JP2004346759A - 熱機関 - Google Patents

熱機関 Download PDF

Info

Publication number
JP2004346759A
JP2004346759A JP2003141631A JP2003141631A JP2004346759A JP 2004346759 A JP2004346759 A JP 2004346759A JP 2003141631 A JP2003141631 A JP 2003141631A JP 2003141631 A JP2003141631 A JP 2003141631A JP 2004346759 A JP2004346759 A JP 2004346759A
Authority
JP
Japan
Prior art keywords
refrigerant
expander
heat engine
stage
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003141631A
Other languages
English (en)
Inventor
Masami Negishi
正美 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2003141631A priority Critical patent/JP2004346759A/ja
Publication of JP2004346759A publication Critical patent/JP2004346759A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/002Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle
    • F01C11/004Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle and of complementary function, e.g. internal combustion engine with supercharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/0207Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F01C1/0215Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

【課題】ランキンサイクルによる熱機関において、良好な地球環境の維持に対応可能な冷媒を使用するとともに、その熱機関の効率を高める。
【解決手段】冷媒を加圧する冷媒ポンプと、冷媒を加熱する第1冷媒加熱器と、冷媒を膨張させる冷媒膨張器と、膨張された冷媒から放熱させる冷媒放熱器とを備え、該冷媒回路中に冷媒をランキンサイクルにて循環させるとともに冷媒膨張器における冷媒の膨張仕事から動力を取り出し可能な熱機関において、冷媒にプロピレンを用いるとともに、第1冷媒加熱器内における冷媒の状態を超臨界状態にすることを特徴とする熱機関。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、冷媒がランキンサイクルにて循環され動力を取り出し可能に構成された熱機関に関する。
【0002】
【従来の技術】
ランキンサイクルを用いて動力を取り出すようにしたシステム(たとえば、特許文献1)や、ランキンサイクルに適した作動流体としてプロパン系やブタン系の作動流体を用いるようにした提案(たとえば、特許文献2)が知られている。また、冷凍サイクルに冷媒としてプロピレンが使用できることも知られている(たとえば、特許文献3)。冷凍サイクルに冷媒として塩素を含む特定フロンを使用すると、オゾン層の破壊等の問題につながることから、近年、その使用が規制されつつある。この点、プロピレンは、このような塩素を含む特定フロンの代替のために、蒸気圧縮型の冷媒として認定されており、地球温暖化に対して有効な自然系冷媒として認識されている。
【0003】
【特許文献1】
特開2001−248539号公報(特許請求の範囲、図2)
【特許文献2】
特開2002−295205号公報(特許請求の範囲)
【特許文献3】
特開平11−248263号公報(特許請求の範囲)
【0004】
【発明が解決しようとする課題】
ところが、このプロピレンを、ランキンサイクルにて、凝縮、蒸発とも2相域で使用する場合、その熱機関における効率は未だ低く、熱力学的に取り出せる動力は小さい。すなわち、ランキンサイクルによる熱機関においては、良好な地球環境の維持に対応できる最適な冷媒の選定とともに、そのような冷媒を使用した際に如何に効率を高めることができるかが、大きな課題として残されている。
【0005】
そこで本発明の課題は、ランキンサイクルによる熱機関において、良好な地球環境の維持に対応可能な冷媒を使用するとともに、その熱機関の効率を高めることができるようにすることにある。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明に係る熱機関は、冷媒を加圧する冷媒ポンプと、加圧された冷媒を加熱する第1冷媒加熱器と、加熱された冷媒を膨張させる冷媒膨張器と、膨張された冷媒から放熱させる冷媒放熱器とを備えた冷媒回路を有し、該冷媒回路中に冷媒をランキンサイクルにて循環させるとともに前記冷媒膨張器における冷媒の膨張仕事から動力を取り出し可能な熱機関において、冷媒にプロピレンを用いるとともに、前記第1冷媒加熱器内における冷媒の状態を超臨界状態にすることを特徴とするものからなる。
【0007】
すなわち、本発明に係る熱機関は、良好な地球環境の維持に対応可能な冷媒として、すでに塩素を含む特定フロンの代替用の、蒸気圧縮型の冷媒として認定されているプロピレンを用いるとともに、該プロピレンを用いたランキンサイクルによる熱機関の、動力取り出しのための効率を大幅に高めることができるようにしたものである。
【0008】
ランキンサイクルによる熱機関において、高温熱源および低温熱源を仮定した場合、熱力学的に取り出せる動力はそれらの温度によって決定される。たとえば、膨張器入口冷媒温度が約150℃、膨張器出口冷媒圧力に対する飽和温度が約30℃とすると、これら両熱源の温度、とくに温度差により、熱力学的に取り出し可能な動力は決まってしまう。したがって、これらの温度条件下で、取り出し可能な動力を如何に増大できるかが重要となり、それによって熱機関の効率向上効果が左右されることになる。
【0009】
本発明に係る熱機関においては、この熱機関の効率向上を、第1冷媒加熱器内における冷媒の状態を超臨界状態にすることによって達成するようにしている。すなわち、第1冷媒加熱器内における冷媒の状態を超臨界状態とすることにより、従来同等の少ない入熱量でありながら、冷媒膨張器入口と出口のエンタルピーの差を大きな値にすることができ、そのエンタルピー差に対応する、取り出し可能なエネルギー(動力)を増大し、熱機関の効率を向上することができる。
【0010】
そして、上記冷媒膨張器を第1段目冷媒膨張器と第2段目冷媒膨張器との2段階膨張器に構成し、該第1段目冷媒膨張器と第2段目冷媒膨張器との間に第1段目冷媒膨張器により膨張された冷媒を加熱する第2冷媒加熱器が設けられている構成とすれば、2段階膨張器によって、より大きな動力を取り出し可能となり、熱機関の効率をより向上することが可能となる。
【0011】
この場合、上記第1段目冷媒膨張器と第2段目冷媒膨張器が、冷媒の膨張仕事から動力を取り出す手段としての発電機と一体的に構成されている構成とすれば、該発電機を介して熱機関からの動力が電力として効率よく取り出される。
【0012】
また、本発明に係る熱機関においては、冷媒回路に、上記冷媒膨張器により膨張された冷媒と上記冷媒ポンプにより加圧された冷媒との間で熱交換させる熱回収器が設けられている構成とすれば、膨張仕事をした冷媒からの熱を、上記第1冷媒加熱器による加熱に、より正確には、上記冷媒ポンプから第1冷媒加熱器に送られる冷媒の加熱に、反映することができ、所定の冷媒加熱をより効率よく行うことが可能になる。
【0013】
なお、本発明における冷媒膨張器は特に限定されないが、スクロール型膨張器を用いることで、内部漏れによる損失が少ない為、断熱膨張の効率が高く、効率よく動力の取り出しが可能になる。
【0014】
【発明の実施の形態】
以下に、本発明の望ましい実施の形態を、図面を参照して説明する。
図1は、本発明の一実施態様に係るランキンサイクルを用いた熱機関の概略機器系統を示しており、図2は、その熱機関からの動力取り出し用に用いて好適な膨張器一体型の発電機を示している。図3は、図1の熱機関におけるランキンサイクルを表した、圧力(P)−エンタルピー(h)線図を示している。図4を、比較のための、従来の蒸気圧縮型冷凍機で使われている冷媒を、蒸発器、凝縮器とも2相域で利用するランキンサイクルの場合の圧力−エンタルピー線図を示している。
【0015】
図1において、本発明の一実施態様に係る熱機関1は、冷媒を加圧する冷媒ポンプ2と、加圧された冷媒を加熱する、第1蒸発器からなる第1冷媒加熱器3と、加熱された冷媒を膨張させる冷媒膨張器4と、膨張された冷媒から放熱させる凝縮器からなる冷媒放熱器5とを備えた冷媒回路6を有している。本実施態様では、冷媒膨張器4は、第1段目冷媒膨張器4aと第2段目冷媒膨張器4bとの2段階膨張器に構成されている。また、第1段目冷媒膨張器4aと第2段目冷媒膨張器4bとの間には、第1段目冷媒膨張器4aにより膨張された冷媒を加熱する、第2蒸発器からなる第2冷媒加熱器7が設けられている。さらに冷媒回路6には、第2段目冷媒膨張器4bにより膨張された冷媒と上記冷媒ポンプ2により加圧された冷媒との間で熱交換させる熱交換器からなる熱回収器8が設けられている。この冷媒回路6中に、冷媒としてプロピレンがランキンサイクルにて循環され、冷媒膨張器4における冷媒の膨張仕事から動力が取り出し可能となっている。
【0016】
動力の取り出しは、本実施態様では、たとえば次のように行われる。図2に示すように、第1段目冷媒膨張器4aと第2段目冷媒膨張器4bが、冷媒の膨張仕事から動力を取り出す手段としての発電機9と一体的に構成されており、発電機9による発電を介して、動力が電力として取り出されるようになっている。図示例では、高圧の第1段目冷媒膨張器4aと発電機9との間にメカニカルシール10が介装されている。なお、図2では、第2冷媒加熱器7の図示が省略されている。
【0017】
上記のように構成された冷媒回路6を備えた熱機関1が、図3に示すようなランキンサイクルにて運転される。ここでまず、図4を参照して、従来例、つまり、従来の蒸気圧縮型冷凍機で使われている冷媒を、蒸発器、凝縮器とも2相域で利用して運転する場合のランキンサイクルについて説明する。図4は、膨張器入口冷媒温度が約150℃、膨張器出口冷媒圧力に対する飽和温度が約30℃の条件で、プロパンやイソブタン等のハイドロカーボン系冷媒を使用した場合のランキンサイクルにおける圧力−エンタルピー線図を示している。この場合、加圧、加熱された冷媒の、等エントロピー線に沿う膨張仕事(図4におけるA点からD点への移行)により、理論的に動力が取り出し可能となるが、このときの熱機関としての効率ηは、
η=(h2−h1)/(h2−h3)
で求められ、ハイドロカーボン系冷媒であるプロパンやイソブタンの場合、ηは約15%となり、前述したように、低い。
【0018】
しかしながら、本発明の一実施態様に係る熱機関1の場合には、図3に示すようなランキンサイクルにおける圧力−エンタルピー線図となる。図3においては、各点は大略次のような点を示している。すなわち、e点は、凝縮器からなる冷媒放熱器5の出口でかつ冷媒ポンプ2の入口の状態を示しており、f点は、冷媒ポンプ2の出口でかつ熱回収器8の入口の状態を示している。g点は、熱回収器8の出口でかつ第1蒸発器からなる第1冷媒加熱器3の入口の状態を示しており、a点は、第1冷媒加熱器3の出口でかつ第1段目冷媒膨張器4aの入口の状態を示している。b点は、第1段目冷媒膨張器4aの出口でかつ第2蒸発器からなる第2冷媒加熱器7の入口の状態を示しており、c点は、第2冷媒加熱器7の出口でかつ第2段目冷媒膨張器4bの入口の状態を示している。d点は、第2段目冷媒膨張器4bの出口でかつ熱回収器8の入口の状態を示しており、h点は、熱回収器8の出口でかつ冷媒放熱器5の入口の状態を示している。なお、hi点は、a点から等エントロピー線に沿って、冷媒の膨張を1段で行わせた場合の、膨張器の出口でかつ熱回収器8の入口の状態を示している。また、H1、H2(熱損失無しとした理想状態の場合、H1=H2)は、熱回収器8で授受される熱量に対応している。
【0019】
図3に示すランキンサイクルでは、第1蒸発器からなる第1冷媒加熱器3内における冷媒(プロピレン)の状態が、超臨界状態とされている。この超臨界状態は、本実施態様では、主として、冷媒ポンプ2による加圧によって達成される。この超臨界状態にて加熱された冷媒が、たとえば150℃等温線上のa点から、b点に至る過程で第1段目冷媒膨張器4aを通して膨張仕事をし、第2冷媒加熱器7で加熱された後、150℃等温線上のc点からたとえば80℃等温線上のd点に至る過程で第2段目冷媒膨張器4bを通して膨張仕事をし、これら両膨張仕事が図2に示したような発電機9を介して、動力が電力として取り出される。すなわち、高温側熱源の温度が約150℃、低温側熱源の温度が約30℃である場合のサイクルとして表されている。
【0020】
図3に示した例では、熱機関1の効率ηは、次式によって求められる。
η=((h2−h1)+(h3−h4))/((h2−h5)+(h3−h1))
その結果、ηは約26%となり、図4に示した従来例に比べ、効率が大幅に向上される。このように熱機関1の効率が大幅に向上されると、従来と同等の入熱量の場合より大きな動力を取り出すことが可能になり、また、従来よりも少ない入熱量で所望の動力を取り出すことが可能になる。したがって、入熱量の低下による効果、たとえば、燃焼量の低減、それによる地球温暖化防止を期待でき、また、太陽熱を利用する場合には、集熱器の面積の低減、それによる装置全体の小型化を期待できることになる。また、動力取り出し側においても、動力取り出し装置の小型化をはかることが期待できる。
【0021】
上記実施態様では、冷媒膨張器4を第1段目冷媒膨張器4aと第2段目冷媒膨張器4bとの2段階膨張器に構成したが、本発明においては、第1冷媒加熱器内における冷媒の状態を超臨界状態にするとともに、冷媒膨張器を1段構成とし、図1に示した第2蒸発器からなる第2冷媒加熱器7を省略することも可能である。たとえば図5に示すように、冷媒膨張器として、1段の冷媒膨張器12を設けた熱機関11とすることも可能である。この場合には、図3におけるランキンサイクルは、a点から直接hi点に至ることになる。したがって、そのときの効率ηは、
η=(h2−hi)/(h2−h5)
となり、約21%となる。この約21%の効率の場合でも、図4に示した従来例に比べれば、大幅な効率向上となっている。図1のような2段階膨張の場合には、前述の如く約26%の効率となり、さらに大幅な効率向上が達成できるわけである。
【0022】
なお、本発明において熱回収器8は省略することも可能であるが、前述したように、熱回収器8を設けておくことで、より効率よく熱利用でき、図3に示したような極めて望ましい特性が得られることになる。
【0023】
【発明の効果】
以上説明したように、本発明に係るランキンサイクルを利用した熱機関によれば、極めて高い効率を達成できるようになり、少ない入熱量で効率よく目標とする動力を取り出すことが可能になる。また、効率の向上、入熱量の低減が可能になるため、装置全体の小型化も期待できる。
【図面の簡単な説明】
【図1】本発明の一実施態様に係る熱機関の概略機器系統図である。
【図2】図1の熱機関からの動力取り出し用に用いて好適な膨張器一体型の発電機の概略構成図である。
【図3】図1の熱機関におけるランキンサイクルを表す、圧力−エンタルピー線図である。
【図4】比較のための、従来の蒸気圧縮型冷凍機で使われている冷媒の、蒸発器、凝縮器とも2相域で利用するランキンサイクルの場合の圧力−エンタルピー線図である。
【図5】本発明の別の実施態様に係る熱機関の概略機器系統図である。
【符号の説明】
1、11 熱機関
2 冷媒ポンプ
3 第1蒸発器からなる第1冷媒加熱器
4 冷媒膨張器
4a 第1段目冷媒膨張器
4b 第2段目冷媒膨張器
5 凝縮器からなる冷媒放熱器
6 冷媒回路
7 第2蒸発器からなる第2冷媒加熱器
8 熱回収器
9 発電機
10 メカニカルシール
12 冷媒膨張器

Claims (5)

  1. 冷媒を加圧する冷媒ポンプと、加圧された冷媒を加熱する第1冷媒加熱器と、加熱された冷媒を膨張させる冷媒膨張器と、膨張された冷媒から放熱させる冷媒放熱器とを備えた冷媒回路を有し、該冷媒回路中に冷媒をランキンサイクルにて循環させるとともに前記冷媒膨張器における冷媒の膨張仕事から動力を取り出し可能な熱機関において、冷媒にプロピレンを用いるとともに、前記第1冷媒加熱器内における冷媒の状態を超臨界状態にすることを特徴とする熱機関。
  2. 前記冷媒膨張器を第1段目冷媒膨張器と第2段目冷媒膨張器との2段階膨張器に構成し、該第1段目冷媒膨張器と第2段目冷媒膨張器との間に第1段目冷媒膨張器により膨張された冷媒を加熱する第2冷媒加熱器が設けられている、請求項1の熱機関。
  3. 前記第1段目冷媒膨張器と第2段目冷媒膨張器が、冷媒の膨張仕事から動力を取り出す手段としての発電機と一体的に構成されている、請求項2の熱機関。
  4. 前記冷媒膨張器により膨張された冷媒と前記冷媒ポンプにより加圧された冷媒との間で熱交換させる熱回収器が設けられている、請求項1〜3のいずれかに記載の熱機関。
  5. 前記冷媒膨張器がスクロール型膨張器からなる、請求項1〜4のいずれかに記載の熱機関。
JP2003141631A 2003-05-20 2003-05-20 熱機関 Pending JP2004346759A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003141631A JP2004346759A (ja) 2003-05-20 2003-05-20 熱機関

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003141631A JP2004346759A (ja) 2003-05-20 2003-05-20 熱機関

Publications (1)

Publication Number Publication Date
JP2004346759A true JP2004346759A (ja) 2004-12-09

Family

ID=33529935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003141631A Pending JP2004346759A (ja) 2003-05-20 2003-05-20 熱機関

Country Status (1)

Country Link
JP (1) JP2004346759A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138797A (ja) * 2005-11-17 2007-06-07 Toyota Industries Corp 一体ユニット
EP2351907A1 (en) * 2008-09-24 2011-08-03 Sanden Corporation Fluid machine
KR101162660B1 (ko) 2010-03-29 2012-07-04 한국에너지기술연구원 혼합물을 이용한 초월임계 랭킨 사이클 장치
WO2014114260A1 (zh) * 2013-01-27 2014-07-31 南京瑞柯徕姆环保科技有限公司 一种冷力循环制冷装置
KR101501852B1 (ko) * 2012-12-04 2015-03-12 가부시키가이샤 고베 세이코쇼 회전기 구동 시스템
WO2020215817A1 (zh) * 2019-04-26 2020-10-29 李华玉 单工质蒸汽联合循环

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138797A (ja) * 2005-11-17 2007-06-07 Toyota Industries Corp 一体ユニット
JP4706451B2 (ja) * 2005-11-17 2011-06-22 株式会社豊田自動織機 一体ユニット
EP2351907A1 (en) * 2008-09-24 2011-08-03 Sanden Corporation Fluid machine
EP2351907A4 (en) * 2008-09-24 2012-09-05 Sanden Corp FLUID MACHINE
KR101162660B1 (ko) 2010-03-29 2012-07-04 한국에너지기술연구원 혼합물을 이용한 초월임계 랭킨 사이클 장치
KR101501852B1 (ko) * 2012-12-04 2015-03-12 가부시키가이샤 고베 세이코쇼 회전기 구동 시스템
WO2014114260A1 (zh) * 2013-01-27 2014-07-31 南京瑞柯徕姆环保科技有限公司 一种冷力循环制冷装置
US9823000B2 (en) 2013-01-27 2017-11-21 Nanjing Reclaimer Environmental Teknik Co., Ltd Cold dynamic cycle refrigeration apparatus
WO2020215817A1 (zh) * 2019-04-26 2020-10-29 李华玉 单工质蒸汽联合循环

Similar Documents

Publication Publication Date Title
US10072531B2 (en) Hybrid power generation system using supercritical CO2 cycle
RU2551458C2 (ru) Комбинированная тепловая система с замкнутым контуром для рекуперации отработанного тепла и способ ее эксплуатации
KR101403798B1 (ko) 열원으로부터 전력을 생산하는 방법 및 시스템
CN1840868B (zh) 用稠密流体膨胀器将低级热源转化为动力的工艺
US20130113221A1 (en) Hot day cycle
JP5231002B2 (ja) 蒸気圧縮装置およびそれに関連する遷臨界サイクルを実施する方法
JP5845590B2 (ja) ヒートポンプ式蒸気生成装置
JP2016534281A (ja) 選択的に変更可能な作業流体回路を有する熱機関システム
US9038391B2 (en) System and method for recovery of waste heat from dual heat sources
US20210115817A1 (en) Thermal Power Cycle
CN102562179A (zh) 带有液体引射装置的有机朗肯循环发电系统
JP4041036B2 (ja) 超臨界冷却システム
JP2002285907A (ja) マイクロガスタービン排熱回収冷凍システム
JP2003278598A (ja) ランキンサイクルによる車輌の排熱回収方法及び装置
JP2000204909A (ja) 液化天然ガス冷熱利用発電装置
JP4563730B2 (ja) フューム処理方法
JP2004346759A (ja) 熱機関
JP4505266B2 (ja) エネルギー回収を伴うフューム処理方法
JP2018021485A (ja) 多段ランキンサイクルシステム、内燃機関、及び多段ランキンサイクルシステムの運転方法
JP2004108220A (ja) ボトミングサイクル発電システム
JP2016151191A (ja) 発電システム
EA031586B1 (ru) Устройство для энергосбережения
JP2001099503A (ja) ヒートポンプ装置
JP2006138288A (ja) 熱機関
KR100461995B1 (ko) 냉매증기터빈 구동 가스 열펌프

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060120

A977 Report on retrieval

Effective date: 20081110

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090403