JP2004345265A - Printing metal mask, printing plate and forming method for solder terminal - Google Patents

Printing metal mask, printing plate and forming method for solder terminal Download PDF

Info

Publication number
JP2004345265A
JP2004345265A JP2003145883A JP2003145883A JP2004345265A JP 2004345265 A JP2004345265 A JP 2004345265A JP 2003145883 A JP2003145883 A JP 2003145883A JP 2003145883 A JP2003145883 A JP 2003145883A JP 2004345265 A JP2004345265 A JP 2004345265A
Authority
JP
Japan
Prior art keywords
metal mask
printing
printing plate
metal
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003145883A
Other languages
Japanese (ja)
Inventor
Masanao Sato
佐藤正直
Hideki Chiba
千葉秀貴
Yoshihiro Taniguchi
谷口義博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Process Lab Micron Co Ltd
Original Assignee
Process Lab Micron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Process Lab Micron Co Ltd filed Critical Process Lab Micron Co Ltd
Priority to JP2003145883A priority Critical patent/JP2004345265A/en
Publication of JP2004345265A publication Critical patent/JP2004345265A/en
Pending legal-status Critical Current

Links

Landscapes

  • Screen Printers (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the printing endurance of a highly fine patterned printing metal mask made by electrocasting out of nickel or nickel alloy and the separating properties of a printing plate from the mask. <P>SOLUTION: In the orientating properties of the crystal of a metal measured by the X-ray diffraction of the metal mask, the ratio of the peak strength on a (220) face to the sum of those on a (111) face, a (200) face and the (220) face is set to be at least 0.4. In addition, the tension of the printing plate mounted to a metal mask metal frame is set to be 0.25-0.32. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品や半導体チップを高密度に実装するための接続用の導電性端子を形成する際に使用するクリームはんだ等を印刷する際に使用するメタルマスク、このメタルマスクを金属枠にセットした印刷版、及びこの印刷版を用いてクリームはんだを印刷してなるはんだ端子形成方法に関する。
【0002】
【従来の技術】
携帯電話を筆頭に、電子回路の小型軽量化の要請から、プリント配線基板に電子部品を高密度に、特にプリント配線基板の両面に電子部品を高密度に実装することが広く行われている。この高密度実装においては、プリント配線基板面に電子部品を実装するために、プリント配線基板にクリームはんだを印刷し、はんだ端子の高精細な配線パターンを形成し、該はんだ端子に電子部品や半導体チップを搭載し、はんだリフロー炉を通して電子部品や半導体チップの実装を行う。
この際、はんだ端子の配線パターンを高精細に印刷するための印刷版として導電性金属表面にレジスト膜で配線パターンを形成し、電鋳法により製作したメタルマスクを用いた印刷版が広く実用に供されている。
【0003】
しかしながら電鋳法による作られたメタルマスクは実装密度が上がるに従って、開口部のピッチが狭くなり、その結果印刷中にスキージーの押圧によりメタルマスクが部分的に塑性変形し、はんだ端子の位置精度が低下し、メタルマスクの印刷耐久性が低下するという問題が発生している。
【0004】
前記した印刷耐久性を改良するために、メタルマスクの板厚を厚くしていたが、板厚を厚くしたメタルマスクを用い印刷版でプリント配線基板にクリームはんだを印刷し、電子部品の実装用のはんだ端子を形成した場合、印刷されるはんだ量が多くなり過ぎたり、印刷版の版離れが悪くなったり、クリームはんだの版からの抜けが悪くなり、クリームはんだの転写性の悪化を招く。その結果転写されたクリームはんだが滲んだり、形成されたはんだ端子に欠け、割れ、抜け等の欠陥が発生したりし、印刷工程の歩留まり低下の大きな原因となっていた。又印刷スがピードを早くすることもできなかった。
【0005】
前記したクリームはんだの版からの抜け性、版離れ等の印刷性の問題点を改良するために、特開平10−129140には、金属マスクの被印刷面側を鏡面にし、開口にテーパーをつけた金属マスクが提案されている。
又、特開2000−313179には、金属マスクの被印刷物側の開口部の外側に凹部を設け、印刷版の版離れを改良した印刷マスクが提案されている。しかし、このような改良されたメタルマスクでも、印刷性は必ずしも十分とは言えず、その更なる改良が求められている。
【0006】
【発明が解決しようとする課題】
本発明の目的は、プリント配線基板等に高密度実装用のはんだ端子の形成において、電鋳法による作られたニッケル又はニッケル合金からなるメタルマスクを用いた印刷版でクリームはんだを印刷した際に、前記した印刷耐久性を改善し、且つクリームはんだの滲み、はんだ端子の欠け、抜け、割れ等の欠陥の発生を防止し、印刷スピードを早くできる印刷用メタルマスクを提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、メタルマスクの金属の特性、特に、結晶の配向性、及び該メタルマスクを金属枠に取り付けた後の印刷版のテンション等が印刷耐久性、及びクリームはんだの印刷版からの抜けに大きく関係していることを見つけ、本発明を完成した。
【0008】
すなわち、本発明は、
電鋳法により作られたニッケル又はニッケル合金からなる印刷用メタルマスクであって、X線回折により測定したメタルの結晶の配向性において、(111)面、(200)面及び(220)面のピーク強度の合計に対する(220)面のピーク強度比が0.4以上であることを特徴とする印刷用メタルマスク、及び
前記記載の印刷用メタルマスクを金属枠に取り付けたメタルマスク印刷版、及び
テンションが0.25〜0.32mmである前記記載のメタルマスク印刷版、及び
前記記載のメタルマスク印刷版を用いてクリームはんだを印刷してなるはんだ端子形成方法、である。
【0009】
【発明の実施の形態】
以下、本発明の印刷用メタルマスク、及びそれを金属枠に取り付けた印刷版について詳細に説明する。
本発明のメタルマスクは電鋳法により作られたニッケル、又はニッケル合金からなるが、ニッケル合金としては、ニッケルを主成分とし、コバルト、鉄、クロム、タングステン、錫、銅、バナジウム、リン、ホウ素等の合金が挙げられる。勿論本発明のメタルマスクには電鋳の際にめっき浴に添加した光沢剤、高硬度化剤等の添加剤を含有していても構わない。
【0010】
電鋳法により作られたニッケル又はニッケル合金からなる印刷用メタルマスクを金属枠に取り付けた印刷版をスクリーン印刷機にセットし、該メタルマスク上にクリームはんだを供給して、スキージーを摺動させながクリームはんだを開口部を介してプリント配線基板に印刷する。この際メタルマスクにはスキージーの押圧が負荷され、開口部の形状やパターンにも依存するが、印刷中に該押圧によりメタルマスクが局部的に塑性変形を起こし、マスクに歪が生じ、はんだ端子の位置精度が低下する。この印刷中のメタルマスクのスキージーの押圧による歪を起こりにくくするには、ニッケル又はニッケル合金からなる印刷用メタルマスクのX線回折により測定したメタルの結晶の配向性において、(111)面、(200)面及び(220)面のピーク強度の合計に対する(220)面のピーク強度比が0.4以上が好ましく、0.5以上が更に好ましい。
【0011】
本発明のメタルの結晶の配向性において、(111)面、(200)面及び(220)面のピーク強度の合計に対する(220)面のピーク強度比とは、I(220)/I(111)+I(200)+I(220)であり、前記した(220)面ピーク強度比は、めっき液組成、めっき浴温度、PH、電流密度、攪拌条件、添加剤等のめっき条件により大きく変化する。それ故、該(220)面のピーク強度比の前記した好ましい値は、前記種々のめっき条件を最適化することにより得られる。
【0012】
本発明のメタルマスクの板厚は20〜150μm程度であるが、20〜70μmが好ましい。板厚が20μm未満の場合はメタルマスクが使用中に延伸し、形成される端子の位置精度が低下する。一方、板厚が厚すぎるとめっき時間が長くなり、又、クリームはんだの転写量が多すぎ、はんだが溶融した際に広がり過ぎたり、はんだの抜け性が低下して印刷不良を起こし易い。
【0013】
本発明のメタルマスクはクリームはんだ印刷用の開口部を有するが、その形状は特に制限はなく、例えば、円形、楕円形、正方形、長方形、菱形、台形等の四角形、六角形及び八角形等の多角形、その他瓢箪形、ダンベル形等の不定形等が挙げられる。開口部の大きさは、前記した種々の形状の最大の開口部が40〜200μmである。又該開口部の繰り返しピッチは70〜500μm程度である。高密度実装のためには、開口部が40〜150μm、開口部の繰り返しピッチは70〜250μmが好ましい。
【0014】
本発明のメタルマスクは高精細パターンの印刷に用いられるため、前記した印刷耐久性以外にも、印刷版の版離れ性、クリームはんだの開口部からの抜け性、クリームはんだの滲み等の印刷特性が問題になる。
【0015】
前記した印刷版の版離れ性の点からは、前記したメタルマスクを金属枠に取り付けてなる本発明のメタルマスク印刷版のテンションは0.25〜0.32mmが好ましい。版のテンションが0.25mm未満の場合は、印刷版の版離れが急激起こり、はんだ端子に欠けが生じ、一方、該テンションが0.32mmを越える場合は、印刷時に版離れが悪くなり、転写不良を起こし、はんだ端子に欠け、割れ等の欠陥が生じ、好ましくない。これらの印刷版の急激な版離れ、及び版離れの悪さの点からは、版のテンションは0.28〜0.30mmが更に好ましい。
【0016】
印刷版のテンションは種々の測定法、測定機が提案されているが、本発明における印刷版のテンションとは、印刷版の中央部に一定の荷重を付加した際の印刷版のたわみ量で表示し、(株)プロテック製のテンションゲージSTG−80Aを用いて測定した値とする。
【0017】
更に、高精細のパターンの印刷においては、印刷位置精度、クリームはんだの抜け性、転写性等が厳しく求められる。これらの点からは本発明のメタルマスクにおいては、メタルマスクのスキージー面側のビッカース硬度は200〜450HVが好ましい。ビッカース硬度が200HV未満の場合は印刷中にメタルマスクが延伸し、はんだ端子の位置精度が低下したり、印刷耐久性が低下する等の問題を生じ、好ましくない。他方、硬度が450HVを超える場合はメタルマスクの基板への追従性が低下し、クリームはんだの未転写が生じて好ましくない。
【0018】
更に、本発明のメタルマスクの非印刷面側の表面粗さRzは1〜8μmが好ましい。該表面粗さRzが1μm未満の場合は版離れが悪くなり、転写性の不良を生じ、8μmを超える場合はプリント配線基板に転写されたクリームはんだに滲みが生じて好ましくない。この版離れやクリームはんだの滲みの点からは、表面粗さRzは3〜7μmが更に好ましい。
【0019】
被印刷面側のビッカース硬度は特に制限はなく、スキージー側の硬度と同じでも、硬くても、柔らかくても良い。電鋳法でメタルマスクを製作すると両側の表面硬度は通常はそれ程大きくは変化はしない。一方、スキージー面側の表面粗さにも特に制限はないが、粗すぎるとスキージーがスムースに動かず、クリームはんだを均一に引き難い。この点からはスキージー面側の表面粗さはRyで2μm以下が好ましく、1μm以下が更に好ましい。メタルマスクの母材側の表面は母材の表面粗さを反映し、母材と逆の面は電鋳条件によって変化するので所望の粗さに制御することが出来る。
【0020】
ここで、ビッカース硬度の測定方法は、JIS Z2244に準拠して測定した値、又、表面粗さRzとは、JIS B0660:1998に規程されている10点平均粗さを言う。表面粗さの測定方法は触針式、光学式、二次電子式等種々提案されており、測定範囲、感度、使い勝手等が異なり、使用目的に応じて使い分けられている。本発明では光学式であるレーザー顕微鏡を用いた。尚、メタルマスクの面積の大きさに比してビッカース硬度、表面粗さ共に測定範囲が狭いので、メタルマスクの偏らない多数の点を測定し、その平均値で表示した。具体的にはビッカース硬度は5点以上、表面粗さは27点以上である。
【0021】
本発明において、メタルマスクを金属枠に取り付ける方法としては、紗を介して貼り付ける方法、特開平7−38231号、特開平7−507243号に提案されているように金属枠に直接取り付ける方法等が挙げられる。用いられる金属枠としては、アルミ、ステンレス、銅等のからなる金属枠が挙げられる。用いられる紗としてはポリエステル、ナイロン、シルク、金属等からなる100〜300メッシュの網目からなるメッシュスクリーンが挙げられる。
【0022】
本発明のメタルマスク、及びメタルマスク印刷版の製造方法に関して述べる。先ず、メタルマスクの製造方法としては、表面がフラットで、導電性を有する金属、例えば、ステンレス、銅、アルミ、ニッケル等からなる基板、又はガラス、プラスチック等の非導電性の基板に蒸着、スパッター、又は無電解めっき法で導電性の金属薄膜を形成した基板を母材とし、該母材にフォトレジストを塗布、又は積層する。フォトレジストとしてはドライフィルムや液状レジストがあり、それぞれネガ型、ポジ型のどちらでも用いることができる。
【0023】
次に該フォトレジストを成膜した基板に、印刷パターンを有する樹脂製マスク、又はガラスマスクを通して、紫外線露光を行う。露光方法としてはレジスト膜表面にマスクを密着して露光しても、又はギャップを設けて露光しても良い。露光した後、レジスト膜をアルカリ溶液、溶剤等により現像し、導電性基板上にレジスト膜の印刷パターンを形成する。すなわち、クリームはんだが通過する開口部に相当する部分にはレジスト膜が残り、その他のクリームはんだが印刷されない部分はレジスト膜が除去され、導電性の基板表面が露呈した状態になる。
【0024】
次に、このレジスト膜で印刷パターンが形成された基板をニッケル又はニッケル合金めっき槽に浸し、通電しながら、所定の膜厚が得られるまで電鋳を行う。
ニッケル又はニッケル合金めっきをする際に用いられるめっき液組成、めっき温度、電流密度、PH、攪拌条件、添加剤等のめっき条件はメタルマスクの種々の特性に大きく影響する。それ故、ニッケルの(220)面ピーク強度比、ビッカース硬度、表面粗さ等のメタルマスクの特性が所望の値が得られるように、前記しためっき条件をコントロールして行えばよい。表面粗さは母材表面を所望の粗さに加工し、該母材を用いて電鋳を行い母材表面の粗さをメタルマスクに転写する方法もあるが、他の特性と同じように、前記しためっき条件をコントロールすることにより母材とは逆の面を所望の表面粗さにすることもできる。
【0025】
次に、母材からメタルマスクを剥離し、アルカリ溶液で洗浄して残存するレジスト膜を除去すると、メタルマスクができ上がる。尚、本発明に於いては、前記したメタルマスクをそのまま、又は該メタルマスクにクリームはんだ用の開口部が設けられたポリイミドフィルム、フッ素系樹脂フィルム等を積層して金属枠に取り付けて印刷版にしてもよい。
【0026】
前記したメタルマスクと樹脂フィルムを積層したメタルマスクの製造方法としては、導電性金属をスパッターしたポリイミドフィルム、又は導電性金属を貼り合わせたポリイミドフィルムに印刷用の開口部の加工を行った後、ニッケルめっきを行うことによっても作ることができる。
【0027】
紗を介したメタルマスク印刷版を作るには、金属枠に紗を貼り付け、該紗に前記メタルマスクの外周部を接着剤を用いて貼り付けた後、接着部以外の内側の紗を切り取る。この様にして金属枠にメタルマスクの外周部を紗を介して貼り付けたメタルマスク印刷版が出来上がる。この際、印刷版のテンションは金属枠に貼り付けた紗のテンションを変えることによって所望のテンションに制御することができる。
【0028】
本発明のメタルマスク印刷版をスクリーン印刷機に取り付けて、プリント配線基板にクリームはんだを印刷すれば、プリント配線基板上にはんだ端子が形成される。形成されたはんだ端子の形状は通常、直径40〜200μm、ピッチ70〜500μm程度である。
【0029】
【実施例】以下、本発明を実施例によりさらに詳細に説明する。ただし、本発明は、これらの実施例により限定されるものではない。
〔実施例1〕
板厚0.2mm、550×650mmのSUS304の基板の表面を整面(バフ研磨)し、ドライフィルムレジスト(FP240、東京応化工業(株)製)をラミネートした。次に、電子部品搭載用のはんだ端子パターンとして、直径100μmの紫外線を透過する円を繰り返しピッチ150μmで2500(50×50)個からなる基本パターンを4つ面取りしたパターンを有するガラスマスクを使用して、ミラー反射型平行光露光機で露光し、15分エージングした後、1.0%の炭酸ナトリウム水溶液で現像、水洗してSUS304の基板にドライフィルムレジスト膜のはんだ端子パターンを形成した。
【0030】
次に、スルファミン酸Niを570g/l、NiCl2・6H2Oを105g/l、ホウ酸を40g/l、PH3.1からなるめっき浴に入れて、電流密度1.5A/dm2、浴温度45℃で前記基板上に厚さ50μmのニッケル膜を形成した。該ニッケル膜が形成された基板からニッケル膜を剥離し、得られたニッケル膜を50℃の1.0%水酸化ナトリウム水溶液に浸漬してレジスト膜を除去して400×480mmのニッケル製のメタルマスクを作製した。
【0031】
該メタルマスクのX線回折装置(JDX−3530、日本電子(株)製)により測定したニッケルピーク強度の合計に対する(220)面のピーク強度比は0.50、ビッカース硬度は330HV(ビッカース硬度計MVK−G1、(株)アカシ製)であった。
【0032】
次に、180メッシュのポリエステル製の紗が張られた外形550×650mmのアルミ製枠に、前記メタルマスクを母材面側がスキージー面になるようにエポキシ系接着剤を用いて貼り付けてメタルマスク印刷版を作製した。該版の被印刷面(プリント配線基板面)側のメタルマスクの表面粗さRzは4μm(超深度形状測定顕微鏡 VK−8500、(株)キーエンス製)、印刷版のテンションは0.29mm(テンションゲージSTG−80A、(株)プロテック製で測定)であった。
【0033】
前記して作られたメタルマスク印刷版をスクリーン印刷機(KXF−1H4C、パナソニック ファクトリーソリューションズ(株)製)に搭載し、プリント配線基板上にクリームはんだ(LF−71S−3、タムラ化研(株)製)を1万回印刷し、はんだ端子を形成した。印刷後のメタルマスク及び形成されたはんだ端子を観察したが、1万回印刷してもメタルマスクには歪は全く発生せず、はんだ端子の位置精度は良好であった。又クリームはんだの滲み、はんだ端子の割れ、抜け、欠け等の欠陥は全く生じなかった。
【0034】
〔実施例2〕
めっき条件として、スルファミン酸Niを380g/l、NiCl2・6H2Oを70g/l、ホウ酸を40g/l、PH3.9、電流密度1.5A/dm2、浴温度40℃を用いる以外は実施例1と同じ方法で、メタルマスク及びメタルマスク印刷版を作り、評価した。
結果は、(220)面のピーク強度比は0.58、ビッカース硬度は380HV、表面粗さRzは3μm、テンションは0.29mmであった。又印刷結果は実施例1と同じように、1万回印刷してもメタルマスクには歪は全く発生せず、はんだ端子の位置精度は良好であった。又クリームはんだの滲み、はんだ端子の割れ、抜け、欠け等の欠陥は全く生じなかった。
【0035】
〔実施例3〕
めっき条件として、スルファミン酸Niを380g/l、NiCl2・6H2Oを70g/l、ホウ酸を30g/l、PH3.6、電流密度1.0A/dm2、浴温度45℃を用いる以外は実施例1と同じ方法で、メタルマスク及びメタルマスク印刷版を作り、評価した。
結果は、(220)面のピーク強度比は0.67、ビッカース硬度は280HV、表面粗さRzは5μm、テンションは0.29mmであった。又印刷結果は実施例1と同じように、1万回印刷してもメタルマスクには歪は全く発生せず、はんだ端子の位置精度は良好であった。又クリームはんだの滲み、はんだ端子の割れ、抜け、欠け等の欠陥は全く生じなかった。
【0036】
〔実施例4〕
めっき条件として、スルファミン酸Niを450g/l、NiCl2・6H2Oを35g/l、CoSO4・7H2Oを0.2g/l、ホウ酸を35g/l、PH4.0、電流密度1.5A/dm2、浴温度40℃を用いる以外は実施例1と同じ方法で、メタルマスク及びメタルマスク印刷版を作り評価した。
結果は、(220)面のピーク強度比は0.53、ビッカース硬度は250HV、表面粗さRzは6μm、テンションは0.29mmであった。又印刷結果は実施例1と同じように、1万回印刷してもメタルマスクには歪は全く発生せず、はんだ端子の位置精度は良好であった。又クリームはんだの滲み、はんだ端子の割れ、抜け、欠け等の欠陥は全く生じなかった。
【0037】
〔実施例5〕
めっき条件として、スルファミン酸Niを380g/l、NiCl2・6H2Oを70g/l、CoSO4・7H2Oを0.2g/l、ホウ酸を30g/l、PH4.0、電流密度1.0A/dm2、浴温度40℃を用いる以外は実施例1と同じ方法で、メタルマスク及びメタルマスク印刷版を作り、評価した。
結果は、(220)面のピーク強度比は0.72、ビッカース硬度は300HV、表面粗さRzは5μm、テンションは0.29mmであった。又印刷結果は実施例1と同じように、1万回印刷してもメタルマスクには歪は全く発生せず、はんだ端子の位置精度は良好であった。又クリームはんだの滲み、はんだ端子の割れ、抜け、欠け等の欠陥は全く生じなかった。
【0038】
〔比較例1〕
めっき条件として、スルファミン酸Niを450g/l、NiCl2・6H2Oを35g/l、ホウ酸を40g/l、PH3.6、電流密度1.5A/dm2、浴温度45℃を用いる以外は実施例1と同じ方法で、メタルマスク及びメタルマスク印刷版を作り、評価した。
結果は、(220)面のピーク強度比は0.35、ビッカース硬度は300HV、表面粗さRzは4μm、テンションは0.29mmであった。又印刷結果は2千回印刷後にメタルマスクを観察したところ、マスクの一部の開口パターン部に歪が観察された。又、該歪ガ観察されたパターン部の形成されたはんだ端子はみの位置にズレが生じていた。
【0039】
〔比較例2〕
めっき条件として、スルファミン酸Niを300g/l、NiCl2・6H2Oを30g/l、ホウ酸を40g/l、PH4.4、電流密度2.0A/dm2、浴温度55℃を用いる以外は実施例1と同じ方法で、メタルマスク及びメタルマスク印刷版を作り、評価した。
結果は、(220)面のピーク強度比は0.15、ビッカース硬度は250HV、表面粗さRzは6μm、テンションは0.29mmであった。又印刷結果は千回印刷後にメタルマスクを観察したところ、マスクの一部の開口パターン部に歪が観察された。又、該歪ガ観察されたパターン部の形成されたはんだ端子はみの位置にズレが生じていた。
【0040】
〔比較例3〕
NiSO4・6H2Oを330g/l、NiClを245g/l、ホウ酸を40g/l、PH3.8からなるワット浴を用い、電流密度2A/dm2、温度50℃のめっき条件以外は実施例1と同じようにしてメタルマスク及び印刷版を作り、評価した。
結果は(220)面の配向比は0.05、印刷結果は5百回印刷後に比較例1と同じ現象が観察された。又、メタルマスクのビッカース硬度は270HV、表面粗さRzは5μmであった。
【0041】
〔比較例4、5〕
アルミ枠に紗を貼り付ける際のテンションを変える以外は実施例1と同じ方法でメタルマスク版を作り、版のテンションを測定した後、クリームはんだを印刷し、形成したはんだ端子の評価を行った。
その結果は、比較例4及び5の版のテンションはそれぞれ0.35、0.20であった。クリームはんだの印刷結果は、比較例4においては、印刷時の版離れが悪く、転写不良を起こし、はんだ端子に欠け、割れ等の欠陥が生じた。一方、比較例5においては、印刷版の版離れが急激起こり、はんだ端子に欠けが生じた。
【0042】
【発明の効果】
本発明の電鋳法により作られたニッケル又はニッケル合金からなる高精細パターンの印刷用メタルマスクはX線回折により測定したメタルの結晶の配向性において、(111)面、(200)面及び(220)面のピーク強度の合計に対する(220)面のピーク強度比を0.4以上にすることによりメタルマスクの印刷耐久性が改良され、更に、メタルマスクを金属枠に取り付けた印刷版のテンションを0.25〜0.32にすることにより、印刷版の版離れ性が改良される。
【整理番号】MP030002
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a metal mask used when printing cream solder or the like used when forming conductive terminals for connection for mounting electronic components and semiconductor chips at a high density, and using the metal mask in a metal frame. The present invention relates to a set printing plate and a method for forming solder terminals by printing cream solder using the printing plate.
[0002]
[Prior art]
Due to the demand for smaller and lighter electronic circuits, such as mobile phones, it has been widely practiced to mount electronic components on a printed wiring board with high density, especially on both sides of the printed wiring board with high density. In this high-density mounting, in order to mount electronic components on the printed wiring board surface, cream solder is printed on the printed wiring board, a high-definition wiring pattern of solder terminals is formed, and electronic components and semiconductors are mounted on the solder terminals. The chip is mounted, and electronic components and semiconductor chips are mounted through a solder reflow furnace.
At this time, as a printing plate for printing the wiring pattern of solder terminals with high precision, a wiring plate is formed with a resist film on the conductive metal surface, and a printing plate using a metal mask manufactured by electroforming is widely used. Has been provided.
[0003]
However, in metal masks made by electroforming, the pitch of the openings becomes narrower as the mounting density increases.As a result, the metal mask partially plastically deforms due to the pressing of the squeegee during printing, and the positional accuracy of the solder terminals is reduced. And the printing durability of the metal mask decreases.
[0004]
In order to improve the printing durability described above, the thickness of the metal mask was thickened, but cream solder was printed on the printed wiring board with a printing plate using the metal mask with the increased thickness, and it was used for mounting electronic components. When the solder terminal of (1) is formed, the amount of solder to be printed becomes too large, the separation of the printing plate becomes poor, the cream solder is hardly removed from the plate, and the transferability of the cream solder is deteriorated. As a result, the transferred cream solder bleeds, or the formed solder terminals have defects such as chipping, cracking, and omission, thus causing a large decrease in the yield of the printing process. Also, the printing speed could not speed up the speed.
[0005]
In order to improve the above-mentioned problems of printability such as the releasability of the cream solder from the plate and the separation of the plate, Japanese Patent Application Laid-Open No. Hei 10-129140 discloses that the surface to be printed of a metal mask is made a mirror surface and the opening is tapered. Metal masks have been proposed.
Further, Japanese Patent Application Laid-Open No. 2000-313179 proposes a printing mask in which a concave portion is provided outside the opening of the metal mask on the side of the printing material to improve the separation of the printing plate. However, even with such an improved metal mask, printability is not always sufficient, and further improvement is required.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to form a solder terminal for high-density mounting on a printed wiring board or the like when cream solder is printed on a printing plate using a metal mask made of nickel or a nickel alloy made by electroforming. It is another object of the present invention to provide a printing metal mask which can improve printing durability and prevent defects such as cream solder bleeding, chipping, detachment, and cracking of solder terminals, and can increase printing speed.
[0007]
[Means for Solving the Problems]
The present inventors have found that the properties of the metal of the metal mask, particularly the crystal orientation, the tension of the printing plate after the metal mask is attached to the metal frame, and the like, are printing durability, and the printing from the cream solder printing plate. The present inventors have found that the present invention is greatly related to the omission, and completed the present invention.
[0008]
That is, the present invention
This is a printing metal mask made of nickel or a nickel alloy made by electroforming, and has a (111) plane, a (200) plane, and a (220) plane in terms of metal crystal orientation measured by X-ray diffraction. A peak intensity ratio of the (220) plane to the total peak intensity of 0.4 or more, a metal mask for printing, a metal mask printing plate having the metal mask for printing attached to a metal frame, and A metal mask printing plate having a tension of 0.25 to 0.32 mm, and a method of forming solder terminals by printing cream solder using the metal mask printing plate described above.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the metal mask for printing of the present invention and the printing plate in which the metal mask is attached to a metal frame will be described in detail.
The metal mask of the present invention is made of nickel or a nickel alloy produced by an electroforming method. The nickel alloy contains nickel as a main component, and includes cobalt, iron, chromium, tungsten, tin, copper, vanadium, phosphorus, and boron. And the like. Of course, the metal mask of the present invention may contain additives such as a brightener and a hardening agent added to the plating bath during electroforming.
[0010]
A printing plate in which a metal mask for printing made of nickel or a nickel alloy made by electroforming is attached to a metal frame is set on a screen printing machine, cream solder is supplied on the metal mask, and a squeegee is slid. The cream solder is printed on the printed wiring board through the opening. At this time, squeegee pressure is applied to the metal mask, and depending on the shape and pattern of the opening, the metal mask locally undergoes plastic deformation due to the pressure during printing, and the mask is distorted, and the solder terminal is deformed. Position accuracy is reduced. In order to prevent the distortion caused by the squeegee pressing of the metal mask during printing from occurring, in the orientation of the metal crystal measured by X-ray diffraction of a printing metal mask made of nickel or a nickel alloy, the (111) plane, ( The peak intensity ratio of the (220) plane to the total peak intensity of the (200) plane and the (220) plane is preferably 0.4 or more, more preferably 0.5 or more.
[0011]
In the crystal orientation of the metal of the present invention, the peak intensity ratio of the (220) plane to the sum of the peak intensities of the (111) plane, the (200) plane, and the (220) plane is I (220) / I (111). ) + I (200) + I (220), and the above-mentioned (220) plane peak intensity ratio greatly changes depending on plating conditions such as plating solution composition, plating bath temperature, PH, current density, stirring conditions, and additives. Therefore, the preferable value of the peak intensity ratio of the (220) plane can be obtained by optimizing the various plating conditions.
[0012]
The thickness of the metal mask of the present invention is about 20 to 150 μm, preferably 20 to 70 μm. If the plate thickness is less than 20 μm, the metal mask is stretched during use, and the positional accuracy of the formed terminals is reduced. On the other hand, if the plate thickness is too thick, the plating time is prolonged, and the transfer amount of the cream solder is too large, so that when the solder is melted, it spreads too much, and the removability of the solder is reduced, and printing defects are likely to occur.
[0013]
Although the metal mask of the present invention has an opening for printing cream solder, the shape is not particularly limited, and for example, a square such as a circle, an ellipse, a square, a rectangle, a rhombus, a trapezoid, a hexagon, an octagon, and the like. Examples include polygonal shapes, other gourd shapes, and irregular shapes such as dumbbell shapes. Regarding the size of the opening, the largest opening of the various shapes described above is 40 to 200 μm. The repetition pitch of the openings is about 70 to 500 μm. For high-density mounting, the opening is preferably 40 to 150 μm, and the repetition pitch of the opening is preferably 70 to 250 μm.
[0014]
Since the metal mask of the present invention is used for printing a high-definition pattern, in addition to the above-described printing durability, printing properties such as plate detachability of a printing plate, removability of a cream solder from an opening, and bleeding of a cream solder. Is a problem.
[0015]
From the viewpoint of the above-described releasability of the printing plate, the tension of the metal mask printing plate of the present invention in which the above-described metal mask is attached to a metal frame is preferably 0.25 to 0.32 mm. When the tension of the plate is less than 0.25 mm, the separation of the printing plate rapidly occurs, and the solder terminal is chipped. On the other hand, when the tension exceeds 0.32 mm, the separation of the printing plate becomes poor at the time of printing, and the transfer becomes poor. It is not preferable because it causes a defect and causes defects such as chipping and cracking of the solder terminal. From the standpoint of rapid release of these printing plates and poor release, the plate tension is more preferably 0.28 to 0.30 mm.
[0016]
Various measurement methods and measuring machines have been proposed for the printing plate tension, but the printing plate tension in the present invention is indicated by the amount of deflection of the printing plate when a certain load is applied to the center of the printing plate. And a value measured using a tension gauge STG-80A manufactured by Protec Co., Ltd.
[0017]
Further, in printing a high-definition pattern, printing position accuracy, cream solder removability, transferability, and the like are strictly required. From these points, in the metal mask of the present invention, the Vickers hardness on the squeegee surface side of the metal mask is preferably from 200 to 450 HV. If the Vickers hardness is less than 200 HV, the metal mask stretches during printing, causing problems such as a decrease in the positional accuracy of the solder terminals and a decrease in printing durability, which is not preferable. On the other hand, when the hardness exceeds 450 HV, the ability of the metal mask to follow the substrate is reduced, and untransfer of the cream solder occurs, which is not preferable.
[0018]
Further, the surface roughness Rz on the non-printing surface side of the metal mask of the present invention is preferably 1 to 8 μm. When the surface roughness Rz is less than 1 μm, separation of the plate becomes poor, resulting in poor transferability. When the surface roughness Rz exceeds 8 μm, the cream solder transferred to the printed circuit board undesirably bleeds. The surface roughness Rz is more preferably 3 to 7 μm from the viewpoint of the separation of the plate and the bleeding of the cream solder.
[0019]
The Vickers hardness on the printing surface side is not particularly limited, and may be the same as the hardness on the squeegee side, or may be hard or soft. When a metal mask is manufactured by the electroforming method, the surface hardness on both sides usually does not change so much. On the other hand, the surface roughness of the squeegee surface side is not particularly limited. However, if the surface is too rough, the squeegee does not move smoothly, and it is difficult to uniformly pull the cream solder. From this point, the surface roughness on the squeegee surface side is preferably 2 μm or less in Ry, more preferably 1 μm or less. The surface on the base material side of the metal mask reflects the surface roughness of the base material, and the surface opposite to the base material changes depending on the electroforming conditions, so that the desired roughness can be controlled.
[0020]
Here, the method of measuring Vickers hardness is a value measured according to JIS Z2244, and the surface roughness Rz refers to a 10-point average roughness specified in JIS B0660: 1998. Various methods for measuring the surface roughness, such as a stylus method, an optical method, and a secondary electron method, have been proposed. The measuring range, sensitivity, usability, and the like are different, and they are properly used according to the purpose of use. In the present invention, an optical laser microscope was used. Since the measurement range of both Vickers hardness and surface roughness was narrower than the area of the metal mask, a number of points on the metal mask that were not biased were measured and displayed as an average value. Specifically, the Vickers hardness is 5 points or more, and the surface roughness is 27 points or more.
[0021]
In the present invention, as a method of attaching the metal mask to the metal frame, a method of attaching the metal mask through a gauze, a method of directly attaching the metal mask to the metal frame as proposed in JP-A-7-38231, and JP-A-7-507243, etc. Is mentioned. Examples of the metal frame used include a metal frame made of aluminum, stainless steel, copper, or the like. Examples of the gauze used include a mesh screen having a mesh of 100 to 300 mesh made of polyester, nylon, silk, metal or the like.
[0022]
The metal mask and the method for manufacturing a metal mask printing plate of the present invention will be described. First, as a method for manufacturing a metal mask, a metal having a flat surface and conductivity, for example, a substrate made of stainless steel, copper, aluminum, nickel, or the like, or a non-conductive substrate such as glass or plastic, is deposited and sputtered. Alternatively, a substrate on which a conductive metal thin film is formed by an electroless plating method is used as a base material, and a photoresist is applied or laminated on the base material. As the photoresist, there are a dry film and a liquid resist, and either a negative type or a positive type can be used.
[0023]
Next, the substrate on which the photoresist is formed is exposed to ultraviolet light through a resin mask having a print pattern or a glass mask. As the exposure method, exposure may be performed by closely attaching a mask to the surface of the resist film, or may be performed by providing a gap. After exposure, the resist film is developed with an alkaline solution, a solvent, or the like, to form a print pattern of the resist film on the conductive substrate. That is, the resist film remains in the portion corresponding to the opening through which the cream solder passes, and the resist film is removed in other portions where the cream solder is not printed, leaving the conductive substrate surface exposed.
[0024]
Next, the substrate on which the printed pattern is formed with the resist film is immersed in a nickel or nickel alloy plating bath, and electroforming is performed while applying a current until a predetermined film thickness is obtained.
Plating conditions such as plating solution composition, plating temperature, current density, PH, stirring conditions, and additives used for plating nickel or a nickel alloy greatly affect various characteristics of the metal mask. Therefore, the plating conditions described above may be controlled so that desired values of the metal mask characteristics such as the (220) plane peak intensity ratio, Vickers hardness, and surface roughness of nickel are obtained. Surface roughness is a method of processing the base material surface to the desired roughness, electroforming using the base material and transferring the roughness of the base material surface to a metal mask, but like other characteristics, By controlling the plating conditions described above, the surface opposite to the base material can be made to have a desired surface roughness.
[0025]
Next, the metal mask is peeled off from the base material and washed with an alkaline solution to remove the remaining resist film, thereby completing the metal mask. In the present invention, a printing plate is prepared by attaching the above-described metal mask as it is, or by laminating a polyimide film or a fluorine-based resin film provided with an opening for cream solder on the metal mask and attaching it to a metal frame. It may be.
[0026]
As a method for manufacturing a metal mask obtained by laminating the metal mask and the resin film described above, a polyimide film sputtered with a conductive metal, or after processing the opening for printing on a polyimide film laminated with a conductive metal, It can also be made by performing nickel plating.
[0027]
In order to make a metal mask printing plate with a gauze, a gauze is attached to a metal frame, the outer periphery of the metal mask is attached to the gauze using an adhesive, and then the inner gauze other than the adhesive portion is cut off. . In this manner, a metal mask printing plate in which the outer peripheral portion of the metal mask is attached to the metal frame via the gauze is completed. At this time, the tension of the printing plate can be controlled to a desired tension by changing the tension of the gauze stuck on the metal frame.
[0028]
When the metal mask printing plate of the present invention is mounted on a screen printer and cream solder is printed on a printed wiring board, solder terminals are formed on the printed wiring board. The shape of the formed solder terminal is usually about 40 to 200 μm in diameter and about 70 to 500 μm in pitch.
[0029]
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited by these examples.
[Example 1]
The surface of a SUS304 substrate having a thickness of 0.2 mm and 550 × 650 mm was flattened (buffed), and a dry film resist (FP240, manufactured by Tokyo Ohka Kogyo Co., Ltd.) was laminated. Next, as a solder terminal pattern for mounting electronic components, a glass mask having a pattern obtained by chamfering four 2500 (50 × 50) basic patterns having a pitch of 150 μm and repeating a circle of 100 μm in diameter transmitting ultraviolet rays was used. Then, after exposure with a mirror reflection type parallel light exposure machine and aging for 15 minutes, development with a 1.0% aqueous sodium carbonate solution and washing with water were performed to form a solder terminal pattern of a dry film resist film on a SUS304 substrate.
[0030]
Next, 570 g / l of Ni sulfamate, 105 g / l of NiCl2.6H2O and 40 g / l of boric acid were put into a plating bath composed of PH3.1, and a current density of 1.5 A / dm2 and a bath temperature of 45 ° C. A nickel film having a thickness of 50 μm was formed on the substrate. The nickel film is peeled off from the substrate on which the nickel film has been formed, and the obtained nickel film is immersed in a 1.0% sodium hydroxide aqueous solution at 50 ° C. to remove the resist film. A mask was made.
[0031]
The peak intensity ratio of the (220) plane to the total nickel peak intensity measured by an X-ray diffractometer (JDX-3530, manufactured by JEOL Ltd.) of the metal mask was 0.50, and the Vickers hardness was 330 HV (Vickers hardness tester). MVK-G1, manufactured by Akashi Co., Ltd.).
[0032]
Next, the metal mask is attached to an aluminum frame having an outer shape of 550 x 650 mm over which a 180-mesh polyester gauze is stretched using an epoxy-based adhesive so that the base material surface side is a squeegee surface. A printing plate was prepared. The surface roughness Rz of the metal mask on the printing surface (printed wiring board surface) side of the plate is 4 μm (ultra-depth shape measuring microscope VK-8500, manufactured by Keyence Corporation), and the printing plate tension is 0.29 mm (tension). Gauge STG-80A, measured by Protec Co., Ltd.).
[0033]
The metal mask printing plate manufactured as described above is mounted on a screen printing machine (KXF-1H4C, manufactured by Panasonic Factory Solutions Co., Ltd.), and cream solder (LF-71S-3, Tamura Kaken Co., Ltd.) is mounted on a printed wiring board. ) Was printed 10,000 times to form solder terminals. Observation of the printed metal mask and the formed solder terminals revealed that no distortion occurred in the metal mask even after printing 10,000 times, and the positional accuracy of the solder terminals was good. Also, no defects such as bleeding of the cream solder, cracking, detachment and chipping of the solder terminals occurred.
[0034]
[Example 2]
Example 1 except that the plating conditions were 380 g / l of Ni sulfamate, 70 g / l of NiCl2.6H2O, 40 g / l of boric acid, PH 3.9, current density of 1.5 A / dm2, and bath temperature of 40 ° C. A metal mask and a metal mask printing plate were prepared and evaluated in the same manner as described above.
As a result, the peak intensity ratio of the (220) plane was 0.58, the Vickers hardness was 380 HV, the surface roughness Rz was 3 μm, and the tension was 0.29 mm. As in the case of Example 1, the printing result was that no distortion occurred in the metal mask even after printing 10,000 times, and the positional accuracy of the solder terminals was good. Also, no defects such as bleeding of the cream solder, cracking, detachment and chipping of the solder terminals occurred.
[0035]
[Example 3]
Example 1 except that the plating conditions were 380 g / l of Ni sulfamate, 70 g / l of NiCl2.6H2O, 30 g / l of boric acid, PH of 3.6, current density of 1.0 A / dm2, and bath temperature of 45 ° C. A metal mask and a metal mask printing plate were prepared and evaluated in the same manner as described above.
As a result, the peak intensity ratio of the (220) plane was 0.67, the Vickers hardness was 280 HV, the surface roughness Rz was 5 μm, and the tension was 0.29 mm. As in the case of Example 1, the printing result was that no distortion occurred in the metal mask even after printing 10,000 times, and the positional accuracy of the solder terminals was good. Also, no defects such as bleeding of the cream solder, cracking, detachment and chipping of the solder terminals occurred.
[0036]
[Example 4]
As plating conditions, Ni sulfamate 450 g / l, NiCl2.6H2O 35 g / l, CoSO4.7H2O 0.2 g / l, boric acid 35 g / l, PH 4.0, current density 1.5 A / dm2, bath A metal mask and a metal mask printing plate were prepared and evaluated in the same manner as in Example 1 except that a temperature of 40 ° C. was used.
As a result, the peak intensity ratio of the (220) plane was 0.53, the Vickers hardness was 250 HV, the surface roughness Rz was 6 μm, and the tension was 0.29 mm. As in the case of Example 1, the printing result was that no distortion occurred in the metal mask even after printing 10,000 times, and the positional accuracy of the solder terminals was good. Also, no defects such as bleeding of the cream solder, cracking, detachment and chipping of the solder terminals occurred.
[0037]
[Example 5]
As plating conditions, Ni sulfamate 380 g / l, NiCl2.6H2O 70 g / l, CoSO4.7H2O 0.2 g / l, boric acid 30 g / l, PH 4.0, current density 1.0 A / dm2, bath A metal mask and a metal mask printing plate were prepared and evaluated in the same manner as in Example 1 except that a temperature of 40 ° C. was used.
As a result, the peak intensity ratio of the (220) plane was 0.72, the Vickers hardness was 300 HV, the surface roughness Rz was 5 μm, and the tension was 0.29 mm. As in the case of Example 1, the printing result was that no distortion occurred in the metal mask even after printing 10,000 times, and the positional accuracy of the solder terminals was good. Also, no defects such as bleeding of the cream solder, cracking, detachment and chipping of the solder terminals occurred.
[0038]
[Comparative Example 1]
Example 1 except that the plating conditions used were 450 g / l of Ni sulfamate, 35 g / l of NiCl2.6H2O, 40 g / l of boric acid, PH of 3.6, a current density of 1.5 A / dm2, and a bath temperature of 45 ° C. A metal mask and a metal mask printing plate were prepared and evaluated in the same manner as described above.
As a result, the peak intensity ratio of the (220) plane was 0.35, the Vickers hardness was 300 HV, the surface roughness Rz was 4 μm, and the tension was 0.29 mm. As for the printing result, when the metal mask was observed after printing 2,000 times, distortion was observed in a part of the opening pattern portion of the mask. In addition, the solder terminal on which the pattern portion where the distortion was observed was formed had a displacement at the position of the solder terminal.
[0039]
[Comparative Example 2]
Example 1 except that the plating conditions used were 300 g / l of Ni sulfamate, 30 g / l of NiCl2.6H2O, 40 g / l of boric acid, PH 4.4, current density of 2.0 A / dm2, and bath temperature of 55C. A metal mask and a metal mask printing plate were prepared and evaluated in the same manner as described above.
As a result, the peak intensity ratio of the (220) plane was 0.15, the Vickers hardness was 250 HV, the surface roughness Rz was 6 μm, and the tension was 0.29 mm. As for the printing result, when the metal mask was observed after printing 1,000 times, distortion was observed in a part of the opening pattern portion of the mask. In addition, the solder terminal on which the pattern portion where the distortion was observed was formed had a displacement at the position of the solder terminal.
[0040]
[Comparative Example 3]
The same as Example 1 except for the plating conditions of 330 g / l of NiSO4.6H2O, 245 g / l of NiCl, 40 g / l of boric acid, PH3.8, current density of 2 A / dm2, and temperature of 50 ° C. Thus, a metal mask and a printing plate were prepared and evaluated.
As a result, the orientation ratio of the (220) plane was 0.05, and the same printing phenomenon as that of Comparative Example 1 was observed after printing 500 times. The Vickers hardness of the metal mask was 270 HV, and the surface roughness Rz was 5 μm.
[0041]
[Comparative Examples 4 and 5]
A metal mask plate was prepared in the same manner as in Example 1 except that the tension when attaching gauze to the aluminum frame was changed. After measuring the plate tension, cream solder was printed and the formed solder terminals were evaluated. .
As a result, the tensions of the plates of Comparative Examples 4 and 5 were 0.35 and 0.20, respectively. As for the printing result of the cream solder, in Comparative Example 4, plate separation during printing was poor, transfer failure occurred, and defects such as chipping and cracking of solder terminals occurred. On the other hand, in Comparative Example 5, the separation of the printing plate rapidly occurred, and the solder terminal was chipped.
[0042]
【The invention's effect】
The printing metal mask of a high-definition pattern made of nickel or a nickel alloy manufactured by the electroforming method of the present invention has a (111) plane, a (200) plane, and a (200) plane in terms of metal crystal orientation measured by X-ray diffraction. By setting the ratio of the peak intensity of the (220) plane to the total of the peak intensity of the (220) plane to 0.4 or more, the printing durability of the metal mask is improved, and the tension of the printing plate having the metal mask attached to the metal frame is further improved. Is set to 0.25 to 0.32, the releasability of the printing plate is improved.
[Reference number] MP030002

Claims (4)

電鋳法により作られたニッケル又はニッケル合金からなる印刷用メタルマスクであって、X線回折により測定したメタルの結晶の配向性において、(111)面、(200)面及び(220)面のピーク強度の合計に対する(220)面のピーク強度比が0.4以上であることを特徴とする印刷用メタルマスク。This is a printing metal mask made of nickel or a nickel alloy made by an electroforming method. A metal mask for printing, wherein the peak intensity ratio of the (220) plane to the total peak intensity is 0.4 or more. 請求項1記載の印刷用メタルマスクを金属枠に取り付けたメタルマスク印刷版。A metal mask printing plate comprising the metal mask for printing according to claim 1 attached to a metal frame. テンションが0.25〜0.32mmである請求項2記載のメタルマスク印刷版。The metal mask printing plate according to claim 2, wherein the tension is 0.25 to 0.32 mm. 請求項3記載のメタルマスク印刷版を用いてクリームはんだを印刷してなるはんだ端子形成方法。A method of forming solder terminals by printing cream solder using the metal mask printing plate according to claim 3.
JP2003145883A 2003-05-23 2003-05-23 Printing metal mask, printing plate and forming method for solder terminal Pending JP2004345265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003145883A JP2004345265A (en) 2003-05-23 2003-05-23 Printing metal mask, printing plate and forming method for solder terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003145883A JP2004345265A (en) 2003-05-23 2003-05-23 Printing metal mask, printing plate and forming method for solder terminal

Publications (1)

Publication Number Publication Date
JP2004345265A true JP2004345265A (en) 2004-12-09

Family

ID=33532900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003145883A Pending JP2004345265A (en) 2003-05-23 2003-05-23 Printing metal mask, printing plate and forming method for solder terminal

Country Status (1)

Country Link
JP (1) JP2004345265A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007096167A (en) * 2005-09-30 2007-04-12 Dainippon Printing Co Ltd Electromagnetic wave shielding sheet
JP2007096165A (en) * 2005-09-30 2007-04-12 Dainippon Printing Co Ltd Electromagnetic wave shielding sheet
JP2007096164A (en) * 2005-09-30 2007-04-12 Dainippon Printing Co Ltd Electromagnetic wave shielding sheet
JP2011189673A (en) * 2010-03-16 2011-09-29 Panasonic Corp Screen printing apparatus and method for tension measurement of mask in the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007096167A (en) * 2005-09-30 2007-04-12 Dainippon Printing Co Ltd Electromagnetic wave shielding sheet
JP2007096165A (en) * 2005-09-30 2007-04-12 Dainippon Printing Co Ltd Electromagnetic wave shielding sheet
JP2007096164A (en) * 2005-09-30 2007-04-12 Dainippon Printing Co Ltd Electromagnetic wave shielding sheet
JP2011189673A (en) * 2010-03-16 2011-09-29 Panasonic Corp Screen printing apparatus and method for tension measurement of mask in the same

Similar Documents

Publication Publication Date Title
EP0664016B1 (en) Method for preparing and using a screen printing stencil having raised edges
US5826516A (en) Squeegee for screen printing and its production method
JP2009029101A (en) Mask for screen printing and screen printing method using the same
WO2010087455A1 (en) Mesh member for screen printing
JP2004345265A (en) Printing metal mask, printing plate and forming method for solder terminal
JPH08183151A (en) Manufacture of mesh-integrated metal mask
JP6486872B2 (en) Stencil for printing
JP2004221489A (en) Metal mask and metal mask printing plate
JP3865085B2 (en) Manufacturing method of electroformed product
JP5286532B2 (en) Paste printing plate
JP2007015360A (en) Metal mask and metal mask printing plate
JP2004167713A (en) Metal mask and printing plate using the same
US20060243700A1 (en) Composite electroformed screening mask and method of making the same
KR100470272B1 (en) Method of manufacturing the metal pattern screen mask
JP6578539B1 (en) Method for manufacturing conductive ball mounting mask
JP2004358854A (en) Manufacturing method for metal mask, metal mask and metal mask printing form plate
TWI461123B (en) Membrane substrate and method for making the same
CN103203982A (en) Three-dimensional mask plate for printing
JP5291353B2 (en) Metal mask and manufacturing method thereof
JP6763626B1 (en) Metal mask manufacturing method and metal mask
JP2003072021A (en) Metal mask for printing
JP3042814U (en) Printing plate
JP2020199668A (en) Metal mask and method for manufacturing the same
JPH10335800A (en) Formation of solder bump
JP2005305725A (en) Metal mask and manufacturing method thereof