention preferably has a melting point (Tm) of 110° C. or lower as measured by differential scanning calorimetry (DSC).
The propylene copolymer (B) according to the present invention preferably has a triad tacticity (mm fraction) measured by 13 C-NMR of 85% or more, more preferably in the range of 90 to 98%. .

本発明に係わるプロピレン系共重合体(B)の示差走査熱量測定(DSC)による融点(Tm)の測定は、実施例に記載する方法で行った値である。
本発明に係わるプロピレン系共重合体(B)のトリアドタクティシティ(mm分率)は、具体的にポリマー鎖中に存在するプロピレン単位を含む3連鎖として、(i)頭-尾結合したプロピレン単位3連鎖、および(ii)頭-尾結合したプロピレン単位とα-オレフィン単位とからなりかつ第2単位目がプロピレン単位であるプロピレン単位・α-オレフィン単位3連鎖について、mm分率が測定される。これら3連鎖(i)および(ii)中の第2単位目(プロピレン単位)の側鎖メチル基のピーク強度からmm分率が求められる。
The melting point (Tm) of the propylene copolymer (B) according to the present invention was measured by differential scanning calorimetry (DSC) using the method described in the Examples.
The triad tacticity (mm fraction) of the propylene copolymer (B) according to the present invention is specifically defined as three chains containing propylene units present in the polymer chain, (i) head-to-tail propylene The mm fraction is measured for three chains of units, and (ii) three chains of propylene units and α-olefin units consisting of a head-to-tail bonded propylene unit and an α-olefin unit, and the second unit is a propylene unit. Ru. The mm fraction is determined from the peak intensity of the side chain methyl group of the second unit (propylene unit) in these three chains (i) and (ii).

本発明に係るプロピレン系共重合体(B)は、通常、プロピレンから導かれる構成単位10~95モル%、好ましくは50~95モル%、より好ましくは60~90モル%並びに、炭素原子数2または4~20のα-オレフィンから導かれる構成単位5~90モル%、好ましくは5~50モル%、より好ましくは10~40モル%[ここで、プロピレンから導かれる構成単位と炭素原子数2または4~20のα-オレフィンから導かれる構成単位の合計量は100モル%である。]を含有するプロピレン系重合体である。 The propylene copolymer (B) according to the present invention usually has a structural unit derived from propylene of 10 to 95 mol%, preferably 50 to 95 mol%, more preferably 60 to 90 mol%, and a carbon atom number of 2. or 5 to 90 mol% of structural units derived from 4 to 20 α-olefins, preferably 5 to 50 mol%, more preferably 10 to 40 mol% [here, structural units derived from propylene and carbon atoms of 2 Alternatively, the total amount of structural units derived from 4 to 20 α-olefins is 100 mol%. ] It is a propylene-based polymer containing.

本発明に係わるプロピレン系共重合体(B)において、プロピレンと共重合させる炭素数2または4~20のα-オレフィンとしては、例えば、エチレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンが挙げられる。これらα-オレフィンは二種類以上のα-オレフィンであってもよい。これらα-オレフィンの中では、1-ブテンがより好ましい。 In the propylene copolymer (B) according to the present invention, the α-olefin having 2 or 4 to 20 carbon atoms to be copolymerized with propylene includes, for example, ethylene, 1-butene, 1-pentene, 3-methyl-1 -butene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetracene, 1-hexadecene, 1-octadecene, and 1-eicosene. These α-olefins may be two or more types of α-olefins. Among these α-olefins, 1-butene is more preferred.

本発明に係わるプロピレン系共重合体(B)のゲルパーミエイションクロマトグラフィー(GPC)により求められる分子量分布(Mw/Mn)は、好ましくは3.0以下、より好ましくは2.0~3.0、特に好ましくは2.0~2.5である。Mw/Mnを上記範囲に設定することで、プロピレン系共重合体(B)中の低分子量成分の含有量を抑制できる。その結果、延伸フィルムの表層からブリードが起こり難くなり、延伸フィルムの保管時における表層のべた付き、ブロッキングを抑制できる。 The molecular weight distribution (Mw/Mn) determined by gel permeation chromatography (GPC) of the propylene copolymer (B) according to the present invention is preferably 3.0 or less, more preferably 2.0 to 3. 0, particularly preferably 2.0 to 2.5. By setting Mw/Mn within the above range, the content of low molecular weight components in the propylene copolymer (B) can be suppressed. As a result, bleeding from the surface layer of the stretched film is less likely to occur, and stickiness and blocking of the surface layer during storage of the stretched film can be suppressed.

本発明に係わるプロピレン系共重合体(B)のMw/Mnの測定方法は、実施例に記載した方法で測定した値である。
本発明に係わるプロピレン系共重合体(B)のメルトフローレート(MFR;ASTM D1238、230℃、2.16kg荷重下)は、前記プロピレン系重合体(A)と混合して得られる重合体組成物がフィルム形成能を有する限り特に限定はされないが、好ましくは0.1~30g/10分、より好ましくは0.5~20g/10分、特に好ましくは1.0~10g/10分である。
The method for measuring Mw/Mn of the propylene copolymer (B) according to the present invention is the value measured by the method described in the Examples.
The melt flow rate (MFR; ASTM D1238, 230°C, under 2.16 kg load) of the propylene copolymer (B) according to the present invention is the polymer composition obtained by mixing with the propylene polymer (A). There is no particular limitation as long as the material has film-forming ability, but it is preferably 0.1 to 30 g/10 minutes, more preferably 0.5 to 20 g/10 minutes, particularly preferably 1.0 to 10 g/10 minutes. .

《プロピレン系共重合体(B)の製造方法》
本発明に係わるプロピレン系共重合体(B)は、プロピレンとα-オレフィンをメタロセン化合物を含む触媒の存在下に共重合することにより好適に製造できる。具体的には、例えば、WO2004/087775号パンフレットまたはWO2001/27124号パンフレットに記載の方法などに従いメタロセン触媒によって好適に製造できる。また、チーグラー・ナッタ触媒を用いてもよい。
<<Production method of propylene copolymer (B)>>
The propylene copolymer (B) according to the present invention can be suitably produced by copolymerizing propylene and α-olefin in the presence of a catalyst containing a metallocene compound. Specifically, it can be suitably produced using a metallocene catalyst, for example, according to the method described in WO2004/087775 pamphlet or WO2001/27124 pamphlet. Alternatively, a Ziegler-Natta catalyst may be used.

<重合体組成物>
本発明の延伸フィルムを形成する重合体組成物は、本発明に係わる上記プロピレン系重合体(A)を40~95質量%、好ましくは50~95質量%、より好ましくは60~90質量%、および、本発明に係わる上記プロピレン系共重合体(B)を5~60質量%、好ましくは5~50質量%、より好ましくは10~40質量%の範囲で含む組成物である〔但し、(A)と(B)の合計を100質量%とする。〕。
<Polymer composition>
The polymer composition forming the stretched film of the present invention contains 40 to 95% by mass, preferably 50 to 95% by mass, more preferably 60 to 90% by mass of the propylene polymer (A) according to the present invention. and a composition containing the propylene copolymer (B) according to the present invention in an amount of 5 to 60% by mass, preferably 5 to 50% by mass, more preferably 10 to 40% by mass [provided that ( The total of A) and (B) is 100% by mass. ].

本発明に係わる重合体組成物は、プロピレン系重合体(A)とプロピレン系共重合体(B)とを上記範囲で含むことにより、低温熱収縮性を有し、熱収縮率に優れ、かつ自然収縮率が低く、引張弾性率が高い延伸フィルムを得ることができる。 The polymer composition according to the present invention contains the propylene polymer (A) and the propylene copolymer (B) in the above range, so that it has low-temperature heat shrinkability, excellent heat shrinkage rate, and A stretched film with low natural shrinkage and high tensile modulus can be obtained.

本発明に係わる重合体組成物は、あるいは、上記プロピレン系重合体(A)、上記プロピレン系共重合体(B)には、その目的を損なわない範囲内において通常用いられる耐熱安定剤、酸化防止剤、紫外線吸収剤、抗ブロッキング剤、スリップ剤、帯電防止剤、対候安定剤、防曇剤、結晶核剤、塩基吸収剤、滑剤、難燃剤などを、本発明の目的を損なわない範囲で添加することができる。 Alternatively, the polymer composition according to the present invention may contain heat-resistant stabilizers and antioxidants that are commonly used in the propylene-based polymer (A) and the propylene-based copolymer (B) within a range that does not impair the purpose. additives, ultraviolet absorbers, anti-blocking agents, slip agents, antistatic agents, weather stabilizers, antifogging agents, crystal nucleating agents, base absorbers, lubricants, flame retardants, etc., within the range that does not impair the purpose of the present invention. Can be added.

本発明に係わる重合体組成物のメルトフローレート(MFR;ASTM D1238、230℃、2.16kg荷重下)は、重合体組成物がフィルム形成能を有する限り特に限定はされないが、好ましくは0.1~100g/10分、より好ましくは0.5~30g/10分、特に好ましくは1~10g/10分である。 The melt flow rate (MFR; ASTM D1238, 230°C, under a load of 2.16 kg) of the polymer composition according to the present invention is not particularly limited as long as the polymer composition has film-forming ability, but is preferably 0. The rate is 1 to 100 g/10 minutes, more preferably 0.5 to 30 g/10 minutes, particularly preferably 1 to 10 g/10 minutes.

<延伸フィルム>
本発明の延伸フィルムは、本発明に係わる上記重合体組成物を延伸してなる縦方向(MD)の引張弾性率が1.5GPa以上、好ましくは1.5~6.0GPaの範囲にあることを特徴とする延伸フィルムである。
<Stretched film>
The stretched film of the present invention is obtained by stretching the above polymer composition according to the present invention, and has a tensile modulus in the machine direction (MD) of 1.5 GPa or more, preferably in the range of 1.5 to 6.0 GPa. It is a stretched film characterized by:

本発明の延伸フィルムは、一軸延伸フィルムであっても、二軸延伸フィルムであってもよい。
本発明の延伸フィルムは、好ましくは、130℃以上の温度で1分間加熱した際の熱収縮率が10%以上、より好ましくは10~70%の範囲にある。
The stretched film of the present invention may be a uniaxially stretched film or a biaxially stretched film.
The stretched film of the present invention preferably has a heat shrinkage rate of 10% or more, more preferably in the range of 10 to 70% when heated for 1 minute at a temperature of 130° C. or higher.

本発明の延伸フィルムは、好ましくは、40℃雰囲気下で7日間保管後の縦および横の収縮率がいずれも2.5%以下である。
本発明の延伸フィルムの厚さは、延伸フィルムの用途に応じて種々決め得るが、通常、1~100μm、好ましくは5~50μm、より好ましくは10~30μmの範囲にある。
The stretched film of the present invention preferably has both longitudinal and transverse shrinkage percentages of 2.5% or less after being stored in an atmosphere at 40° C. for 7 days.
The thickness of the stretched film of the present invention can be determined variously depending on the use of the stretched film, but is usually in the range of 1 to 100 μm, preferably 5 to 50 μm, and more preferably 10 to 30 μm.

本発明の延伸フィルムは、上記重合体組成物からなる単層の延伸フィルムであってもよいが、延伸フィルムの用途によっては、当該延伸フィルムの片面、あるいは両面に熱融着層が積層された延伸フィルムであってもよい。 The stretched film of the present invention may be a single-layer stretched film made of the above polymer composition, but depending on the use of the stretched film, a heat-sealable layer may be laminated on one or both sides of the stretched film. It may be a stretched film.

《熱融着層》
本発明の延伸フィルムに積層される熱融着層は、延伸フィルムにヒートシール性、好ましくは低温ヒートシール性を付与するための層であり、通常、上記プロピレン系重合体(A)より低い温度で融着し得る重合体であり、例えば、高圧法低密度ポリエチレン、線状低密度ポリエチレン、結晶性あるいは低結晶性のエチレンと炭素数3~10のα-オレフィンとのランダム共重合体あるいはプロピレンとエチレンもしくは炭素数4以上のα-オレフィンとのランダム共重合体、ポリブテン、エチレン・酢酸ビニル共重合体等の低融点の重合体を単独あるいはそれらの組成物からなる層である。
《Heat adhesive layer》
The heat-sealing layer laminated on the stretched film of the present invention is a layer for imparting heat-sealability, preferably low-temperature heat-sealability, to the stretched film, and is usually at a temperature lower than that of the propylene polymer (A). For example, high-pressure low-density polyethylene, linear low-density polyethylene, random copolymers of crystalline or low-crystalline ethylene and α-olefin having 3 to 10 carbon atoms, or propylene. This layer is made of a random copolymer of ethylene or an α-olefin having 4 or more carbon atoms, a low melting point polymer such as a polybutene, an ethylene/vinyl acetate copolymer, or a composition thereof.

本発明の延伸フィルムに積層される熱融着層の厚さは、用途に応じて種々決め得るが、通常、0.1~10μm、好ましくは0.5~5μm、より好ましくは1~3μmの範囲にある。 The thickness of the heat-sealing layer laminated on the stretched film of the present invention can be determined variously depending on the application, but is usually 0.1 to 10 μm, preferably 0.5 to 5 μm, and more preferably 1 to 3 μm. in range.

《基材層》
本発明の延伸フィルムは、延伸フィルムの用途によっては、基材層を積層した積層フィルムであってもよい。
《Base material layer》
The stretched film of the present invention may be a laminated film in which base layers are laminated, depending on the use of the stretched film.

本発明に係わる基材層は、熱可塑性樹脂からなるシート状またはフィルム状のもの、紙、アルミニウム箔等からなる。熱可塑性樹脂としては、種々公知の熱可塑性樹脂、例えば、ポリオレフィン(ポリエチレン、ポリプロピレン、ポリ4-メチル・1-ペンテン、ポリブテン等)、ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等)、ポリアミド(ナイロン-6、ナイロン-66、ポリメタキシレンアジパミド等)、ポリ塩化ビニル、ポリイミド、エチレン・酢酸ビニル共重合体の鹸化物、ポリビニルアルコール、ポリアクリロニトリル、ポリカーボネート、ポリスチレン、アイオノマー、あるいはこれらの混合物等を例示することができる。これらのうちでは、ポリプロピレン、ポリエチレンテレフタレート、ポリアミド等、延伸性、透明性が良好な熱可塑性樹脂が好ましい。又、かかる熱可塑性樹脂フィルムからなる基材は、無延伸フィルムであっても、延伸フィルムであっても良いし、1種或いは2種以上の共押し出し品、押出しラミ品、ドライラミ品等の積層体であっても良い。 The base material layer according to the present invention is made of a sheet or film made of thermoplastic resin, paper, aluminum foil, or the like. Examples of the thermoplastic resin include various known thermoplastic resins, such as polyolefins (polyethylene, polypropylene, poly4-methyl-1-pentene, polybutene, etc.), polyesters (polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc.), and polyamides. (nylon-6, nylon-66, polymethaxylene adipamide, etc.), polyvinyl chloride, polyimide, saponified products of ethylene/vinyl acetate copolymers, polyvinyl alcohol, polyacrylonitrile, polycarbonate, polystyrene, ionomers, or these Examples include mixtures and the like. Among these, thermoplastic resins with good stretchability and transparency, such as polypropylene, polyethylene terephthalate, and polyamide, are preferred. Further, the base material made of such a thermoplastic resin film may be an unstretched film or a stretched film, or may be a laminate of one or more coextruded products, extruded laminated products, dry laminated products, etc. It can also be the body.

又、基材層の片面あるいは両面を、本発明の延伸フィルムとの接着性を改良するために、例えば、コロナ処理、火炎処理、プラズマ処理、アンダーコート処理、プライマーコート処理、フレーム処理等の表面活性化処理を行っておいてもよい。基材層の厚さは、通常5~1000μm、好ましくは9~100μmの範囲にある。 In addition, one or both surfaces of the base material layer may be subjected to surface treatment such as corona treatment, flame treatment, plasma treatment, undercoat treatment, primer coat treatment, flame treatment, etc. in order to improve the adhesion with the stretched film of the present invention. Activation processing may be performed in advance. The thickness of the base layer is usually in the range of 5 to 1000 μm, preferably 9 to 100 μm.

《延伸フィルムの製造方法》
本発明の延伸フィルムは、種々公知の方法、例えば、上記重合体組成物を押出し成形して得たシートを、公知の一軸延伸方法、同時二軸延伸方法あるいは逐次二軸延伸方法等の延伸フィルム製造方法により得られる。
《Method for producing stretched film》
The stretched film of the present invention can be produced by various known methods, for example, a sheet obtained by extrusion molding the above-mentioned polymer composition, and a stretched film such as a known uniaxial stretching method, simultaneous biaxial stretching method, or sequential biaxial stretching method. Obtained by the manufacturing method.

また、本発明の延伸フィルムが上記熱融着層を有する場合は、上記重合体組成物と上記熱融着層を形成する重合体とを共押出し成形してなるシートを用いればよい。
延伸フィルムは、低い温度で延伸するほど低温熱収縮性を有す延伸フィルムを得ることができる。
したがって、本発明の延伸フィルムが二軸延伸フィルムである場合は、その二軸延伸の条件は、公知の二軸延伸ポリプロピレンの製造条件より低い温度で延伸可能である。
Moreover, when the stretched film of the present invention has the above heat sealing layer, a sheet formed by coextruding the above polymer composition and the polymer forming the heat sealing layer may be used.
As the stretched film is stretched at a lower temperature, it is possible to obtain a stretched film having low-temperature heat shrinkability.
Therefore, when the stretched film of the present invention is a biaxially stretched film, the biaxially stretched film can be stretched at a temperature lower than the production conditions for known biaxially stretched polypropylene.

本発明に係わる重合体組成物は、上記プロピレン系重合体(A)と上記プロピレン系共重合体(B)との組成比で、延伸可能な温度が異なるので、延伸可能な温度を探るために、シートの予熱温度を90~150℃の範囲で行い、予め適正(製膜可能な最も低い温度)を選択すればよい。 Since the temperature at which the polymer composition according to the present invention can be stretched differs depending on the composition ratio of the propylene polymer (A) and the propylene copolymer (B), in order to find the temperature at which it can be stretched, , the sheet may be preheated at a temperature in the range of 90 to 150° C., and an appropriate temperature (the lowest temperature at which film formation is possible) may be selected in advance.

本発明の延伸フィルムは、逐次二軸延伸法では、縦延伸温度100℃~145℃、延伸倍率を4~7倍の範囲、横延伸温度を110~190℃、延伸倍率を8~11倍の範囲にすればよい。また、同時二軸延伸法では、延伸温度を100~145℃、延伸(面)倍率を20~80倍の範囲にすればよい。 In the sequential biaxial stretching method, the stretched film of the present invention has a longitudinal stretching temperature of 100°C to 145°C, a stretching ratio of 4 to 7 times, a transverse stretching temperature of 110 to 190°C, and a stretching ratio of 8 to 11 times. Just make it a range. Further, in the simultaneous biaxial stretching method, the stretching temperature may be set in the range of 100 to 145° C., and the stretching (area) ratio may be set in the range of 20 to 80 times.

本発明の延伸フィルムが一軸延伸フィルムである場合は、ラベル等や易カット包装フィルム等への適用が考えられ、
本発明の延伸フィルムが二軸延伸フィルムある場合は、食品包装用、非食品包装用、加飾フィルム、キャパシタフィルム等の産業用フィルムへの適用に好適に使用し得る。
When the stretched film of the present invention is a uniaxially stretched film, it can be applied to labels, etc., easy-to-cut packaging films, etc.
When the stretched film of the present invention is a biaxially stretched film, it can be suitably used for food packaging, non-food packaging, decorative films, capacitor films, and other industrial films.

《延伸フィルムの用途》
本発明の延伸フィルムは、一般の包装用フィルムとしても用い得るが、シュリンクフィルム(収縮フィルム)として特に好適に用い得る。収縮包装用とは、包装しようとする物品全体を本発明のシュリンクフィルムが覆うように包装する用途ばかりではなく、包装しようとする物品の一部をシュリンクフィルムが覆うように包装する用途(シュリンクラベルなど)も含む。具体的には、食品包装、日用雑貨品、文具の包装、パレット包装などに用いられる。
《Applications of stretched film》
Although the stretched film of the present invention can be used as a general packaging film, it can be particularly suitably used as a shrink film. Shrink wrapping refers not only to wrapping the entire article to be wrapped with the shrink film of the present invention, but also to wrapping a part of the article to be wrapped with the shrink film (shrink label). etc.) are also included. Specifically, it is used for food packaging, daily necessities, stationery packaging, pallet packaging, etc.

本発明の収縮包装体は、延伸フィルムを熱収縮させて物品を包装する。
延伸フィルムを用いるにあたり、熱収縮に用いる収縮温度に特に制限はないが、例えば70~160℃の範囲の雰囲気で(例えばオーブン中などで)加熱する。
The shrink wrapper of the present invention packages an article by heat-shrinking a stretched film.
When using a stretched film, the shrinkage temperature used for heat shrinkage is not particularly limited, but it is heated, for example, in an atmosphere in the range of 70 to 160°C (eg, in an oven).

本発明の延伸フィルムは、シュリンクフィルム(収縮フィルム)として用い得るが、収縮包装以外にも、種々OPPフィルムが使用されている分野、例えば、医薬、あるいは食品(被包装材料)などの包装材としても用い得る。 The stretched film of the present invention can be used as a shrink film, but in addition to shrink wrapping, it can be used in various fields where OPP films are used, such as packaging materials for pharmaceuticals or foods (materials to be packaged). can also be used.

《キャパシタフィルム》
本発明の延伸フィルムは、容易に薄肉化することができるので、キャパシタの小型化や、コンデンサー容量の増加に対する要望に対応するキャパシタフィルムとして好適に使用することができる。
《Capacitor film》
Since the stretched film of the present invention can be easily made thin, it can be suitably used as a capacitor film that meets the demand for smaller capacitors and increased capacitance.

《リサイクル品を含む成形体》
本発明の延伸フィルムは、延伸フィルムを成形する際の熱履歴による分子量の低下が少ないので、延伸フィルムあるいはその端材、組成物等を成形体のリサイクル原料として用い、当該リサイクル品を含む成形体とすることができる。
《Molded objects including recycled products》
Since the stretched film of the present invention has a small decrease in molecular weight due to thermal history during forming the stretched film, the stretched film or its scraps, compositions, etc. can be used as recycled raw materials for molded products, and molded products containing the recycled product can be used. It can be done.

本発明の延伸フィルムついて実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
実施例および比較例で用いた(共)重合体を以下に示す。
EXAMPLES The stretched film of the present invention will be described in further detail with reference to Examples, but the present invention is not limited thereto.
The (co)polymers used in Examples and Comparative Examples are shown below.

〔プロピレン系重合体(A)〕
プロピレン系重合体(A)として、以下の重合体を用いた。
(1)プロピレン単独重合体(A-1)〔hPP〕
融点(Tm):160℃、MFR:3g/10分。
[Propylene polymer (A)]
The following polymer was used as the propylene polymer (A).
(1) Propylene homopolymer (A-1) [hPP]
Melting point (Tm): 160°C, MFR: 3g/10min.

〔プロピレン系重合体(B)〕
プロピレン系重合体(B)として、以下の製造方法で得たプロピレン・1-ブテン共重合体(B-1)〔PBR-1〕およびプロピレン・1-ブテン共重合体(B-2)〔PBR-2〕を用いた。
[Propylene polymer (B)]
As the propylene polymer (B), propylene/1-butene copolymer (B-1) [PBR-1] and propylene/1-butene copolymer (B-2) [PBR -2] was used.

[合成例]-メタロセン型錯体の合成-
(1)1-tert-ブチル-3-メチルシクロペンタジエンの調製
窒素雰囲気下で、tert-ブチルマグネシウムクロライド0.90mol/ジエチルエーテル450ml溶液(2.0mol/L溶液)に脱水ジエチルエーテル350mlを加え、氷冷下で0℃を保ちながら3-メチルシクロペンテノン43.7g(0.45mol)/脱水ジエチルエーテル150ml溶液を滴下し、その後室温で15時間攪拌した。さらにこの反応溶液に、氷冷下で0℃を保ちながら塩化アンモニウム80.0g(1.50mol)/水350ml溶液を滴下し、その後水2500mlを加えて攪拌した。得られた液の有機相を分離し、水で洗浄した。さらにこの有機相に、氷冷下で0℃を保ちながら10%塩酸水溶液82mlを加え、その後室温で6時間攪拌した。得られた液の有機相をさらに分離し、水、飽和炭酸水素ナトリウム水溶液、水、飽和食塩水をこの順で用いて洗浄した。次いで無水硫酸マグネシウム(乾燥剤)で乾燥し、乾燥剤を濾過し、濾液から溶媒を留去して液体を得た。この液体を減圧蒸留(45~47℃/10mmHg)することにより14.6gの淡黄色の液体を得た。その分析値を以下に示す。
1H-NMR(270MHz、CDCl3中、TMS基準)δ6.31+6.13+5.94+5.87(s+s+t+d、2H)、3.04+2.95(s+s、2H)、2.17+2.09(s+s、3H)、1.27(d、9H)
[Synthesis example] -Synthesis of metallocene complex-
(1) Preparation of 1-tert-butyl-3-methylcyclopentadiene Under a nitrogen atmosphere, 350 ml of dehydrated diethyl ether was added to a solution of 0.90 mol of tert-butylmagnesium chloride/450 ml of diethyl ether (2.0 mol/L solution). A solution of 43.7 g (0.45 mol) of 3-methylcyclopentenone/150 ml of dehydrated diethyl ether was added dropwise to the mixture while maintaining the temperature at 0° C. under ice-cooling, followed by stirring at room temperature for 15 hours. Furthermore, a solution of 80.0 g (1.50 mol) of ammonium chloride/350 ml of water was added dropwise to this reaction solution while maintaining the temperature at 0° C. under ice cooling, and then 2,500 ml of water was added and stirred. The organic phase of the resulting liquid was separated and washed with water. Furthermore, 82 ml of a 10% aqueous hydrochloric acid solution was added to this organic phase while maintaining the temperature at 0° C. under ice cooling, and the mixture was then stirred at room temperature for 6 hours. The organic phase of the obtained liquid was further separated and washed with water, saturated aqueous sodium bicarbonate solution, water, and saturated brine in this order. Next, it was dried over anhydrous magnesium sulfate (desiccant), the desiccant was filtered off, and the solvent was distilled off from the filtrate to obtain a liquid. This liquid was distilled under reduced pressure (45-47°C/10 mmHg) to obtain 14.6 g of a pale yellow liquid. The analytical values are shown below.
1H -NMR (270MHz, in CDCl3 , TMS standard) δ6.31+6.13+5.94+5.87 (s+s+t+d, 2H), 3.04+2.95 (s+s, 2H), 2.17+2.09 (s+s, 3H) , 1.27 (d, 9H)

(2)3-tert-ブチル-1,6,6-トリメチルフルベンの調製
窒素雰囲気下で、上記方法(1)で得られた1-tert-ブチル-3-メチルシクロペンタジエン13.0g(95.6mmol)/脱水メタノール130ml溶液に、氷冷下で0℃を保ちながら脱水アセトン55.2g(950.4mmol)を滴下し、次いでピロリジン68.0g(956.1mmol)を滴下し、その後室温で4日間攪拌した。この反応液をジエチルエーテル400mlで希釈し、さらに水400mlを加えた。得られた液の有機相を分離し、0.5Nの塩酸水溶液150mlで4回、水200mlで3回、飽和食塩水150mlで1回洗浄した。次いで無水硫酸マグネシウム(乾燥剤)で乾燥し、乾燥剤を濾過し、濾液から溶媒を留去して液体を得た。この液体を減圧蒸留(70~80℃/0.1mmHg)することにより10.5gの黄色の液体を得た。その分析値を以下に示す。
1H-NMR(270MHz、CDCl3中、TMS基準)δ6.23(s、1H)、6.05(d、1H)、2.23(s、3H)、2.17(d、6H)、1.17(s、9H)
(2) Preparation of 3-tert-butyl-1,6,6-trimethylfulvene Under a nitrogen atmosphere, 13.0 g (95.0 g) of 1-tert-butyl-3-methylcyclopentadiene obtained by the above method (1). 6 mmol)/130 ml of dehydrated methanol solution was added dropwise to a solution of 55.2 g (950.4 mmol) of dehydrated acetone while keeping the temperature at 0°C under ice-cooling, and then 68.0 g (956.1 mmol) of pyrrolidine was added dropwise to the solution. The mixture was stirred for several days. This reaction solution was diluted with 400 ml of diethyl ether, and further 400 ml of water was added. The organic phase of the resulting liquid was separated and washed four times with 150 ml of 0.5N aqueous hydrochloric acid, three times with 200 ml of water, and once with 150 ml of saturated brine. Next, it was dried over anhydrous magnesium sulfate (desiccant), the desiccant was filtered off, and the solvent was distilled off from the filtrate to obtain a liquid. This liquid was distilled under reduced pressure (70-80°C/0.1 mmHg) to obtain 10.5 g of a yellow liquid. The analytical values are shown below.
1H -NMR (270MHz, in CDCl3 , TMS standard) δ6.23 (s, 1H), 6.05 (d, 1H), 2.23 (s, 3H), 2.17 (d, 6H), 1.17 (s, 9H)

(3)2-(3-tert-ブチル-5-メチルシクロペンタジエニル)-2-フルオレニルプロパンの調製
フルオレン10.1g(60.8mmol)/THF300ml溶液に、氷冷下でn-ブチルリチウム61.6mmol/ヘキサン40ml溶液を窒素雰囲気下で滴下し、その後室温で5時間攪拌した。得られた濃褐色溶液を再度氷冷し、上記方法(2)で得られた3-tert-ブチル-1,6,6-トリメチルフルベン11.7g(66.5mmol)/THF300ml溶液を窒素雰囲気下で滴下し、その後室温で14時間攪拌した。さらにこの褐色溶液を氷冷し、水200mlを加えた。得られた液の有機相を、ジエチルエーテルを用いて抽出、分離した。次いでこの有機相を硫酸マグネシウム(乾燥剤)で乾燥し、乾燥剤を濾過し、濾液から溶媒を減圧下で除去して橙褐色のオイルを得た。このオイルをシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン)で精製して、3.8gの黄色オイルを得た。その分析値を以下に示す。
1H-NMR(270MHz、CDCl3中、TMS基準)δ7.70(d、4H)、7.34~7.26(m、6H)、7.18~7.11(m、6H)、6.17(s、1H)、6.01(s、1H)、4.42(s、1H)、4.27(s、1H)、3.01(s、2H)、2.87(s、2H)、2.17(s、3H)、1.99(s、3H)、2.10(s、9H)、1.99(s、9H)、1.10(s、6H)、1.07(s、6H)
(3) Preparation of 2-(3-tert-butyl-5-methylcyclopentadienyl)-2-fluorenylpropane To a solution of 10.1 g (60.8 mmol) of fluorene/300 ml of THF was added n-butyl under ice cooling. A solution of 61.6 mmol of lithium/40 ml of hexane was added dropwise under a nitrogen atmosphere, and then stirred at room temperature for 5 hours. The obtained dark brown solution was ice-cooled again, and the 3-tert-butyl-1,6,6-trimethylfulvene 11.7 g (66.5 mmol)/THF 300 ml solution obtained in the above method (2) was added under a nitrogen atmosphere. and then stirred at room temperature for 14 hours. Furthermore, this brown solution was cooled with ice, and 200 ml of water was added. The organic phase of the obtained liquid was extracted and separated using diethyl ether. The organic phase was then dried over magnesium sulfate (desiccant), the desiccant was filtered off, and the filtrate was freed from the solvent under reduced pressure to yield an orange-brown oil. This oil was purified by silica gel column chromatography (developing solvent: hexane) to obtain 3.8 g of yellow oil. The analytical values are shown below.
1 H-NMR (270 MHz, in CDCl 3 , TMS standard) δ 7.70 (d, 4H), 7.34-7.26 (m, 6H), 7.18-7.11 (m, 6H), 6 .17 (s, 1H), 6.01 (s, 1H), 4.42 (s, 1H), 4.27 (s, 1H), 3.01 (s, 2H), 2.87 (s, 2H), 2.17 (s, 3H), 1.99 (s, 3H), 2.10 (s, 9H), 1.99 (s, 9H), 1.10 (s, 6H), 1. 07(s, 6H)

(4)ジメチルメチレン(3-tert-ブチル-5-メチルシクロペンタジエニル)フルオレニルジルコニウムジクロリド(メタロセン型錯体)の調製
氷冷下で、上記方法(3)で得られた2-(3-tert-ブチル-5-メチルシクロペンタジエニル)-2-フルオレニルプロパン1.14g(3.3mmol)/ジエチルエーテル25ml溶液に、n-ブチルリチウム7.7mmol/ヘキサン5.0ml溶液を窒素雰囲気下で滴下し、その後室温で14時間攪拌した。得られた桃色のスラリーに、-78℃でジルコニウムテトラクロライド0.77g(3.3mmol)を加え、-78℃で数時間攪拌し、次いで室温で65時間撹拌した。得られた黒褐色スラリーを濾過し、濾物をジエチルエーテル10mlで洗浄し、ジクロロメタンで抽出して赤色溶液を得た。この溶液の溶媒を減圧留去して、0.53gの赤橙色の固体状のメタロセン触媒であるジメチルメチレン(3-tert-ブチル-5-メチルシクロペンタジエニル)フルオレニルジルコニウムジクロリド(メタロセン型錯体)を得た。その分析値を以下に示す。
1H-NMR(270MHz、CDCl3中、TMS基準)δ8.11~8.02(m、3H)、7.82(d、1H)、7.56~7.45(m、2H)、7.23~7.17(m、2H)、6.08(d、1H)、5.72(d、1H)、2.59(s、3H)、2.41(s、3H)、2.30(s、3H)、1.08(s、9H)
(4) Preparation of dimethylmethylene(3-tert-butyl-5-methylcyclopentadienyl)fluorenylzirconium dichloride (metallocene type complex) Under ice cooling, the 2-(3) obtained by the above method (3) -tert-Butyl-5-methylcyclopentadienyl)-2-fluorenylpropane 1.14 g (3.3 mmol)/diethyl ether 25 ml solution, n-butyl lithium 7.7 mmol/hexane 5.0 ml solution was added with nitrogen. The mixture was added dropwise under atmosphere, and then stirred at room temperature for 14 hours. To the resulting pink slurry, 0.77 g (3.3 mmol) of zirconium tetrachloride was added at -78°C, stirred at -78°C for several hours, and then stirred at room temperature for 65 hours. The resulting dark brown slurry was filtered, and the filtered residue was washed with 10 ml of diethyl ether and extracted with dichloromethane to obtain a red solution. The solvent of this solution was distilled off under reduced pressure, and 0.53 g of reddish-orange solid metallocene catalyst dimethylmethylene (3-tert-butyl-5-methylcyclopentadienyl)fluorenylzirconium dichloride (metallocene type) was removed. complex) was obtained. The analytical values are shown below.
1 H-NMR (270 MHz, in CDCl 3 , TMS standard) δ8.11-8.02 (m, 3H), 7.82 (d, 1H), 7.56-7.45 (m, 2H), 7 .23-7.17 (m, 2H), 6.08 (d, 1H), 5.72 (d, 1H), 2.59 (s, 3H), 2.41 (s, 3H), 2. 30 (s, 3H), 1.08 (s, 9H)

[調製例1]
プロピレン・1-ブテン共重合体(B-1)〔PBR-1〕の調製
充分に窒素置換した2000mlの重合装置に、乾燥ヘキサン875ml、1-ブテン75gおよびトリイソブチルアルミニウム1.0mmolを常温で仕込み、重合装置内温を65℃に昇温し、プロピレンで0.7MPaに加圧した。次いで、上記合成例で得られたメタロセン触媒であるジメチルメチレン(3-tert-ブチル-5-メチルシクロペンタジエニル)フルオレニルジルコニウムジクロリド0.002mmolと、アルミニウム換算で0.6mmolのメチルアルミノキサン(東ソー・ファインケム社製)とを接触させたトルエン溶液を重合器内に添加し、内温65℃、プロピレン圧0.75MPaを保ちながら30分間重合し、20mlのメタノールを添加し重合を停止した。脱圧後、2Lのメタノール中で重合溶液からポリマーを析出し、真空下130℃、12時間乾燥し、15.2gのプロピレン・1-ブテン共重合体を得た。以下の説明では、このプロピレン・1-ブテン共重合体を「PBR-1」と略称する。
[Preparation example 1]
Preparation of propylene/1-butene copolymer (B-1) [PBR-1] 875 ml of dry hexane, 75 g of 1-butene, and 1.0 mmol of triisobutylaluminum were charged at room temperature into a 2000 ml polymerization apparatus that was sufficiently purged with nitrogen. The internal temperature of the polymerization apparatus was raised to 65° C., and the pressure was increased to 0.7 MPa using propylene. Next, 0.002 mmol of dimethylmethylene (3-tert-butyl-5-methylcyclopentadienyl)fluorenylzirconium dichloride, which is the metallocene catalyst obtained in the above synthesis example, and 0.6 mmol of methylaluminoxane (in terms of aluminum) were added. A toluene solution in contact with Tosoh Finechem Co., Ltd.) was added into the polymerization vessel, and polymerization was carried out for 30 minutes while maintaining an internal temperature of 65° C. and a propylene pressure of 0.75 MPa, and 20 ml of methanol was added to stop the polymerization. After depressurizing, the polymer was precipitated from the polymerization solution in 2 L of methanol and dried under vacuum at 130° C. for 12 hours to obtain 15.2 g of propylene/1-butene copolymer. In the following explanation, this propylene/1-butene copolymer will be abbreviated as "PBR-1".

PBR-1の1-ブテン含量(M)は25モル%、メルトフローレート(MFR)は6.5g/10分、分子量分布(Mw/Mn)は2.11、融点(Tm)は75.3℃であった。 The 1-butene content (M) of PBR-1 is 25 mol%, the melt flow rate (MFR) is 6.5 g/10 min, the molecular weight distribution (Mw/Mn) is 2.11, and the melting point (Tm) is 75.3. It was ℃.

[調製例2]
プロピレン・1-ブテン共重合体(B-2)〔PBR-2〕の調製
前記調製例1において、1-ブテンの使用量を45gに、重合時(触媒添加後)のプロピレン圧を0.7MPaに変更した以外は調製例1と同様にしてプロピレン・1-ブテン共重合体を得た。以下の説明では、このプロピレン・1-ブテン共重合体を「PBR-2」と略称する。
[Preparation example 2]
Preparation of propylene/1-butene copolymer (B-2) [PBR-2] In Preparation Example 1, the amount of 1-butene used was 45 g, and the propylene pressure during polymerization (after addition of catalyst) was 0.7 MPa. A propylene/1-butene copolymer was obtained in the same manner as in Preparation Example 1 except that the following was changed. In the following explanation, this propylene/1-butene copolymer will be abbreviated as "PBR-2".

PBR-2の1-ブテン含量(M)は15モル%、メルトフローレート(MFR)は6.7g/10分、分子量分布(Mw/Mn)は2.12、融点(Tm)は98.4℃であった。 The 1-butene content (M) of PBR-2 is 15 mol%, the melt flow rate (MFR) is 6.7 g/10 min, the molecular weight distribution (Mw/Mn) is 2.12, and the melting point (Tm) is 98.4. It was ℃.

〔プロピレン系重合体(C)〕
プロピレン系重合体として、以下の共重合体を用いた。
(1)プロピレン・エチレン・1-ブテンランダム共重合体〔terPP〕
プロピレンターポリマー(MFR(230℃、2.16kg荷重、ASTM D1238に準拠):5.5g/10min、融点:132℃、プロピレン含量:91モル%)。
[Propylene polymer (C)]
The following copolymers were used as propylene polymers.
(1) Propylene/ethylene/1-butene random copolymer [terPP]
Propylene terpolymer (MFR (230° C., 2.16 kg load, according to ASTM D1238): 5.5 g/10 min, melting point: 132° C., propylene content: 91 mol%).

実施例および比較例で用いた(共)重合体の各物性値の測定方法を以下に示す。 The method for measuring each physical property value of the (co)polymer used in Examples and Comparative Examples is shown below.

[分子量分布(Mw/Mn)]
分子量分布(Mw/Mn)は、Waters社製ゲル浸透クロマトグラフAlliance GPC-2000型を用い、以下のようにして測定した。分離カラムとしては、東ソー社製のTSKgel(登録商標)GNH6-HTを2本およびTSKgel(登録商標)GNH6-HTLを2本用い、カラムサイズはいずれも直径7.5mm、長さ300mmとし、カラム温度は140℃とし、移動相にはo-ジクロロベンゼン(和光純薬工業社製)および酸化防止剤としてBHT(武田薬品社製)0.025質量%を用い、1.0ml/分で移動させ、試料濃度は15mg/10mLとし、試料注入量は500マイクロリットルとし、検出器として示差屈折計を用いた。標準ポリスチレンは、分子量Mw<103およびMw>4×106については東ソー社製を用い、103≦Mw≦4×106についてはプレッシャーケミカル社製を用いた。
[Molecular weight distribution (Mw/Mn)]
The molecular weight distribution (Mw/Mn) was measured as follows using a gel permeation chromatograph Alliance GPC-2000 manufactured by Waters. As separation columns, two TSKgel (registered trademark) GNH6-HT and two TSKgel (registered trademark) GNH6-HTL manufactured by Tosoh Corporation were used, and the column sizes were 7.5 mm in diameter and 300 mm in length. The temperature was 140°C, and the mobile phase contained o-dichlorobenzene (manufactured by Wako Pure Chemical Industries, Ltd.) and 0.025% by mass of BHT (manufactured by Takeda Pharmaceutical Co., Ltd.) as an antioxidant, and the mixture was moved at a rate of 1.0 ml/min. The sample concentration was 15 mg/10 mL, the sample injection amount was 500 microliters, and a differential refractometer was used as a detector. Standard polystyrene was manufactured by Tosoh Corporation for molecular weights Mw<103 and Mw>4×106, and manufactured by Pressure Chemical Co., Ltd. for 103≦Mw≦4×106.

[重合体のエチレン、プロピレン、α-オレフィン含量]
エチレン、プロピレン、α-オレフィン含量の定量は、日本電子(株)製JNM GX-500型NMR測定装置を用いて、以下のようにして測定した。試料0.35gをヘキサクロロブタジエン2.0mlに加熱溶解させた。この溶液をグラスフィルター(G2)で濾過した後、重水素化ベンゼン0.5mlを加え、内径10mmのNMRチューブに装入して、120℃で13C-NMR測定を行った。積算回数は、10,000回以上とした。得られた13C-NMRスペクトルにより、エチレン、プロピレン、α-オレフィンの組成を定量化した。
[Ethylene, propylene, α-olefin content of polymer]
The contents of ethylene, propylene, and α-olefin were determined using a JNM GX-500 type NMR measuring device manufactured by JEOL Ltd. as follows. 0.35 g of the sample was heated and dissolved in 2.0 ml of hexachlorobutadiene. After filtering this solution with a glass filter (G2), 0.5 ml of deuterated benzene was added, and the mixture was placed in an NMR tube with an inner diameter of 10 mm, and 13 C-NMR measurement was performed at 120°C. The number of times of integration was 10,000 times or more. The composition of ethylene, propylene, and α-olefin was quantified from the obtained 13 C-NMR spectrum.

[プロピレン系重合体(A)およびプロピレン系重合体(C)の融点(Tm)]
パーキンエルマー社製DSC8000を用い、窒素雰囲気下(20ml/min)、約5mgの試料を200℃まで昇温・10分間保持し、その後10℃/分で-100℃まで冷却した。-100℃で1分間保持した後、10℃/分で200℃まで昇温させた時の結晶溶融ピークのピーク頂点から融点(Tm)を求めた。
[Melting point (Tm) of propylene polymer (A) and propylene polymer (C)]
Using PerkinElmer's DSC8000, about 5 mg of the sample was heated to 200° C. and held for 10 minutes under a nitrogen atmosphere (20 ml/min), and then cooled to −100° C. at 10° C./min. After holding at -100°C for 1 minute, the temperature was raised to 200°C at a rate of 10°C/min, and the melting point (Tm) was determined from the peak apex of the crystal melting peak.

[プロピレン系共重合体(B)の融点(Tm)]
セイコーインスツル社製DSCを用い、測定用アルミパンに約5mgの試料をつめて、100℃/minで200℃まで昇温し、200℃で5分間保持し、その後10℃/minで-100℃まで降温し、次いで10℃/minで200℃まで昇温し、その吸熱曲線より融点(Tm)を求めた。
[Melting point (Tm) of propylene copolymer (B)]
Using a Seiko Instruments DSC, approximately 5 mg of a sample was packed in an aluminum pan for measurement, heated at 100°C/min to 200°C, held at 200°C for 5 minutes, and then heated to -100°C at 10°C/min. The temperature was lowered to .degree. C., then raised to 200.degree. C. at a rate of 10.degree. C./min, and the melting point (Tm) was determined from the endothermic curve.

[メルトフローレート(MFR)]
メルトフローレート(MFR)は、ASTM D1238に準拠し、230℃、2.16kg荷重下にて測定を行った。
[Melt flow rate (MFR)]
The melt flow rate (MFR) was measured at 230° C. under a load of 2.16 kg in accordance with ASTM D1238.

実施例および比較例で得られた延伸フィルムの物性は、以下の測定方法で行った。 The physical properties of the stretched films obtained in Examples and Comparative Examples were measured using the following measurement method.

〔引張弾性率〕
JIS K7127に準拠し、試験片タイプ2(幅15mm)を用いた。測定には、株式会社島津製作所AG-X-5を用いて、23℃で、スパン間:100mm、引張り速度200mm/minで延伸フィルムを引張り〔T-ダイにおける押出方向(MD)〕、引張弾性率は、5回の平均値をとった。
[Tensile modulus]
In accordance with JIS K7127, test piece type 2 (width 15 mm) was used. For the measurement, using Shimadzu Corporation AG-X-5, the stretched film was pulled at 23°C with a span of 100 mm and a pulling speed of 200 mm/min [extrusion direction (MD) in the T-die], and tensile elasticity. The rate was the average value of 5 times.

〔熱収縮率〕
延伸フィルムを10mm×100mm(延伸方向)にスリットして得た試験サンプルをオーブンを用い、100℃、130℃、140℃、150℃、160℃、170℃の空気雰囲気下に1分間静置し、この熱処理前後のフィルム寸法差を元の寸法で割り、熱収縮率として算出した。
[Heat shrinkage rate]
A test sample obtained by slitting a stretched film into 10 mm x 100 mm (stretching direction) was placed in an oven at 100°C, 130°C, 140°C, 150°C, 160°C, and 170°C in an air atmosphere for 1 minute. The difference in film dimensions before and after this heat treatment was divided by the original dimensions to calculate the heat shrinkage rate.

〔自然収縮率〕
延伸フィルムの自然収縮率は、熱収縮率試験と同寸法の試験サンプルを、オーブンを用いて40℃、空気雰囲気下、常圧の条件で7日間熱処理し、熱処理前後のフィルム寸法差を元の寸法で割り、自然収縮率として算出した。
[Natural shrinkage rate]
The natural shrinkage rate of a stretched film is determined by heat-treating a test sample with the same dimensions as the heat shrinkage rate test in an oven at 40°C under an air atmosphere and normal pressure for 7 days, and calculating the difference in film dimensions before and after heat treatment from the original. The natural shrinkage rate was calculated by dividing by the dimensions.

[実施例1]
プロピレン単独重合体(A-1)80質量%および調製例1で得たプロピレン・1-ブテン共重合体(B-1)〔PBR-1〕20質量%を造粒機(モダンマシナリー社製 E-40)によってブレンドして造粒した。ついで、得られたペレット(組成物)をキャストフィルム成形機(モダンマシナリー社製)によって200℃で押出しながら、厚さ350μmの単層フィルムを作成した。
[Example 1]
80% by mass of the propylene homopolymer (A-1) and 20% by mass of the propylene/1-butene copolymer (B-1) [PBR-1] obtained in Preparation Example 1 were mixed using a granulator (Modern Machinery Co., Ltd. E). -40) and granulated. Then, the obtained pellets (composition) were extruded at 200° C. using a cast film molding machine (manufactured by Modern Machinery Co., Ltd.) to form a single-layer film with a thickness of 350 μm.

このフィルムから9cm角の試験片を切り出し、二軸延伸試験機(ブルックナー社製)を用いて同時二軸延伸した。130℃で、1分間予熱した後、同温度で、10m/分の速度で二軸方向へ5倍に延伸した。その後、室温で30秒間応力緩和させた後に延伸フィルムサンプルとして機器から取り外した。
得られた延伸フィルムの物性を上記記載の方法で評価した。評価結果を表1に示す。
A 9 cm square test piece was cut out from this film and subjected to simultaneous biaxial stretching using a biaxial stretching tester (manufactured by Bruckner). After preheating at 130° C. for 1 minute, the film was stretched 5 times in biaxial directions at the same temperature at a speed of 10 m/min. Thereafter, the stress was relaxed for 30 seconds at room temperature, and then removed from the equipment as a stretched film sample.
The physical properties of the obtained stretched film were evaluated by the method described above. The evaluation results are shown in Table 1.

[実施例2]
実施例1で得た単層フィルムを用いて、予熱温度、および延伸温度を120℃で二軸延伸フィルムを得た。
得られた延伸フィルムの物性を上記記載の方法で評価した。評価結果を表1に示す。
[Example 2]
Using the monolayer film obtained in Example 1, a biaxially stretched film was obtained at a preheating temperature and a stretching temperature of 120°C.
The physical properties of the obtained stretched film were evaluated by the method described above. The evaluation results are shown in Table 1.

[実施例3〕
実施例1で用いたプロピレン・1-ブテン共重合体(B-1)〔PBR-1〕に替えて、調整例2で得たプロピレン・1-ブテン共重合体(B-2)〔PBR-2〕を用いる以外は実施例1と同様に行い、二軸延伸フィルムを得た。
得られた延伸フィルムの物性を上記記載の方法で評価した。評価結果を表1に示す。
[Example 3]
In place of the propylene/1-butene copolymer (B-1) [PBR-1] used in Example 1, the propylene/1-butene copolymer (B-2) [PBR-1] obtained in Preparation Example 2 was used. A biaxially stretched film was obtained in the same manner as in Example 1 except that 2] was used.
The physical properties of the obtained stretched film were evaluated by the method described above. The evaluation results are shown in Table 1.

[実施例4]
実施例3で用いたプロピレン・1-ブテン共重合体(B-1)〔PBR-1〕に替えて、調整例2で得たプロピレン・1-ブテン共重合体(B-2)〔PBR-2〕を用いる以外は実施例3と同様に行い、二軸延伸フィルムを得た。
得られた延伸フィルムの物性を上記記載の方法で評価した。評価結果を表1に示す。
[Example 4]
In place of the propylene/1-butene copolymer (B-1) [PBR-1] used in Example 3, the propylene/1-butene copolymer (B-2) [PBR-1] obtained in Preparation Example 2 was used. A biaxially stretched film was obtained in the same manner as in Example 3 except that 2] was used.
The physical properties of the obtained stretched film were evaluated by the method described above. The evaluation results are shown in Table 1.

[比較例1]
実施例1で用いた組成物に替えて、プロピレン単独重合体(A-1)を単独で用い、予熱温度および延伸温度を158℃とする以外は、実施例1と同様に行い、二軸延伸フィルムを得た。
[Comparative example 1]
The same procedure as in Example 1 was carried out except that propylene homopolymer (A-1) was used alone in place of the composition used in Example 1, and the preheating temperature and stretching temperature were 158°C. Got the film.

プロピレン単独重合体(A-1)を単独では実施例1および実施例2で採用した120~130℃の温度では、延伸できないので158℃で行った。
得られた延伸フィルムの物性を上記記載の方法で評価した。評価結果を表1に示す。
Propylene homopolymer (A-1) alone could not be stretched at the temperature of 120 to 130°C employed in Examples 1 and 2, so the stretching was carried out at 158°C.
The physical properties of the obtained stretched film were evaluated by the method described above. The evaluation results are shown in Table 1.

[比較例2]
比較例1の予熱温度および延伸温度に替えて、予熱温度および延伸温度を140℃に替える以外は、比較例2と同様に行い延伸フィルムを得た。
得られた延伸フィルムの物性を上記記載の方法で評価した。評価結果を表1に示す。
[Comparative example 2]
A stretched film was obtained in the same manner as Comparative Example 2, except that the preheating temperature and stretching temperature of Comparative Example 1 were changed to 140°C.
The physical properties of the obtained stretched film were evaluated by the method described above. The evaluation results are shown in Table 1.

[比較例3]
実施例1で用いた組成物に替えて、プロピレン・エチレン・1-ブテンランダム共重合体〔terPP〕を単独で用い、予熱温度および延伸温度を90℃とする以外は、実施例1と同様に行い、二軸延伸フィルムを得た。
得られた延伸フィルムの物性を上記記載の方法で評価した。評価結果を表1に示す。
[Comparative example 3]
The same procedure as in Example 1 was carried out, except that propylene/ethylene/1-butene random copolymer [terPP] was used alone in place of the composition used in Example 1, and the preheating temperature and stretching temperature were 90°C. A biaxially stretched film was obtained.
The physical properties of the obtained stretched film were evaluated by the method described above. The evaluation results are shown in Table 1.

Figure 0007355591000001
Figure 0007355591000001

表1から明らかなように、実施例1~4で得られた延伸フィルムは、加熱温度が140℃でも熱収縮し、加熱温度が160~170℃では熱収縮率が30~50%と大きく収縮しており、自然収縮率も低く、引張弾性率は1.5GPaを超えている。 As is clear from Table 1, the stretched films obtained in Examples 1 to 4 were thermally shrunk even at a heating temperature of 140°C, and the thermal shrinkage rate was as high as 30 to 50% at a heating temperature of 160 to 170°C. It has a low natural shrinkage rate and a tensile modulus of over 1.5 GPa.

それに対し、プロピレン単独重合体から得られる延伸フィルム(比較例1、2)は。自然収縮率は低く、引張弾性率は高いものの、130~170℃の加熱温度での熱収縮率が低い。 In contrast, stretched films obtained from propylene homopolymer (Comparative Examples 1 and 2). Although the natural shrinkage rate is low and the tensile modulus is high, the heat shrinkage rate at heating temperatures of 130 to 170°C is low.

一方、融点が132℃と低いプロピレン・エチレン・1-ブテンランダム共重合体から得られる延伸フィルム(比較例3)は、加熱温度が100℃でも熱収縮率は40%と低温熱収縮性に優れるが、自然収縮率が大きく、引張弾性率も低い。 On the other hand, the stretched film obtained from a propylene/ethylene/1-butene random copolymer with a low melting point of 132°C (Comparative Example 3) has excellent low-temperature heat shrinkability with a heat shrinkage rate of 40% even at a heating temperature of 100°C. However, the natural shrinkage rate is large and the tensile modulus is low.

本発明に係る延伸フィルムは食品容器、産業部材の集積包装時に十分な加熱収縮率によって物品の集積を可能とし、十分な剛性をもって外部からの変形に対し内容物を保護することに加え、フィルム加工、包装工程におけるハンドリング性に優れる延伸フィルムとして用いることができる。 The stretched film according to the present invention has a sufficient heat shrinkage rate to enable the stacking of food containers and industrial components when stacking and packaging them, and has sufficient rigidity to protect the contents from external deformation. , it can be used as a stretched film with excellent handling properties in packaging processes.

Claims (7)

示差走査熱量測定(DSC)により測定した融点(Tm)が150~180℃の範囲にあるプロピレン系重合体(A)を40~90質量%、および示差走査熱量測定(DSC)により測定した融点(Tm)が120℃未満または融点が観測されないプロピレン系共重合体(B)を10~60質量%〔但し、(A)と(B)の合計を100質量%とする。〕含む重合体組成物〔但し、造核成分として3-メチル-1-ブテン(3MB-1)を予備重合した後、プロピレンを単独重合させた融点が167℃、MFR(230℃、2.16kg荷重)=2g/10min、mmmm分率=0.972の高融点プロピレン系樹脂を50質量%、およびプロピレンと1-ブテン23.5mol%とを共重合させた融点が78℃、MFR(230℃、2.16kg荷重)=7g/10minの超低融点プロピレン系樹脂を50質量%(但し、前記高融点プロピレン系樹脂と前記超低融点プロピレン系樹脂との合計を100質量%とする)含む重合体組成物を除く〕からな
縦方向(MD)の引張弾性率が1.5GPa以上であり、
130℃で1分間加熱した際の熱収縮率が10%以上であり、
40℃雰囲気下で7日間保管後の縦および横の収縮率がいずれも2.5%以下であることを特徴とする延伸フィルム。
40 to 90% by mass of a propylene polymer (A) having a melting point (Tm) measured by differential scanning calorimetry (DSC) in the range of 150 to 180°C, and a melting point (Tm) measured by differential scanning calorimetry (DSC) 10 to 60% by mass of a propylene copolymer (B) having a Tm) of less than 120° C. or no observed melting point [however, the total of (A) and (B) is 100% by mass. [However, after prepolymerizing 3-methyl-1-butene (3MB-1) as a nucleating component, the melting point of homopolymerizing propylene is 167 °C, MFR (230 °C, 2.16 kg Load)=2g/10min, mmmm fraction=0.972, 50% by mass of high melting point propylene resin, and propylene and 23.5mol% of 1-butene were copolymerized with a melting point of 78°C and MFR (230°C). , 2.16 kg load) = 7 g/10 min. (excluding combined compositions) ;
The tensile modulus in the machine direction (MD) is 1.5 GPa or more,
Thermal shrinkage rate when heated at 130°C for 1 minute is 10% or more,
A stretched film having a vertical and horizontal shrinkage rate of 2.5% or less after being stored in an atmosphere at 40°C for 7 days .
前記引張弾性率が2.3GPa以上である、請求項1に記載の延伸フィルム。The stretched film according to claim 1, wherein the tensile modulus is 2.3 GPa or more. 延伸フィルムの両面または片面に熱融着層を有してなる請求項1または2に記載の延伸フィルム。 The stretched film according to claim 1 or 2, comprising a heat sealing layer on both sides or one side of the stretched film. 収縮包装用延伸フィルムである、請求項1~3の何れか一項に記載の延伸フィルム。The stretched film according to any one of claims 1 to 3, which is a stretched film for shrink wrapping. 請求項1~4の何れか1項に記載の延伸フィルムを用いてなる収縮包装体。 A shrink wrap comprising the stretched film according to any one of claims 1 to 4. 請求項1~4の何れか1項に記載の延伸フィルムを用いてなるキャパシタフィルム。 A capacitor film comprising the stretched film according to any one of claims 1 to 4. 請求項1~4の何れか1項に記載の延伸フィルムのリサイクル品を含む成形体。 A molded article comprising a recycled stretched film according to any one of claims 1 to 4.
JP2019187672A 2019-10-11 2019-10-11 Stretched film and its uses Active JP7355591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019187672A JP7355591B2 (en) 2019-10-11 2019-10-11 Stretched film and its uses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019187672A JP7355591B2 (en) 2019-10-11 2019-10-11 Stretched film and its uses

Publications (2)

Publication Number Publication Date
JP2021063162A JP2021063162A (en) 2021-04-22
JP7355591B2 true JP7355591B2 (en) 2023-10-03

Family

ID=75487545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019187672A Active JP7355591B2 (en) 2019-10-11 2019-10-11 Stretched film and its uses

Country Status (1)

Country Link
JP (1) JP7355591B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145760A1 (en) * 2022-01-26 2023-08-03 三井化学株式会社 Non-oriented film, laminate, and packaging
WO2023145761A1 (en) * 2022-01-26 2023-08-03 三井化学株式会社 Unstretched film, multilayer body and package

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004059652A (en) 2002-07-25 2004-02-26 Mitsui Chemicals Inc Polypropylene resin composition and polypropylene stretched film improved in stretchability and its manufacturing method
JP2010087253A (en) 2008-09-30 2010-04-15 Mitsui Chemicals Inc Capacitor film
JP2014169446A (en) 2007-11-13 2014-09-18 Prime Polymer Co Ltd Propylene resin composition for stretched sheet, and stretched sheet and thermo-formed body including the same
WO2015064653A1 (en) 2013-10-31 2015-05-07 出光興産株式会社 Polyolefin composition, oriented polyolefin film, and production method for same
WO2017018461A1 (en) 2015-07-28 2017-02-02 出光興産株式会社 Monoaxially stretched molded article and method for producing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3654461B2 (en) * 1996-04-16 2005-06-02 三井化学株式会社 Polypropylene film for shrink wrapping

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004059652A (en) 2002-07-25 2004-02-26 Mitsui Chemicals Inc Polypropylene resin composition and polypropylene stretched film improved in stretchability and its manufacturing method
JP2014169446A (en) 2007-11-13 2014-09-18 Prime Polymer Co Ltd Propylene resin composition for stretched sheet, and stretched sheet and thermo-formed body including the same
JP2010087253A (en) 2008-09-30 2010-04-15 Mitsui Chemicals Inc Capacitor film
WO2015064653A1 (en) 2013-10-31 2015-05-07 出光興産株式会社 Polyolefin composition, oriented polyolefin film, and production method for same
WO2017018461A1 (en) 2015-07-28 2017-02-02 出光興産株式会社 Monoaxially stretched molded article and method for producing same

Also Published As

Publication number Publication date
JP2021063162A (en) 2021-04-22

Similar Documents

Publication Publication Date Title
JP6326457B2 (en) 1-butene / ethylene copolymer
JP5160028B2 (en) Resin composition for polypropylene heat-shrinkable film, polypropylene heat-shrinkable film using the same, and use thereof
JP7355591B2 (en) Stretched film and its uses
JP4512411B2 (en) New propylene-ethylene random block copolymer
JP2014051675A (en) Propylene polymer composition, film, stretched film, shrink film, method of producing shrink package
JP4889241B2 (en) Polypropylene heat shrinkable film
WO2007074838A1 (en) Monolayer polypropylene film and use thereof
JP3815827B2 (en) Polyolefin-based wrap stretch film
JP7395317B2 (en) laminate
JP5060828B2 (en) Heat sealable laminate
TW201302891A (en) Propylene-based resin composition and its film
JP4240370B2 (en) Biaxially oriented polypropylene multilayer film
JP6942530B2 (en) Multi-layer biaxially stretched film and transfer film
JP4446427B2 (en) Heat-fusible propylene polymer film, laminated film and use thereof
JP2010247386A (en) Method of molding polypropylene high-frequency welder molded sheet
JP6310563B2 (en) Laminated film, packaging bag using the same, and method for producing laminated film
JP4080285B2 (en) Biaxially oriented polypropylene multilayer film
JP6199599B2 (en) Heat-fusible film, laminate and package
JP2006052313A (en) Propylenic polymer and application to shrinkable film
US8278391B2 (en) Polypropylene compositions for oriented films
JP4954432B2 (en) Heat-fusible propylene polymer laminated film and use thereof
JP2004243626A (en) Heat-fusible propylene polymer laminated film and its use
JP4318175B2 (en) Heat-fusible propylene polymer laminated film and use thereof
JP2005111857A (en) Heat fusion-bonding propylene polymer laminated film and its application
JP2010173326A (en) Hot-melt propylene-based polymer laminated film and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230921

R150 Certificate of patent or registration of utility model

Ref document number: 7355591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150