JP2004167713A - Metal mask and printing plate using the same - Google Patents

Metal mask and printing plate using the same Download PDF

Info

Publication number
JP2004167713A
JP2004167713A JP2002333067A JP2002333067A JP2004167713A JP 2004167713 A JP2004167713 A JP 2004167713A JP 2002333067 A JP2002333067 A JP 2002333067A JP 2002333067 A JP2002333067 A JP 2002333067A JP 2004167713 A JP2004167713 A JP 2004167713A
Authority
JP
Japan
Prior art keywords
metal mask
metal
solder
printing
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002333067A
Other languages
Japanese (ja)
Other versions
JP2004167713A5 (en
Inventor
Yoshihiro Taniguchi
谷口義博
Masanao Sato
佐藤正直
Kota Iwasaki
岩崎高大
Noboru Koike
昇 小池
Yoshiyuki Kitayama
北山美幸
Hideki Chiba
千葉秀貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Process Lab Micron Co Ltd
Original Assignee
Process Lab Micron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Process Lab Micron Co Ltd filed Critical Process Lab Micron Co Ltd
Priority to JP2002333067A priority Critical patent/JP2004167713A/en
Publication of JP2004167713A publication Critical patent/JP2004167713A/en
Publication of JP2004167713A5 publication Critical patent/JP2004167713A5/ja
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To prevent defects such as occurrence of oozing of cream solder, a crack of a solder terminal, an omission, a crack or the like and an inferiority in a transfer position of the solder terminal when the solder terminal is formed by printing the cream solder by using a metal mask of 50-150 μm aperture size and 100-250 μm repetition pitch for mounting electronic parts in high density. <P>SOLUTION: A Vickers hardness of the metal mask to be used for the printing plate is made 200-350 HV. A surface roughness Rz on a printed-wiring board side is made to be 1-8 μm, and a tension of the plate wherein the metal mask is stuck to a metallic frame via gauze is made to be 0.25-0.32 mm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品や半導体チップを高密度に実装するための接続用のはんだ端子を形成する際に使用するクリームはんだの印刷用のメタルマスク、及びこのメタルマスクを紗を介して金属枠に貼り付けたメタルマスク印刷版に関する。
【0002】
【従来の技術】
携帯電話を筆頭に、電子回路の小型軽量化の要請から、プリント配線基板に電子部品を高密度に、特にプリント配線基板の両面に電子部品を高密度に実装することが広く行われている。この高密度実装においては、プリント配線基板面に電子部品を実装するために、プリント配線基板にクリームはんだを印刷し、はんだ端子の高精細な配線パターンを形成し、該はんだ端子に電子部品や半導体チップを搭載し、はんだリフロー炉を通して電子部品や半導体チップの実装を行う。この際、はんだ端子の配線パターンを高精細に印刷するための印刷版が種々提案され、実用に供されている。
【0003】
例えば、印刷パターンが形成された金属板(メタルマスク)を紗を介して金属枠に貼り付けたメタルマスク印刷版は、高精細印刷性、印刷精度の耐久性、印刷版の作り易さ等のために広く用いられている。金属板に配線パターンを形成する方法(メタルマスクの製造法)としては、金属板にフォトリソグラフ法を用いて金属をエッチングして作られるエッチング法、レーザーによりパターン状に直接金属板に穴を開けるレーザ法、導電性金属表面にレジスト膜で配線パターンを形成し、電鋳により製作するアディティブ法等があり、電子部品の実装密度と経済性の点から使い分けられている。この中でアディティブ法によるメタルマスクは高精細なパターンの加工がし易く、最も高密度な配線パターンの印刷に用いられている。
【0004】
しかしながら高密度実装用の高精細メタルマスクは前記したようにアディティブ法で作製できても、このメタルマスクを用いてプリント配線基板にクリームはんだを印刷し、電子部品の実装用のはんだ端子を形成した場合、パターンが高精細になればなる程、印刷版の版離れが悪くなったり、クリームはんだの版からの抜けが悪くなり、クリームはんだの転写性の悪化を招く。その結果転写されたクリームはんだが滲んだり、形成されたはんだ端子に欠け、割れ、抜け等の欠陥が発生したり、印刷中に版が延伸してはんだ端子の転写位置の精度が低下したりし、印刷工程の歩留まり低下の大きな原因となっていた。
前記した印刷性の問題点を改良するために、特開平10−129140には、メタルマスクの被印刷面側を鏡面にし、開口にテーパーをつけたメタルマスクが提案されている。
又、特開2000−313179には、メタルマスクの開口部の外側に凹部を設け、印刷版の版離れを改良したメタルマスクが提案されている。しかし、このような改良されたメタルマスクでも、印刷性は必ずしも十分とは言えず、その更なる改良が求められている。
【0005】
【発明が解決しようとする課題】
本発明の目的は、板厚が20〜55μm、大きさが50〜150μmのクリームはんだ印刷用の開口部を繰返しピッチ100〜250μmで有するメタルスクリーンを用いて、プリント配線基板等に高密度実装用のはんだ端子の形成に際して、クリームはんだを印刷した際に前記したクリームはんだの滲み、はんだ端子の、欠け、抜け、割れ等の欠陥の発生、及びはんだ端子の転写位置の精度低下を防止するための印刷用メタルマスク、及びそれを用いたメタルマスク印刷版を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、メタルマスクの金属の特性、特にビッカース硬度、表面粗さ、及び該メタルマスクを紗を介して貼り付けた後の印刷版のテンション等がクリームはんだの印刷版からの抜けに大きく関係していることを見つけ、本発明を完成した。
【0007】
すなわち、本発明は、
クリームはんだ印刷用の開口部の大きさが50〜150μm、該開口部の繰返しピッチが100〜250μm、且つメタルの板厚が20〜55μmのクリームはんだ印刷用のメタルマスクであって、該メタルマスクのスキージ−面側の硬度が、ビッカース硬度で200〜350HV、及び/又は該メタルマスクの被印刷面側の表面粗さRzが1〜8μmであることを特徴とする印刷用メタルマスク、及び該メタルマスクを紗を介して金属枠に貼り付けてなるメタルマスク印刷版であり、該メタルマスク印刷版のテンションが0.25〜0.32mmであるメタルマスク印刷版、である。
【0008】
【発明の実施の形態】
以下、本発明のメタルマスク、及びそれを用いた印刷版について詳細に説明する。
本発明のメタルマスクは、板厚が20〜55μm、大きさが50〜150μmのクリームはんだ印刷用の開口部を、繰返しピッチ100〜250μmで有す
る。
【0009】
本発明においける印刷版用のメタルマスクに用いられる金属としては、ニッケル、銅、クロム、亜鉛、鉄等の金属やこれら金属の合金等、及び前記金属やその合金の積層体が挙げられ、なかでも得られるメタルマスクの硬度等の点からニッケル及びニッケル合金が好ましい。
【0010】
本発明のメタルマスクはクリームはんだ印刷用の開口部を有するが、その形状は特に制限はなく、例えば、円形、楕円形、正方形、長方形、菱形、台形等の四角形、六角形及び八角形等の多角形、その他瓢箪形、ダンベル形等の不定形等が挙げられる。そしてその大きさは、高密度実装のためには、前記した種々の形状の最大の開口部が50〜150μmである。
【0011】
一方、印刷版からのクリームはんだの抜け性によるクリームはんだの転写性の点から、印刷用開口部が形成されたメタルマスクはスキージ−面側のビッカース硬度は200〜350HVが好ましい。ビッカース硬度が200HV未満の場合は印刷中にメタルマスクが延伸し、はんだ端子の位置精度が低下したり、印刷耐久性が悪くる等の不良を生じ、好ましくない。他方、硬度が350HVを超える場合はメタルマスクの基板への追従性が低下し、クリームはんだの未転写が生じて好ましくない。一方、非印刷面側の表面粗さRzは1〜8μmが好ましい。表面粗さRzが1μm未満の場合は版離れが悪くなり、転写性の不良を生じ、8μmを超える場合はプリント配線基板に転写されたクリームはんだに滲みが生じて好ましくない。この版離れやクリームはんだの滲みの点からは、表面粗さRzは3〜7μmが更に好ましい。又、本発明においては、メタルマスクの前記したビッカース硬度、及び表面粗さは両方を満足するのが最も好ましい。
被印刷面側のビッカース硬度は特に制限はなく、スキージ−側の硬度と同じ手も、硬くても、柔らかくても良い。電鋳法でメタルマスクを製作すると両側の表面硬度は通常はそれ程大きくは変化はしない。一方、スキージー面側の表面粗さにも特に制限はないが、粗すぎるとスキージ−がスムースに動かず、クリームはんだを均一に引き難い。この点からはスキージー面側の表面粗さはRyで2μm以下が好ましく、1μm以下が更に好ましい。メタルマスクの母材側の表面は母材の表面粗さを反映し、母材と逆の面は電鋳条件によって変化するので所望の粗さに制御することが出来る。
ここで、ビッカース硬度の測定方法は、JIS Z2244に準拠して測定した値、又、表面粗さRzとは、JIS B0660:1998に規程されている10点平均粗さを言う。表面粗さの測定方法は触針式、光学式、二次電子式等種々提案されており、測定範囲、感度、使い勝手等が異なり、使用目的に応じて使い分けられている。本発明では光学式であるレーザー顕微鏡を用いた。尚、メタルマスクの面積の大きさに比してビッカース硬度、表面粗さ共に測定範囲が狭いので、メタルマスクの偏らない多数の点を測定し、その平均値で表示した。具体的にはビッカース硬度は5点以上、表面粗さは27点以上である。
【0012】
又、このメタルマスクからのクリームはんだの抜け性の点からは、クリームはんだが通過する開口部にテーパーがあるほうが好ましく、テーパーとしては2〜10μmが好ましい。
【0013】
更に、本発明においては、前記したメタルマスクを紗を介して金属枠に貼り付けてメタルマスク印刷版となるが、用いられる紗としてはポリエステル、ナイロン、シルク、金属等からなる100〜300メッシュの網目からなるメッシュスクリーンが挙げられる。メタルマスクを貼り付けた後の版のテンションは、0.25〜0.32mmが好ましい。版のテンションが0.25mm未満の場合は印刷版の版離れが急激起こり、はんだ端子に欠けが生じ、一方、該テンションが0.32mmを越える場合は、版離れが悪く、転写不良を起こし、はんだ端子に欠け、割れ等の欠陥が生じ、好ましくない。これらの印刷版の急激な版離れ、及び転写不良の点からは、版のテンションは0.28〜0.30mmが更に好ましい。
【0014】
印刷版のテンションは種々の測定法、測定機が提案されているが、本発明における印刷版のテンションとは、印刷版の中央部に一定の荷重を付加した際の印刷版のたわみ量で表示し、東京プロセスサービス(株)製のテンションゲージSTG−80Aを用いて測定した値とする。又、版のテンションは金属枠に紗を貼り付ける際のテンションを変えることによって所望のテンションに制御することができる。
【0015】
本発明の印刷版に用いられる金属枠としては、アルミ、ステンレス、銅等のからなる金属枠が挙げられる。
【0016】
本発明のメタルマスク、及びメタルマスク版の製造方法に関して述べる。先ず、メタルマスクの製造方法としては、前記した金属の板にレジストを塗布、又はラミネートし、フォトリソグラフ法により印刷パターン状に露光、現像した後、印刷パターン部の金属をアルカリ等でエッチングする方法、金属板に直接レーザー光を印刷パターン状に走査露光してパターン部の金属を溶融飛散させ除去する方法、又は導電性基板表面にフォトリソグラフ法によりレジスト膜で印刷パターンを形成した母材に、電鋳法によりニッケル等の金属を所定の膜厚形成した後、母材を剥離して製作するアディティブ法等が挙げられる。
本発明においては、得られる印刷パターンの高精細性、正確性等の点からアディティブ法が好ましい。
【0017】
メタルマスクの好ましい製法であるアディティブ法に関して詳細に説明する。表面がフラットで、導電性を有する金属、例えば、ステンレス、銅、アルミ、ニッケル等からなる基板、又はガラス、プラスチック等の非導電性の基板に蒸着、スパッター、又は無電解めっき法で導電性の金属薄膜を形成した基板を母材とし、該母材にフォトレジストを塗布、又は積層する。フォトレジストとしてはドライフィルムや液状レジストがあり、それぞれネガ型、ポジ型のどちらでも用いることができる。
【0018】
次に該フォトレジストを成膜した基板に、印刷パターンを有する樹脂製マスク、又はガラスマスクを通して、紫外線露光を行う。露光方法としてはレジスト膜表面にマスクを密着して露光しても、又はギャップを設けて露光しても良い。露光した後、レジスト膜をアルカリ溶液、溶剤等により現像し、導電性基板上にレジスト膜の印刷パターンを形成する。すなわち、クリームはんだが通過する開口部に相当する部分にはレジスト膜が残り、その他のクリームはんだが印刷されない部分はレジスト膜が除去され、導電性の基板表面が露呈した状態になる。
【0019】
次に、このレジスト膜で印刷パターンが形成された基板を金属めっきの槽に浸し、通電しながら、所定の膜厚が得られるまで電鋳を行う。この際用いられる金属としては、ニッケル、銅、クロム、亜鉛等を主成分にする金属が好ましく、特にメタルのビッカース硬度等の点からニッケルを主成分にする金属が好ましい。ニッケルめっきをする際に用いられるめっき浴としては、通常のワット浴、スルファミン酸浴、酢酸ニッケル浴等が用いられる。
【0020】
尚、本発明のメタルマスクの特徴であるビッカース硬度、及び表面粗さは、めっき浴の組成、めっき温度、電流密度等の電鋳条件をコントロールすることにより得ることが出来る。又、表面粗さは母材表面を所望の粗さに加工し、該母材を用いて電鋳を行い母材表面の粗さをメタルマスクに転写する方法もあるが、ビッカース硬度と同じように、めっき浴の組成、めっき温度、電流密度等の電鋳条件をコントロールすることにより母材とは逆の面を所望の粗さにすることもできる。
【0021】
本発明のメタルマスクの膜厚は前記したように20〜55μmであるが、該膜厚が20μm未満の場合は版の強度が不足し、使用中に版が延伸し、形成される端子の位置精度が低下し、又、55μmを超える場合は端子のはんだ量が多くなりすぎ、はんだが溶融した際に広がり過ぎたり、はんだの抜け性そのものが劣り好ましくない。
【0022】
次に、母材から電鋳によりメタルマスクを剥離し、アルカリ溶液で洗浄して残存するレジスト膜を除去し、メタルマスクを製作する。
【0023】
前記して作られたメタルマスクを用いてメタルマスク版作るには、金属枠に紗を貼り付け、該紗に前記メタルマスクの外周部を接着剤を用いて貼り付けた後、接着部以外の内側の紗を切り取る。この様にして金属枠にメタルマスクの外周部を紗を介して貼り付けたメタルマスク印刷版が出来上がる。
【0024】
本発明のメタルマスクを用いて、プリント配線基板上にクリームはんだを印刷し、はんだ端子を形成するが、形成されたはんだ端子の形状は通常、直径50〜150μm、ピッチ100〜250μm程度である。
【0025】
【実施例】以下、本発明を実施例によりさらに詳細に説明する。ただし、本発明は、これらの実施例により限定されるものではない。
【0026】
〔実施例1〕
板厚0.2mm、550×650mmのSUS304の基板の表面をバフ研磨によって整面し、ドライフィルムレジスト(FP240、東京応化工業(株)製)を両面にラミネートした。次に、電子部品搭載用のはんだ端子パターンとして、直径100μmの紫外線を透過しない黒色の円を繰り返しピッチ150μmで2500(50×50)個からなる基本パターンを4つ面取りしたパターンを有するガラスマスクを使用して、ミラー反射型平行光露光機で両面露光し、15分放置後、1.0%の炭酸ナトリウム水溶液で現像、水洗してSUS304の基板の両面にドライフィルムレジスト膜のはんだ端子パターンを形成した。
【0027】
次に、スルファミン酸ニッケルめっき浴に入れて、2A/dm2、浴温度45℃で前記基板上に厚さ30μmのニッケル膜を形成した。該ニッケル膜が形成された基板からニッケル膜を剥離し、得られたニッケル膜を50℃の1.0%水酸化ナトリウム水溶液に浸漬してレジスト膜を除去して400×480mmのニッケル製のメタルマスクを作製した。
該メタルマスクのビッカース硬度は280HV(ビッカース硬度計MVK−G1、(株)アカシ製)であった。又、開口部のテーパーは約5μmであった。
【0028】
次に、180メッシュのポリエステル製の紗が張られた外形550×650mmのアルミ製枠に、前記メタルマスクを母材面側がスキージ−面になるようにエポキシ系接着剤を用いて貼り付けてメタルマスク版を作製した。該版の被印刷面(プリント配線基板面)側のメタルマスクの表面粗さRzは5μm(超深度形状測定顕微鏡 VK−8500、(株)キーエンス製)、版枠外側各4辺中心部の13cm内側のテンションの平均値は0.29mm(テンションゲージSTG−80A、東京プロセスサービス(株)製で測定)であった。
【0029】
前記して作られたメタルマスクスクリーンを用いて、通常の方法に従って基板上にはんだ平均粒径11μmのクリームはんだ(SQ−10−91、タムラ化研株式会社製)を印刷し、直径略100μmのはんだ端子1万個を形成した。該1万個の端子を観察したが、クリームはんだの滲み、はんだ端子の割れ、抜け、欠け等の欠陥は全く生じなかった。又、はんだ端子の位置精度も全く問題はなかった。
【0030】
〔実施例2〜5、比較例1〜3〕
ニッケルめっきのめっき条件(めっき浴、電流密度A/dm2)が表1に示す以外は実施例1と同じ方法でメタルマスクを作り、メタルマスク版を作製した。メタルマスクの硬度、版の表面粗さの測定、及びクリームはんだの印刷を行い、形成されたはんだ端子の観察を行った。
結果は、実施例2〜5においては、クリームはんだの滲み、はんだ端子の割れ、抜け、欠け等の欠陥は全く生じなかった。又、はんだ端子の位置精度も問題なかった。一方、比較例1においては、印刷時の版離れが悪く、クリームはんだの転写不良によるはんだ端子の割れ、抜け、欠け等の欠陥が生じた。比較例2においては、転写不良によるはんだ端子の割れ、抜け、欠け等の欠陥が生じると共に、はんだ端子の位置精度が低下した。比較例3においては、クリームはんだの滲みが生じ、且つはんだ端子の位置精度が低下した。

Figure 2004167713
【0031】
〔比較例5、6〕
アルミ枠に紗を貼り付ける際のテンションを変える以外は実施例1と同じ方法でメタルマスク版を作り、版のテンションを測定した後、はんだクリームを印刷し、形成したはんだ端子の評価を行った。実施例1と同様に測定した比較例5及び6の版のテンションはそれぞれ0.35mm、0.20mmであった。
クリームはんだの印刷結果は、比較例5においては、印刷時の版離れが悪く、はんだ端子に欠け、割れ等の欠陥が生じた。一方、比較例6においては、印刷版の版離れが急激に起こり、はんだ端子に欠けが生じた。
【0032】
【発明の効果】本発明のメタルマスクはビッカース硬度を200〜350HV、プリント配線基板側の表面粗さRzを1〜8μm、該メタルマスクを紗を介して金属枠に貼り付けた版のテンションを0.25〜0.32mmにすることによって、クリームはんだを印刷した際のクリームはんだの転写性不良に由来するクリームはんだの滲み、はんだ端子の割れ、抜け、欠け等の欠陥、及びはんだ端子の転写位置の不良を防止することができ、はんだ端子形成工程の歩留まりが大きく向上した。
【整理番号】MP020004[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a metal mask for printing cream solder used when forming solder terminals for connection for mounting electronic components and semiconductor chips at high density, and the metal mask is formed on a metal frame through a gauze. It relates to a metal mask printing plate attached.
[0002]
[Prior art]
Due to the demand for smaller and lighter electronic circuits, such as mobile phones, it has been widely practiced to mount electronic components on a printed wiring board with high density, especially on both sides of the printed wiring board with high density. In this high-density mounting, in order to mount electronic components on the printed wiring board surface, cream solder is printed on the printed wiring board, a high-definition wiring pattern of solder terminals is formed, and electronic components and semiconductors are mounted on the solder terminals. The chip is mounted, and electronic components and semiconductor chips are mounted through a solder reflow furnace. At this time, various printing plates for printing the wiring patterns of the solder terminals with high definition have been proposed and put to practical use.
[0003]
For example, a metal mask printing plate, in which a metal plate (metal mask) on which a printing pattern is formed is attached to a metal frame via a gauze, has high-definition printing properties, durability of printing accuracy, ease of making a printing plate, and the like. Widely used for. As a method of forming a wiring pattern on a metal plate (a method of manufacturing a metal mask), an etching method made by etching a metal using a photolithographic method on a metal plate, and a hole directly formed in a pattern by a laser using a laser. There are a laser method, an additive method in which a wiring pattern is formed on the surface of a conductive metal by a resist film and electroforming, and the like. These methods are selectively used in terms of the mounting density of electronic components and economy. Among these, a metal mask formed by the additive method can easily process a high-definition pattern, and is used for printing a wiring pattern having the highest density.
[0004]
However, even though a high-definition metal mask for high-density mounting can be produced by the additive method as described above, cream solder was printed on a printed wiring board using this metal mask to form solder terminals for mounting electronic components. In this case, the higher the definition of the pattern, the worse the separation of the printing plate from the printing plate, and the harder the cream solder comes off the plate, resulting in deterioration of the transferability of the cream solder. As a result, the transferred cream solder may bleed, or the formed solder terminal may have defects such as chipping, cracking, or missing, or the plate may be stretched during printing and the accuracy of the transfer position of the solder terminal may be reduced. This has been a major cause of a reduction in the yield of the printing process.
In order to improve the above-mentioned problem of printability, Japanese Patent Application Laid-Open No. H10-129140 proposes a metal mask in which the surface to be printed of the metal mask has a mirror surface and the opening is tapered.
Japanese Patent Application Laid-Open No. 2000-313179 proposes a metal mask in which a recess is provided outside the opening of the metal mask to improve the separation of the printing plate. However, even with such an improved metal mask, printability is not always sufficient, and further improvement is required.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to use a metal screen having a thickness of 20 to 55 μm and a size of 50 to 150 μm for solder paste printing at a repetition pitch of 100 to 250 μm for high-density mounting on a printed wiring board or the like. In order to prevent the spread of the cream solder described above when the cream solder is printed during the formation of the solder terminal, the occurrence of defects such as chipping, omission, cracks, and the like, and to prevent the accuracy of the transfer position of the solder terminal from deteriorating. An object of the present invention is to provide a metal mask for printing and a metal mask printing plate using the same.
[0006]
[Means for Solving the Problems]
The present inventors have found that the properties of the metal of the metal mask, in particular, Vickers hardness, surface roughness, and the tension of the printing plate after the metal mask is pasted through a gauze are likely to come off from the cream solder printing plate. We found that they were closely related, and completed the present invention.
[0007]
That is, the present invention
A cream solder printing metal mask having an opening for cream solder printing having a size of 50 to 150 μm, a repetitive pitch of the openings of 100 to 250 μm, and a metal plate thickness of 20 to 55 μm. A metal squeegee surface having a Vickers hardness of 200 to 350 HV, and / or a surface roughness Rz of the metal mask on a printing surface side of 1 to 8 μm; This is a metal mask printing plate obtained by attaching a metal mask to a metal frame via a gauze, and the metal mask printing plate has a tension of 0.25 to 0.32 mm.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the metal mask of the present invention and a printing plate using the same will be described in detail.
The metal mask of the present invention has openings for printing cream solder having a plate thickness of 20 to 55 μm and a size of 50 to 150 μm at a repetition pitch of 100 to 250 μm.
[0009]
Examples of the metal used for the metal mask for a printing plate in the present invention include nickel, copper, chromium, zinc, metals such as iron and alloys of these metals, and a laminate of the metal and the alloy thereof, Of these, nickel and nickel alloys are preferred from the viewpoint of the hardness of the obtained metal mask and the like.
[0010]
Although the metal mask of the present invention has an opening for cream solder printing, its shape is not particularly limited, for example, a circle such as a circle, an ellipse, a square, a rectangle, a rhombus, a trapezoid, a hexagon and an octagon, and the like. Examples include polygonal shapes, other gourd shapes, and irregular shapes such as dumbbell shapes. And the size is 50 to 150 μm for the largest opening of the above-mentioned various shapes for high-density mounting.
[0011]
On the other hand, the Vickers hardness on the squeegee surface side of the metal mask having the printing opening is preferably 200 to 350 HV from the viewpoint of the transferability of the cream solder due to the removability of the cream solder from the printing plate. If the Vickers hardness is less than 200 HV, the metal mask is stretched during printing, and the positional accuracy of the solder terminals is reduced and printing durability is deteriorated. On the other hand, when the hardness exceeds 350 HV, the ability of the metal mask to follow the substrate is reduced, and untransfer of the cream solder occurs, which is not preferable. On the other hand, the surface roughness Rz on the non-printing side is preferably 1 to 8 μm. When the surface roughness Rz is less than 1 μm, the separation from the plate becomes poor, resulting in poor transferability. When the surface roughness Rz exceeds 8 μm, the cream solder transferred to the printed circuit board undesirably bleeds. The surface roughness Rz is more preferably 3 to 7 μm from the viewpoint of the separation of the plate and the bleeding of the cream solder. In the present invention, it is most preferable that the metal mask satisfies both the Vickers hardness and the surface roughness described above.
The Vickers hardness on the printing surface side is not particularly limited, and may be the same hand as the hardness on the squeegee side, or may be hard or soft. When a metal mask is manufactured by the electroforming method, the surface hardness on both sides usually does not change so much. On the other hand, the surface roughness on the squeegee surface side is not particularly limited, but if it is too rough, the squeegee does not move smoothly, and it is difficult to uniformly pull the cream solder. From this point, the surface roughness on the squeegee surface side is preferably 2 μm or less in Ry, more preferably 1 μm or less. The surface on the base material side of the metal mask reflects the surface roughness of the base material, and the surface opposite to the base material changes depending on the electroforming conditions, so that the desired roughness can be controlled.
Here, the method of measuring Vickers hardness is a value measured according to JIS Z2244, and the surface roughness Rz refers to a 10-point average roughness specified in JIS B0660: 1998. Various methods for measuring the surface roughness, such as a stylus method, an optical method, and a secondary electron method, have been proposed. The measuring range, sensitivity, usability, and the like are different, and they are properly used according to the purpose of use. In the present invention, an optical laser microscope was used. Since the measurement range of both Vickers hardness and surface roughness was narrower than the area of the metal mask, a number of points on the metal mask that were not biased were measured and displayed as an average value. Specifically, the Vickers hardness is 5 points or more, and the surface roughness is 27 points or more.
[0012]
Further, from the viewpoint of the removability of the cream solder from the metal mask, it is preferable that the opening through which the cream solder passes has a taper, and the taper is preferably 2 to 10 μm.
[0013]
Furthermore, in the present invention, the metal mask is attached to a metal frame via a gauze to form a metal mask printing plate. The gauze used is a polyester, nylon, silk, 100-300 mesh made of metal or the like. A mesh screen composed of a mesh is used. The tension of the plate after attaching the metal mask is preferably 0.25 to 0.32 mm. When the tension of the plate is less than 0.25 mm, the separation of the printing plate rapidly occurs, and chipping occurs in the solder terminals. On the other hand, when the tension exceeds 0.32 mm, the separation of the plate is poor, causing poor transfer, Defects such as chipping and cracking of the solder terminal occur, which is not preferable. From the viewpoint of rapid separation of the printing plate and poor transfer, the plate tension is more preferably 0.28 to 0.30 mm.
[0014]
Various measurement methods and measuring machines have been proposed for the printing plate tension, but the printing plate tension in the present invention is indicated by the amount of deflection of the printing plate when a certain load is applied to the center of the printing plate. And a value measured using a tension gauge STG-80A manufactured by Tokyo Process Service Co., Ltd. Further, the tension of the plate can be controlled to a desired tension by changing the tension at the time of attaching the gauze to the metal frame.
[0015]
Examples of the metal frame used for the printing plate of the present invention include a metal frame made of aluminum, stainless steel, copper, or the like.
[0016]
The metal mask and the metal mask plate manufacturing method of the present invention will be described. First, as a method of manufacturing a metal mask, a method of applying or laminating a resist on the above-described metal plate, exposing and developing a print pattern by a photolithographic method, and then etching the metal of the print pattern portion with an alkali or the like. A method in which a metal plate is directly scanned and exposed to laser light in the form of a printed pattern to melt and scatter and remove the metal of the pattern portion, or to a base material on which a printed pattern is formed by a resist film on a conductive substrate surface by a photolithographic method, An additive method of forming a metal such as nickel by a predetermined thickness by electroforming and then peeling off the base material to form the metal is used.
In the present invention, the additive method is preferable in terms of high definition and accuracy of the obtained print pattern.
[0017]
The additive method, which is a preferable method for manufacturing a metal mask, will be described in detail. Flat surface, metal with conductivity, for example, a substrate made of stainless steel, copper, aluminum, nickel, etc., or a non-conductive substrate such as glass, plastic, etc., deposited, sputtered, or conductive by electroless plating A substrate on which a metal thin film is formed is used as a base material, and a photoresist is applied or laminated on the base material. As the photoresist, there are a dry film and a liquid resist, and either a negative type or a positive type can be used.
[0018]
Next, the substrate on which the photoresist is formed is exposed to ultraviolet light through a resin mask having a print pattern or a glass mask. As the exposure method, exposure may be performed by closely attaching a mask to the surface of the resist film, or may be performed by providing a gap. After exposure, the resist film is developed with an alkaline solution, a solvent, or the like, to form a print pattern of the resist film on the conductive substrate. That is, the resist film remains in the portion corresponding to the opening through which the cream solder passes, and the resist film is removed in other portions where the cream solder is not printed, leaving the conductive substrate surface exposed.
[0019]
Next, the substrate on which the printed pattern is formed with the resist film is immersed in a metal plating bath, and electroforming is performed while applying a current until a predetermined film thickness is obtained. The metal used at this time is preferably a metal mainly containing nickel, copper, chromium, zinc or the like, and particularly preferably a metal mainly containing nickel from the viewpoint of Vickers hardness of the metal. As a plating bath used for nickel plating, a usual Watt bath, a sulfamic acid bath, a nickel acetate bath, or the like is used.
[0020]
The Vickers hardness and surface roughness, which are features of the metal mask of the present invention, can be obtained by controlling the electroforming conditions such as the composition of the plating bath, the plating temperature, and the current density. There is also a method of processing the surface of the base material to a desired roughness, electroforming using the base material and transferring the roughness of the base material surface to a metal mask. In addition, by controlling the electroforming conditions such as the composition of the plating bath, the plating temperature, and the current density, the surface opposite to the base material can be made to have a desired roughness.
[0021]
As described above, the thickness of the metal mask of the present invention is from 20 to 55 μm. If the thickness is less than 20 μm, the strength of the plate is insufficient, and the plate is stretched during use, and the position of the formed terminal is reduced. If the accuracy is lowered and the thickness exceeds 55 μm, the amount of solder in the terminal becomes too large, the solder spreads too much when the solder is melted, or the removability of the solder itself is poor, which is not preferable.
[0022]
Next, the metal mask is peeled off from the base material by electroforming, washed with an alkaline solution to remove the remaining resist film, and a metal mask is manufactured.
[0023]
In order to make a metal mask plate using the metal mask prepared as described above, a gauze is attached to a metal frame, and an outer peripheral portion of the metal mask is attached to the gauze using an adhesive. Cut out the inner gauze. In this manner, a metal mask printing plate in which the outer peripheral portion of the metal mask is attached to the metal frame via the gauze is completed.
[0024]
The solder terminals are formed by printing cream solder on a printed wiring board using the metal mask of the present invention. The formed solder terminals usually have a diameter of about 50 to 150 μm and a pitch of about 100 to 250 μm.
[0025]
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited by these examples.
[0026]
[Example 1]
The surface of a SUS304 substrate having a thickness of 0.2 mm and 550 × 650 mm was buffed and polished, and a dry film resist (FP240, manufactured by Tokyo Ohka Kogyo Co., Ltd.) was laminated on both sides. Next, as a solder terminal pattern for mounting electronic components, a glass mask having a pattern obtained by chamfering four 2500 (50 × 50) basic patterns consisting of repeating black circles having a diameter of 100 μm and not transmitting ultraviolet light at a pitch of 150 μm was used. Using a mirror-reflection type parallel light exposure machine, perform double-sided exposure, leave for 15 minutes, develop with 1.0% sodium carbonate aqueous solution, wash with water, and form a solder terminal pattern of a dry film resist film on both sides of the SUS304 substrate. Formed.
[0027]
Next, the substrate was placed in a nickel sulfamate plating bath to form a 30 μm-thick nickel film on the substrate at 2 A / dm 2 and a bath temperature of 45 ° C. The nickel film is peeled off from the substrate on which the nickel film has been formed, and the obtained nickel film is immersed in a 1.0% sodium hydroxide aqueous solution at 50 ° C. to remove the resist film. A mask was made.
The Vickers hardness of the metal mask was 280 HV (Vickers hardness meter MVK-G1, manufactured by Akashi Co., Ltd.). The taper of the opening was about 5 μm.
[0028]
Next, the metal mask is adhered to an aluminum frame having an outer shape of 550 x 650 mm over which a 180-mesh polyester gauze is stretched using an epoxy adhesive so that the base material surface side is a squeegee surface. A mask plate was prepared. The surface roughness Rz of the metal mask on the printing surface (printed wiring board surface) side of the plate is 5 μm (ultra-depth shape measuring microscope VK-8500, manufactured by KEYENCE CORPORATION), 13 cm at the center of each of the outer sides of the plate frame. The average value of the inner tension was 0.29 mm (tension gauge STG-80A, measured by Tokyo Process Service Co., Ltd.).
[0029]
Using a metal mask screen prepared as described above, cream solder (SQ-10-91, manufactured by Tamura Kaken Co., Ltd.) having an average solder particle size of 11 μm was printed on a substrate according to a usual method, and a diameter of approximately 100 μm was obtained. 10,000 solder terminals were formed. Observation of the 10,000 terminals revealed no defects such as bleeding of the cream solder, cracking, detachment or chipping of the solder terminals. Also, there was no problem with the positional accuracy of the solder terminals.
[0030]
[Examples 2 to 5, Comparative Examples 1 to 3]
Except for the plating conditions (plating bath, current density A / dm2) of nickel plating shown in Table 1, a metal mask was prepared in the same manner as in Example 1 to prepare a metal mask plate. The hardness of the metal mask, the surface roughness of the plate were measured, and cream solder was printed, and the formed solder terminals were observed.
As a result, in Examples 2 to 5, defects such as bleeding of the cream solder, cracking, detachment, and chipping of the solder terminal did not occur at all. Also, there was no problem with the positional accuracy of the solder terminals. On the other hand, in Comparative Example 1, the separation of the plate during printing was poor, and defects such as cracks, omissions, and chipping of the solder terminals due to poor transfer of the cream solder occurred. In Comparative Example 2, defects such as cracking, detachment, and chipping of the solder terminal due to poor transfer occurred, and the positional accuracy of the solder terminal was reduced. In Comparative Example 3, bleeding of the cream solder occurred, and the positional accuracy of the solder terminals was reduced.
Figure 2004167713
[0031]
[Comparative Examples 5 and 6]
A metal mask plate was prepared in the same manner as in Example 1 except that the tension when attaching gauze to the aluminum frame was changed, the plate tension was measured, a solder cream was printed, and the formed solder terminals were evaluated. . The tensions of the plates of Comparative Examples 5 and 6 measured in the same manner as in Example 1 were 0.35 mm and 0.20 mm, respectively.
In the printing result of the cream solder, in Comparative Example 5, the separation of the plate during printing was poor, and the solder terminal was defective, such as chipping and cracking. On the other hand, in Comparative Example 6, the separation of the printing plate rapidly occurred, and the solder terminals were chipped.
[0032]
The metal mask of the present invention has a Vickers hardness of 200 to 350 HV, a surface roughness Rz on the printed wiring board side of 1 to 8 μm, and a tension of a plate in which the metal mask is attached to a metal frame via a gauze. By setting the thickness to 0.25 to 0.32 mm, defects such as bleeding of the cream solder, cracks, detachment, chipping, and the like of the solder terminal due to poor transferability of the cream solder when printing the cream solder, and transfer of the solder terminal. Position defects can be prevented, and the yield of the solder terminal forming step has been greatly improved.
[Reference number] MP020004

Claims (3)

クリームはんだ印刷用の開口部の大きさが50〜150μm、該開口部の繰返しピッチが100〜250μm、且つメタルの板厚が20〜55μmのクリームはんだ印刷用のメタルマスクであって、該メタルマスクのスキージ−面側の硬度が、ビッカース硬度で200〜350HV、及び/又は該メタルマスクの被印刷面側の表面粗さRzが1〜8μmであることを特徴とする印刷用メタルマスク。A metal mask for cream solder printing, wherein the size of the opening for cream solder printing is 50 to 150 μm, the repetition pitch of the openings is 100 to 250 μm, and the thickness of the metal is 20 to 55 μm. A metal squeegee surface having a Vickers hardness of 200 to 350 HV, and / or a surface roughness Rz of the metal mask on a printing surface side of 1 to 8 μm. 請求項1のメタルマスクを紗を介して金属枠に貼り付けたメタルマスク印刷版。A metal mask printing plate wherein the metal mask according to claim 1 is attached to a metal frame via a gauze. 前記メタルマスク印刷版のテンションが0.25〜0.32mmであることを特徴とする請求項2記載のメタルマスク印刷版。3. The metal mask printing plate according to claim 2, wherein the tension of the metal mask printing plate is 0.25 to 0.32 mm.
JP2002333067A 2002-11-18 2002-11-18 Metal mask and printing plate using the same Pending JP2004167713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002333067A JP2004167713A (en) 2002-11-18 2002-11-18 Metal mask and printing plate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002333067A JP2004167713A (en) 2002-11-18 2002-11-18 Metal mask and printing plate using the same

Publications (2)

Publication Number Publication Date
JP2004167713A true JP2004167713A (en) 2004-06-17
JP2004167713A5 JP2004167713A5 (en) 2005-12-22

Family

ID=32697880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002333067A Pending JP2004167713A (en) 2002-11-18 2002-11-18 Metal mask and printing plate using the same

Country Status (1)

Country Link
JP (1) JP2004167713A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630256A1 (en) * 2004-07-30 2006-03-01 United Technologies Corporation Non-stick masking fixtures and methods of preparing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630256A1 (en) * 2004-07-30 2006-03-01 United Technologies Corporation Non-stick masking fixtures and methods of preparing same
US8349086B2 (en) 2004-07-30 2013-01-08 United Technologies Corporation Non-stick masking fixtures and methods of preparing same
US8603582B2 (en) 2004-07-30 2013-12-10 United Technologies Corporation Non-stick masking fixtures and methods of preparing same

Similar Documents

Publication Publication Date Title
EP0850758A2 (en) Method for preparing and using a screen printing stencil having raised edges
JP4886905B2 (en) Method for producing screen printing mesh member
JP2004221489A (en) Metal mask and metal mask printing plate
JP2006199027A (en) Mask and its manufacturing process for stencil printing
JP2004167713A (en) Metal mask and printing plate using the same
JP2001210932A (en) Method of manufacturing printed wiring board
JP2004345265A (en) Printing metal mask, printing plate and forming method for solder terminal
JP2005144973A (en) Perforated printing mask
JP3279761B2 (en) Cream solder printing mask and printing method using the same
JP2007015360A (en) Metal mask and metal mask printing plate
US20060243700A1 (en) Composite electroformed screening mask and method of making the same
JP2007335803A (en) Method for manufacturing wiring board
CN114340190A (en) Nickel-gold electroplating process for printed board
KR100470272B1 (en) Method of manufacturing the metal pattern screen mask
JP4134327B2 (en) Metal mask and manufacturing method thereof
JPH10335800A (en) Formation of solder bump
TWI461123B (en) Membrane substrate and method for making the same
JP2003072021A (en) Metal mask for printing
JPH11251722A (en) Heat-resistant wiring board
JP2004358854A (en) Manufacturing method for metal mask, metal mask and metal mask printing form plate
JP2005305725A (en) Metal mask and manufacturing method thereof
JP6578539B1 (en) Method for manufacturing conductive ball mounting mask
JP3261338B2 (en) Method of forming solder bumps
JP3438143B2 (en) Manufacturing method of metal mask
JP5163840B2 (en) Mask for stencil printing and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20051109

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20051109

Free format text: JAPANESE INTERMEDIATE CODE: A621

A871 Explanation of circumstances concerning accelerated examination

Effective date: 20060110

Free format text: JAPANESE INTERMEDIATE CODE: A871

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060703

A131 Notification of reasons for refusal

Effective date: 20061003

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20070209

Free format text: JAPANESE INTERMEDIATE CODE: A02