JP2004343378A - Surface acoustic wave device and its manufacturing method - Google Patents

Surface acoustic wave device and its manufacturing method Download PDF

Info

Publication number
JP2004343378A
JP2004343378A JP2003136822A JP2003136822A JP2004343378A JP 2004343378 A JP2004343378 A JP 2004343378A JP 2003136822 A JP2003136822 A JP 2003136822A JP 2003136822 A JP2003136822 A JP 2003136822A JP 2004343378 A JP2004343378 A JP 2004343378A
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
chip
frame
mounting substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003136822A
Other languages
Japanese (ja)
Other versions
JP3912324B2 (en
Inventor
Yasuhide Onozawa
康秀 小野澤
Tatsuya Anzai
達也 安齋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2003136822A priority Critical patent/JP3912324B2/en
Publication of JP2004343378A publication Critical patent/JP2004343378A/en
Application granted granted Critical
Publication of JP3912324B2 publication Critical patent/JP3912324B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an SAW device for which void generation and resin intrusion to an airtight space are prevented at the time of laminating resin in the SAW device in which the airtight space is formed below an IDT by coating the outer surface of an SAW chip mounted on a mounting substrate base material with a heated and softened resin sheet and filling the resin in a skirt part of the SAW chip, and provide its manufacturing method. <P>SOLUTION: A frame body overlapping with the peripheral edge part of the surface acoustic wave chip is formed on the upper surface of the mounting substrate, the frame body is thinner than a gap between the surface acoustic wave chip and the mounting substrate, and the frame body is formed so as to cover the dicing cut margin of the mounting substrate base material along the dicing cut margin. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、弾性表面波デバイスに関し、特にパッケージサイズを小型化にした弾性表面波デバイスとその製造方法に関する。
【0002】
【従来の技術】
近年、弾性表面波(Surface Acoustic Wave:以下、SAW)デバイスは移動体通信分野で幅広く用いられ、高性能、小型、量産性等の点で優れた特徴を有することから特に携帯電話等に多く用いられている。 また、半導体部品においてCSP(Chip Size Package)と呼ばれる小型パッケージングが一般化するのに伴って、SAWデバイスにおいてのフィルタの小型化の容易化とバッチ式の製造方法による生産性の向上という観点から、CSP技術を用いた生産方法が導入されるようになっている。
【0003】
前述したCSP技術を用いた生産方法において、本願発明者が特願2002−293110号にてラミネート工程、プレス成形工程、後硬化工程の3つの工程からなるSAWデバイスの樹脂封止工程を提案している。以下、図8から図12に基づいて前記樹脂封止工程を詳細に説明する。図8は、実装基板母材140上にSAWチップ115をフリップチップ実装する工程を示す断面図である。実装基板母材140は、絶縁基板103の底部に外部電極104を上部に配線パターン105を備え、内部に外部電極104と配線パターン105とを導通する内部導体106を備え、SAWチップ115は圧電基板118の主面上にSAWを励振する為のIDT117と該IDT117に導通した接続パッド116を備えている。そして、実装基板母材140の配線パターン105上にSAWチップ115の接続パッド116を、導体バンプ110を用いて接続することによりフリップチップ実装が行われる。
【0004】
次に、図9に示すように、図8の実装基板母材140上に実装した複数のSAWチップ115の圧電基板118の上面に跨るように、樹脂シート130を載置する。この樹脂シート130は、樹脂シート本体131の一方の面に離型性を有する保護フィルム132を剥離可能に貼付している。
【0005】
次に、図10は各SAWチップ115上に載置された樹脂シート130を、ラミネート装置150によりSAWチップ115に対してラミネートする熱ローララミネート工程を示した断面図である。熱ローララミネート工程を実施するためのラミネート装置150は、SAWチップ115を搭載した実装基板母材140を矢印で示す方向へ所定のラミネート速度で移動させる移動手段と、SAWチップ115上の樹脂シート130の上面に圧接して矢印方向へ回転駆動される熱ローラとしての押圧ローラ151と、実装基板母材140の下面を支持して押圧ローラ151との間で加圧力を発生するガイド部材としての支持ローラ152とを備えている。押圧ローラ151は、ヒータにより所要温度に加熱制御されると共に、駆動源により実装基板母材140をラミネート方向へ送るように回転駆動される。そして、支持ローラ152は、矢印方向へ連れ回り、或いは回転駆動される。この熱ローララミネート工程では、以下の条件を満たすことが求められる。
(a)押圧ローラ151の加熱温度を樹脂シート130の軟化(又は溶融)温度以上、且つ硬化温度未満に設定すること。
(b)押圧ローラ151によって樹脂シート130を押圧ローラ151にて加熱しながら加圧することにより軟化(又は溶融)させること。
(c)軟化(又は溶融)した樹脂シート130を押圧ローラ151にて加熱しながら加圧することによって、樹脂シート本体131をSAWチップの谷間に充填、浸透させて、気密空間Sを保持しながらSAWチップ115を樹脂にて被覆すること。
複数のSAWチップ115上に跨って載置された樹脂シート130を、図10に示した熱ローララミネート工程により、その樹脂シート130が、SAWチップ115外面から実装基板母材140上面にかけて充填されることによりラミネートする。なお、熱ローララミネート法においては、SAWチップ115と実装基板母材140との間の気密空間Sが必要以上に拡張されないよう、樹脂シート130の一端側から他端側へ向けて順次加圧してエアーを抜きながらラミネートできる利点がある。
【0006】
ラミネート工程だけでは樹脂シート130の硬化は完了しないので、樹脂にて外面をラミネートしたSAWチップを加圧しながら加熱することにより、気密空間S内の気体の膨張を抑制しながら樹脂を硬化させるプレス成形工程を行い、更に樹脂を完全に硬化させる為に雰囲気温度を樹脂硬化温度に設定した恒温槽中に実装基板母材を配置し加熱する後硬化工程を行う。以上の工程が完了した状態が図11である。そして、保護フィルム132を剥離し図11に示されているダイシング切り代に沿って実装基板母材140をダイシングブレードにてダイシングすることにより図12のような個片のSAWデバイス100が完成する。
【0007】
【発明が解決しようとする課題】
しかしながら、前述したようなラミネート工程、プレス成形工程、後硬化工程の3つの工程からなるSAWデバイスの樹脂封止工程において、ラミネート工程でのエアーの膨張(ボイド)の発生や気密空間Sへの樹脂侵入が問題となっている。この問題は、樹脂シートの厚さを実装基板母材の中央部のSAWチップにて最適となるように設定すると、実装基板母材の最外周部に配置されているSAWチップにおいて、図13のSAWデバイス101に示すようなダイシング切り代に到達してしまう程の著しいボイドが発生してしまい、逆に樹脂シートの厚さを実装基板母材の最外周部に配置されているSAWチップにて最適となるように設定すると、実装基板母材の中央部のSAWチップにて気密空間Sへの樹脂侵入が発生してしまう。即ち、実装基板母材の中央部と最外周部とで封止樹脂の侵入状態にばらつきが生じてしまうという問題が発生する。
【0008】
そこで、上記問題を解決する為に、特開平11−214955号公報や特開2000−261177号公報(以下、これらを先行技術1と称す)にて開示されているキャビティー型実装基板の適用を検討した。図14は、先行技術1にて開示されているキャビティー型実装基板を用いたSAWデバイスの断面図を示したものである。圧電基板202の主面上にIDT203と該IDT203に導通した接続パッド204を設けたSAWチップ201と、ガラスセラミックスやアルミナからなる基体205a、及び基体205aと同様な部材で構成されSAWチップ201の周縁外周部を載置する環状の積層部材205b、及び基体205aと同様な部材で積層部材205bより広い空間を形成する環状の枠体205cから構成され、基体205aの上面に実装用パッド207を設けた実装基板205を備えており、SAWチップ201上に設けた接続パッド204と実装基板205の基体205aに設けた実装用パッド207とを金属バンプ210を介して導通固着し、圧電基板202の上面及び側面を完全に封止樹脂211で覆った構造である。
【0009】
前記先行技術1に記載されているキャビティー型実装基板においては、溶融して液化した樹脂をキャビティ内に充填し硬化して封止樹脂としているが、このキャビティ型実装基板に上述したラミネート方式を採用した場合を検討する。図14から明らかなように、SAWチップ201外周部に配置されている枠体205cがSAWチップ201の上面よりも高くなっている為、樹脂211をラミネートした際にエアーの逃げ場がなくなりボイドが発生しやすいという欠点を有する。従来技術で説明したように、ラミネート工程においてボイド発生を防止する為に余分なエアーを抜きながらラミネートする必要があり、先行技術1に記載のキャビティ型実装基板を用いてラミネート工程を行うと余分なエアーを抜きながらのラミネートが困難となる。
【0010】
次に特開平10−22763号公報(以下、先行技術2と称す)にて開示されている微小エアギャップ構造へのラミネート工程の適用を検討した。図15は先行技術2に記載されている微小エアギャップ構造のSAWデバイスの縦断面図を示したものである。圧電基板302の主面上にIDT303及び該IDT303に導通された接続パッド304を配置したSAWチップ301と、表面に実装用パッド306及び該実装用パッド306の部分にホールを設けた絶縁層307を形成した実装基板305を備えており、SAWチップ301に設けた接続パッド304と、実装基板305に設けた実装用パッド306とを金属バンプ310にてフリップチップ実装した後、封止剤311で封止しエアギャップ320を設けた構造である。先行技術2の特徴としては、実装基板305とSAWチップ301との間に絶縁層307を設けることによって、SAWチップ301と実装基板305との間隙を限りなく零に近づけ、封止剤311がエアギャップ320へ流れ込まないようにしたことである。
【0011】
前記先行技術2は、SAWチップと実装基板との間の気密空間を微小ギャップとすることで封止樹脂が気密空間に浸入しにくくなるという効果が期待できる。しかしながら、先行技術2記載のSAWデバイスの構造は、実装基板305上に絶縁層307を形成した上で、実装用パッド306の部分にホールを形成する工程が必要となるが、デバイスの小型化に伴ない、実装用パッド306の面積も微小となるので実装用パッド306とホールとの位置合わせには精度の高い厳密な作業が必要となり煩雑であった。更に、絶縁層307上に設けたホールが極めて微小であるため、実装基板305に金属バンプ310を形成する際にも煩雑な作業が要求されるといった製造上の問題がある。
【0012】
本発明は、以上の問題を解決するためになされたものであり、SAWチップを実装基板母材にフリップチップ実装し表面を樹脂で封止したSAWデバイスにおいて、容易に気密空間を形成し、且つ、樹脂をラミネートする際にボイド発生や気密空間への樹脂浸入を防いだSAWデバイス及びその製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成するために本発明に係るSAWデバイスとその製造方法の請求項1記載の発明は、弾性表面波チップと、上面に前記弾性表面波チップをフリップチップ実装した実装基板と、前記弾性表面波チップに形成されたIDTと前記実装基板との間に気密空間を形成しつつ前記弾性表面波チップの外面と前記実装基板の上面とを覆う封止樹脂とを備えた弾性表面波チップであって、前記実装基板の上面には前記弾性表面波チップの周縁部と重複する枠体が形成されており、該枠体は前記弾性表面波チップと前記実装基板との間隙よりも薄い厚みを有することを特徴とする弾性表面波デバイスである。
【0014】
請求項2記載の発明は、前記枠体(第一の枠体)の上面に第二の枠体を積層したものであって、該第二の枠体と第一の枠体とを合わせた厚みが前記弾性表面波チップの上面よりも低いことを特徴とする弾性表面波デバイスである。
【0015】
請求項3記載の発明は、複数の実装基板を複数個シート状に連結した実装基板母材のダイシング切り代に沿って該ダイシング切り代を覆うように枠体を形成する枠形成工程と、弾性表面波チップを前記実装基板母材に導体バンプを用いてフリップチップ実装する工程と、前記実装基板母材に実装した弾性表面波チップの上面に樹脂シートを載置する工程と、実装基板の一端から他端に向けて前記樹脂シートを軟化又は溶融させながら加圧することにより前記弾性表面波チップの外面を樹脂にて覆うラミネート工程と、ラミネートした前記樹脂を加圧しながら加熱硬化させるプレス成形工程と、前記ダイシング切り代に沿って前記弾性表面波チップを個片に切り分ける切断工程とを備えていることを特徴とする弾性表面波デバイスの製造方法である。
【0016】
請求項4記載の発明は、前記枠体形成工程において、前記枠体が弾性表面波チップの周縁部と重複し、且つ、フリップチップ実装した弾性表面波チップと実装基板母材との間隙よりも薄い厚みを有するように形成することを特徴とする請求項3記載の弾性表面波デバイスの製造方法である。
【0017】
請求項5記載の発明は、前記枠体形成工程において、前記枠体(第一の枠体)の上面に第二の枠体を積層し、該第二の枠体は各辺の幅は第一の枠体よりも小さく、且つ、第一の枠体と第二の枠体とを合わせた厚みが前記弾性表面波チップの上面よりも低くなるように形成することを特徴とする請求項3及び4に記載の弾性表面波デバイスの製造方法である。
【0018】
請求項6記載の発明は、前記ラミネート工程時の樹脂シートの厚みtrが、
L/{(X+Gx)(Y+Gy)}≦tr
但し、L=(X+Gx)(Y+Gy)(H+T+A)−XYT−XYA−{XVyA+YVxA+(4VxVyA)/3}
(L:一つの弾性表面波チップ外面を封止するのに必要な樹脂シートの体積、X:弾性表面波チップの一辺の長さ、Y:弾性表面波チップの他辺の長さ、Gx:X方向に隣接し合う弾性表面波チップの間隔、Vx:Y方向へ延びるダイシング切り代から直近の弾性表面波チップ側面までの距離、Gy:Y方向に隣接し合う弾性表面波チップ間の間隔、Vy:X方向へ延びるダイシング切り代から直近の弾性表面波チップ側面までの距離、H:一つの弾性表面波チップ外面を樹脂シートにて被覆完了した後の弾性表面波チップ上面に位置する樹脂の厚さ、T:圧電基板の厚さ、A:実装基板母材上面から圧電基板底面までの間隔)であることを特徴とする請求項3乃至5のいずれかに記載の弾性表面波デバイスの製造方法である。
【0019】
請求項7記載の発明は、前記ラミネート工程は、前記樹脂シートに圧接しながら回転する所定温度に加熱した押圧ローラと前記実装基板母材下面に添設したガイド部材との間で実装基板母材及び弾性表面波チップを加圧する熱ローララミネート工程からなり、前記熱ローララミネート工程は、押圧ローラの加熱温度を樹脂シートの軟化温度又は溶融温度以上、且つ硬化温度未満に設定し、前記押圧ローラによって前記樹脂シート上面を加熱しながら加圧することにより軟化又は溶融させ、軟化又は溶融した樹脂シートを押圧ローラにて加熱しながら加圧することによって気密空間を確保しながら弾性表面波チップを樹脂にて被覆することを特徴とする請求項3乃至6のいずれかに記載の弾性表面波フィルタの製造方法である。
【0020】
請求項8記載の発明は、前記ラミネート工程は、前記樹脂シート上面に先端で圧接しながら一方向へ移動する所定温度に加熱したブレードと、前記実装基板母材下面に添設したガイド部材との間で実装基板母材及び弾性表面波チップを加圧するブレードラミネート工程からなり、前記ブレードラミネート工程は、ブレードの加熱温度を樹脂シートの軟化温度又は溶融温度以上、且つ硬化温度未満に設定し、ブレードによって樹脂シートの上面を加熱しながら加圧することにより軟化又は溶融させ、軟化又は溶融した樹脂シートをブレードにて加熱しながら加圧することによって気密空間を確保しながら弾性表面波チップを樹脂にて被覆することを特徴とする請求項3乃至6のいずれかに記載の弾性表面波フィルタの製造方法である。
【0021】
請求項9記載の発明は、前記ラミネート工程は、減圧雰囲気にて実施することを特徴とする請求項3乃至8のいずれかに記載の弾性表面波デバイスの製造方法である。
【0022】
請求項10記載の発明は、前記ラミネート工程は、不活性ガス雰囲気中にて実施することを特徴とする請求項3乃至8のいずれかに記載の弾性表面波デバイスの製造方法である。
【0023】
請求項11記載の発明は、前記プレス成形工程は、前記実装基板母材の下面側に接する第一のプレート治具と前記実装基板母材上面の樹脂シートに接する第二のプレート治具との間に前記実装基板母材を挟んだ状態で加圧しながら加熱硬化するものであって、前記第二のプレート治具の下面には、前記樹脂シート周縁部を前記実装基板母材上面に押さえつけるための押さえフレームが形成されていることを特徴とする請求項3乃至10のいずれかに記載の弾性表面波デバイスの製造方法である。
【0024】
請求項12記載の発明は、前記プレス成形工程は、前記第一のプレート治具の上面には、前記第二のプレート治具の下面と当節して両者の間隙を制限するためのスペーサ部材が形成されていることを特徴とする請求項12に記載の弾性表面波フィルタの製造方法である。
【0025】
【発明の実施の形態】
以下、本発明を図面に示した実施の形態により詳細に説明する。図1から図5は本発明の第一の実施例に係るSAWデバイスの製造方法について示したものである。まず、図1(a)及び(b)は実装基板2をシート状に連結した構造の複数個の実装基板母材2にSAWチップ15をフリップチップ実装する工程を示す平面図、及び断面図である。実装基板2は、絶縁基板3の底部に表面実装用の外部電極4を、上部にSAWチップ15と導通をとる為の配線パターン5を備え、内部に外部電極4と配線パターン5を導通する内部導体6を備えている。また、SAWチップ15は圧電基板18の主面上にSAWを励振するためのIDT17と該IDT17と導通した接続パッド16を備えている。そして、実装基板2上の配線パターン5とSAWチップ15上の接続パッド16とを導体バンプ10を用いて接続することによりフリップチップ実装を行う。本発明の特徴としては、図1に示すように実装基板母材40の各個片SAWチップの周囲に枠体20を設けたことである。ここで前記枠体20は以下の全ての条件を満たすように設置されている。
(a)枠体20は、SAWチップ15と実装基板母材40との間の空間Sの外周に設けられ、実装基板母材40上面から圧電基板18底面までの間隙よりも小さい厚みであること。
(b)枠体20の各辺の幅は、ダイシング切り代Dより大きいこと。
(c)枠体20は、ダイシング切り代Dを覆うように実装基板母材40上に設けられていること。
(d)枠体20の少なくとも一部が圧電基板18と実装基板母材40上との間に挟まれていること。即ち、SAWチップ15の周縁部と重複するように枠体20を設定すること。
【0026】
次に、図2に示すように、図1の実装基板母材40上に実装した複数のSAWチップ15の上面を跨るように樹脂シート30を載置する。この樹脂シート30は、樹脂シート本体31の一方の面に離型性を有する保護フィルム32を剥離可能に貼付している。
【0027】
ここで、樹脂シート本体31の厚みをtrとすると、trを以下の条件で設定する。
L/{(X+Gx)(Y+Gy)}≦tr
但し、L=(X+Gx)(Y+Gy)(H+T+A)−XYT−XYA−{XVyA+YVxA+(4VxVyA)/3}
(L:一つのSAWチップ外面を封止するのに必要な樹脂シートの体積、X:SAWチップの一辺の長さ、Y:SAWチップの他辺の長さ、Gx:X方向に隣接し合うSAWチップの間隔、Vx:Y方向へ延びるダイシング切り代から直近のSAWチップ側面までの距離、Gy:Y方向に隣接し合うSAWチップ間の間隔、Vy:X方向へ延びるダイシング切り代から直近のSAWチップ側面までの距離、H:一つのSAWチップ外面を樹脂シートにて被覆完了した後のSAWチップ上面に位置する樹脂の厚さ、T:圧電基板の厚さ、A:実装基板母材上面から圧電基板底面までの間隔)
以上のように、樹脂シート本体31の厚みを設定することで、後にSAWデバイスに樹脂をラミネートした際に、樹脂の厚みが不足し気密空間Sに穴が空いてSAWデバイスの防塵・防湿性を低下させてしまう虞がなくなる。
【0028】
樹脂シート30をSAWチップ15上に載置後、図3に示すようにラミネート工程を行う。なお、本実施例においては従来技術と同様に熱ローララミネート方法を用いた例について説明する。熱ローララミネート工程を実施するためのラミネート装置50は、SAWチップ15を搭載した実装基板母材40を矢印で示す方向へ所定のラミネート速度で移動させる移動手段と、SAWチップ15上の樹脂シート30の上面に圧接して矢印方向へ回転駆動される熱ローラとしての押圧ローラ51と、実装基板母材40の下面を支持して押圧ローラ51との間で加圧力を発生するガイド部材としての支持ローラ52とを備えている。押圧ローラ51は、ヒータにより所要温度に加熱制御されると共に、駆動源により実装基板母材40をラミネート方向へ送るように回転駆動される。そして、支持ローラ52は、矢印方向へ連れ回り、或いは回転駆動される。この熱ローララミネート工程では、以下の条件を満たすことが求められる。
(a)押圧ローラ51の加熱温度を樹脂シート30の軟化(又は溶融)温度以上、且つ硬化温度未満に設定すること。
(b)押圧ローラ51によって樹脂シート30を押圧ローラ51にて加熱しながら加圧することにより軟化(又は溶融)させること。
(c)軟化(又は溶融)した樹脂シート30を押圧ローラ51にて加熱しながら加圧することによって、樹脂シート本体31をSAWチップの谷間に充填、浸透させて、気密空間Sを保持しながらSAWチップ15を樹脂にて被覆すること。
複数のSAWチップ15上に跨って載置された樹脂シート30を、SAWチップ15外面から実装基板40上面にかけて充填されることによりラミネートが行われる。なお、熱ローララミネート法では、SAWチップ15と実装基板母材40との間の気密空間Sが必要以上に拡張されないよう、樹脂シートの一端側から他端側へ向けて順次加圧してエアーを抜きながらラミネートすることができる。
【0029】
ラミネート工程後のSAWデバイスの断面図を図3(b)に示す。本発明においては気密空間Sの外周に沿って枠体20を設けたので、ラミネート工程時に樹脂シート30がSAWチップ15の外面から実装基板母材40の上面にかけて充填される際に、樹脂が気密空間Sに入り込むのを防止でき、また、枠体20の厚みは実装基板母材40上面から圧電基板18底面までの間隙よりも小さいので、各SAWチップ15を個片毎にエアーを抜きながら容易にラミネートすることができるのでボイドの発生を抑圧することができる。
【0030】
ラミネート工程後、図4に示すようにプレス成形工程を行う。このプレス成形工程は、プレス成形装置60によって実施される。前記プレス成形装置60は、実装基板母材40の底面を支持する金属型61と、金属型61上に支持された実装基板母材40の外径方向に位置するスペーサ62と、実装基板母材40上にラミネートされた樹脂シート30の上面外縁に沿って添設される押えフレーム63と、該押えフレーム63の上面を加圧する金属板(加圧部材)64と、プレス機70とを備えている。まず、ラミネート工程を終えた樹脂ラミネート済み実装基板母材(ラミネート済みユニットUと称す)を、図4(a)のように金属型61の上面に載置し、ラミネート済みユニットUに過剰な圧力がかからぬように、ラミネート済みユニットUの外径方向に離間してスペーサ62を設ける。このスペーサ62は、金属型61の上面に固定する。そして、ラミネート済みユニットUの樹脂シート30上に、SAWチップ15が実装されている領域よりも大きく開口した環状の押えフレーム63を載せ、その上に金属板64を載置する。ラミネート済みユニットUを図4(a)のようにセットした後、プレス機70を用いて図4(b)に示すようにプレス成形を行う。このプレス機70は、上型(加圧部材)71と下型72とからなり、上型71と下型72はそれぞれ樹脂の硬化温度に設定されている。下型72上に金属型61を載置すると共に、金属板64の上面に上型71を当接させてプレスを行う。プレスによって気密空間S内のエアーの膨張を強制的に抑えながら、樹脂を硬化させるのでエアーの膨張による気密空間Sの不要な拡大は発生しない。また、押えフレーム63の下部に位置する樹脂を潰した状態でプレス成形することにより、実装基板母材40上に搭載されたSAWチップ群の外周縁に位置するSAWチップの裾部(図4(b)中のB部)に特に発生しやすいボイドが抑圧される。
【0031】
プレス成形工程後、後硬化工程に入る。後硬化工程では、雰囲気温度を樹脂硬化温度に設定した恒温槽(後硬化装置)中にラミネート済みユニットUを図5(a)のような状態で配置し加熱する。加熱時間は選択した樹脂シートの材質等の条件の違いによって適宜硬化条件を選択する必要がある。そして、樹脂が完全に硬化した後、図5(a)に示されているダイシング切り代に沿って幅Dのダイシングブレードにてダイシングし、図5(b)のような個片のSAWデバイス1が完成する。
【0032】
以上説明したように、本発明においては、気密空間Sの外周に沿って枠体を設けたので、実装基板母材上に実装されたSAWチップの箇所に関わらず、ラミネート工程時において樹脂が気密空間に入りこむのを防ぎ、また、ラミネートする際にエアーが抜きやすいように枠体の厚みを実装基板母材の上面とSAWチップの下面との間隙より小さくしたので、ボイド発生を防止できるという効果を奏する。
【0033】
なお、本実施例では、ラミネート工程は熱ローララミネート法を例に説明してきたが、本発明はこれのみに限るものではなく、順次エアーを抜きながらラミネートできる方法であれば熱ローラ以外の手段でもよく、図6に示すように所要温度に加熱されたブレード55を用いて、ブレード55のエッジ部を樹脂シート30に圧接させながら矢印方向へ移動させることによって加熱と同時に加圧を行う方式も有効である。この場合には、ガイド部材としてステージ53を使用する。なお、ラミネート工程を真空オーブンなどの減圧雰囲気中で行えば、更に効率よくエアーを抜くことができ、樹脂の密着性を高め、且つ適切な気密空間Sを形成することができる。また、ラミネート工程を窒素等の不活性ガス雰囲気中にて行えば、SAWデバイスの経年変化を防止し、特性を経時的に向上することができる。
【0034】
次に、本発明に係る第二の実施例について説明する。図7は第二の実施例に係るSAWデバイスのSAWチップ15を実装基板母材40にフリップチップ実装し、樹脂をラミネート、プレス成形、後硬化した後の断面図である。本実施例の特徴は、第一の実施例で説明したSAWチップ15と実装基板母材40との間の気密空間Sの外周に設けた枠体20上に、積層するように第二の枠体21を形成したことである。ここで、前記第二の枠体21は以下の全ての条件を満たすように設置する。
(a)第一の枠体20と第二の枠体21の高さの和をSAWチップ15の上面の高さよりも低く設定すること。
(b)第二の枠体21の各辺の幅はダイシング切り代Dの幅よりも大きくすること。
(c) 第二の枠体21はダイシング切り代Dを覆うように実装基板母材40上面に設けること。
(d)第二の枠体21の各辺の幅は第一の枠体20の各辺の幅よりも小さくすること。
このように、第一の枠体上に第二の枠体を設けることにより、第一の実施例と比較して、ラミネート工程時にボイドが発生してもダイシング切り代に到達しにくくなり、また、樹脂も気密空間Sに浸入しにくくなるので、より確実に気密空間を保持した高品質なSAWデバイスを提供できる。
【0035】
【発明の効果】
以上、説明したように本発明によれば、実装基板母材上にSAWチップをフリップチップ実装して、樹脂をラミネートしたSAWデバイス及びその製造方法において、気密空間の外周に沿って枠体を設けたので、実装基板母材上に実装されたSAWチップの箇所に関わらず、ラミネート工程時におけるボイド発生を防止でき、また、気密空間内に樹脂が入り込むのを防止できるので、確実に気密空間を形成することができ、高品質なSAWデバイスを提供することができる。
【図面の簡単な説明】
【図1】本発明の第一の実施例に係るSAWデバイスの実装基板母材上にSAWチップをフリップチップ実装する工程を示す図であり、(a)は平面図、(b)は断面図である。
【図2】本発明の第一の実施例に係るSAWデバイスのSAWチップ上に樹脂シートを載置した状態を示す図である。
【図3】本発明の第一の実施例に係るSAWデバイスの樹脂シートをSAWチップ上にラミネートする工程を示す図であり、(a)はラミネート工程時の状態、(b)はラミネート後の状態を示す。
【図4】本発明の第一の実施例に係るSAWデバイスのプレス成形する工程を示す図であり、(a)はプレス装置にSAWデバイスを設置した状態、(b)はプレスした時の状態を示す。
【図5】本発明の第一の実施例に係るSAWデバイスの(a)は後硬化工程の状態、(b)はダイシング後の状態を示す。
【図6】本発明に係るブレードを用いたラミネート工程を示す。
【図7】本発明の第二の実施例に係るSAWデバイスの樹脂封止後の断面図を示す。
【図8】従来のSAWデバイスの実装基板母材上にSAWチップをフリップチップ実装する工程を示す断面図である。
【図9】従来のSAWデバイスのSAWチップ上に樹脂シートを載置した状態を示す図である。
【図10】従来のSAWデバイスの樹脂シートをSAWチップ上にラミネートする工程を示す図であり、(a)はラミネート工程時の状態、(b)はラミネート後の状態を示す。
【図11】従来のSAWデバイスの後硬化工程後の状態を示す。
【図12】従来のSAWデバイスの完成品の状態を示す。
【図13】従来のSAWデバイスの欠陥品の状態を示す。
【図14】第一の先行技術であるSAWデバイスの断面図を示す。
【図15】第二の先行技術であるSAWデバイスの断面図を示す。
【符号の説明】
1:SAWデバイス、2:実装基板、3:絶縁基板、4:外部電極、5:配線パターン、6:内部導体、10:導体バンプ、15:SAWチップ、16:接続パッド、17:IDT、18:圧電基板、20:枠体(第一の枠体)、21、第二の枠体、30:樹脂シート、31:樹脂シート本体、32:保護フィルム、40:実装基板母材、51:押圧ローラ、52:支持ローラ、55:ブレード、60:プレス成形装置、61:金属型、62:スペーサ、63:押えフレーム、64:金属板(加圧部材)、70:プレス機、71:上型、72:下型、
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a surface acoustic wave device, and more particularly to a surface acoustic wave device with a reduced package size and a method of manufacturing the same.
[0002]
[Prior art]
2. Description of the Related Art In recent years, Surface Acoustic Wave (SAW) devices have been widely used in the field of mobile communication and have excellent characteristics in terms of high performance, small size, mass productivity, and the like. Have been. Further, with the generalization of small-sized packaging called CSP (Chip Size Package) in semiconductor components, from the viewpoint of facilitating miniaturization of filters in SAW devices and improving productivity by a batch-type manufacturing method. , A production method using CSP technology has been introduced.
[0003]
In the production method using the CSP technology described above, the inventor of the present invention proposed a resin encapsulation process of a SAW device including three processes of a lamination process, a press molding process, and a post-curing process in Japanese Patent Application No. 2002-293110. I have. Hereinafter, the resin sealing step will be described in detail with reference to FIGS. FIG. 8 is a cross-sectional view showing a step of flip-chip mounting the SAW chip 115 on the mounting substrate preform 140. The mounting substrate preform 140 has an external electrode 104 on the bottom of the insulating substrate 103 and a wiring pattern 105 on the top, and an internal conductor 106 for conducting the external electrode 104 and the wiring pattern 105 inside. The SAW chip 115 is a piezoelectric substrate. An IDT 117 for exciting the SAW and a connection pad 116 electrically connected to the IDT 117 are provided on the main surface of 118. Then, flip-chip mounting is performed by connecting the connection pads 116 of the SAW chip 115 on the wiring patterns 105 of the mounting substrate base material 140 using the conductive bumps 110.
[0004]
Next, as shown in FIG. 9, the resin sheet 130 is placed so as to straddle the upper surface of the piezoelectric substrate 118 of the plurality of SAW chips 115 mounted on the mounting substrate preform 140 of FIG. The resin sheet 130 has a protective film 132 having releasability attached to one surface of the resin sheet main body 131 in a releasable manner.
[0005]
Next, FIG. 10 is a cross-sectional view showing a heat roller laminating step of laminating the resin sheet 130 placed on each SAW chip 115 to the SAW chip 115 by the laminating device 150. The laminating apparatus 150 for performing the heat roller laminating step includes a moving unit that moves the mounting substrate preform 140 on which the SAW chip 115 is mounted at a predetermined laminating speed in a direction indicated by an arrow, and a resin sheet 130 on the SAW chip 115. A pressing roller 151 as a heat roller that is pressed against the upper surface of the substrate and is driven to rotate in the direction of the arrow, and a guide member that supports the lower surface of the mounting substrate 140 and generates a pressing force between the pressing roller 151 and the supporting member. And a roller 152. The pressing roller 151 is controlled to be heated to a required temperature by a heater, and is rotationally driven by a driving source so as to feed the mounting substrate preform 140 in the laminating direction. Then, the support roller 152 is rotated or driven in the direction of the arrow. In this heat roller laminating step, the following conditions are required to be satisfied.
(A) The heating temperature of the pressing roller 151 is set to be equal to or higher than the softening (or melting) temperature of the resin sheet 130 and lower than the curing temperature.
(B) The resin sheet 130 is softened (or melted) by being pressed by the pressing roller 151 while being heated by the pressing roller 151.
(C) By pressing the softened (or melted) resin sheet 130 while heating it with the pressing roller 151, the resin sheet main body 131 is filled and infiltrated into the valleys of the SAW chip, and the SAW is held while maintaining the airtight space S. Covering the chip 115 with resin.
The resin sheet 130 placed over the plurality of SAW chips 115 is filled from the outer surface of the SAW chip 115 to the upper surface of the mounting substrate preform 140 by the heat roller laminating step shown in FIG. And then laminate. In the heat roller laminating method, pressure is sequentially applied from one end to the other end of the resin sheet 130 so that the hermetic space S between the SAW chip 115 and the mounting substrate base material 140 is not expanded more than necessary. There is an advantage that lamination can be performed while removing air.
[0006]
Since the curing of the resin sheet 130 is not completed only by the laminating step, press molding is performed by heating the SAW chip having the outer surface laminated with the resin while pressing the resin, thereby suppressing the expansion of the gas in the hermetic space S. The process is performed, and further, a post-curing process is performed in which the mounting substrate base material is placed in a constant temperature bath in which the ambient temperature is set to the resin curing temperature and heated in order to completely cure the resin. FIG. 11 shows a state in which the above steps are completed. Then, the protective film 132 is peeled off, and the mounting substrate base material 140 is diced with a dicing blade along the dicing cut shown in FIG. 11, whereby the individual SAW device 100 as shown in FIG. 12 is completed.
[0007]
[Problems to be solved by the invention]
However, in the resin sealing step of the SAW device including the three steps of the laminating step, the press forming step, and the post-curing step as described above, air expansion (void) occurs in the laminating step, and the resin enters the airtight space S. Intrusion is a problem. This problem arises when the thickness of the resin sheet is set to be optimal for the SAW chip at the center of the mounting substrate base material. Significant voids are generated so as to reach the dicing allowance as shown in the SAW device 101, and conversely, the thickness of the resin sheet is reduced by the SAW chip arranged on the outermost peripheral portion of the mounting substrate base material. If it is set to be optimal, resin intrusion into the hermetic space S occurs in the SAW chip at the center of the mounting substrate base material. That is, there is a problem in that the intrusion state of the sealing resin varies between the central portion and the outermost peripheral portion of the mounting substrate base material.
[0008]
Therefore, in order to solve the above problem, application of a cavity type mounting substrate disclosed in Japanese Patent Application Laid-Open Nos. 11-214595 and 2000-261177 (hereinafter, these are referred to as Prior Art 1) has been proposed. investigated. FIG. 14 is a cross-sectional view of a SAW device using a cavity-type mounting substrate disclosed in Prior Art 1. A SAW chip 201 provided with an IDT 203 and a connection pad 204 electrically connected to the IDT 203 on a main surface of a piezoelectric substrate 202, a base 205a made of glass ceramic or alumina, and a member similar to the base 205a. It is composed of an annular laminated member 205b on which the outer peripheral portion is placed, and an annular frame 205c which forms a space wider than the laminated member 205b with a member similar to the base 205a, and a mounting pad 207 is provided on the upper surface of the base 205a. A mounting substrate 205 is provided, and connection pads 204 provided on the SAW chip 201 and mounting pads 207 provided on a substrate 205a of the mounting substrate 205 are conductively fixed via metal bumps 210, and the upper surface of the piezoelectric substrate 202 and The structure is such that the side surface is completely covered with the sealing resin 211.
[0009]
In the cavity-type mounting substrate described in the prior art 1, the cavity is filled with molten and liquefied resin and cured to form a sealing resin. Consider the case of adoption. As is apparent from FIG. 14, since the frame 205c disposed on the outer peripheral portion of the SAW chip 201 is higher than the upper surface of the SAW chip 201, when the resin 211 is laminated, there is no escape area for air and voids are generated. It has the disadvantage of being easy to do. As described in the related art, it is necessary to perform lamination while bleeding excess air in order to prevent voids from being generated in the laminating process. Laminating while removing air becomes difficult.
[0010]
Next, application of a laminating process to a minute air gap structure disclosed in Japanese Patent Application Laid-Open No. 10-22763 (hereinafter referred to as Prior Art 2) was studied. FIG. 15 is a longitudinal sectional view of a SAW device having a small air gap structure described in Prior Art 2. The SAW chip 301 in which the IDT 303 and the connection pad 304 electrically connected to the IDT 303 are arranged on the main surface of the piezoelectric substrate 302, the mounting pad 306 on the surface, and the insulating layer 307 in which a hole is provided in the portion of the mounting pad 306. A mounting board 305 is formed. The connection pads 304 provided on the SAW chip 301 and the mounting pads 306 provided on the mounting board 305 are flip-chip mounted with metal bumps 310 and then sealed with a sealant 311. This is a structure in which a stop air gap 320 is provided. The feature of the prior art 2 is that by providing an insulating layer 307 between the mounting substrate 305 and the SAW chip 301, the gap between the SAW chip 301 and the mounting substrate 305 can be reduced to zero as much as possible, and That is, it is prevented from flowing into the gap 320.
[0011]
In the prior art 2, an effect can be expected in which the sealing resin is less likely to enter the hermetic space by setting the hermetic space between the SAW chip and the mounting substrate to a minute gap. However, the structure of the SAW device described in Prior Art 2 requires a process of forming a hole in the mounting pad 306 after forming the insulating layer 307 on the mounting substrate 305. As a result, the area of the mounting pad 306 becomes very small, so that precise alignment of the mounting pad 306 with the hole requires a high-precision and strict operation, which is complicated. Further, since the holes provided on the insulating layer 307 are extremely small, there is a problem in manufacturing that a complicated operation is required when forming the metal bumps 310 on the mounting substrate 305.
[0012]
The present invention has been made in order to solve the above problems, and in a SAW device in which a SAW chip is flip-chip mounted on a mounting substrate base material and the surface is sealed with resin, an airtight space is easily formed, and Another object of the present invention is to provide a SAW device that prevents voids and resin from entering an airtight space when laminating a resin, and a method for manufacturing the same.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, a SAW device according to the present invention and a method of manufacturing the SAW device according to the present invention include a surface acoustic wave chip, a mounting board having the surface acoustic wave chip flip-chip mounted on an upper surface thereof, A surface acoustic wave chip including an sealing resin that covers an outer surface of the surface acoustic wave chip and an upper surface of the mounting substrate while forming an airtight space between the IDT formed on the surface acoustic wave chip and the mounting substrate. A frame is formed on the upper surface of the mounting board so as to overlap a peripheral portion of the surface acoustic wave chip, and the frame has a thickness smaller than a gap between the surface acoustic wave chip and the mounting board. It is a surface acoustic wave device characterized by having.
[0014]
The invention according to claim 2 is one in which a second frame is laminated on the upper surface of the frame (first frame), and the second frame and the first frame are combined. A surface acoustic wave device characterized in that the thickness is smaller than the upper surface of the surface acoustic wave chip.
[0015]
According to a third aspect of the present invention, there is provided a frame forming step of forming a frame so as to cover a dicing cut along a dicing cut of a mounting board base material in which a plurality of mounting boards are connected in a sheet shape; A step of flip-chip mounting the surface acoustic wave chip on the mounting substrate base material using conductive bumps, a step of mounting a resin sheet on an upper surface of the surface acoustic wave chip mounted on the mounting substrate base material, and one end of the mounting substrate A laminating step of covering the outer surface of the surface acoustic wave chip with a resin by applying pressure while softening or melting the resin sheet toward the other end, and a press molding step of heating and curing the laminated resin while applying pressure. And a cutting step of cutting the surface acoustic wave chip into individual pieces along the dicing cutting margin. That.
[0016]
According to a fourth aspect of the present invention, in the frame forming step, the frame overlaps with a peripheral portion of the surface acoustic wave chip, and is larger than a gap between the flip-chip mounted surface acoustic wave chip and the mounting substrate base material. 4. The method according to claim 3, wherein the surface acoustic wave device is formed to have a small thickness.
[0017]
The invention according to claim 5 is that, in the frame forming step, a second frame is laminated on an upper surface of the frame (first frame), and the width of each side of the second frame is the first frame. 4. The surface acoustic wave chip according to claim 3, wherein the first frame and the second frame are formed to be smaller than the first frame and the combined thickness of the first frame and the second frame is smaller than the upper surface of the surface acoustic wave chip. And a method for manufacturing a surface acoustic wave device according to (4).
[0018]
In the invention according to claim 6, the thickness tr of the resin sheet in the laminating step is:
L / {(X + Gx) (Y + Gy)} ≦ tr
However, L = (X + Gx) (Y + Gy) (H + T + A) -XYT-XYA- {XVyA + YVxA + (4VxVyA) / 3}
(L: volume of the resin sheet necessary to seal the outer surface of one surface acoustic wave chip, X: length of one side of the surface acoustic wave chip, Y: length of the other side of the surface acoustic wave chip, Gx: Vx: distance between dicing cuts extending in the Y direction to the nearest surface of the surface acoustic wave chip, Gy: distance between surface acoustic wave chips adjacent in the Y direction, Vy: the distance from the dicing allowance extending in the X direction to the nearest surface of the surface acoustic wave chip, H: the resin located on the surface of the surface acoustic wave chip after the outer surface of one surface acoustic wave chip has been completely covered with the resin sheet. The surface acoustic wave device according to any one of claims 3 to 5, wherein T is the thickness of the piezoelectric substrate, and A is the distance from the top surface of the mounting substrate base material to the bottom surface of the piezoelectric substrate. Is the way.
[0019]
8. The mounting board base material according to claim 7, wherein the laminating step is performed between a pressing roller heated to a predetermined temperature, which rotates while being pressed against the resin sheet, and a guide member attached to a lower surface of the mounting board base material. And a heat roller laminating step of pressing the surface acoustic wave chip, wherein the heat roller laminating step sets the heating temperature of the pressing roller to be equal to or higher than the softening temperature or melting temperature of the resin sheet, and lower than the curing temperature, and is set by the pressing roller. The upper surface of the resin sheet is softened or melted by applying pressure while being heated, and the surface acoustic wave chip is coated with resin while securing an airtight space by applying pressure while heating the softened or melted resin sheet with a pressing roller. A method of manufacturing a surface acoustic wave filter according to any one of claims 3 to 6, wherein
[0020]
The laminating step may include a step of heating the resin sheet at a predetermined temperature and moving in one direction while being pressed against the upper surface of the resin sheet at a tip thereof, and a guide member attached to the lower surface of the mounting substrate base material. A blade laminating step of pressing the mounting substrate base material and the surface acoustic wave chip between the blade laminating step, wherein the heating temperature of the blade is set to a temperature equal to or higher than the softening temperature or melting temperature of the resin sheet, and lower than the curing temperature, The upper surface of the resin sheet is heated and pressurized while being softened or melted, and the softened or melted resin sheet is heated and pressurized with a blade to cover the surface acoustic wave chip with resin while securing an airtight space. A method of manufacturing a surface acoustic wave filter according to any one of claims 3 to 6, wherein
[0021]
The invention according to claim 9 is the method for manufacturing a surface acoustic wave device according to any one of claims 3 to 8, wherein the laminating step is performed in a reduced-pressure atmosphere.
[0022]
The invention according to claim 10 is the method for manufacturing a surface acoustic wave device according to any one of claims 3 to 8, wherein the laminating step is performed in an inert gas atmosphere.
[0023]
According to an eleventh aspect of the present invention, in the press forming step, a first plate jig in contact with a lower surface side of the mounting substrate base material and a second plate jig in contact with a resin sheet on the upper surface of the mounting substrate base material. Heat-curing while applying pressure while sandwiching the mounting board base material therebetween, and pressing the resin sheet peripheral portion against the mounting board base material upper surface on the lower surface of the second plate jig. 11. The method for manufacturing a surface acoustic wave device according to claim 3, wherein the holding frame is formed.
[0024]
The invention according to claim 12, wherein in the press forming step, a spacer member is provided on the upper surface of the first plate jig to limit a gap between the lower surface of the second plate jig and the lower surface of the second plate jig. 13. The method of manufacturing a surface acoustic wave filter according to claim 12, wherein
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. 1 to 5 show a method of manufacturing a SAW device according to a first embodiment of the present invention. First, FIGS. 1A and 1B are a plan view and a sectional view showing a step of flip-chip mounting a SAW chip 15 on a plurality of mounting substrate base materials 2 having a structure in which the mounting substrates 2 are connected in a sheet shape. is there. The mounting substrate 2 has an external electrode 4 for surface mounting on the bottom of the insulating substrate 3 and a wiring pattern 5 for conducting with the SAW chip 15 on the upper part. The conductor 6 is provided. The SAW chip 15 has an IDT 17 for exciting the SAW on the main surface of the piezoelectric substrate 18 and connection pads 16 electrically connected to the IDT 17. Then, flip-chip mounting is performed by connecting the wiring patterns 5 on the mounting substrate 2 and the connection pads 16 on the SAW chip 15 using the conductive bumps 10. A feature of the present invention is that a frame 20 is provided around each individual SAW chip of the mounting substrate 40 as shown in FIG. Here, the frame body 20 is installed so as to satisfy all the following conditions.
(A) The frame body 20 is provided on the outer periphery of the space S between the SAW chip 15 and the mounting substrate base material 40 and has a thickness smaller than a gap from the upper surface of the mounting substrate base material 40 to the bottom surface of the piezoelectric substrate 18. .
(B) The width of each side of the frame body 20 is larger than the dicing allowance D.
(C) The frame body 20 is provided on the mounting substrate 40 so as to cover the dicing allowance D.
(D) At least a part of the frame 20 is sandwiched between the piezoelectric substrate 18 and the mounting substrate 40. That is, the frame body 20 is set so as to overlap the periphery of the SAW chip 15.
[0026]
Next, as shown in FIG. 2, the resin sheet 30 is placed so as to straddle the upper surfaces of the plurality of SAW chips 15 mounted on the mounting substrate 40 of FIG. The resin sheet 30 has a releasable protective film 32 affixed to one surface of the resin sheet main body 31 in a releasable manner.
[0027]
Here, assuming that the thickness of the resin sheet main body 31 is tr, tr is set under the following conditions.
L / {(X + Gx) (Y + Gy)} ≦ tr
However, L = (X + Gx) (Y + Gy) (H + T + A) -XYT-XYA- {XVyA + YVxA + (4VxVyA) / 3}
(L: volume of resin sheet required to seal the outer surface of one SAW chip, X: length of one side of SAW chip, Y: length of other side of SAW chip, Gx: adjacent to each other in X direction The distance between the SAW chips, Vx: the distance from the dicing cut extending in the Y direction to the nearest side of the SAW chip, Gy: the distance between adjacent SAW chips in the Y direction, Vy: the distance from the dicing cut extending in the X direction. Distance to SAW chip side surface, H: Thickness of resin located on SAW chip upper surface after completion of covering one SAW chip outer surface with resin sheet, T: Piezoelectric substrate thickness, A: Mounting substrate base material upper surface From the substrate to the bottom of the piezoelectric substrate)
As described above, by setting the thickness of the resin sheet main body 31, when the resin is later laminated on the SAW device, the thickness of the resin becomes insufficient and a hole is opened in the hermetic space S to improve the dustproof and moistureproof properties of the SAW device. There is no danger of lowering.
[0028]
After placing the resin sheet 30 on the SAW chip 15, a laminating step is performed as shown in FIG. In this embodiment, an example in which a heat roller laminating method is used as in the related art will be described. The laminating apparatus 50 for performing the heat roller laminating step includes a moving unit that moves the mounting substrate preform 40 on which the SAW chip 15 is mounted in a direction indicated by an arrow at a predetermined laminating speed, and a resin sheet 30 on the SAW chip 15. A pressing roller 51 as a heat roller that is pressed against the upper surface of the substrate and is driven to rotate in the direction of the arrow, and a guide member that supports the lower surface of the mounting substrate 40 and generates a pressing force between the pressing roller 51 and the supporting member. And a roller 52. The pressing roller 51 is controlled to be heated to a required temperature by a heater, and is rotationally driven by a driving source so as to feed the mounting substrate preform 40 in the laminating direction. Then, the support roller 52 is rotated or driven in the direction of the arrow. In this heat roller laminating step, the following conditions are required to be satisfied.
(A) The heating temperature of the pressing roller 51 is set to be equal to or higher than the softening (or melting) temperature of the resin sheet 30 and lower than the curing temperature.
(B) Softening (or melting) the resin sheet 30 by applying pressure while heating the resin sheet 30 with the pressing roller 51.
(C) By pressing the softened (or melted) resin sheet 30 while heating it with the pressing roller 51, the resin sheet main body 31 is filled and permeated into the valleys of the SAW chips, and the SAW is held while maintaining the airtight space S. Covering the chip 15 with resin.
Lamination is performed by filling the resin sheet 30 placed on the plurality of SAW chips 15 from the outer surface of the SAW chip 15 to the upper surface of the mounting substrate 40. In the heat roller lamination method, air is applied by sequentially applying pressure from one end to the other end of the resin sheet so that the hermetic space S between the SAW chip 15 and the mounting substrate 40 is not unnecessarily expanded. Lamination can be performed while pulling out.
[0029]
FIG. 3B is a cross-sectional view of the SAW device after the laminating step. In the present invention, since the frame body 20 is provided along the outer periphery of the hermetic space S, when the resin sheet 30 is filled from the outer surface of the SAW chip 15 to the upper surface of the mounting substrate base material 40 during the laminating step, the resin is hermetically sealed. It is possible to prevent entry into the space S, and since the thickness of the frame body 20 is smaller than the gap from the upper surface of the mounting substrate base material 40 to the bottom surface of the piezoelectric substrate 18, each SAW chip 15 can be easily removed while removing air for each piece. Since it can be laminated, the generation of voids can be suppressed.
[0030]
After the laminating step, a press forming step is performed as shown in FIG. This press forming step is performed by the press forming device 60. The press forming apparatus 60 includes a metal mold 61 that supports the bottom surface of the mounting substrate preform 40, a spacer 62 that is positioned on the mounting die preform 40 supported on the metal mold 61 in an outer radial direction, and a mounting substrate preform. A pressing frame 63 is provided along the outer edge of the upper surface of the resin sheet 30 laminated on the metal sheet 40, a metal plate (pressing member) 64 for pressing the upper surface of the pressing frame 63, and a press machine 70. I have. First, a resin-laminated mounting substrate base material (referred to as a laminated unit U) after the laminating step is placed on the upper surface of the metal mold 61 as shown in FIG. The spacers 62 are provided apart from each other in the outer diameter direction of the laminated unit U so as not to cover. This spacer 62 is fixed on the upper surface of the metal mold 61. Then, on the resin sheet 30 of the laminated unit U, the annular holding frame 63 having an opening larger than the area where the SAW chip 15 is mounted is placed, and the metal plate 64 is placed thereon. After setting the laminated unit U as shown in FIG. 4A, press molding is performed using a press machine 70 as shown in FIG. The press 70 includes an upper die (pressing member) 71 and a lower die 72, and the upper die 71 and the lower die 72 are each set to a resin curing temperature. The metal mold 61 is placed on the lower mold 72, and the upper mold 71 is pressed against the upper surface of the metal plate 64 to perform pressing. Since the resin is cured while the expansion of the air in the hermetic space S is forcibly suppressed by the press, unnecessary expansion of the hermetic space S due to the expansion of the air does not occur. Also, by pressing the resin located at the lower portion of the holding frame 63 in a crushed state, the skirt portion of the SAW chip located at the outer peripheral edge of the group of SAW chips mounted on the mounting substrate base material 40 (FIG. Voids that are particularly likely to occur in part B) in b) are suppressed.
[0031]
After the press molding process, a post-curing process is started. In the post-curing step, the laminated unit U is placed in a thermostat (post-curing device) in which the ambient temperature is set to the resin curing temperature in a state as shown in FIG. As for the heating time, it is necessary to appropriately select the curing conditions depending on the selected conditions such as the material of the resin sheet. Then, after the resin is completely cured, dicing is performed with a dicing blade having a width D along a dicing cut margin shown in FIG. 5A, and the individual SAW device 1 as shown in FIG. Is completed.
[0032]
As described above, in the present invention, since the frame is provided along the outer periphery of the hermetic space S, the resin is airtight during the laminating step regardless of the position of the SAW chip mounted on the mounting substrate base material. The thickness of the frame is made smaller than the gap between the upper surface of the mounting substrate base material and the lower surface of the SAW chip so that it can be prevented from entering the space and air can be easily removed when laminating, so that voids can be prevented. To play.
[0033]
In the present embodiment, the laminating step has been described by taking the heat roller laminating method as an example.However, the present invention is not limited to this. It is also effective to use a blade 55 heated to a required temperature as shown in FIG. 6 and to move the edge portion of the blade 55 in the direction of the arrow while pressing the edge portion of the blade 55 against the resin sheet 30 to simultaneously perform heating and pressing. It is. In this case, the stage 53 is used as a guide member. If the laminating step is performed in a reduced-pressure atmosphere such as a vacuum oven, the air can be more efficiently evacuated, the adhesiveness of the resin can be increased, and an appropriate hermetic space S can be formed. Further, if the laminating step is performed in an atmosphere of an inert gas such as nitrogen, the aging of the SAW device can be prevented, and the characteristics can be improved over time.
[0034]
Next, a second embodiment according to the present invention will be described. FIG. 7 is a cross-sectional view after the SAW chip 15 of the SAW device according to the second embodiment is flip-chip mounted on the mounting substrate 40, and the resin is laminated, pressed, and post-cured. The feature of this embodiment is that the second frame is laminated on the frame 20 provided on the outer periphery of the hermetic space S between the SAW chip 15 and the mounting board base material 40 described in the first embodiment. That is, the body 21 is formed. Here, the second frame 21 is installed so as to satisfy all the following conditions.
(A) The sum of the heights of the first frame 20 and the second frame 21 is set lower than the height of the upper surface of the SAW chip 15.
(B) The width of each side of the second frame 21 should be larger than the width of the dicing allowance D.
(C) The second frame 21 is provided on the upper surface of the mounting board base material 40 so as to cover the dicing allowance D.
(D) The width of each side of the second frame 21 is smaller than the width of each side of the first frame 20.
Thus, by providing the second frame on the first frame, compared to the first embodiment, even if voids occur during the laminating step, it is difficult to reach the dicing allowance, In addition, since the resin does not easily enter the airtight space S, a high-quality SAW device that more reliably retains the airtight space can be provided.
[0035]
【The invention's effect】
As described above, according to the present invention, in a SAW device in which a SAW chip is flip-chip mounted on a mounting substrate base material and a resin is laminated, and a method of manufacturing the SAW device, a frame is provided along the outer periphery of an airtight space. Therefore, irrespective of the location of the SAW chip mounted on the mounting substrate base material, it is possible to prevent the occurrence of voids during the laminating process and prevent the resin from entering the hermetically sealed space. Thus, a high-quality SAW device can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing a step of flip-chip mounting a SAW chip on a mounting substrate base material of a SAW device according to a first embodiment of the present invention, (a) is a plan view, and (b) is a cross-sectional view. It is.
FIG. 2 is a diagram showing a state in which a resin sheet is mounted on a SAW chip of the SAW device according to the first embodiment of the present invention.
FIGS. 3A and 3B are diagrams illustrating a step of laminating a resin sheet of a SAW device on a SAW chip according to the first embodiment of the present invention, wherein FIG. Indicates the status.
FIGS. 4A and 4B are views showing a step of press-molding a SAW device according to the first embodiment of the present invention, wherein FIG. 4A shows a state in which the SAW device is installed in a press device, and FIG. Is shown.
FIG. 5A shows the state of the post-curing step of the SAW device according to the first embodiment of the present invention, and FIG. 5B shows the state after dicing.
FIG. 6 shows a laminating step using the blade according to the present invention.
FIG. 7 is a sectional view of a SAW device according to a second embodiment of the present invention after resin sealing.
FIG. 8 is a cross-sectional view showing a process of flip-chip mounting a SAW chip on a mounting substrate base material of a conventional SAW device.
FIG. 9 is a diagram showing a state in which a resin sheet is mounted on a SAW chip of a conventional SAW device.
10A and 10B are diagrams illustrating a process of laminating a resin sheet of a conventional SAW device on a SAW chip, wherein FIG. 10A illustrates a state during a laminating process, and FIG. 10B illustrates a state after laminating.
FIG. 11 shows a state after a post-curing step of a conventional SAW device.
FIG. 12 shows a state of a finished product of a conventional SAW device.
FIG. 13 shows a state of a defective product of a conventional SAW device.
FIG. 14 shows a cross-sectional view of a first prior art SAW device.
FIG. 15 shows a cross-sectional view of a second prior art SAW device.
[Explanation of symbols]
1: SAW device, 2: mounting substrate, 3: insulating substrate, 4: external electrode, 5: wiring pattern, 6: internal conductor, 10: conductor bump, 15: SAW chip, 16: connection pad, 17: IDT, 18 : Piezoelectric substrate, 20: frame (first frame), 21, second frame, 30: resin sheet, 31: resin sheet body, 32: protective film, 40: mounting substrate base material, 51: pressing Roller, 52: support roller, 55: blade, 60: press forming device, 61: metal mold, 62: spacer, 63: holding frame, 64: metal plate (pressing member), 70: press machine, 71: upper mold , 72: lower mold,

Claims (12)

弾性表面波チップと、上面に前記弾性表面波チップをフリップチップ実装した実装基板と、前記弾性表面波チップに形成されたIDTと前記実装基板との間に気密空間を形成しつつ前記弾性表面波チップの外面と前記実装基板の上面とを覆う封止樹脂とを備えた弾性表面波チップであって、
前記実装基板の上面には前記弾性表面波チップの周縁部と重複する枠体が形成されており、該枠体は前記弾性表面波チップと前記実装基板との間隙よりも薄い厚みを有することを特徴とする弾性表面波デバイス。
A surface acoustic wave chip, a mounting substrate on which the surface acoustic wave chip is flip-chip mounted on an upper surface, and the surface acoustic wave while forming an airtight space between the IDT formed on the surface acoustic wave chip and the mounting substrate. A surface acoustic wave chip comprising a sealing resin covering an outer surface of the chip and an upper surface of the mounting substrate,
A frame is formed on the upper surface of the mounting substrate so as to overlap with a peripheral portion of the surface acoustic wave chip, and the frame has a thickness smaller than a gap between the surface acoustic wave chip and the mounting substrate. Characteristic surface acoustic wave device.
前記枠体(第一の枠体)の上面に第二の枠体を積層したものであって、該第二の枠体と第一の枠体とを合わせた厚みが前記弾性表面波チップの上面よりも低いことを特徴とする弾性表面波デバイス。A second frame is laminated on the upper surface of the frame (first frame), and the combined thickness of the second frame and the first frame is equal to the thickness of the surface acoustic wave chip. A surface acoustic wave device characterized by being lower than an upper surface. 複数の実装基板を複数個シート状に連結した実装基板母材のダイシング切り代に沿って該ダイシング切り代を覆うように枠体を形成する枠形成工程と、
弾性表面波チップを前記実装基板母材に導体バンプを用いてフリップチップ実装する工程と、
前記実装基板母材に実装した弾性表面波チップの上面に樹脂シートを載置する工程と、
実装基板の一端から他端に向けて前記樹脂シートを軟化又は溶融させながら加圧することにより前記弾性表面波チップの外面を樹脂にて覆うラミネート工程と、
ラミネートした前記樹脂を加圧しながら加熱硬化させるプレス成形工程と、
前記ダイシング切り代に沿って前記弾性表面波チップを個片に切り分ける切断工程とを備えていることを特徴とする弾性表面波デバイスの製造方法。
A frame forming step of forming a frame so as to cover the dicing cut along a dicing cut of a mounting board base material in which a plurality of mounting boards are connected in a sheet shape,
A step of flip-chip mounting the surface acoustic wave chip using a conductive bump on the mounting substrate base material,
A step of mounting a resin sheet on the upper surface of the surface acoustic wave chip mounted on the mounting substrate base material,
A laminating step of covering the outer surface of the surface acoustic wave chip with a resin by applying pressure while softening or melting the resin sheet from one end to the other end of the mounting board,
Press molding step of heating and curing the laminated resin while applying pressure,
Cutting the surface acoustic wave chip into individual pieces along the dicing cutting margin.
前記枠体形成工程において、前記枠体が弾性表面波チップの周縁部と重複し、且つ、フリップチップ実装した弾性表面波チップと実装基板母材との間隙よりも薄い厚みを有するように形成することを特徴とする請求項3記載の弾性表面波デバイスの製造方法。In the frame forming step, the frame is formed so as to overlap with a peripheral portion of the surface acoustic wave chip and to have a thickness smaller than a gap between the surface acoustic wave chip mounted by flip chip mounting and a mounting substrate base material. 4. The method of manufacturing a surface acoustic wave device according to claim 3, wherein 前記枠体形成工程において、前記枠体(第一の枠体)の上面に第二の枠体を積層し、該第二の枠体は各辺の幅は第一の枠体よりも小さく、且つ、第一の枠体と第二の枠体とを合わせた厚みが前記弾性表面波チップの上面よりも低くなるように形成することを特徴とする請求項3及び4に記載の弾性表面波デバイスの製造方法。In the frame forming step, a second frame is laminated on the upper surface of the frame (first frame), and the width of each side of the second frame is smaller than that of the first frame. 5. The surface acoustic wave according to claim 3, wherein the combined thickness of the first frame and the second frame is lower than the upper surface of the surface acoustic wave chip. 6. Device manufacturing method. 前記ラミネート工程時の樹脂シートの厚みtrが、
L/{(X+Gx)(Y+Gy)}≦tr
但し、L=(X+Gx)(Y+Gy)(H+T+A)−XYT−XYA−{XVyA+YVxA+(4VxVyA)/3}
(L:一つの弾性表面波チップ外面を封止するのに必要な樹脂シートの体積、X:弾性表面波チップの一辺の長さ、Y:弾性表面波チップの他辺の長さ、Gx:X方向に隣接し合う弾性表面波チップの間隔、Vx:Y方向へ延びるダイシング切り代から直近の弾性表面波チップ側面までの距離、Gy:Y方向に隣接し合う弾性表面波チップ間の間隔、Vy:X方向へ延びるダイシング切り代から直近の弾性表面波チップ側面までの距離、H:一つの弾性表面波チップ外面を樹脂シートにて被覆完了した後の弾性表面波チップ上面に位置する樹脂の厚さ、T:圧電基板の厚さ、A:実装基板母材上面から圧電基板底面までの間隔)であることを特徴とする請求項3乃至5のいずれかに記載の弾性表面波デバイスの製造方法。
The thickness tr of the resin sheet during the laminating step is:
L / {(X + Gx) (Y + Gy)} ≦ tr
However, L = (X + Gx) (Y + Gy) (H + T + A) -XYT-XYA- {XVyA + YVxA + (4VxVyA) / 3}
(L: volume of the resin sheet necessary to seal the outer surface of one surface acoustic wave chip, X: length of one side of the surface acoustic wave chip, Y: length of the other side of the surface acoustic wave chip, Gx: Vx: distance between dicing cuts extending in the Y direction to the nearest surface of the surface acoustic wave chip, Gy: distance between surface acoustic wave chips adjacent in the Y direction, Vy: the distance from the dicing allowance extending in the X direction to the nearest surface of the surface acoustic wave chip, H: the resin located on the surface of the surface acoustic wave chip after the outer surface of one surface acoustic wave chip has been completely covered with the resin sheet. The surface acoustic wave device according to any one of claims 3 to 5, wherein T is the thickness of the piezoelectric substrate, and A is the distance from the top surface of the mounting substrate base material to the bottom surface of the piezoelectric substrate. Method.
前記ラミネート工程は、前記樹脂シートに圧接しながら回転する所定温度に加熱した押圧ローラと前記実装基板母材下面に添設したガイド部材との間で実装基板母材及び弾性表面波チップを加圧する熱ローララミネート工程からなり、前記熱ローララミネート工程は、押圧ローラの加熱温度を樹脂シートの軟化温度又は溶融温度以上、且つ硬化温度未満に設定し、前記押圧ローラによって前記樹脂シート上面を加熱しながら加圧することにより軟化又は溶融させ、軟化又は溶融した樹脂シートを押圧ローラにて加熱しながら加圧することによって気密空間を確保しながら弾性表面波チップを樹脂にて被覆することを特徴とする請求項3乃至6のいずれかに記載の弾性表面波フィルタの製造方法。The laminating step presses the mounting substrate base material and the surface acoustic wave chip between a pressing roller heated to a predetermined temperature that rotates while being pressed against the resin sheet and a guide member attached to a lower surface of the mounting substrate base material. The heat roller laminating step comprises setting the heating temperature of the pressing roller to a temperature equal to or higher than the softening temperature or melting temperature of the resin sheet, and lower than the curing temperature, and heating the upper surface of the resin sheet by the pressing roller. The surface acoustic wave chip is covered with a resin while securing an airtight space by applying pressure while heating or softening the softened or melted resin sheet with a pressing roller. 7. A method for manufacturing a surface acoustic wave filter according to any one of 3 to 6. 前記ラミネート工程は、前記樹脂シート上面に先端で圧接しながら一方向へ移動する所定温度に加熱したブレードと、前記実装基板母材下面に添設したガイド部材との間で実装基板母材及び弾性表面波チップを加圧するブレードラミネート工程からなり、前記ブレードラミネート工程は、ブレードの加熱温度を樹脂シートの軟化温度又は溶融温度以上、且つ硬化温度未満に設定し、ブレードによって樹脂シートの上面を加熱しながら加圧することにより軟化又は溶融させ、軟化又は溶融した樹脂シートをブレードにて加熱しながら加圧することによって気密空間を確保しながら弾性表面波チップを樹脂にて被覆することを特徴とする請求項3乃至6のいずれかに記載の弾性表面波フィルタの製造方法。In the laminating step, the mounting board base material and the elasticity are moved between a blade heated to a predetermined temperature, which moves in one direction while being pressed against the upper surface of the resin sheet at one end, and a guide member attached to the lower surface of the mounting board base material. It consists of a blade laminating step of pressing the surface acoustic wave chip, the blade laminating step is set at a temperature higher than the softening temperature or melting temperature of the resin sheet and lower than the curing temperature of the resin sheet, and the upper surface of the resin sheet is heated by the blade. The surface acoustic wave chip is coated with a resin while securing an airtight space by applying pressure while heating the softened or molten resin sheet with a blade while applying pressure while softening or melting the resin sheet. 7. A method for manufacturing a surface acoustic wave filter according to any one of 3 to 6. 前記ラミネート工程は、減圧雰囲気にて実施することを特徴とする請求項3乃至8のいずれかに記載の弾性表面波デバイスの製造方法。9. The method according to claim 3, wherein the laminating step is performed in a reduced pressure atmosphere. 前記ラミネート工程は、不活性ガス雰囲気中にて実施することを特徴とする請求項3乃至8のいずれかに記載の弾性表面波デバイスの製造方法。9. The method according to claim 3, wherein the laminating step is performed in an inert gas atmosphere. 前記プレス成形工程は、前記実装基板母材の下面側に接する第一のプレート治具と前記実装基板母材上面の樹脂シートに接する第二のプレート治具との間に前記実装基板母材を挟んだ状態で加圧しながら加熱硬化するものであって、
前記第二のプレート治具の下面には、前記樹脂シート周縁部を前記実装基板母材上面に押さえつけるための押さえフレームが形成されていることを特徴とする請求項3乃至10のいずれかに記載の弾性表面波デバイスの製造方法。
The press forming step includes, between a first plate jig contacting the lower surface side of the mounting substrate preform and a second plate jig contacting a resin sheet on the mounting substrate preform upper surface, mounting the mounting substrate preform. It is cured by heating while pressing while sandwiching it,
11. A holding frame for holding a peripheral portion of the resin sheet against an upper surface of the mounting substrate base material is formed on a lower surface of the second plate jig. Production method of a surface acoustic wave device.
前記プレス成形工程は、前記第一のプレート治具の上面には、前記第二のプレート治具の下面と当接して両者の間隙を制限するためのスペーサ部材が形成されていることを特徴とする請求項11に記載の弾性表面波フィルタの製造方法。The press forming step is characterized in that a spacer member is formed on an upper surface of the first plate jig to limit a gap between the lower surface of the second plate jig and the gap therebetween. A method for manufacturing a surface acoustic wave filter according to claim 11.
JP2003136822A 2003-05-15 2003-05-15 Manufacturing method of surface acoustic wave device Expired - Fee Related JP3912324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003136822A JP3912324B2 (en) 2003-05-15 2003-05-15 Manufacturing method of surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003136822A JP3912324B2 (en) 2003-05-15 2003-05-15 Manufacturing method of surface acoustic wave device

Publications (2)

Publication Number Publication Date
JP2004343378A true JP2004343378A (en) 2004-12-02
JP3912324B2 JP3912324B2 (en) 2007-05-09

Family

ID=33526636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003136822A Expired - Fee Related JP3912324B2 (en) 2003-05-15 2003-05-15 Manufacturing method of surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP3912324B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098419A (en) * 2006-10-12 2008-04-24 Hitachi Chem Co Ltd Sealing film and semiconductor device using the same
JP2008108928A (en) * 2006-10-26 2008-05-08 Sony Corp Semiconductor device and its manufacturing method
JP2009010942A (en) * 2007-05-29 2009-01-15 Nippon Dempa Kogyo Co Ltd Piezoelectric component and method of manufacturing the same
JP2009267344A (en) * 2008-04-04 2009-11-12 Sony Chemical & Information Device Corp Method of manufacturing semiconductor device
JP2009272975A (en) * 2008-05-09 2009-11-19 Nippon Dempa Kogyo Co Ltd Method of manufacturing piezoelectric component
JP2011114054A (en) * 2009-11-25 2011-06-09 Dainippon Printing Co Ltd Sensor unit, and method of manufacturing the same
JP2012204368A (en) * 2011-03-23 2012-10-22 Fujitsu Semiconductor Ltd Semiconductor device and manufacturing method thereof
JP2013048284A (en) * 2012-11-01 2013-03-07 Lintec Corp Manufacturing method of resin sealing type semiconductor device
JP2013225749A (en) * 2012-04-20 2013-10-31 Kyocera Corp Piezoelectric device and module component
JP2015130413A (en) * 2014-01-08 2015-07-16 新日本無線株式会社 Electronic component and method of manufacturing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098419A (en) * 2006-10-12 2008-04-24 Hitachi Chem Co Ltd Sealing film and semiconductor device using the same
JP2008108928A (en) * 2006-10-26 2008-05-08 Sony Corp Semiconductor device and its manufacturing method
JP2009010942A (en) * 2007-05-29 2009-01-15 Nippon Dempa Kogyo Co Ltd Piezoelectric component and method of manufacturing the same
JP2009267344A (en) * 2008-04-04 2009-11-12 Sony Chemical & Information Device Corp Method of manufacturing semiconductor device
JP2009272975A (en) * 2008-05-09 2009-11-19 Nippon Dempa Kogyo Co Ltd Method of manufacturing piezoelectric component
JP2011114054A (en) * 2009-11-25 2011-06-09 Dainippon Printing Co Ltd Sensor unit, and method of manufacturing the same
JP2012204368A (en) * 2011-03-23 2012-10-22 Fujitsu Semiconductor Ltd Semiconductor device and manufacturing method thereof
JP2013225749A (en) * 2012-04-20 2013-10-31 Kyocera Corp Piezoelectric device and module component
JP2013048284A (en) * 2012-11-01 2013-03-07 Lintec Corp Manufacturing method of resin sealing type semiconductor device
JP2015130413A (en) * 2014-01-08 2015-07-16 新日本無線株式会社 Electronic component and method of manufacturing the same

Also Published As

Publication number Publication date
JP3912324B2 (en) 2007-05-09

Similar Documents

Publication Publication Date Title
JP3702961B2 (en) Manufacturing method of surface mount type SAW device
US7696004B2 (en) Wafer level package fabrication method
JP5113627B2 (en) Electronic component and manufacturing method thereof
JP3689414B2 (en) Manufacturing method of surface acoustic wave device
JP2013038214A (en) Semiconductor device manufacturing method
JP3912324B2 (en) Manufacturing method of surface acoustic wave device
JP5264281B2 (en) Method for manufacturing piezoelectric component
JP2004363770A5 (en)
JP4012884B2 (en) FBAR duplexer element and manufacturing method thereof
JP2002368028A (en) Semiconductor package and method of manufacturing the same
JP4173024B2 (en) Electronic component manufacturing method and base substrate thereof
JP5494546B2 (en) Manufacturing method of semiconductor device
JP2002110736A (en) Semiconductor device and its manufacturing method
JP2005286917A (en) Surface acoustic wave device and its manufacturing method
JP2004007051A (en) Sealing member, and method for producing surface acoustic wave apparatus by using the same
JP3912348B2 (en) Manufacturing method of surface acoustic wave device
JP2002270627A (en) Semiconductor device manufacturing method
JP2004253839A (en) Surface mounting saw device and method of manufacturing the same
JP2006303128A (en) Manufacturing method of hollow semiconductor package
JP2002151531A (en) Method for manufacturing semiconductor device
JP2009246079A (en) Semiconductor package and method of manufacturing the same
CN100573867C (en) Chip-packaging structure, chip bearing belt and flattening method thereof
JP2008042430A (en) Surface acoustic wave device and its manufacturing method
JP6859634B2 (en) Hollow package manufacturing method
JP5049676B2 (en) Piezoelectric component and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060412

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Ref document number: 3912324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees