JP2004351236A - Catalyst for oxidizing/removing methane in exhaust gas and method for purifying exhaust gas - Google Patents

Catalyst for oxidizing/removing methane in exhaust gas and method for purifying exhaust gas Download PDF

Info

Publication number
JP2004351236A
JP2004351236A JP2003148279A JP2003148279A JP2004351236A JP 2004351236 A JP2004351236 A JP 2004351236A JP 2003148279 A JP2003148279 A JP 2003148279A JP 2003148279 A JP2003148279 A JP 2003148279A JP 2004351236 A JP2004351236 A JP 2004351236A
Authority
JP
Japan
Prior art keywords
catalyst
methane
exhaust gas
low
combustion exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003148279A
Other languages
Japanese (ja)
Other versions
JP4283037B2 (en
Inventor
Masaki Hondo
正樹 本道
Toru Matsui
徹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2003148279A priority Critical patent/JP4283037B2/en
Priority to PCT/JP2004/007578 priority patent/WO2004103554A1/en
Publication of JP2004351236A publication Critical patent/JP2004351236A/en
Application granted granted Critical
Publication of JP4283037B2 publication Critical patent/JP4283037B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • B01J35/647

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-temperature oxidation/removal catalyst which does not contain palladium considered to be a methane oxidation-active noble metal at all and oxidizes/removes methane in combustion exhaust containing sulfur oxide at a temperature of 500°C or below, especially 450-350°C, effectively over a long time, a method for oxidizing/removing methane in the combustion exhaust at a low temperature using the catalyst, and a method for producing the low temperature oxidation/removal catalyst. <P>SOLUTION: In the catalyst, platinum is supported on porous tin oxide. In the method for oxidizing/removing methane in the combustion exhaust, methane in the combustion exhaust is passed through the catalyst at a low temperature of 450-350°C. The method for producing the catalyst is provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、硫黄酸化物を含む燃焼排ガス中のメタンを低温域において酸化除去するための触媒、該触媒を用いて硫黄酸化物を含む燃焼排ガス中のメタンを酸化除去する方法及び該触媒の製造方法に関する。
【0002】
【従来の技術】
ボイラー、加熱炉、あるいはガスエンジンやガスタービンなどの燃料としては天然ガス、都市ガス、軽油、灯油などの炭化水素が使用される。それら燃料を燃焼させた排ガスには窒素酸化物(NO)、硫黄酸化物(SO)、一酸化炭素、あるいは臭気物質、ばいじん等のほか、未燃焼の炭化水素が含有されている。これらの成分は環境汚染の原因となるので無害にして排出する必要がある。
【0003】
この点は、コージェネレーションシステムやGHP(Gas Heat Pump)における希薄燃焼ガスエンジンからの排ガスについても同様である。希薄燃焼ガスエンジンのような希薄燃焼方式の場合には、その排ガス中に少量の炭化水素、特にメタン、窒素酸化物、一酸化炭素等とともに、多量の酸素及び水蒸気が共存することになる。従来、排ガス中の3成分すなわち炭化水素、窒素酸化物、一酸化炭素を同時に浄化する三元触媒による処理法が開発されている。
【0004】
ところが、三元触媒による処理法は酸素が殆んど存在しない燃焼排ガスに対してしか有効に適用することはできず、三元触媒は酸素過剰で且つ燃焼排ガス中の炭化水素がとりわけメタンである場合には有効に作用しない。炭化水素の酸化触媒としてはパラジウム、白金、ロジウムなどの貴金属が用いられるが、それら貴金属触媒は担体に担持した形で使用される。その担体としてはアルミナ(Al)やジルコニア(ZrO)などが知られている。
【0005】
ところで、炭化水素が特にメタンの場合には、従来、その酸化にはパラジウムが有効とされ、白金についてはそれ単独では有効でなく、補助的に使用されているだけである。例えば、特開2000−33266や特開2000−254505には、酸化スズ担体にパラジウムを担持してなる触媒が、硫黄酸化物による触媒活性の阻害に対して高い抵抗性を示すことが示されている。このうち特開2000−33266では、酸化スズ担体にパラジウムと白金を担持してなる触媒についても開示されているが、白金はパラジウムと一緒に補足的に使用されるに過ぎない。この点、特開2001−190931においても同様である。
【0006】
【特許文献1】特開2000−33266号公報
【特許文献2】特開2000−254505号公報
【特許文献3】特開2001−190931号公報
【0007】
また、例えば希薄燃焼ガスエンジンからの排ガスの温度は500℃以下、通常500−400℃程度と低いため、酸化触媒によるメタンの酸化は困難である。特に450℃以下という低温域においては、酸化触媒は、排ガス中に含まれる微量の硫黄酸化物の蓄積による被毒劣化が著しく、これによりメタンの酸化除去性能は経時的に劣化してしまい、実用に供し得る十分な耐久性能が得られないのが現状である。
【0008】
【発明が解決しようとする課題】
本発明者らは、白金、ルテニウム、パラジウムなどの貴金属とアルミナやジルコニアなどの担体、また酸化スズ担体を各種組み合せて実験、検討を繰り返して追求したところ、全く偶然にも、従来メタンの酸化活性貴金属と考えられていたパラジウムを一切含まず、また従来単独では有効でないと考えられていた白金をそれ単独で、すなわち白金のみを多孔質の酸化スズに担持した触媒が低温域、特に450℃以下という低温域におけるメタンの酸化除去触媒として有効で、高い耐SO性を有することを見い出し、本発明に到達するに至ったものである。
【0009】
すなわち、本発明は、白金を多孔質の酸化スズに担持してなる硫黄酸化物を含む燃焼排ガス中のメタン酸化除去用触媒を提供することを目的とし、また、硫黄酸化物を含む燃焼排ガスを該酸化除去触媒に500℃以下の低温域、特に450−350℃という低温域で通すことにより燃焼排ガス中のメタンを長期にわたり有効に酸化除去する方法を提供することを目的とし、さらに、その酸化触媒の製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、硫黄酸化物を含む燃焼排ガス中のメタンを低温域において酸化除去するための触媒であって、該酸化除去触媒が多孔質の酸化スズに白金を担持させてなる触媒であることを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒を提供する。
【0011】
また、本発明は、硫黄酸化物を含む燃焼排ガス中のメタンを低温域で酸化除去する方法であって、該燃焼排ガスを多孔質の酸化スズに白金を担持させてなる酸化除去触媒に低温域で通すことによりメタンを酸化除去することを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去方法を提供する。
【0012】
さらに、本発明は、多孔質の酸化スズに白金を担持してなる硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒の製造方法であって、白金化合物を多孔質の酸化スズに対して白金化合物の水溶液による含浸法または平衡吸着法により担持させた後、焼成することを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒の製造方法を提供する。
【0013】
【発明の実施の形態】
本発明に係る燃焼排ガス中のメタンの酸化除去用触媒は、多孔質の酸化スズ(SnO)に白金を担持させてなる触媒であり、硫黄酸化物を含む燃焼排ガス中のメタンを低温域で酸化除去する触媒である。本発明によれば、従来メタンの酸化活性貴金属とされていたパラジウムを一切含まず、また従来単独では有効でないと考えられていた白金をそれ単独で、すなわち白金のみを多孔質の酸化スズに担持することにより、500℃以下の低温域、特に450−350℃という低温域においてメタンを長期にわたり極めて有効に酸化除去することができる。
【0014】
本酸化除去用触媒の製造法としては、多孔質の酸化スズに対して白金を均一に担持させ得る手法であれば特に限定はないが、好ましくは含浸法や平衡吸着法が適用される。担体である酸化スズ(SnO)は、多孔質であればよいが、特に20〜50nmの範囲内にピーク細孔径があり、その範囲内に全細孔容積の60%以上の細孔容積を有するものであるのが好ましい。白金の原料としては白金化合物を用いる。その例としては白金の硝酸塩、塩化物、酢酸塩、錯塩(テトラアンミン白金塩、ジニトロジアンミン白金等)などが挙げられる。
【0015】
一例として含浸法の場合の態様例を述べると、白金化合物を水に溶解して水溶液とし、その水溶液に粉末状等の多孔質の酸化スズを投入して撹拌し、該酸化スズに白金化合物を含浸させて担持する。ここで、白金化合物水溶液のpHは、酸性域からアルカリ性域まで広い範囲で設定できるが、pH値をより大きくするのが好ましく、これによりメタンの酸化性能を向上させることができる。そのpH値は特に12以上であるのが好ましい。
【0016】
また、多孔質の酸化スズに対して白金を分割担持することによりメタンの酸化性能を格段に向上させることができる。当該白金の分割担持は、多孔質の酸化スズに対して白金化合物水溶液を2回以上に繰り返して担持する。例えば1回で白金を2wt%(白金換算)担持し、この担持を2回、3回というように複数回繰り返して、4wt%、6wt%というように担持する。当該Ptの分割担持は2回以上5回以下であるのが好ましい。その後、常法により乾燥し、焼成する。
【0017】
本酸化触媒における酸化スズ担体に対する白金の担持量は、酸化スズに対して0.025〜15.0wt%の範囲であり、より好ましくは0.8〜9.0wt%の範囲である。白金の担持量が0.025wt%を下回る場合にもなお有効であるが、その分触媒効果は減少する。その担持量が15.0wt%程度を上回る場合にも同様に有効な触媒効果が得られるが、白金を15wt%程度まで担持させていれば所期の触媒効果が得られるのでコスト等の面からしても上限15.0wt%程度で十分である。もちろん、上記範囲0.025〜15.0wt%の前後としても差し支えない。本発明の酸化触媒をハニカム状の形態で使用する場合には、これらに準じた量を担持させる。
【0018】
触媒の形態としては粉末状、粒状、顆粒状(含:球状)、ペレット(円筒型、環状型)状、タブレット(錠剤)状、或いはハニカム(モノリス体)状等適宜の形状として使用することができる。なお、本発明ではこれら形状の触媒に排ガスを通す必要があるため、粉末状の場合には、これを充填した触媒層から逸散しないように所定粒度範囲に整粒するかまたは造粒し、あるいは加圧成形や押出し成形して用いるのが望ましい。このうち押出し成形の場合には適宜所定長さに切断してペレット化して使用される。
【0019】
本触媒の形態としてハニカム(モノリス体)状の形態は好ましい形状である。特に希薄燃焼ガスエンジンからの排ガスを処理する場合には、好ましくはハニカム状として用いられる。ハニカム状触媒の製造態様としては、例えば(1)ハニカム状構造の基材に酸化スズをウォッシュコートして担持させた後、該酸化スズ担持のハニカム基材に白金化合物の水溶液を担持させる、(2)白金化合物の水溶液に酸化スズを分散させてスラリーとし、これをハニカム状構造の基材にウォッシュコートして担持させる。次いで、常法により乾燥させ、焼成する。
【0020】
ハニカム状の形態での基材としてはセラミックス製またはメタル製の基材を使用することができる。セラミックスの好ましい例としてはコージェライトが挙げられ、メタルの好ましい例としてはステンレス鋼や鉄ーアルミニウムークロム系合金などが挙げられる。
【0021】
従来、貴金属触媒は、排ガス中のSOにより被毒し性能劣化を来すことが知られている。これに対して、本発明に係る酸化スズ(SnO)担体に白金を担持した酸化触媒は、長期間にわたり高い耐SO性を有し、従来における認識とは全く逆に、排ガス中のSOの存在により、反ってメタンの酸化除去活性が向上する。この原因は不明であるが、酸化スズと白金との間、あるいは酸化スズと白金とSOとの間で何らかの有意な作用が生起しているものと思われる。
【0022】
本発明の酸化触媒を使用する装置としては固定床流通型反応装置などを用いることができる。図1は本発明の酸化触媒を使用する装置態様例を示す図である。図1中、Aは被処理燃焼排ガス導入管、Bは酸化触媒層(反応管)、Cは処理済み排ガスの導出管であり、矢印(→)は燃焼排ガスの流れ方向を示している。本酸化触媒は、図1のような装置態様とは限らず、燃焼排ガス流に対して配置し得る態様であれば各種装置態様で使用される。ハニカム状の本酸化触媒を図1のような触媒層にセットするには、その断面開口が燃焼排ガスの流れ方向に向くように配置される。
【0023】
【実施例】
以下、実施例に基づき本発明をさらに詳しく説明するが、本発明が実施例に限定されないことはもちろんである。
【0024】
《実施例1》
〈実施例ペレット触媒の調製〉
ペレット触媒を含浸法により調製した。担体粉末は、原料酸化スズ〔関東化学社製(特級)〕を1℃/min、600℃、3時間焼成して得た。該担体粉末とジニトロジアンミン白金〔Pt(NO(NH〕の硝酸酸性水溶液(pH≒3)の所定量をフラスコに入れ、ロータリーエバポレータにより、50℃で減圧乾燥させた後、残った粉末を175℃で6時間、次いで275℃で12時間乾燥し、その後昇温速度10℃/min、200℃で3時間、昇温速度1℃/min、270℃で6時間、昇温速度1℃/min、550℃で3時間焼成して触媒粉末を得た。得られた触媒粉末を打錠成形器により500kg/cmで成形した後、355−710μm(=35−31メッシュ)に分級した。こうしてペレット触媒を得た。
【0025】
〈比較例ペレット触媒の調製〉
また、上記と同様にして、酸化スズ担体にPtとPdを担持したペレット触媒(Pt−Pd/SnOペレット触媒)、酸化スズにPdを担持したペレット触媒(Pd/SnOペレット触媒)、アルミナにPtとPdを担持したペレット触媒(Pt−Pd/Alペレット触媒)を調製した。Pd源としては硝酸パラジウム〔Pd(NO〕を用い、原料酸化スズとしては前記と同じ酸化スズを使用し、Al(アルミナ)としては触媒担体として用いられる通常のアルミナ粉末を使用した。
【0026】
〈性能試験〉
上記ペレット触媒の調製で得た各種ペレット触媒を用いて、図1に示すような通常の固定床流通型反応装置を用いて触媒耐久試験を実施した。使用ペレット触媒は、Pt/SnO(Pt=1.33wt%:SnOに対する担持量、以下同じ)、Pt−Pd/SnO(Pt=0.67wt%、Pd=0.67wt%)、Pd/SnO(Pd=1.33wt%)、Pt−Pd/Al(Pt=2.0wt%、Pd=2.0wt%)である。
【0027】
試験条件は下記のとおりである。排ガス温度(=反応温度):500〜350℃、空間速度(SV):160,000h−1(全流量3.35L/min、触媒体積:1.26cm)、排ガスすなわち試験ガス:CH=2000ppm、CO=820ppm、NO=80ppm、CO=4.9%、O=10.5%、HO=10%、SO=1ppm、N=バランス。これら試験条件は、特に記載しない限り、以下の実施例についても同じである。
【0028】
試験ガスの分析は、FID式全炭化水素計、赤外線式CO/CO計、化学発光式NO計及び磁気式酸素計からなる排ガス分析計(堀場製作所製)を用いて行った。CH酸化除去活性は、反応管前後のCHの濃度差から評価した。酸化除去活性〔=メタン除去率(%)〕は以下の式により求めた。これらの点は以下の性能試験についても同じである。図2は本性能試験の結果のうち反応温度400℃での結果を示す図である。
【0029】
【数1】

Figure 2004351236
【0030】
図2のとおり、まず、Pt−Pd/SnO触媒の場合、メタン除去率は初期段階で41%であり、以降徐々に低下し、50時間経過時で26%、100時間経過時で23%と低下し、145時間経過時においては22%にまで低下している。次に、Pd/SnO触媒の場合、メタン除去率は初期段階で41%であり、以降急激に低下し、40時間経過時で2%、145時間経過時においても2%に低下したままである。さらに、Pt−Pd/Alの場合、メタン除去率は初期段階で34%であり、以降徐々に低下し、50時間経過時で10%、100時間経過時で2%と低下し、140時間経過時においては1%に低下している。
【0031】
これに対して、Pt/SnO触媒の場合、メタン除去率は初期段階で40%程度であり、以降41〜44%の除去率を保持し、145時間経過時においても42%で初期の性能を維持している。このように、4種のメタン酸化触媒のうち、Pt/SnO触媒だけが、SOを1ppm含む試験ガスについて長期間にわたり性能劣化がなく、高いメタン除去率を維持している。図2は温度400℃の場合であるが、それより高い反応温度、例えば500℃の場合や450℃の場合のメタン除去率は相対的に高く、またそれより低い反応温度、例えば375℃の場合や350℃の場合にも、400℃の場合と同じく良好なメタン除去率、耐久性を示した。
【0032】
《実施例2》
市販の各種SnOを担体として実施例1の〈実施例ペレット触媒の調製〉と同様にして各種Pt(2wt%)/SnO触媒を調製した。得られた各Pt/SnO触媒を用い、反応温度400℃での耐久試験を実施した。図3は本性能試験の結果を示す図である。図3のとおり、メタン除去率は、SnO担体の種類によって左右されるが、いずれも初期段階の性能をほぼ維持し長期間にわたり経時的に変化はないことが分かる。例えば、SnO担体が関東化学社製(特級)の場合、初期段階から140時間経過時まで50〜53%のメタン除去率を示している。またSnO担体が日本化学産業社製(SLグレード)の場合、それに準じた性能を示している。
【0033】
図4は以上の各Pt/SnO触媒で用いた各種SnOの細孔径の分布を示した図である。最も高性能である関東化学社製(特級)のSnO担体の場合、比較的大きな細孔を有し、そのピークは40nmで0.32cc/g強の細孔容積を示している。これに準じる性能を示す日本化学産業社製(SLグレード)のSnO担体の場合、そのピークは30nmで0.31cc/gの細孔容積を示している。また、図4の細孔分布を図3の結果と併せて対比すると、高いメタン除去性能を長期間にわたり発揮する上では、特に20〜50nmの範囲内にピーク細孔径があり、その範囲内に全細孔容積の60%以上の細孔容積を有することが好ましいことを示している。
【0034】
図5は各Pt/SnO触媒で用いた各種SnOの比表面積を示した図である。最も高性能を示す関東化学社製(特級)のSnO担体の場合、比表面積も大きく、13m/gの値を示している。また、これに準じる性能を示す日本化学産業社製(SLグレード)のSnO担体の場合、12.5m/gの値を示している。
【0035】
《実施例3》
Ptを分割して担持した点以外は、実施例1の〈実施例ペレット触媒の調製〉と同様にして各種Pt/SnO触媒を調製した。得られた各Pt/SnO触媒を用いて反応温度400℃、SV=160,000h−1で性能試験を実施した。図6は本性能試験の結果を示す図である。図6には、1回でのPtの担持量を2wt%とし、これを1回で担持した場合〔Pt=2wt%(2wt%×1回担持)〕、2回で担持した場合〔Pt=4wt%(2wt%×2回担持)〕、3回で担持した場合〔Pt=6wt%(2wt%×3回担持)〕の3種のPt/SnO触媒と、1回でPtを4wt%担持した場合〔Pt=4wt%(4wt%×1回担持)〕の結果を示している。
【0036】
図6のとおり、メタン除去率は、SnO担体に対してPtを分割担持することにより向上することを示している。まず、1回で4wt%担持した場合〔Pt=4wt%(4wt%×1回担持)〕には、初期段階で38%程度と低く、140時間経過時にも41%の性能を示すに過ぎない。これに対して、Pt=2wt%(2wt%×1回担持)の場合、初期段階から50%前後のメタン除去率を示し、140時間経過時でも変化はなく同様の性能を示し、また、Pt=4wt%(2wt%×2回担持)の場合、メタン除去率は、1回の担時の場合に比べて格段に向上し、初期段階で66%前後、140時間経過時には70%の性能を示している。
【0037】
これらの事実からして、酸化スズ担体に対してPtを同量担持する場合にも、Ptを分割して担持し、担持回数を増やすことによりメタン酸化除去性能の向上に有効であることを示している。また、Pt=6wt%(2wt%×3回担持)の場合、メタン除去率は、2回の分割担時の場合に比べてさらに向上し、初期段階で80%前後、140時間経過時には82%の性能を示している。
【0038】
《実施例4》
Ptの担持時におけるPt化合物水溶液のpH値を変えた点以外は、実施例1の〈実施例ペレット触媒の調製〉と同様にして各種Pt/SnO触媒を調製した。Ptの担持量はいずれもSnO担体に対して2wt%とした。得られた各Pt/SnO触媒について、反応温度400℃、SV=160,000h−1で性能試験を実施した。図7は本性能試験の結果である。図7には、水溶液について、pH=3、pH=7、pH=12の3種変えた場合を示している。
【0039】
図7のとおり、メタン除去率は、pH値を上げるに従い向上させ得ることを示している。pH=3で担持した場合、初期段階から50%前後のメタン除去率を示し、140時間経過時でも変化はなく同様の性能を示している。pH=7の場合、初期段階で52%前後のメタン除去率を示し、140時間経過時では55%前後のメタン除去率を示している。pH=12の場合、初期段階では50%程度であるが、140時間経過時では58%のメタン除去率を示している。このように、Pt担持時の白金水溶液のpHを上げることが、メタン酸化除去性能の向上に有効であることを示している。
【0040】
図8は、各種pHで担持したPt(2wt%)/SnO触媒の細孔径の分布を示した図である。図8中、SnOとして示しているのは、Ptを担持しないSnO担体そのものの場合であり、これは図4中、関東化学(特級)として示すものと同じである。図8のとおり、高いpH値でPtを担持した場合は、SnO担体そのものの細孔径分布に近い細孔径分布を示している。これはPtの担持に際してPt化合物のpH値を高くすると細孔の閉塞が起きないことを示している。すなわち、SnO担体に対する高いpH値でのPtの担持がメタン酸化除去性能の向上に有効であることを示している。
【0041】
《実施例5》
本実施例ではPt/SnO(Pt=2wt%)触媒の耐久性に及ぼすSOの影響について試験した。すなわち、排ガス中のSOの有無如何によるメタンの酸化除去性能を試験した。触媒は、実施例4のpH=12の条件と同様にして調製した。排ガス温度(反応温度)は400℃とした。図9は本性能試験の結果を示す図である。図9には、SO=1ppmすなわち排ガス中のSO濃度が1ppmの場合と、SO=0ppmすなわちSOを含まない排ガス場合(試験ガス中SOを含まない点以外は前記実施例1の試験ガスと同じである)を示している。
【0042】
図9のとおり、SO=1ppmの場合、メタン除去率は、初期段階で50%前後のメタン除去率を示し、30時間経過時に60%に達し、以降殆ど変化はなく、140時間経過時で59%という高性能を示している。これに対して、SO=0ppmの場合、メタン除去率は、初期段階でも46%前後であり、以降徐々に低下し、140時間経過時には41%に低下している。
【0043】
このように、SOの存在によりメタンの酸化除去活性が向上している。この事実は、本発明の酸化触媒が従来の認識とは全く異なる挙動を示すことを裏付けるものである。従来、貴金属担持のアルミナ系触媒は、排ガス中のSOにより被毒し性能劣化を来すことが知られている。これに対して、本発明の酸化触媒は、排ガス中にSOが含まれていると、性能劣化どころか、反ってメタンの酸化除去活性が向上する。
【0044】
【発明の効果】
本発明によれば、従来メタンの酸化活性貴金属と考えられていたパラジウムを一切含まず、また、従来単独では有効でないと考えられていた白金を、それ単独で多孔質の酸化スズに担持することにより、500℃以下の低温域、特に450−350℃という低温域においてメタンを長期にわたり極めて有効に酸化除去することができる。このため、特に硫黄化合物を付臭剤として含む都市ガス等を燃料とする希薄燃焼ガスエンジンからの排ガスに対しても有効に適用できる。また本発明の酸化除去触媒は、有効な耐久性を有することから、交換頻度を少なくでき、排ガス処理システムの低コスト化を図ることができる。
【図面の簡単な説明】
【図1】本発明の酸化触媒を使用する装置態様例を示す図
【図2】実施例1の結果を示す図
【図3】実施例2の結果を示す図
【図4】実施例2の結果を示す図
【図5】実施例2の結果を示す図
【図6】実施例3の結果を示す図
【図7】実施例4の結果を示す図
【図8】実施例4の結果を示す図
【図9】実施例5の結果を示す図
【符号の説明】
A 被処理排ガス導入管
B 酸化触媒層(反応管)
C 処理済み排ガスの導出管[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a catalyst for oxidizing and removing methane in a combustion exhaust gas containing sulfur oxides in a low temperature range, a method for oxidizing and removing methane in a combustion exhaust gas containing sulfur oxide using the catalyst, and production of the catalyst. About the method.
[0002]
[Prior art]
Hydrocarbons such as natural gas, city gas, light oil, and kerosene are used as fuel for boilers, heating furnaces, gas engines, gas turbines, and the like. Nitrogen oxides in exhaust gas by burning them fuel (NO X), sulfur oxides (SO X), carbon monoxide or odor substances, as well, such as soot, unburned hydrocarbons are contained. Since these components cause environmental pollution, they must be discharged harmlessly.
[0003]
The same applies to the exhaust gas from the lean burn gas engine in the cogeneration system or GHP (Gas Heat Pump). In the case of a lean burn system such as a lean burn gas engine, a large amount of oxygen and water vapor coexist in the exhaust gas together with a small amount of hydrocarbons, particularly methane, nitrogen oxides, carbon monoxide and the like. Conventionally, a treatment method using a three-way catalyst for simultaneously purifying three components, that is, hydrocarbons, nitrogen oxides, and carbon monoxide in exhaust gas has been developed.
[0004]
However, the treatment method using a three-way catalyst can be effectively applied only to flue gas having almost no oxygen, and the three-way catalyst has an excess of oxygen and the hydrocarbon in the flue gas is particularly methane. Does not work effectively in some cases. As a hydrocarbon oxidation catalyst, noble metals such as palladium, platinum and rhodium are used, and these noble metal catalysts are used in a form supported on a carrier. Known carriers include alumina (Al 2 O 3 ) and zirconia (ZrO 2 ).
[0005]
By the way, when the hydrocarbon is methane in particular, palladium has conventionally been regarded as effective for the oxidation thereof, and platinum is not effective alone but is merely used as an auxiliary. For example, JP-A-2000-33266 and JP-A-2000-254505 show that a catalyst comprising palladium supported on a tin oxide carrier exhibits high resistance to inhibition of catalytic activity by sulfur oxides. I have. Of these, Japanese Patent Application Laid-Open No. 2000-33266 discloses a catalyst comprising palladium and platinum supported on a tin oxide carrier, but platinum is only used supplementarily together with palladium. This point is the same in JP-A-2001-190931.
[0006]
[Patent Document 1] JP-A-2000-33266 [Patent Document 2] JP-A-2000-254505 [Patent Document 3] JP-A-2001-190931 [0007]
Further, for example, since the temperature of exhaust gas from a lean burn gas engine is as low as 500 ° C. or lower, usually about 500 to 400 ° C., it is difficult to oxidize methane using an oxidation catalyst. Particularly, in a low temperature range of 450 ° C. or less, the oxidation catalyst is remarkably poisoned due to the accumulation of a small amount of sulfur oxides contained in the exhaust gas. At present, it is not possible to obtain a sufficient durability performance that can be provided for the above.
[0008]
[Problems to be solved by the invention]
The present inventors have repeatedly conducted experiments and studies on various combinations of noble metals such as platinum, ruthenium, and palladium with carriers such as alumina and zirconia, and tin oxide carriers. It does not contain any palladium, which was considered a noble metal, and the catalyst that supported platinum alone, which was conventionally considered to be ineffective alone, that is, only platinum supported on porous tin oxide was in a low temperature range, especially 450 ° C or lower. It has been found that the catalyst is effective as a catalyst for oxidizing and removing methane in a low temperature range and has high SO X resistance, and has reached the present invention.
[0009]
That is, an object of the present invention is to provide a catalyst for removing methane oxidation in a combustion exhaust gas containing a sulfur oxide obtained by supporting platinum on porous tin oxide. An object of the present invention is to provide a method for effectively oxidizing and removing methane in combustion exhaust gas over a long period of time by passing the catalyst at a low temperature of 500 ° C. or lower, particularly at a low temperature of 450 to 350 ° C. An object of the present invention is to provide a method for producing a catalyst.
[0010]
[Means for Solving the Problems]
The present invention relates to a catalyst for oxidizing and removing methane in a combustion exhaust gas containing sulfur oxides in a low temperature range, wherein the oxidation removing catalyst is a catalyst in which platinum is supported on porous tin oxide. Disclosed is a catalyst for low-temperature oxidation removal of methane in a combustion exhaust gas containing a sulfur oxide.
[0011]
Further, the present invention is a method for oxidizing and removing methane in combustion exhaust gas containing sulfur oxides in a low temperature range, wherein the combustion exhaust gas is subjected to an oxidation removal catalyst comprising platinum supported on porous tin oxide in a low temperature range. A low-temperature oxidative removal method for methane in combustion exhaust gas containing sulfur oxides, characterized in that methane is oxidized and removed by passing through.
[0012]
Further, the present invention relates to a method for producing a catalyst for low-temperature oxidation removal of methane in combustion exhaust gas containing a sulfur oxide obtained by supporting platinum on porous tin oxide, wherein the platinum compound is converted into porous tin oxide. On the other hand, there is provided a method for producing a catalyst for low-temperature oxidation removal of methane in combustion exhaust gas containing sulfur oxides, which is carried out by impregnation or equilibrium adsorption with an aqueous solution of a platinum compound and then calcined.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The catalyst for oxidizing and removing methane in combustion exhaust gas according to the present invention is a catalyst in which platinum is supported on porous tin oxide (SnO 2 ), and converts methane in combustion exhaust gas containing sulfur oxides into a low-temperature region. It is a catalyst that is oxidized and removed. According to the present invention, it does not contain any palladium, which was conventionally regarded as an oxidation-active noble metal of methane, and carries platinum alone, which was conventionally considered to be ineffective alone, that is, only platinum on porous tin oxide. By doing so, methane can be very effectively oxidized and removed over a long period of time in a low temperature range of 500 ° C. or lower, particularly in a low temperature range of 450 to 350 ° C.
[0014]
The method for producing the present oxidation removal catalyst is not particularly limited as long as platinum can be uniformly supported on porous tin oxide, but an impregnation method or an equilibrium adsorption method is preferably used. Tin oxide (SnO 2 ), which is a carrier, may be porous as long as it has a peak pore diameter in the range of 20 to 50 nm, and a pore volume of 60% or more of the total pore volume in that range. It is preferable to have one. A platinum compound is used as a raw material for platinum. Examples thereof include nitrates, chlorides, acetates and complex salts of platinum (tetraammineplatinum salt, dinitrodiammineplatinum, etc.).
[0015]
As an example, an embodiment in the case of the impregnation method will be described.A platinum compound is dissolved in water to form an aqueous solution, and a porous tin oxide such as powder is poured into the aqueous solution and stirred, and the platinum compound is added to the tin oxide. Impregnated and carried. Here, the pH of the aqueous platinum compound solution can be set in a wide range from an acidic range to an alkaline range, but it is preferable to increase the pH value, thereby improving the methane oxidation performance. The pH value is particularly preferably 12 or more.
[0016]
Further, by separately supporting platinum on porous tin oxide, oxidizing performance of methane can be remarkably improved. The divided loading of platinum is carried out by repeatedly carrying a platinum compound aqueous solution twice or more on porous tin oxide. For example, 2 wt% (in terms of platinum) of platinum is carried at one time, and this carrying is repeated a plurality of times, such as twice or three times, to carry 4 wt% or 6 wt%. It is preferable that the Pt is divided and carried twice or more and 5 times or less. Then, it is dried and fired by a conventional method.
[0017]
The amount of platinum carried on the tin oxide carrier in the present oxidation catalyst is in the range of 0.025 to 15.0 wt%, more preferably 0.8 to 9.0 wt%, based on tin oxide. It is still effective when the supported amount of platinum is less than 0.025 wt%, but the catalytic effect is reduced accordingly. Similarly, an effective catalytic effect can be obtained when the supported amount exceeds about 15.0 wt%. However, if platinum is supported up to about 15 wt%, the desired catalytic effect can be obtained, so that from the viewpoint of cost and the like. Even so, the upper limit of about 15.0 wt% is sufficient. Of course, the above range may be around 0.025 to 15.0% by weight. When the oxidation catalyst of the present invention is used in the form of a honeycomb, an amount equivalent to these is carried.
[0018]
The catalyst may be used in any suitable form such as powder, granule, granule (including spherical), pellet (cylindrical or annular), tablet (tablet), or honeycomb (monolith). it can. In the present invention, since it is necessary to pass exhaust gas through the catalyst of these shapes, in the case of powder, the powder is sized or granulated in a predetermined particle size range so as not to escape from the catalyst layer filled with the powder, Alternatively, it is desirable to use them by pressure molding or extrusion molding. Among them, in the case of extrusion molding, it is cut into a predetermined length and pelletized before use.
[0019]
As a form of the present catalyst, a honeycomb (monolith) form is a preferable form. In particular, when treating exhaust gas from a lean burn gas engine, it is preferably used as a honeycomb. Examples of the production mode of the honeycomb catalyst include, for example, (1) washing and supporting tin oxide on a substrate having a honeycomb structure, and then supporting an aqueous solution of a platinum compound on the honeycomb substrate supporting tin oxide. 2) Tin oxide is dispersed in an aqueous solution of a platinum compound to form a slurry, which is wash-coated and supported on a substrate having a honeycomb structure. Next, it is dried and fired by a conventional method.
[0020]
As the substrate in the form of a honeycomb, a ceramic or metal substrate can be used. Preferable examples of the ceramic include cordierite, and preferable examples of the metal include stainless steel and iron-aluminum-chromium alloy.
[0021]
Conventionally, it has been known that noble metal catalysts are poisoned by SO 2 in exhaust gas and deteriorate performance. On the other hand, the oxidation catalyst according to the present invention in which platinum is supported on a tin oxide (SnO 2 ) carrier has high resistance to SO X over a long period of time, and contrary to the conventional recognition, the SOx in the exhaust gas is completely opposite to the conventional recognition. By the presence of 2, the activity of oxidizing and removing methane is improved. Although the cause is unknown, it is considered that some significant action occurs between tin oxide and platinum or between tin oxide and platinum and SO 2 .
[0022]
As a device using the oxidation catalyst of the present invention, a fixed bed flow type reaction device or the like can be used. FIG. 1 is a view showing an example of an apparatus using the oxidation catalyst of the present invention. In FIG. 1, A is a pipe for introducing a treated flue gas, B is an oxidation catalyst layer (reaction tube), C is a lead pipe for a treated flue gas, and an arrow (→) indicates a flow direction of the flue gas. The present oxidation catalyst is not limited to the device mode as shown in FIG. 1, and may be used in various device modes as long as it can be disposed with respect to the flue gas flow. In order to set the honeycomb-shaped main oxidation catalyst in the catalyst layer as shown in FIG. 1, it is arranged such that its cross-section opening faces the flow direction of the combustion exhaust gas.
[0023]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but it is needless to say that the present invention is not limited to Examples.
[0024]
<< Example 1 >>
<Preparation of Example pellet catalyst>
The pellet catalyst was prepared by the impregnation method. The carrier powder was obtained by firing raw material tin oxide [Kanto Chemical Co., Ltd. (special grade)] at 1 ° C./min at 600 ° C. for 3 hours. A predetermined amount of the carrier powder and a nitric acid aqueous solution (pH 白金 3) of dinitrodiammineplatinum [Pt (NO 2 ) 2 (NH 3 ) 2 ] are put in a flask, and dried under reduced pressure at 50 ° C. by a rotary evaporator. The remaining powder was dried at 175 ° C. for 6 hours, then at 275 ° C. for 12 hours, and then heated at a rate of 10 ° C./min, at 200 ° C. for 3 hours, at a rate of 1 ° C./min, and heated at 270 ° C. for 6 hours. The powder was calcined at a rate of 1 ° C./min at 550 ° C. for 3 hours to obtain a catalyst powder. The obtained catalyst powder was molded at 500 kg / cm 2 using a tablet molding machine, and then classified to 355-710 μm (= 35-31 mesh). Thus, a pellet catalyst was obtained.
[0025]
<Preparation of comparative example pellet catalyst>
In the same manner as above, a pellet catalyst supporting Pt and Pd on a tin oxide carrier (Pt-Pd / SnO 2 pellet catalyst), a pellet catalyst supporting Pd on tin oxide (Pd / SnO 2 pellet catalyst), alumina A Pt-Pd / Al 2 O 3 pellet catalyst was prepared in which Pt and Pd were supported. Palladium nitrate [Pd (NO 3 ) 2 ] is used as a Pd source, the same tin oxide as the above is used as a raw tin oxide, and ordinary alumina powder used as a catalyst carrier is used as Al 2 O 3 (alumina). used.
[0026]
<performance test>
Using the various pellet catalysts obtained in the above-mentioned preparation of the pellet catalyst, a catalyst durability test was carried out using a usual fixed bed flow type reactor as shown in FIG. The pellet catalyst used was Pt / SnO 2 (Pt = 1.33 wt%: supported amount on SnO 2 , the same applies hereinafter), Pt-Pd / SnO 2 (Pt = 0.67 wt%, Pd = 0.67 wt%), Pd / SnO 2 (Pd = 1.33 wt%) and Pt-Pd / Al 2 O 3 (Pt = 2.0 wt%, Pd = 2.0 wt%).
[0027]
The test conditions are as follows. Exhaust gas temperature (= reaction temperature): 500-350 ° C., space velocity (SV): 160,000 h −1 (total flow rate 3.35 L / min, catalyst volume: 1.26 cm 3 ), exhaust gas, ie, test gas: CH 4 = 2000 ppm, CO = 820 ppm, NO = 80 ppm, CO 2 = 4.9%, O 2 = 10.5%, H 2 O = 10%, SO 2 = 1 ppm, N 2 = balance. These test conditions are the same for the following examples unless otherwise specified.
[0028]
Analysis of the test gas, FID type total hydrocarbon analyzer, infrared CO / CO 2 meter, exhaust gas analyzer comprising a chemiluminescent NO X meter and magnetic oxygen analyzer (manufactured by Horiba) was used. The CH 4 oxidation removal activity was evaluated from the difference in CH 4 concentration before and after the reaction tube. The oxidation removal activity [= methane removal rate (%)] was determined by the following equation. These points are the same for the following performance tests. FIG. 2 is a diagram showing the results at a reaction temperature of 400 ° C. among the results of this performance test.
[0029]
(Equation 1)
Figure 2004351236
[0030]
As shown in FIG. 2, first, in the case of the Pt-Pd / SnO 2 catalyst, the methane removal rate is 41% in the initial stage, and gradually decreases thereafter, and 26% after 50 hours and 23% after 100 hours. And after 22 hours, it has dropped to 22%. Next, in the case of the Pd / SnO 2 catalyst, the methane removal rate is 41% at the initial stage, and thereafter drops sharply, and remains at 2% after 40 hours and 2% after 145 hours. is there. Further, in the case of Pt-Pd / Al 2 O 3 , the methane removal rate is 34% in the initial stage, gradually decreases thereafter, decreases to 10% after 50 hours, 2% after 100 hours, After 140 hours, it has decreased to 1%.
[0031]
On the other hand, in the case of the Pt / SnO 2 catalyst, the methane removal rate is about 40% in the initial stage, and thereafter maintains the removal rate of 41 to 44%, and the initial performance is 42% even after 145 hours. Has been maintained. As described above, among the four types of methane oxidation catalysts, only the Pt / SnO 2 catalyst maintains the high methane removal rate without deterioration in performance over a long period of time for the test gas containing 1 ppm of SO 2 . FIG. 2 shows the case where the temperature is 400 ° C., but when the reaction temperature is higher, for example, 500 ° C. or 450 ° C., the methane removal rate is relatively high, and when the reaction temperature is lower, for example, 375 ° C. Also, when the temperature was 350 ° C., the methane removal rate and the durability were as good as those at the temperature of 400 ° C.
[0032]
<< Example 2 >>
Various Pt (2 wt%) / SnO 2 catalysts were prepared in the same manner as in <Preparation of Example Pellet Catalyst> in Example 1 using various commercially available SnO 2 carriers. Using each of the obtained Pt / SnO 2 catalysts, a durability test at a reaction temperature of 400 ° C. was performed. FIG. 3 is a diagram showing the results of the performance test. As shown in FIG. 3, although the methane removal rate depends on the type of the SnO 2 carrier, it can be seen that the performance in the initial stage is almost maintained and does not change over time for a long period of time. For example, when the SnO 2 support is manufactured by Kanto Chemical Co., Ltd. (special grade), the methane removal rate of 50 to 53% is shown from the initial stage to the elapse of 140 hours. Also, when the SnO 2 support is made by Nippon Chemical Industry Co., Ltd. (SL grade), the performance according to it is shown.
[0033]
FIG. 4 is a diagram showing the distribution of pore sizes of various SnO 2 used in each of the above Pt / SnO 2 catalysts. In the case of the highest performance SnO 2 carrier manufactured by Kanto Chemical Co., Ltd. (special grade), it has relatively large pores, and its peak shows a pore volume of slightly more than 0.32 cc / g at 40 nm. In the case of a SnO 2 carrier manufactured by Nippon Chemical Industry Co., Ltd. (SL grade) exhibiting performance equivalent to this, the peak shows a pore volume of 0.31 cc / g at 30 nm. Further, comparing the pore distribution of FIG. 4 with the results of FIG. 3, in order to exhibit high methane removal performance over a long period of time, there is a peak pore diameter particularly in the range of 20 to 50 nm, and within that range. This indicates that it is preferable to have a pore volume of 60% or more of the total pore volume.
[0034]
FIG. 5 is a diagram showing the specific surface area of various SnO 2 used in each Pt / SnO 2 catalyst. In the case of the SnO 2 carrier (special grade) manufactured by Kanto Chemical Co., which has the highest performance, the specific surface area is large, showing a value of 13 m 2 / g. In addition, in the case of a SnO 2 carrier manufactured by Nippon Chemical Industry Co., Ltd. (SL grade) exhibiting performance equivalent to this, the value is 12.5 m 2 / g.
[0035]
<< Example 3 >>
Various Pt / SnO 2 catalysts were prepared in the same manner as in <Preparation of Example Pellet Catalyst> of Example 1 except that Pt was separately supported. A performance test was performed at a reaction temperature of 400 ° C. and an SV of 160,000 h −1 using each of the obtained Pt / SnO 2 catalysts. FIG. 6 is a diagram showing the results of the performance test. FIG. 6 shows that the amount of Pt carried at one time is 2 wt%, and this is carried once (Pt = 2 wt% (2 wt% × one carried)), and two times carried [Pt = 4 wt% (2 wt% × supported 2 times)], three types of Pt / SnO 2 catalyst when loaded 3 times [Pt = 6 wt% (2 wt% × supported 3 times)], and 4 wt% of Pt at one time The graph shows the result when [Pt = 4 wt% (4 wt% × support once)].
[0036]
As shown in FIG. 6, it is shown that the methane removal rate is improved by dividing and supporting Pt on the SnO 2 support. First, in the case where 4 wt% is carried at one time [Pt = 4 wt% (4 wt% × one time carrying)], the performance is as low as about 38% at the initial stage, and shows only 41% performance after 140 hours. . On the other hand, when Pt = 2 wt% (2 wt% × supported once), the methane removal rate is about 50% from the initial stage, and the same performance is exhibited without any change even after 140 hours. = 4 wt% (2 wt% x 2 loadings), the methane removal rate is much higher than in the case of one loading, with a performance of around 66% in the initial stage and 70% after 140 hours. Is shown.
[0037]
From these facts, it is shown that, even when Pt is supported on the tin oxide carrier in the same amount, Pt is divided and supported, and increasing the number of times Pt is effective in improving the methane oxidation removal performance. ing. In the case of Pt = 6 wt% (2 wt% × supported three times), the methane removal rate is further improved as compared with the case of performing the division twice, about 80% in the initial stage, and 82% after 140 hours. Shows the performance of
[0038]
<< Example 4 >>
Various Pt / SnO 2 catalysts were prepared in the same manner as in <Preparation of Example Pellet Catalyst> in Example 1 except that the pH value of the aqueous solution of the Pt compound when Pt was supported was changed. The loading amount of Pt was 2 wt% based on the SnO 2 carrier. For each of the obtained Pt / SnO 2 catalysts, a performance test was performed at a reaction temperature of 400 ° C. and an SV of 160,000 h −1 . FIG. 7 shows the results of this performance test. FIG. 7 shows a case in which three kinds of aqueous solutions of pH = 3, pH = 7, and pH = 12 are changed.
[0039]
FIG. 7 shows that the methane removal rate can be improved as the pH value is increased. When loaded at pH = 3, the methane removal rate was around 50% from the initial stage, and there was no change even after 140 hours, showing the same performance. In the case of pH = 7, a methane removal rate of about 52% is shown in the initial stage, and a methane removal rate of about 55% is shown after 140 hours. In the case of pH = 12, it is about 50% in the initial stage, but shows a methane removal rate of 58% after 140 hours. Thus, it is shown that increasing the pH of the aqueous platinum solution at the time of supporting Pt is effective in improving the performance of removing methane by oxidation.
[0040]
FIG. 8 is a diagram showing the distribution of the pore diameter of the Pt (2 wt%) / SnO 2 catalyst supported at various pHs. In FIG. 8, what is shown as SnO 2 is the case of the SnO 2 carrier itself that does not carry Pt, which is the same as that shown in FIG. 4 as Kanto Chemical (special grade). As shown in FIG. 8, when Pt is supported at a high pH value, a pore size distribution close to the pore size distribution of the SnO 2 carrier itself is shown. This indicates that pores are not blocked when the pH value of the Pt compound is increased during Pt loading. That is, it is shown that the loading of Pt on the SnO 2 support at a high pH value is effective for improving the methane oxidation removal performance.
[0041]
<< Example 5 >>
In this example, the effect of SO 2 on the durability of a Pt / SnO 2 (Pt = 2 wt%) catalyst was tested. That is, the oxidative removal performance of methane depending on the presence or absence of SO 2 in the exhaust gas was tested. The catalyst was prepared in the same manner as in Example 4 at pH = 12. The exhaust gas temperature (reaction temperature) was 400 ° C. FIG. 9 is a diagram showing the results of this performance test. FIG. 9 shows the case where SO 2 = 1 ppm, that is, the SO 2 concentration in the exhaust gas is 1 ppm, and the case where SO 2 = 0 ppm, that is, the exhaust gas that does not contain SO 2 (except for the point that SO 2 is not contained in the test gas. Is the same as that of the test gas).
[0042]
As shown in FIG. 9, when SO 2 = 1 ppm, the methane removal rate shows a methane removal rate of about 50% in the initial stage, reaches 60% after 30 hours, hardly changes thereafter, and after 140 hours. It shows a high performance of 59%. On the other hand, in the case of SO 2 = 0 ppm, the methane removal rate is around 46% even in the initial stage, gradually decreases thereafter, and decreases to 41% after 140 hours.
[0043]
Thus, the activity of oxidizing and removing methane is improved by the presence of SO 2 . This fact confirms that the oxidation catalyst of the present invention behaves completely different from the conventional recognition. Conventionally, it has been known that an alumina-based catalyst supporting a noble metal is poisoned by SO 2 in exhaust gas and deteriorates performance. On the other hand, in the oxidation catalyst of the present invention, when SO 2 is contained in the exhaust gas, the activity of oxidizing and removing methane is improved rather than deteriorating the performance.
[0044]
【The invention's effect】
According to the present invention, it does not contain any palladium, which was conventionally considered to be an oxidation-active noble metal of methane, and also supports platinum, which was conventionally considered to be ineffective alone, on porous tin oxide alone. Thus, methane can be very effectively oxidized and removed over a long period of time in a low temperature range of 500 ° C. or lower, particularly in a low temperature range of 450 to 350 ° C. Therefore, the present invention can be effectively applied particularly to exhaust gas from a lean burn gas engine using city gas or the like containing a sulfur compound as an odorant as a fuel. Further, since the oxidation removal catalyst of the present invention has effective durability, the frequency of replacement can be reduced, and the cost of the exhaust gas treatment system can be reduced.
[Brief description of the drawings]
FIG. 1 is a view showing an example of an apparatus using the oxidation catalyst of the present invention. FIG. 2 is a view showing the results of Example 1. FIG. 3 is a view showing the results of Example 2. FIG. FIG. 5 shows the result of Example 2. FIG. 6 shows the result of Example 3. FIG. 7 shows the result of Example 4. FIG. 8 shows the result of Example 4. FIG. 9 shows the result of Example 5. [Description of References]
A Exhaust gas introduction pipe B Oxidation catalyst layer (reaction pipe)
C Outgoing pipe for treated exhaust gas

Claims (18)

硫黄酸化物を含む燃焼排ガス中のメタンを低温域において酸化除去するための触媒であって、該酸化除去触媒が多孔質の酸化スズに白金を担持させてなる触媒であることを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒。A catalyst for oxidizing and removing methane in combustion exhaust gas containing sulfur oxides in a low temperature range, wherein the oxidation removing catalyst is a catalyst comprising platinum supported on porous tin oxide. Catalyst for low-temperature oxidation removal of methane in combustion exhaust gas containing oxides. 請求項1に記載の硫黄酸化物を含む燃焼排ガス中のメタンの酸化除去用触媒において、前記低温域が450〜350℃の範囲の低温域であることを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒。The catalyst for oxidizing and removing methane in flue gas containing sulfur oxide according to claim 1, wherein the low temperature range is a low temperature range of 450 to 350 ° C. Catalyst for low-temperature oxidation removal of methane in air. 請求項1または2に記載の硫黄酸化物を含む燃焼排ガス中のメタンの酸化除去用触媒において、前記多孔質酸化スズが20〜50nmの範囲内にピーク細孔径があり、その範囲内に全細孔容積の60%以上の細孔容積を有するものであることを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒。The catalyst for oxidizing and removing methane in combustion exhaust gas containing sulfur oxides according to claim 1 or 2, wherein the porous tin oxide has a peak pore diameter in a range of 20 to 50 nm, and a fine pore diameter in the range. A catalyst for low-temperature oxidation removal of methane in combustion exhaust gas containing sulfur oxides, having a pore volume of 60% or more of the pore volume. 請求項1〜3のいずれか1項に記載の硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒において、前記酸化触媒の形態が粒状、顆粒状、ペレット状またはタブレット状であることを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒。The catalyst for low-temperature oxidation removal of methane in a combustion exhaust gas containing a sulfur oxide according to any one of claims 1 to 3, wherein the form of the oxidation catalyst is granular, granular, pellet, or tablet. A catalyst for low-temperature oxidation removal of methane in combustion exhaust gas containing sulfur oxides, characterized by the following. 請求項1〜3のいずれか1項に記載の硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒において、前記酸化触媒の形態がハニカム状であることを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒。The catalyst for low-temperature oxidation removal of methane in a combustion exhaust gas containing the sulfur oxide according to claim 1, wherein the form of the oxidation catalyst is a honeycomb shape. Catalyst for low-temperature oxidation removal of methane in combustion exhaust gas. 請求項5に記載の硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒において、前記ハニカム状の基材がセラミックス製またはメタル製であることを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒。6. The exhaust gas containing sulfur oxides according to claim 5, wherein the honeycomb-shaped substrate is made of ceramics or metal. Catalyst for low-temperature oxidation removal of methane in air. 請求項1〜6のいずれか1項に記載の硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒において、前記燃焼排ガスが希薄燃焼ガスエンジンからの燃焼排ガスであることを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒。The catalyst for low-temperature oxidation and removal of methane in a combustion exhaust gas containing a sulfur oxide according to any one of claims 1 to 6, wherein the combustion exhaust gas is a combustion exhaust gas from a lean combustion gas engine. Catalyst for low-temperature oxidation removal of methane in combustion exhaust gas containing sulfur oxides. 硫黄酸化物を含む燃焼排ガス中のメタンを低温域で酸化除去する方法であって、該燃焼排ガスを多孔質の酸化スズに白金を担持させてなる酸化除去触媒に低温域で通すことによりメタンを酸化除去することを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去方法。A method for oxidizing and removing methane in a combustion exhaust gas containing sulfur oxides in a low-temperature region, wherein the methane is passed through an oxidation-removal catalyst in which platinum is supported on porous tin oxide in a low-temperature region. A method for low-temperature oxidative removal of methane in combustion exhaust gas containing sulfur oxides, wherein the method removes by oxidation. 請求項8に記載の硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去方法において、前記低温域が450〜350℃の範囲の低温域であることを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去方法。The method according to claim 8, wherein the low-temperature region is a low-temperature region in a range of 450 to 350 ° C. Low-temperature oxidation removal method of methane in air. 請求項8または9に記載の硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去方法において、前記多孔質酸化スズが20〜50nmの範囲内にピーク細孔径があり、その範囲内に全細孔容積の60%以上の細孔容積を有するものであることを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去方法。The method for low-temperature oxidative removal of methane in a combustion exhaust gas containing sulfur oxide according to claim 8 or 9, wherein the porous tin oxide has a peak pore diameter in a range of 20 to 50 nm, and a fine pore diameter in the range. A method for removing methane from a combustion exhaust gas containing sulfur oxides at a low temperature by oxidizing at a low temperature, which has a pore volume of 60% or more of the pore volume. 請求項8〜10のいずれか1項に記載の硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去方法において、前記酸化触媒の形態が粒状、顆粒状、ペレット状またはタブレット状であることを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去方法。The method for low-temperature oxidation removal of methane in a combustion exhaust gas containing a sulfur oxide according to any one of claims 8 to 10, wherein the form of the oxidation catalyst is granular, granular, pellet, or tablet. A method for low-temperature oxidation removal of methane in combustion exhaust gas containing sulfur oxides. 請求項8〜10のいずれか1項に記載の硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去方法において、前記酸化触媒の形態がハニカム状であることを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去方法。The low-temperature oxidative removal method of methane in a combustion exhaust gas containing a sulfur oxide according to any one of claims 8 to 10, wherein the form of the oxidation catalyst is a honeycomb shape, and the sulfur-containing catalyst comprises a sulfur oxide. Low-temperature oxidation removal method of methane in flue gas. 請求項12に記載の硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去方法において、前記ハニカム状の基材がセラミックス製またはメタル製であることを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去方法。The method for removing low-temperature oxidation of methane in flue gas containing sulfur oxide according to claim 12, wherein the honeycomb-shaped substrate is made of ceramic or metal. Low-temperature oxidation removal method of methane. 請求項8〜13のいずれか1項に記載の硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去方法において、前記燃焼排ガスが希薄燃焼ガスエンジンからの燃焼排ガスであることを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去方法。14. The method for removing methane from low-temperature oxidization of combustion exhaust gas containing sulfur oxides according to any one of claims 8 to 13, wherein the combustion exhaust gas is a combustion exhaust gas from a lean combustion gas engine. A low-temperature oxidation removal method for methane in combustion exhaust gas containing oxides. 多孔質の酸化スズに白金を担持してなる硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒の製造方法であって、白金化合物を多孔質の酸化スズに対して白金化合物の水溶液による含浸法または平衡吸着法により担持させた後、焼成することを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒の製造方法。A method for producing a catalyst for low-temperature oxidative removal of methane in a combustion exhaust gas containing sulfur oxide obtained by supporting platinum on porous tin oxide, comprising: A method for producing a catalyst for low-temperature oxidation removal of methane in combustion exhaust gas containing sulfur oxides, wherein the catalyst is supported by an impregnation method or an equilibrium adsorption method and then calcined. 請求項15に記載の硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒の製造方法において、前記多孔質の酸化スズが20〜50nmの範囲内にピーク細孔径があり、その範囲内に全細孔容積の60%以上の細孔容積を有するものであることを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒の製造方法。The method for producing a catalyst for low-temperature oxidation removal of methane in a combustion exhaust gas containing a sulfur oxide according to claim 15, wherein the porous tin oxide has a peak pore diameter in a range of 20 to 50 nm, and the peak tin diameter is within the range. A method for producing a catalyst for low-temperature oxidation removal of methane in combustion exhaust gas containing sulfur oxides, wherein the catalyst has a pore volume of 60% or more of the total pore volume. 請求項15または16に記載の硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒の製造方法において、多孔質の酸化スズに対して白金化合物を2回〜5回の範囲で分割して担持することを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒の製造方法。17. The method for producing a catalyst for low-temperature oxidation removal of methane in combustion exhaust gas containing sulfur oxides according to claim 15 or 16, wherein a platinum compound is divided into porous tin oxide in a range of 2 to 5 times. A method for producing a catalyst for low-temperature oxidative removal of methane in a combustion exhaust gas containing sulfur oxides, the catalyst being supported by a catalyst. 請求項15〜17のいずれか1項に記載の硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒の製造方法において、白金化合物の水溶液としてpH=12以上の白金化合物の水溶液を用いることを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒の製造方法。The method for producing a catalyst for low-temperature oxidation removal of methane in a combustion exhaust gas containing a sulfur oxide according to any one of claims 15 to 17, wherein an aqueous solution of a platinum compound having a pH of 12 or more is used as the aqueous solution of a platinum compound. A method for producing a catalyst for low-temperature oxidation removal of methane in combustion exhaust gas containing sulfur oxides.
JP2003148279A 2003-05-26 2003-05-26 Catalyst for oxidation removal of methane in exhaust gas and exhaust gas purification method Expired - Lifetime JP4283037B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003148279A JP4283037B2 (en) 2003-05-26 2003-05-26 Catalyst for oxidation removal of methane in exhaust gas and exhaust gas purification method
PCT/JP2004/007578 WO2004103554A1 (en) 2003-05-26 2004-05-26 Catalyst for oxidizing and removing methane in exhaust gas method for clarifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003148279A JP4283037B2 (en) 2003-05-26 2003-05-26 Catalyst for oxidation removal of methane in exhaust gas and exhaust gas purification method

Publications (2)

Publication Number Publication Date
JP2004351236A true JP2004351236A (en) 2004-12-16
JP4283037B2 JP4283037B2 (en) 2009-06-24

Family

ID=33475388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003148279A Expired - Lifetime JP4283037B2 (en) 2003-05-26 2003-05-26 Catalyst for oxidation removal of methane in exhaust gas and exhaust gas purification method

Country Status (2)

Country Link
JP (1) JP4283037B2 (en)
WO (1) WO2004103554A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009262131A (en) * 2008-03-27 2009-11-12 Osaka Gas Co Ltd Catalyst for purification of exhaust gas and method of purifying exhaust gas
WO2018034050A1 (en) * 2016-08-17 2018-02-22 三井金属鉱業株式会社 Methane oxidation catalyst
WO2019039513A1 (en) 2017-08-22 2019-02-28 三井金属鉱業株式会社 Methane oxidizing catalyst

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6883135B1 (en) 2020-05-15 2021-06-09 田中貴金属工業株式会社 Methane combustion catalyst, its manufacturing method, and combustion exhaust gas purification method
WO2022149319A1 (en) 2021-01-07 2022-07-14 田中貴金属工業株式会社 Methane combustion catalyst, production method therefor, and combustion exhaust gas cleaning method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3263105B2 (en) * 1991-12-02 2002-03-04 大阪瓦斯株式会社 Nitrogen oxide treatment method and treatment apparatus
JP4171849B2 (en) * 1998-07-16 2008-10-29 大阪瓦斯株式会社 Hydrocarbon-containing exhaust gas purification catalyst and hydrocarbon-containing exhaust gas purification method
JP2001190931A (en) * 2000-01-11 2001-07-17 Osaka Gas Co Ltd Method for purifying waste gas containing methane
JP4822374B2 (en) * 2000-04-05 2011-11-24 三井金属鉱業株式会社 Method for producing exhaust gas purification catalyst
JP2002253969A (en) * 2001-03-02 2002-09-10 Osaka Gas Co Ltd Catalyst for purifying waste gas and method of purifying waste gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009262131A (en) * 2008-03-27 2009-11-12 Osaka Gas Co Ltd Catalyst for purification of exhaust gas and method of purifying exhaust gas
WO2018034050A1 (en) * 2016-08-17 2018-02-22 三井金属鉱業株式会社 Methane oxidation catalyst
WO2019039513A1 (en) 2017-08-22 2019-02-28 三井金属鉱業株式会社 Methane oxidizing catalyst

Also Published As

Publication number Publication date
WO2004103554A1 (en) 2004-12-02
JP4283037B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
JP4429950B2 (en) Catalyst for removing oxidation of methane from combustion exhaust gas and exhaust gas purification method
JP3061399B2 (en) Diesel engine exhaust gas purification catalyst and purification method
JP2003245547A (en) Catalyst for exhaust gas treatment and method for exhaust gas treatment
JPH04250851A (en) Catalyst for purifying exhaust gas from diesel engine
KR20060093102A (en) A catalyzed diesel particulate matter filter with improved thermal stability
JP2009165904A (en) Exhaust gas purifier
JPH10202105A (en) Oxidation catalyst for diesel exhaust gas
JP4917003B2 (en) Catalyst for oxidation removal of methane in exhaust gas and exhaust gas purification method
JP4283037B2 (en) Catalyst for oxidation removal of methane in exhaust gas and exhaust gas purification method
JP3270295B2 (en) Oxidation catalyst for unburned hydrocarbons in exhaust gas and method for removing the same
JP2007239616A (en) Exhaust emission control device, exhaust emission control method, and purification catalyst
JP4494068B2 (en) Catalyst for oxidation removal of methane in exhaust gas and exhaust gas purification method
JPH10309462A (en) Nmhc oxidation catalyst in combustion waste gas and removing method thereof
JPH06218283A (en) Catalyst for purifying waste gas
JP3338167B2 (en) Method for removing CO from lean combustion gas engine exhaust gas
JPH11128688A (en) Purification of waste gas
JPH05138026A (en) Catalyst for purifying exhaust gas of diesel engine
JPH06142523A (en) Waste gas purifying material and waste gas purifying method
JP2000254500A (en) Catalyst for oxidation of unburned hydrocarbon in waste gas
JPH0966223A (en) Catalyst mechanism for purifying exhaust gas and purification of exhaust gas
JP2004122122A (en) Exhaust gas purifying catalyst and exhaust gas purifying apparatus
JP2003275596A (en) Catalyst for treating waste gas and waste gas treatment method
JPH10235156A (en) Exhaust gas purifying catalyst bed, exhaust gas purifying catalyst coated structure and exhaust gas purifying method using the same
JPH0970538A (en) Catalyst layer for denitrification, denitrification catalyst structural body and denitrification method using that
JPH10286463A (en) Catalytic layer for purification of exhaust gas, catalytic structure for purification of exhaust gas and method for purifying exhaust gas with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090318

R150 Certificate of patent or registration of utility model

Ref document number: 4283037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term