JP2004007051A - Sealing member, and method for producing surface acoustic wave apparatus by using the same - Google Patents

Sealing member, and method for producing surface acoustic wave apparatus by using the same Download PDF

Info

Publication number
JP2004007051A
JP2004007051A JP2002157571A JP2002157571A JP2004007051A JP 2004007051 A JP2004007051 A JP 2004007051A JP 2002157571 A JP2002157571 A JP 2002157571A JP 2002157571 A JP2002157571 A JP 2002157571A JP 2004007051 A JP2004007051 A JP 2004007051A
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
sealing member
resin sheet
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002157571A
Other languages
Japanese (ja)
Inventor
Takumi Kikuchi
菊池 巧
Hirofumi Fujioka
藤岡 弘文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002157571A priority Critical patent/JP2004007051A/en
Publication of JP2004007051A publication Critical patent/JP2004007051A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for mass-producing a surface acoustic wave apparatus in simplified processes. <P>SOLUTION: A surface acoustic wave element 10 is flip-chip-mounted on a wiring board 20 in a manner that a function face of the surface acoustic wave element 10 with bumps 4 formed thereto faces the wiring board 20 with each other. Then hot press forming is applied to the wiring board 20 and the sealing member 18 comprising a base 8 provided with an uncured resin sheet 7 to resin-seal the surface acoustic wave element 10. The base of the sealing member 18 has a higher flexural rigidity than that of the uncured resin sheet in the case of the hot press forming and is integrated with the uncured resin sheet. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は表面弾性波素子を封止する封止用部材と、これを用いた表面弾性波装置の製造方法に関するもので、例えば高周波フィルタとして、電気通信機器等に用いられる。
【0002】
【従来の技術】
図3は、特開平4―301910号公報に記載された従来の表面弾性波装置を示す断面図である。この図において、1は圧電体基板で、この圧電体基板1の一方の主面(図において下面)には、励振電極2が形成され、圧電体基板1と励振電極2とにより表面弾性波素子10を構成する。11は上記表面弾性波素子10を取り囲むように設けられたパッケージで、一部には外部への接続部となる端子部12が形成されている。19は金属製のカバーで、パッケージ11の上面に設けた封止部13と接合され、上記表面弾性波素子10を気密封止し、表面弾性波素子10の機能面となる励振電極2を保護している。
【0003】
表面弾性波素子10と端子部12との接続はバンプ電極4で行なうが、図3に示すように、励振電極2の保護とその表面部の空間の確保が図られている。
即ち、図3に示すように、励振電極2を圧電基板1の下面に設け、励振電極2とパッケージ11との対向部に中空部14を形成することにより、励振電極2により励振される表面波とその伝搬路を弾性的に開放するための空間を確保することができるとともに、励振電極2の破損を防止するための保護対策もできる。
【0004】
しかし、金属製カバー19による気密封止は、製造コストが高くなり、さらに、表面弾性波素子10を収容するパッケージ11は、予め、1つまたは複数個の表面弾性波素子10を収容するよう個々に用意する必要があるので、大量生産に不向きであるという課題があった。
【0005】
一方、近年の低コスト化の要求を受けて、上記気密封止の他に、樹脂封止型表面弾性波装置が提案されているが、上記のように励振電極2の周囲は空間である必要があることから、中空樹脂封止が必須となる。
図4は、従来の樹脂封止型の表面弾性波装置の製造方法を工程順に示す説明図である。
まず、1つの平板状の基板5上に複数組の配線電極6を設けて配線基板20を得る{図4(a)}。
表面弾性波素子10の機能面となる励振電極2側には予めバンプ4が形成され、励振電極2が配線基板20と向かい合うようにしてそれぞれフリップチップ接続する{図4(b)}。
【0006】
そして、未硬化樹脂シート70を表面弾性波素子10上に配置して、未硬化樹脂シート70と配線基板20を熱プレス機により、プレス熱板9で成形して、上記未硬化樹脂により表面弾性波素子10を樹脂封止する{図4(c)}。
樹脂封止後、ダイシングソーによりダイシング位置50で切断して樹脂パッケージ毎に切り離して表面弾性波装置を得る{図4(d)}。
【0007】
また、図5は、特開平11−17490号公報に示された表面弾性波装置の構成図であり、図中34は硬化樹脂シート、35は液状樹脂である。
つまり、表面弾性波素子10の機能面を配線基板20に対面して配置し、機能面と配線基板20とはバンプ4の高さ分だけ離れて配置され、これにより機能面に中空部14を設けている。また、表面弾性波素子10の機能面と反対側の面に硬化樹脂シート34を被せ、中空部14を確保して、その上からさらに液状樹脂35により封止を完成させる。
【0008】
【発明が解決しようとする課題】
しかしながら、図4に示すように、上記未硬化樹脂シート70の剛性が低いと、配線基板20とシートを重ねてプレスする際、熱プレス初期から未硬化樹脂シート70が配線基板20と接触し、その部分が表面弾性波素子10側面よりも早く硬化するため、空気層が閉じ込められやすく、表面弾性波素子10の側面付近に大ボイド(巣)が生じるという課題があった。
そのため、上記未硬化樹脂シート70の剛性を高くすると、上記樹脂の流動性が悪くなり、接着不良や未封止などが生じ易くなるという課題があった。
【0009】
また、図5に示すように、表面弾性波素子10の上に一旦硬化樹脂シート34を被せ、中空を形成して硬化し、その後液状樹脂35を設ける方法では、2段階の樹脂封止工程を要するため、材料コスト・プロセスコストの両面から低コスト化の障害になるという課題があった。
【0010】
本発明は、かかる課題を解決するためになされたものであり、樹脂封止型の表面弾性波装置を容易に得ることができる封止用部材を得ることを目的とする。
また、工程が簡略で大量生産が可能な表面弾性波装置の製造方法を得ることを目的とする。
【0011】
【課題を解決するための手段】
本発明に係る第1の封止用部材は、機能面を配線基板側にして配線基板にフリップチップ実装された表面弾性波素子を、熱プレス成形により中空樹脂封止する封止用部材であって、未硬化樹脂シートと、上記熱プレス成形において、上記未硬化樹脂シートより曲げ剛性が高く、かつ上記未硬化樹脂シートに一体化されている基材とを備えたものである。
【0012】
本発明に係る第2の封止用部材は、上記第1の封止用部材において、基材の曲げ剛性が、熱プレス時において、0.01〜50kg・mmであることを特徴とするものである。
【0013】
本発明に係る第3の封止用部材は、上記第1または第2の封止用部材において、未硬化樹脂シートの粘度が、熱プレス時において、5000〜100000Pa・sであることを特徴とするものである。
【0014】
本発明に係る第1の表面弾性波装置の製造方法は、表面弾性波素子を、機能面を配線基板側にして配線基板にフリップチップ実装する工程と、上記第1ないし第3のいずれかの封止用部材を用い、この封止用部材の未硬化樹脂シートを上記表面弾性波素子側にして、上記表面弾性波素子を熱プレス成形法により、上記配線基板と上記表面弾性波素子の機能面間に中空部を確保して、樹脂封止する工程とを備えた方法である。
【0015】
【発明の実施の形態】
実施の形態1.
本発明の第1の実施の形態の封止用部材は、表面弾性波素子を、熱プレス成形により中空樹脂封止する際に用いられるもので、未硬化樹脂シートと基材とが粘着等により一体化され、特に熱プレス成形時に、上記基材は上記未硬化樹脂シートより曲げ剛性が高く、かつ上記未硬化樹脂シートと基材との一体化が維持されるものである。
本実施の形態の封止用部材は、熱プレス成形時、未硬化樹脂シートは上記基材と一体化されており、かつ未硬化樹脂シート単独のものより剛性が高いので、熱プレス時に封止用部材の「たわみ」が防止され、熱プレス初期に、配線基板と未硬化樹脂シートが接触して、表面弾性波素子と未硬化樹脂シートの間に空気層を閉じこめ、その状態で硬化して、そこに大きなボイドが残存するという現象を防止することができる。
【0016】
本実施の形態に係わる基材の曲げ剛性は、熱プレス時において上記未硬化樹脂シートより高い剛性を有するものが用いられる。
なお、上記未硬化樹脂シートとしてエポキシ樹脂を用い、上記基材を樹脂封止後除去する場合は、上記エポキシ樹脂と難接着性の材料、例えば、PET(ポリエチレンテレフタレート)、PTFE(ポリテトラフルオロエチレン)、ETFE(エチルトリフルオロエチレン)等の樹脂シートや、ガラスクロス等を用いたFRP(繊維強化プラスチック)が好適に用いられる。
【0017】
上記基材の曲げ剛性は熱プレス時において、0.01〜50kg・mmであるのが望ましく、0.01kg・mm未満では、熱プレス初期に未硬化樹脂シートのたわみ量が大きくなり、未硬化樹脂シートの一部が配線基板に接触して空気層を閉じ込めて硬化する可能性が増し、成形後ボイドの抑制効果が得られにくくなる。
一方、曲げ剛性が50kg・mmを越えると、基材の膜厚が厚くなり熱抵抗が大きくなるので硬化時間が長くなったり、硬化が不均一になる傾向が増す。
【0018】
本実施の形態に係わる未硬化樹脂シートの膜厚は、表面弾性波素子を容易に樹脂封止するためには、実装された表面弾性波素子の機能面の反対側の面から配線基板表面までの距離以上の膜厚であることが望ましい。膜厚が厚過ぎると、熱伝導性が悪くなったり、熱プレス時に本実施の形態の封止部材がたわむ可能性が高くなり、また自重により基材との一体化が困難になるため膜厚は上記表面弾性波素子厚の2倍以下であるのが望ましい。
【0019】
また、本実施の形態に係わる未硬化樹脂シートの熱プレス時の粘度は、5000〜100000Pa・sであることが望ましい。5000Pa・s未満では、樹脂が表面弾性波素子と配線基板間の隙間から侵入して、励振電極まで到達し中空維持が困難となり特性が劣化する。また、100000Pa・sを越えるとボイドの残存量が増して、樹脂と配線基板の接着不良を起こし易くなる。
また、上記未硬化樹脂シートの硬化物の弾性率は、5〜800kg/mmであるのが望ましい。弾性率が800kg/mmを越えると、温度サイクルが加わる場合、封止樹脂に起因する熱応力が大きくなり、表面弾性波素子に歪を与え、特性が劣化したり、樹脂と表面波素子との界面または樹脂と配線基板との界面で、剥離や樹脂クラックが生じるなど、不具合を起こしやすい。
一方、熱応力面からは、弾性率は小さいほど望ましいものの、5kg/mm未満になると、構造体としての強度が弱くなるため、ハンドリング性が悪くなる。
【0020】
実施の形態2.
図1は本発明の第2の実施の形態の表面弾性波装置の製造方法を工程順に示す説明図であり、図中、1は圧電体基板であり、この圧電体基板1の一方の主面(図において下面)には、圧電体基板1表面の所定方向に励振される表面波の伝搬路となるすだれ状電極によって形成された励振電極2が形成され、圧電体基板1および励振電極2により表面弾性波素子10を構成する。20は基板5に配線電極6を設けてなる配線基板、4はバンプ、7は未硬化樹脂シート、8は基材、18は上記実施の形態1の封止用部材、9はプレス熱板、14は中空部、50はダイシングソーによりダイシング位置である。
【0021】
まず、平板状の基板5上に、複数組の配線電極6を設けて配線基板20を得{図1(a)}、表面弾性波素子10の励振電極2が設けられた面には予めAuバンプ4が形成され、励振電極2と平板状の配線基板20が向かい合うようにしてそれぞれフリップチップ方法により接続する{図1(b)}。
なお、本実施の形態においては、表面弾性波素子10と配線電極6との接続をAuバンプで接合する方式としたが、電気的な接続ができる手段であればその他、導電性樹脂のエストラマパッド、半田ペーストまたはシルバーペーストを利用することができる。
【0022】
その後、ガラスクロス強化PTFE{0.2mm厚、曲げ剛性0.3kg・mm(150℃で測定)}を基材として用い、これにエポキシ樹脂系の未硬化樹脂シート7{0.5mm厚、曲げ剛性0.0001kg・mm(室温で測定)}を設けた上記実施の形態1の封止用部材18を用意し、封止用部材18の未硬化樹脂シート7を表面弾性波素子10側にして配置し{図1(c)}、封止用部材18と配線基板20を熱プレス機を用いてプレス熱板9により成形し表面弾性波素子10を樹脂封止する{図1(d)}。
プレス条件は、120℃〜180℃、硬化時間10分〜2時間、プレス圧力5〜40kg/cmとする。
【0023】
樹脂封止後、ダイシングソーによりダイシング位置50で切断して樹脂パッケージ毎に切り離して表面弾性波装置を得る{図1(d)}。
なお、図1は封止用部材18を除去した後個片の装置に切り離した場合を示すが、封止用部材の基材が製品サイズ、特性または信頼性への支障をきたさない場合は除去する必要はない。
一方、使用する平板状配線基板は、ガラスエポキシ基板などの有機系基板材料でもアルミナなどのセラミック基板でもよく、製造工程の自由度が向上する。
上記のように、本実施の形態の表面弾性波装置の製造方法により、中空部を確保して表面弾性波素子を一括で樹脂封止でき、容易に表面弾性波装置を製造できる。また、ボイドの残存が抑制され、信頼性に優れた表面弾性波装置を得ることができる。
【0024】
参考例.
図2は、本発明の実施の形態の参考例として示す、表面弾性波装置の製造方法を工程順に示す説明図であり、図中、17は例えば上記実施の形態の封止用部材に用いた未硬化樹脂シート、21は加熱加圧ロール、22は供給用シートロール、23は排出用シートロール、24は減圧保持チャンバーで、加熱加圧ロール21、供給用シートロール22、排出用シートロール23および減空保持チャンバー24により真空ラミネータを構成する。
【0025】
まず、実施の形態2と同様にして、表面弾性波素子10を配線基板20にフリップチップする{図2(a)、(b)}。
次に、配線基板20と表面弾性波素子10上の未硬化樹脂シート17とを、真空ラミネータを使用してラミネートする{図2(c)}。
【0026】
その際、ラミネート条件としては、例えば、温度範囲60℃〜180℃、圧力2〜10kg/cmで、加熱加圧ロール21を0.5〜5m/分の速度で通過させることにより良好な樹脂封止が得られる。
さらに、重要なラミネート条件として、ラミネート時の減圧保持チャンバー24内の雰囲気を、0.1〜100torrの減圧状態に制御する必要がある。
通常、樹脂シートをラミネートする場合は、成形時のボイドを防止する上で、ラミネート雰囲気の圧力は低い方が望ましいのに比して、本参考例においては、表面弾性波素子10の励振電極周辺に中空部を確保して樹脂封止するために、上記減圧状態に保持する必要がある。
即ち、圧力が0.1torr未満の減圧雰囲気でラミネートした場合、溶融した樹脂が、表面弾性波素子の励振電極周辺にまで侵入し、素子の特性劣化が著しくなるという重大な不具合を引き起こす。
一方、圧力が100torrを越える雰囲気では、樹脂の侵入による不具合は防止できるが、硬化後、樹脂中に不均一なボイドが偏在し、ヒートサイクル特性などに悪影響を与える原因となる。
なお、必要に応じて、150〜180℃で1〜3時間程度の後硬化が必要になる場合もある。
次に、樹脂封止の後、ダイシングにより個別に切り離す事で最終的に表面弾性波装置を得る{図2(d)}。
【0027】
上記のように、本参考例に示す表面弾性波装置の製造方法により、中空部を確保して表面弾性波素子を一括で樹脂封止することができ、容易に表面弾性波装置が製造できる。また、ボイドの残存が抑制され、信頼性に優れた表面弾性波装置を得ることができる。
【0028】
なお、上記実施の形態2と参考例においては、図1、2に示す様に、隣り合った表面弾性波装置のダイシングラインを共用にしている。
この方式は、ダイシング工程において、ダンシング回数を削減できるためプロセスコスト低減の効果があるが、ダイシング精度が要求されるので、隣り合った表面弾性波装置の間の部分(デッドスペース)を残してダイシングする方法を採用しても良い。
【0029】
ところで、本明細書においては、本発明の実施の形態の封止用部材を、表面弾性波素子の中空樹脂封止に用いた場合について述べたが、その他マイクロウエーブ整合素子、インピーダンス整合素子を樹脂封止する場合にも適用できる。
また、参考例においても、表面弾性波素子の中空樹脂封止に用いた場合について述べたが、その他マイクロウエーブ整合素子、インピーダンス整合素子を樹脂封止する場合にも適用できる。
【0030】
【発明の効果】
本発明の第1の封止用部材は、機能面を配線基板側にして配線基板にフリップチップ実装された表面弾性波素子を、熱プレス成形により中空樹脂封止する封止用部材であって、未硬化樹脂シートと、上記熱プレス成形において、上記未硬化樹脂シートより曲げ剛性が高く、かつ上記未硬化樹脂シートに一体化されている基材とを備えたもので、樹脂封止型の表面弾性波装置を容易に得ることができるという効果がある。
【0031】
本発明の第2の封止用部材は、上記第1の封止用部材において、基材の曲げ剛性が、熱プレス時において、0.01〜50kg・mmであることを特徴とするもので、樹脂封止型の表面弾性波装置を容易に得ることができるという効果がある。
【0032】
本発明の第3の封止用部材は、上記第1または第2の封止用部材において、未硬化樹脂シートの粘度が、熱プレス時において、5000〜100000Pa・sであることを特徴とするもので、樹脂封止型の表面弾性波装置を容易に得ることができるという効果がある。
【0033】
本発明の第1の表面弾性波装置の製造方法は、表面弾性波素子を、機能面を配線基板側にして配線基板にフリップチップ実装する工程と、上記第1ないし第3のいずれかの封止用部材を用い、この封止用部材の未硬化樹脂シートを上記表面弾性波素子側にして、上記表面弾性波素子を熱プレス成形法により、上記配線基板と上記表面弾性波素子の機能面間に中空部を確保して、樹脂封止する工程とを備えた方法で、工程が簡略で大量生産が可能であるという効果がある。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の表面弾性波装置の製造方法を工程順に示す説明図である。
【図2】本発明の実施の形態の参考例として示す、表面弾性波装置の製造方法を工程順に示す説明図である。
【図3】従来の表面弾性波装置を示す断面図である。
【図4】従来の樹脂封止型の表面弾性波装置の製造方法を工程順に示す説明図である。
【図5】従来の表面弾性波装置の構成図である。
【符号の説明】
4 バンプ電極、7 未硬化樹脂シート、8 基材、9 プレス熱板、10 表面弾性波素子、14 中空部、18 封止用部材、20 配線基板。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sealing member for sealing a surface acoustic wave element and a method for manufacturing a surface acoustic wave device using the same, and is used, for example, as a high-frequency filter in telecommunications equipment and the like.
[0002]
[Prior art]
FIG. 3 is a sectional view showing a conventional surface acoustic wave device described in Japanese Patent Application Laid-Open No. Hei 4-301910. In this figure, reference numeral 1 denotes a piezoelectric substrate, and an excitation electrode 2 is formed on one main surface (lower surface in the figure) of the piezoelectric substrate 1, and the surface acoustic wave element is formed by the piezoelectric substrate 1 and the excitation electrode 2. 10 is constituted. Reference numeral 11 denotes a package provided so as to surround the surface acoustic wave device 10, and a terminal portion 12 serving as a connection portion to the outside is formed in a part thereof. Reference numeral 19 denotes a metal cover which is joined to the sealing portion 13 provided on the upper surface of the package 11 to hermetically seal the surface acoustic wave element 10 and protect the excitation electrode 2 serving as a functional surface of the surface acoustic wave element 10. are doing.
[0003]
The connection between the surface acoustic wave element 10 and the terminal section 12 is made by the bump electrode 4. As shown in FIG. 3, the excitation electrode 2 is protected and the space on the surface thereof is ensured.
That is, as shown in FIG. 3, the excitation electrode 2 is provided on the lower surface of the piezoelectric substrate 1, and the hollow portion 14 is formed at a portion where the excitation electrode 2 and the package 11 face each other, so that the surface wave excited by the excitation electrode 2 is formed. And a space for elastically opening the propagation path can be secured, and protective measures for preventing damage to the excitation electrode 2 can also be taken.
[0004]
However, the hermetic sealing with the metal cover 19 increases the manufacturing cost. Further, the package 11 accommodating the surface acoustic wave element 10 is individually packaged so as to accommodate one or more surface acoustic wave elements 10 in advance. Therefore, there is a problem that it is not suitable for mass production.
[0005]
On the other hand, in response to the demand for cost reduction in recent years, a resin-sealed surface acoustic wave device has been proposed in addition to the hermetic sealing described above, but the space around the excitation electrode 2 needs to be a space as described above. Therefore, hollow resin sealing is essential.
FIG. 4 is an explanatory view showing a method for manufacturing a conventional resin-sealed surface acoustic wave device in the order of steps.
First, a plurality of sets of wiring electrodes 6 are provided on one flat substrate 5 to obtain a wiring substrate 20 (FIG. 4A).
A bump 4 is formed in advance on the excitation electrode 2 side, which is a functional surface of the surface acoustic wave element 10, and flip-chip connection is performed so that the excitation electrode 2 faces the wiring board 20 (FIG. 4B).
[0006]
Then, the uncured resin sheet 70 is placed on the surface acoustic wave device 10, and the uncured resin sheet 70 and the wiring board 20 are formed by a hot press 9 with a hot press machine. The wave element 10 is sealed with a resin {FIG. 4C}.
After resin sealing, the wafer is cut at a dicing position 50 by a dicing saw and cut into resin packages to obtain a surface acoustic wave device (FIG. 4D).
[0007]
FIG. 5 is a configuration diagram of a surface acoustic wave device disclosed in Japanese Patent Application Laid-Open No. H11-17490, in which reference numeral 34 denotes a cured resin sheet, and reference numeral 35 denotes a liquid resin.
In other words, the functional surface of the surface acoustic wave device 10 is arranged so as to face the wiring board 20, and the functional surface and the wiring board 20 are arranged apart from each other by the height of the bumps 4, whereby the hollow portion 14 is formed on the functional surface. Provided. Further, a cured resin sheet 34 is placed on the surface opposite to the functional surface of the surface acoustic wave device 10 to secure the hollow portion 14, and the sealing is completed with a liquid resin 35 from above.
[0008]
[Problems to be solved by the invention]
However, as shown in FIG. 4, when the rigidity of the uncured resin sheet 70 is low, the uncured resin sheet 70 comes into contact with the wiring board 20 from the initial stage of hot pressing when the sheet is overlaid and pressed. Since such a portion hardens faster than the side surface of the surface acoustic wave device 10, there is a problem that an air layer is easily confined, and large voids (nests) occur near the side surface of the surface acoustic wave device 10.
Therefore, when the rigidity of the uncured resin sheet 70 is increased, the fluidity of the resin is deteriorated, and there is a problem that poor adhesion, unsealing, and the like are likely to occur.
[0009]
As shown in FIG. 5, in a method of temporarily covering the surface acoustic wave element 10 with a cured resin sheet 34, forming a hollow and curing the resin, and then providing a liquid resin 35, a two-stage resin sealing step is performed. Therefore, there is a problem that it becomes an obstacle to cost reduction in terms of both material cost and process cost.
[0010]
The present invention has been made to solve such a problem, and an object of the present invention is to provide a sealing member that can easily obtain a resin-sealed surface acoustic wave device.
It is another object of the present invention to provide a method for manufacturing a surface acoustic wave device that is simple in process and can be mass-produced.
[0011]
[Means for Solving the Problems]
A first sealing member according to the present invention is a sealing member for sealing a surface acoustic wave element flip-chip mounted on a wiring board with a functional surface on a wiring board side by hot press molding with a hollow resin. And an uncured resin sheet, and a base material which is higher in bending rigidity than the uncured resin sheet in the hot press molding and is integrated with the uncured resin sheet.
[0012]
A second sealing member according to the present invention is characterized in that, in the first sealing member, the bending rigidity of the substrate is 0.01 to 50 kg · mm when hot pressed. It is.
[0013]
A third sealing member according to the present invention is characterized in that in the first or second sealing member, the viscosity of the uncured resin sheet is 5,000 to 100,000 Pa · s during hot pressing. Is what you do.
[0014]
A first method of manufacturing a surface acoustic wave device according to the present invention includes a step of flip-chip mounting a surface acoustic wave element on a wiring board with a functional surface on a wiring board side; Using a sealing member, the uncured resin sheet of the sealing member is set to the surface acoustic wave element side, and the surface acoustic wave element is formed by a hot press molding method. And securing a hollow portion between the surfaces and sealing with a resin.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
The sealing member according to the first embodiment of the present invention is used when a surface acoustic wave element is sealed with a hollow resin by hot press molding. The substrate is integrated, and particularly at the time of hot press molding, the base material has higher flexural rigidity than the uncured resin sheet, and the integration of the uncured resin sheet and the substrate is maintained.
The sealing member of the present embodiment is sealed at the time of hot press molding because the uncured resin sheet is integrated with the base material at the time of hot press molding and has higher rigidity than the uncured resin sheet alone. The `` bending '' of the member for use is prevented, the wiring board and the uncured resin sheet come into contact at the beginning of hot pressing, trapping the air layer between the surface acoustic wave element and the uncured resin sheet, and curing in that state However, the phenomenon that large voids remain therein can be prevented.
[0016]
The bending rigidity of the substrate according to the present embodiment is higher than that of the uncured resin sheet during hot pressing.
When an epoxy resin is used as the uncured resin sheet and the base material is removed after sealing with a resin, a material that is hardly adhered to the epoxy resin, for example, PET (polyethylene terephthalate), PTFE (polytetrafluoroethylene) ), A resin sheet such as ETFE (ethyl trifluoroethylene), or FRP (fiber reinforced plastic) using a glass cloth or the like is preferably used.
[0017]
The bending stiffness of the base material during hot pressing is desirably 0.01 to 50 kg · mm. If the bending stiffness is less than 0.01 kg · mm, the amount of deflection of the uncured resin sheet becomes large at the beginning of hot pressing, and The possibility that a part of the resin sheet comes into contact with the wiring board to confine the air layer and harden increases, and it becomes difficult to obtain the effect of suppressing voids after molding.
On the other hand, when the bending stiffness exceeds 50 kg · mm, the thickness of the base material is increased and the thermal resistance is increased, so that the curing time is prolonged or the curing tends to be uneven.
[0018]
The thickness of the uncured resin sheet according to the present embodiment is from the surface opposite to the functional surface of the mounted surface acoustic wave element to the surface of the wiring board in order to easily seal the surface acoustic wave element with resin. It is desirable that the film thickness be equal to or greater than the above distance. If the film thickness is too large, the thermal conductivity becomes poor, or the sealing member of the present embodiment is likely to bend during hot pressing, and it is difficult to integrate with the base material due to its own weight. Is preferably not more than twice the thickness of the surface acoustic wave element.
[0019]
Further, it is desirable that the viscosity of the uncured resin sheet according to the present embodiment during hot pressing be 5,000 to 100,000 Pa · s. If it is less than 5000 Pa · s, the resin enters from the gap between the surface acoustic wave element and the wiring board, reaches the excitation electrode, and it is difficult to maintain the hollow, and the characteristics are deteriorated. On the other hand, if it exceeds 100,000 Pa · s, the residual amount of voids increases, and adhesion failure between the resin and the wiring board tends to occur.
The cured product of the uncured resin sheet preferably has an elastic modulus of 5 to 800 kg / mm 2 . When the elastic modulus exceeds 800 kg / mm 2 , when a temperature cycle is applied, the thermal stress caused by the sealing resin increases, giving a distortion to the surface acoustic wave element, deteriorating the characteristics, and causing the resin and the surface acoustic wave element to lose their properties. At the interface of the resin or at the interface between the resin and the wiring board, defects such as peeling and resin cracks are likely to occur.
On the other hand, from the viewpoint of thermal stress, the smaller the elastic modulus is, the more desirable it is. However, if it is less than 5 kg / mm 2 , the strength as a structure is weakened, and the handling property is deteriorated.
[0020]
Embodiment 2 FIG.
FIG. 1 is an explanatory view showing a method of manufacturing a surface acoustic wave device according to a second embodiment of the present invention in the order of steps. In the drawing, reference numeral 1 denotes a piezoelectric substrate, and one main surface of the piezoelectric substrate 1 is shown. On the lower surface in the figure, an excitation electrode 2 formed by an interdigital electrode serving as a propagation path of a surface wave excited in a predetermined direction on the surface of the piezoelectric substrate 1 is formed. The surface acoustic wave device 10 is configured. Reference numeral 20 denotes a wiring board formed by providing the wiring electrode 6 on the substrate 5, 4 denotes a bump, 7 denotes an uncured resin sheet, 8 denotes a base material, 18 denotes the sealing member of the first embodiment, 9 denotes a press hot plate, 14 is a hollow portion, 50 is a dicing position by a dicing saw.
[0021]
First, a plurality of sets of wiring electrodes 6 are provided on a flat substrate 5 to obtain a wiring substrate 20 (FIG. 1A). The surface of the surface acoustic wave device 10 on which the excitation electrodes 2 are provided is Au in advance. The bumps 4 are formed, and the excitation electrodes 2 and the flat wiring board 20 are connected to each other by the flip chip method so as to face each other (FIG. 1B).
In the present embodiment, the connection between the surface acoustic wave element 10 and the wiring electrode 6 is made by Au bumps. However, any other means capable of electrical connection may be used. Pads, solder paste or silver paste can be used.
[0022]
Thereafter, glass cloth reinforced PTFE (0.2 mm thick, flexural rigidity 0.3 kg · mm (measured at 150 ° C.)) is used as a base material, and an epoxy resin-based uncured resin sheet 7 is bent to 0.5 mm thick. The sealing member 18 of the first embodiment having a rigidity of 0.0001 kg · mm (measured at room temperature) is prepared, and the uncured resin sheet 7 of the sealing member 18 is set to the surface acoustic wave element 10 side. 1C, the sealing member 18 and the wiring board 20 are molded with a hot plate 9 using a hot press, and the surface acoustic wave element 10 is sealed with a resin {FIG. 1D}. .
Pressing conditions are 120 ° C. to 180 ° C., a curing time of 10 minutes to 2 hours, and a pressing pressure of 5 to 40 kg / cm 2 .
[0023]
After resin sealing, the substrate is cut at a dicing position 50 by a dicing saw and cut into resin packages to obtain a surface acoustic wave device (FIG. 1D).
FIG. 1 shows the case where the sealing member 18 is removed and then cut into individual devices. However, if the base material of the sealing member does not interfere with the product size, characteristics or reliability, it is removed. do not have to.
On the other hand, the flat wiring substrate to be used may be an organic substrate material such as a glass epoxy substrate or a ceramic substrate such as alumina, so that the flexibility of the manufacturing process is improved.
As described above, according to the method for manufacturing a surface acoustic wave device of the present embodiment, a hollow portion can be secured and the surface acoustic wave element can be collectively resin-sealed, and the surface acoustic wave device can be easily manufactured. In addition, it is possible to obtain a surface acoustic wave device that suppresses the remaining of voids and has excellent reliability.
[0024]
Reference example.
FIG. 2 is an explanatory view showing a method of manufacturing a surface acoustic wave device shown as a reference example of an embodiment of the present invention in the order of steps, and in the figure, reference numeral 17 is used for a sealing member of the above embodiment, for example. Uncured resin sheet, 21 is a heating and pressing roll, 22 is a feeding sheet roll, 23 is a discharging sheet roll, 24 is a reduced pressure holding chamber, and is a heating and pressing roll 21, a feeding sheet roll 22, a discharging sheet roll 23 A vacuum laminator is constituted by the reduced air holding chamber 24.
[0025]
First, in the same manner as in the second embodiment, the surface acoustic wave device 10 is flip-chip mounted on the wiring board 20 (FIGS. 2A and 2B).
Next, the wiring board 20 and the uncured resin sheet 17 on the surface acoustic wave device 10 are laminated using a vacuum laminator (FIG. 2C).
[0026]
At this time, the laminating conditions are, for example, good resin by passing the heating / pressing roll 21 at a speed of 0.5 to 5 m / min at a temperature range of 60 ° C. to 180 ° C. and a pressure of 2 to 10 kg / cm 2. A seal is obtained.
Further, as an important laminating condition, it is necessary to control the atmosphere in the reduced pressure holding chamber 24 at the time of lamination to a reduced pressure state of 0.1 to 100 torr.
Normally, when laminating a resin sheet, in order to prevent voids at the time of molding, it is preferable that the pressure of the laminating atmosphere is low. In order to secure a hollow portion and seal with resin, it is necessary to maintain the above-described reduced pressure state.
That is, when laminating in a reduced-pressure atmosphere with a pressure of less than 0.1 torr, the molten resin penetrates into the vicinity of the excitation electrode of the surface acoustic wave device, causing a serious problem that the characteristics of the device are significantly deteriorated.
On the other hand, in an atmosphere in which the pressure exceeds 100 torr, problems due to intrusion of the resin can be prevented, but after curing, uneven voids are unevenly distributed in the resin, which has a bad influence on heat cycle characteristics and the like.
In some cases, post-curing may be required at 150 to 180 ° C. for about 1 to 3 hours as necessary.
Next, after sealing with a resin, the surface acoustic wave device is finally obtained by individually separating the chips by dicing (FIG. 2D).
[0027]
As described above, according to the method for manufacturing a surface acoustic wave device described in the present reference example, a hollow portion can be secured and the surface acoustic wave device can be collectively sealed with resin, and the surface acoustic wave device can be easily manufactured. In addition, it is possible to obtain a surface acoustic wave device that suppresses the remaining of voids and has excellent reliability.
[0028]
In the second embodiment and the reference example, as shown in FIGS. 1 and 2, the dicing lines of the adjacent surface acoustic wave devices are shared.
This method has the effect of reducing the cost of the process because the number of times of dancing can be reduced in the dicing step, but the dicing accuracy is required, so that dicing is performed while leaving a portion (dead space) between adjacent surface acoustic wave devices. May be adopted.
[0029]
By the way, in this specification, the case where the sealing member according to the embodiment of the present invention is used for hollow resin sealing of a surface acoustic wave device has been described. It can be applied to the case of sealing.
In the reference example, the case where the surface acoustic wave device is used for sealing with a hollow resin is described. However, the present invention is also applicable to a case where a microwave matching element and an impedance matching element are sealed with resin.
[0030]
【The invention's effect】
A first sealing member of the present invention is a sealing member for sealing a surface acoustic wave element flip-chip mounted on a wiring substrate with a functional surface on a wiring substrate side by hollow press molding with a hot resin. An uncured resin sheet and, in the hot press molding, a material having a higher bending rigidity than the uncured resin sheet, and a base material integrated with the uncured resin sheet, There is an effect that a surface acoustic wave device can be easily obtained.
[0031]
The second sealing member of the present invention is characterized in that, in the first sealing member, the bending rigidity of the substrate is 0.01 to 50 kg · mm at the time of hot pressing. There is an effect that a resin-sealed surface acoustic wave device can be easily obtained.
[0032]
The third sealing member of the present invention is characterized in that, in the first or second sealing member, the viscosity of the uncured resin sheet is 5,000 to 100,000 Pa · s during hot pressing. Therefore, there is an effect that a resin-sealed surface acoustic wave device can be easily obtained.
[0033]
A first method of manufacturing a surface acoustic wave device according to the present invention includes a step of flip-chip mounting a surface acoustic wave element on a wiring board with a functional surface on a wiring board side, and any one of the first to third sealing methods. Using a stopper member, the uncured resin sheet of the sealing member is placed on the surface acoustic wave element side, and the surface acoustic wave element is subjected to a hot press molding method so that the functional surfaces of the wiring substrate and the surface acoustic wave element are formed. The method includes a step of securing a hollow portion between the resin and resin sealing, and has an effect that the process is simple and mass production is possible.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a method of manufacturing a surface acoustic wave device according to a first embodiment of the present invention in the order of steps.
FIG. 2 is an explanatory view showing a method of manufacturing a surface acoustic wave device shown as a reference example of an embodiment of the present invention in the order of steps.
FIG. 3 is a sectional view showing a conventional surface acoustic wave device.
FIG. 4 is an explanatory view showing a method of manufacturing a conventional resin-sealed surface acoustic wave device in the order of steps.
FIG. 5 is a configuration diagram of a conventional surface acoustic wave device.
[Explanation of symbols]
Reference Signs List 4 bump electrode, 7 uncured resin sheet, 8 base material, 9 press hot plate, 10 surface acoustic wave element, 14 hollow portion, 18 sealing member, 20 wiring board.

Claims (4)

機能面を配線基板側にして配線基板にフリップチップ実装された表面弾性波素子を、熱プレス成形により中空樹脂封止する封止用部材であって、未硬化樹脂シートと、上記熱プレス成形において、上記未硬化樹脂シートより曲げ剛性が高く、かつ上記未硬化樹脂シートに一体化されている基材とを備えた封止用部材。A sealing member for sealing the surface acoustic wave element flip-chip mounted on the wiring board with the functional surface to the wiring board by hot press molding, and is an uncured resin sheet; A sealing member comprising: a base material that is higher in bending rigidity than the uncured resin sheet and is integrated with the uncured resin sheet. 基材の曲げ剛性が、熱プレス時において、0.01〜50kg・mmであることを特徴とする請求項1に記載の封止用部材。The sealing member according to claim 1, wherein the bending rigidity of the base material is 0.01 to 50 kg · mm at the time of hot pressing. 未硬化樹脂シートの粘度が、熱プレス時において、5000〜100000Pa・sであることを特徴とする請求項1または請求項2に記載の封止用部材。3. The sealing member according to claim 1, wherein the viscosity of the uncured resin sheet is 5,000 to 100,000 Pa · s during hot pressing. 4. 表面弾性波素子を、機能面を配線基板側にして配線基板にフリップチップ実装する工程と、請求項1ないし請求項3のいずれかに記載の封止用部材を用い、この封止用部材の未硬化樹脂シートを上記表面弾性波素子側にして、上記表面弾性波素子を熱プレス成形法により、上記配線基板と上記表面弾性波素子の機能面間に中空部を確保して、樹脂封止する工程とを備えた表面弾性波装置の製造方法。A step of flip-chip mounting the surface acoustic wave element on the wiring board with the functional surface facing the wiring board, and using the sealing member according to any one of claims 1 to 3, The uncured resin sheet is set to the surface acoustic wave element side, and the surface acoustic wave element is hot-pressed to secure a hollow portion between the wiring board and the functional surface of the surface acoustic wave element, and is sealed with resin. And manufacturing the surface acoustic wave device.
JP2002157571A 2002-05-30 2002-05-30 Sealing member, and method for producing surface acoustic wave apparatus by using the same Pending JP2004007051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002157571A JP2004007051A (en) 2002-05-30 2002-05-30 Sealing member, and method for producing surface acoustic wave apparatus by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002157571A JP2004007051A (en) 2002-05-30 2002-05-30 Sealing member, and method for producing surface acoustic wave apparatus by using the same

Publications (1)

Publication Number Publication Date
JP2004007051A true JP2004007051A (en) 2004-01-08

Family

ID=30428462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002157571A Pending JP2004007051A (en) 2002-05-30 2002-05-30 Sealing member, and method for producing surface acoustic wave apparatus by using the same

Country Status (1)

Country Link
JP (1) JP2004007051A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006019714A (en) * 2004-06-02 2006-01-19 Nagase Chemtex Corp Manufacturing method of electronic component
EP1734654A1 (en) * 2004-04-08 2006-12-20 Murata Manufacturing Co., Ltd. Surface acoustic wave filter and manufacturing method thereof
US7183124B2 (en) 2002-10-04 2007-02-27 Toyo Communication Equipment Co., Ltd. Surface mount saw device manufacturing method
WO2007055080A1 (en) * 2005-11-11 2007-05-18 Murata Manufacturing Co., Ltd. Method for manufacturing elastic boundary wave apparatus, and elastic boundary wave apparatus
JPWO2005071745A1 (en) * 2004-01-27 2007-07-26 株式会社村田製作所 Multilayer electronic component and manufacturing method thereof
JP2008285593A (en) * 2007-05-17 2008-11-27 Nitto Denko Corp Sealing thermosetting type adhesion sheet
JP2009010942A (en) * 2007-05-29 2009-01-15 Nippon Dempa Kogyo Co Ltd Piezoelectric component and method of manufacturing the same
JP2009272975A (en) * 2008-05-09 2009-11-19 Nippon Dempa Kogyo Co Ltd Method of manufacturing piezoelectric component

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7183124B2 (en) 2002-10-04 2007-02-27 Toyo Communication Equipment Co., Ltd. Surface mount saw device manufacturing method
JPWO2005071745A1 (en) * 2004-01-27 2007-07-26 株式会社村田製作所 Multilayer electronic component and manufacturing method thereof
EP1734654A4 (en) * 2004-04-08 2009-12-23 Murata Manufacturing Co Surface acoustic wave filter and manufacturing method thereof
EP1734654A1 (en) * 2004-04-08 2006-12-20 Murata Manufacturing Co., Ltd. Surface acoustic wave filter and manufacturing method thereof
JP2006019714A (en) * 2004-06-02 2006-01-19 Nagase Chemtex Corp Manufacturing method of electronic component
JP4730652B2 (en) * 2004-06-02 2011-07-20 ナガセケムテックス株式会社 Manufacturing method of electronic parts
WO2007055080A1 (en) * 2005-11-11 2007-05-18 Murata Manufacturing Co., Ltd. Method for manufacturing elastic boundary wave apparatus, and elastic boundary wave apparatus
JPWO2007055080A1 (en) * 2005-11-11 2009-04-30 株式会社村田製作所 Boundary wave device manufacturing method and boundary acoustic wave device
JP4631912B2 (en) * 2005-11-11 2011-02-16 株式会社村田製作所 Boundary wave device manufacturing method and boundary acoustic wave device
JP2008285593A (en) * 2007-05-17 2008-11-27 Nitto Denko Corp Sealing thermosetting type adhesion sheet
US20120153513A1 (en) * 2007-05-17 2012-06-21 Nitto Denko Corporation Thermosetting encapsulation adhesive sheet
KR101284374B1 (en) 2007-05-17 2013-07-09 닛토덴코 가부시키가이샤 Thermosetting adhesive sheet for sealing
US8922031B2 (en) 2007-05-17 2014-12-30 Nitto Denko Corporation Thermosetting encapsulation adhesive sheet
JP2009010942A (en) * 2007-05-29 2009-01-15 Nippon Dempa Kogyo Co Ltd Piezoelectric component and method of manufacturing the same
JP2009272975A (en) * 2008-05-09 2009-11-19 Nippon Dempa Kogyo Co Ltd Method of manufacturing piezoelectric component

Similar Documents

Publication Publication Date Title
JP4188337B2 (en) Manufacturing method of multilayer electronic component
JP5306385B2 (en) Multilayer electronic components
KR100561319B1 (en) Method of producing piezoelectric part and piezoelectric part
JP3839323B2 (en) Manufacturing method of semiconductor device
JP3702961B2 (en) Manufacturing method of surface mount type SAW device
KR100782280B1 (en) Electronic component manufacturing method
KR101641986B1 (en) Electronic component, and electronic component module
JP5543086B2 (en) Semiconductor device and manufacturing method thereof
US20050239236A1 (en) Printed circuit board and fabrication method thereof
US20100244234A1 (en) Semiconductor device and method of manufacturing same
WO2003084061A1 (en) Mounting method of surface acoustic wave element and surface acoustic wave device having resin-sealed surface acoustic wave element
JP4551461B2 (en) Semiconductor device and communication device and electronic device provided with the same
US20140028155A1 (en) Electronic component and manufacturing method for the electronic component
JP3689414B2 (en) Manufacturing method of surface acoustic wave device
TW200409252A (en) Packaging process for improving effective die-bonding area
JP2004007051A (en) Sealing member, and method for producing surface acoustic wave apparatus by using the same
JP2003032061A (en) Method of manufacturing surface acoustic wave device
JPH11307659A (en) Electronic component and manufacture thereof
JP2004153412A (en) Surface acoustic wave device and manufacturing method thereof
JP3419398B2 (en) Method for manufacturing semiconductor device
JP2018182125A (en) Semiconductor element and semiconductor device
JP2004135191A (en) Surface-mounted surface acoustic wave device and manufacturing method therefor
JP3858719B2 (en) Reinforcing materials for semiconductor devices
JP5049676B2 (en) Piezoelectric component and manufacturing method thereof
JP2002319650A (en) Flip-chip mounted body and mounting method for semiconductor chip

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040709