JP2004342540A - 電磁誘導による流体加熱装置 - Google Patents
電磁誘導による流体加熱装置 Download PDFInfo
- Publication number
- JP2004342540A JP2004342540A JP2003140008A JP2003140008A JP2004342540A JP 2004342540 A JP2004342540 A JP 2004342540A JP 2003140008 A JP2003140008 A JP 2003140008A JP 2003140008 A JP2003140008 A JP 2003140008A JP 2004342540 A JP2004342540 A JP 2004342540A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- electromagnetic induction
- fluid
- heating device
- sensitive material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- General Induction Heating (AREA)
Abstract
【課題】流体の流れ方向と垂直な断面における流体の温度分布を容易に均一化することなどが可能で安価な電磁誘導による流体加熱装置を提供する。
【解決手段】発熱体33の構成材料として磁性体の感温材料35A,35B,35C,35D,35Eを用い、この感温材料のキュリー温度を、電磁誘導加熱時の制御温度に設定する。この場合、例えば感温材料は、セルケース32の幅方向に波打つように形成した波形板とし、発熱体は、これらの感温材料を非磁性体のセパレータ板36A,36B,36C,36Dを介して5枚積層することにより、感温材料とセパレータ板との間に流体の流路37を形成してなる5段の積層体構造とする。
【選択図】 図1
【解決手段】発熱体33の構成材料として磁性体の感温材料35A,35B,35C,35D,35Eを用い、この感温材料のキュリー温度を、電磁誘導加熱時の制御温度に設定する。この場合、例えば感温材料は、セルケース32の幅方向に波打つように形成した波形板とし、発熱体は、これらの感温材料を非磁性体のセパレータ板36A,36B,36C,36Dを介して5枚積層することにより、感温材料とセパレータ板との間に流体の流路37を形成してなる5段の積層体構造とする。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は電磁誘導による流体加熱装置に関し、具体的には電磁誘導により、発熱体に発生した渦電流で発熱体が発熱し、この発熱体に接触する気体や液体などの流体を直接加熱する電磁誘導加熱装置に関するものである。
【0002】
【従来の技術】
従来、気体や液体を加熱する方法には、ボイラーなどのように石油やガスの燃焼エネルギーを熱源にする方法、太陽光などのように自然エネルギーを熱源にする方法、そして電気エネルギーを熱源にする方法がある。
【0003】
燃焼エネルギーを熱源にする方法は、燃料の供給システムなどの補機にコストを費やす必要があり、また、燃焼に対する安全確保や燃焼で生じる排気ガスの適正処理にも余分のコストがかかってしまう。更に、燃焼エネルギーを熱源にする方法は、温度コントロールの応答性が非常に悪い。自然エネルギーを熱源にする方法は、コストが高いばかりでなく、自然条件の影響を直に受けるため、安定した加熱が得られにくい。
【0004】
電気エネルギーを熱源にする方法には抵抗加熱や赤外線加熱などが工業用に使用されているが、抵抗加熱や赤外線加熱は、気体や液体を加熱する熱交換器がヒータからの熱伝導により加熱される間接加熱式であり、加熱効率や温度コントロールの応答性が悪い。
【0005】
これに対して、電気エネルギーを熱源にする方法の一つに、熱交換器自体が発熱体となる直接加熱式の電磁誘導加熱方式がある。図5は電磁誘導加熱方式の原理図である。同図に示すように、発熱体1の外周に巻回された誘導コイル2に高周波電流Iを流すと交番磁束Φが発生し、この交番磁束Φによって発熱体1に渦電流が流れ、この渦電流によって発熱体1が発熱する。その結果、発熱体1に接する気体や液体などの流体が、発熱体1によって直接加熱される。この電磁誘導加熱方式は、温度コントロールの応答性がよく、熱効率も非常に優れていることで知られている。これまで、電磁誘導加熱方式による流体の加熱に関係する技術提案としては、以下のようなものがある。
【0006】
例えば、流体管路内に粒状、線・棒状の小片を多数充填し、前記流体管路の外周の加熱コイルに電流を流すと、前記小片が電磁誘導により発熱し、この小片によって流体が加熱されるという方法がある(特許文献1)。また、波板を積層することで全体として多数の筒を形成して伝熱面積を大きくすることにより、熱効率を改良するという方法もある(特許文献2)。使用周波数帯や伝熱面積に関する具体的な目安を示した電磁誘導加熱装置もある(特許文献3)。
【0007】
【特許文献1】
特開平9−260042号公報
【特許文献2】
特開平9−167679号公報
【特許文献3】
特開平8−264272号公報
【0008】
【発明が解決しようとする課題】
図6は電磁誘導による流体加熱装置となる一般的な電磁誘導加熱セルの構造図であり、図6(a)には円筒状の電磁誘導加熱セルの横断面図を示し、図6(b)には直方体状の電磁誘導加熱セルの横断面図を示している。図6に示す電磁誘導加熱セル3,4は、円筒状又は直方体状のセルケース6内に球や棒、或いはパイプなどからなる発熱体5が収容され、セルケース6の外周に誘導コイル7が巻回された構造となっている。セルケース6の材質としては、セルケース6自体が電磁誘導加熱されてセルケース6の外部へ放熱されることによりセルケース6内を流れる流体の加熱効率を下げてしまうことがないようにするため、電磁誘導によって渦電流が流れない非導電体(絶縁体)を用いる場合が多い。更に、耐熱性や断熱性も考慮すると、セルケース6としてはセラミックス製のものが有効である。
【0009】
また、発熱体の固定方法としては図7に示すような方法がある。図7は発熱体の固定構造を示す透視図である。図7(a)の電磁誘導加熱セル8では、流路管(セルケース)10内に収容された多数の球状の発熱体11を、流路穴の開いた仕切板13で挟んだ構造となっており、図7(b)の電磁誘導加熱セル9では、ろう付けなどの溶接によって構成された集合体構造の発熱体11を、流路管(セルケース)10内に収容した構造となっている。
【0010】
セルケース内を通過した流体は、流体の流れ方向と垂直な断面方向にできるだけ均一に加熱されて、同断面における温度分布ができるだけ均一になっていることが望まれる。しかし、現実には外部への放熱の影響で最外周付近の流体の温度が低くなったり、或いは、高周波に特有な表皮効果により中央部の流体の温度が低くなってしまうことがある。特に、セルケースの横断面(流体の流れ方向と垂直な断面)の形状が長方形や楕円形といった縦横比が1より大である電磁誘導加熱セルの場合には、図7に例示すようにセルケースの横断面の長手方向の温度分布の不均一さが顕著に現れてしまう(端部効果)。なお、図7の上の図は色分けによって温度分布を表現したものであり、温度の高い順にピンク、赤、オレンジ、黄、緑、青、紺となっている。
【0011】
そこで、この問題を解決するため、本願発明者は特願2001−347202号において、非磁性体に磁性体を挿入した構造の発熱体を用いることを提案している。この場合、磁性体は非磁性体に比べて、電磁誘導より急速に加熱され、発熱量が大きいため、非磁性体も電磁誘導で発熱はするものの、磁性体のほうが主な加熱源となり、非磁性体は磁性体からの伝熱で加熱される。
【0012】
この実施例としては、図9に示すような構成の電磁誘導による流体加熱装置(電磁誘導加熱セル)を提案している。図9において左図は電磁誘導加熱セルの横断面図、右図は左図のA−A線矢視の縦断面図である。同図に示す電磁誘導加熱セル21は直方体状のセルケース23を有し、セルケース23内には、非磁性体によって形成された微細パイプである非磁性パイプ22を複数本並列に配設して集合させることにより集合パイプ26が構成され、セルケース23の外周には、断熱材24を介して誘導コイル30が巻回されている。
【0013】
そして、磁性体によって形成された微細パイプである磁性パイプ25を、集合体パイプ26を構成する非磁性パイプ22のうち、適宜の位置の非磁性パイプ22に挿入することにより、集合パイプ26の横断面(流体の流れ方向と垂直な断面)において、集合パイプ26の温度分布を均一とし、この集合パイプ26によって加熱される流体の温度分布が均一になるようにコントロールしている。なお、非磁性パイプ22としては、例えば外径がφ1.12mm、肉厚が0.05mmの微細パイプを用い、磁性パイプ25としては、例えば外径がφ1.0mm、肉厚が0・1mmの微細パイプを用いる。
【0014】
しかし、このような構成の電磁誘導加熱セル21では、セルケース23内の温度の制御性には優れているものの、セルケース23内で、ベースとなる非磁性パイプ22が秩序よく整列している必要があり、特に非磁性パイプ22を均等に締め付けて非磁性パイプ22同士を確実に密着させるために集合パイプ26の横断面形状を図10に示すような六角形状とする場合には、集合パイプ26の製作に非常に手間がかかっていた。なお、図10において、Dは非磁性パイプ22を接合する耐熱接着剤28によって生じたデッドスペース、27はセルケース23の内面と集合パイプ26との間の隙間である。また、使用時にも、温度分布を調節する場合には、微細な磁性パイプ25の本数や位置を変更する必要があり、非常に手間がかかっていた。
【0015】
従って、本発明は上記の事情に鑑み、流体の流れ方向と垂直な断面における流体の温度分布を容易に均一化することなどが可能で安価な電磁誘導による流体加熱装置を提供することを課題とする。
【0016】
【課題を解決するための手段】
上記課題を解決する第1発明の電磁誘導による流体加熱装置は、セルケースと、前記セルケース内に収容された発熱体と、前記セルケースの外側に設けられた誘導コイルとを備え、前記誘導コイルに交流電流を流して電磁誘導により前記発熱体を発熱させ、この発熱体によって前記セルケース内を流れる流体を加熱する流体加熱装置において、前記発熱体の構成材料として磁性体の感温材料を用い、この感温材料のキュリー温度を、電磁誘導加熱時の制御温度に設定したことを特徴とする。
【0017】
また、第2発明の電磁誘導による流体加熱装置は、第1発明の電磁誘導による流体加熱装置において、前記セルケースは、前記流体の流れ方向と垂直な断面が矩形状であり、前記感温材料は、前記セルケースの幅方向に波打つように形成した波形板であり、前記発熱体は、前記感温材料を非磁性体のセパレータ板を介して複数枚積層することにより、前記感温材料と前記セパレータ板との間に前記流体の流路を形成してなる複数段の積層体構造であることを特徴とする。
【0018】
また、第3発明の電磁誘導による流体加熱装置は、第2発明の電磁誘導による流体加熱装置において、前記セパレータ板は、基材の表面にろう材が積層されたクラッド構造の板であることを特徴する。
【0019】
また、第4発明の電磁誘導による流体加熱装置は、第2又は第3発明の電磁誘導による流体加熱装置において、前記発熱体を前記セルケースの幅方向において少なくとも3分割し、各分割部の感温材料のキュリー温度を、前記幅方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも高く設定したことを特徴とする。
【0020】
また、第5発明の電磁誘導による流体加熱装置は、第2〜第4発明の何れかの電磁誘導による流体加熱装置において、前記発熱体を前記セルケースの幅方向において少なくとも3分割し、各分割部の感温材料の波形のピッチを、前記幅方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも小さく設定したことを特徴とする。
【0021】
また、第6発明の電磁誘導による流体加熱装置は、第2〜第5発明の何れかの電磁誘導による流体加熱装置において、前記発熱体を前記セルケースの幅方向において少なくとも3分割し、各分割部の感温材料の波形の高さを、前記幅方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも小さく設定して、各分割部の感温材料の積層数を、前記幅方向において外側に位置する分割部のほうが内側に位置する分割部よりも多くしたことを特徴とする。
【0022】
また、第7発明の電磁誘導による流体加熱装置は、第2〜第6発明の何れかの電磁誘導による流体加熱装置において、前記感温材料のキュリー温度を、前記セルケースの高さ方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも高く設定したことを特徴とする。
【0023】
また、第8発明の電磁誘導による流体加熱装置は、第2〜第7発明の何れかの電磁誘導による流体加熱装置において、前記感温材料の波形のピッチを、前記セルケースの高さ方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも小さく設定したことを特徴とする。
【0024】
また、第9発明の電磁誘導による流体加熱装置は、第3〜第9発明の何れかの電磁誘導による流体加熱装置において、前記ろう材はNi合金であることを特徴とする。
【0025】
また、第10発明の電磁誘導による流体加熱装置は、第3〜第9発明の何れかの電磁誘導による流体加熱装置において、前記ろう材はNi合金系のNiアモルファスであることを特徴とする。
【0026】
【発明の実施の形態】
以下、本発明の実施の形態例を図面に基づき詳細に説明する。
【0027】
<実施の形態1>
図1(a)は本発明の実施の形態1に係る電磁誘導による流体加熱装置(電磁誘導加熱セル)の構成を示す斜視図、図1(b)は図1(a)のB部を拡大して示す図である。
【0028】
図1(a)に示すように、電磁誘導加熱セル31は、セルケース32と、セルケース32内に収容された発熱体33と、セルケース31の外側に設けられた誘導コイル34とを備えた構成となっている。誘導コイル34はセルケース32の外周に巻回されており、図示しない誘導加熱用の高周波電源に接続されている。従って、高周波電源から誘導コイル34に高周波電流が流されると、流体の流れ方向(矢印C参照)に交番磁束が発生し、この交番磁束によって発熱体33に渦電流が生じ、この渦電流によって発熱体33が発熱する。その結果、セルケース32内を流れる気体や液体などの流体が、発熱体33によって直接加熱される。
【0029】
本実施の形態1では、前記高周波電源として周波数50kHz、最大出力600Wのものを用い、誘導コイル34として2mm2 の耐熱IV線を2並列×9ターン巻いた。セルケース32はセラミックスなどの絶縁体からなる直方体状のものであり、横断面、即ち流体の流れ方向と垂直な断面が矩形状(図示例では長方形状)となっている。本実施の形態1では、セルケース32の材質に鳴海製陶製ネオセラム(3mmt )を用い、セルケース32の寸法は高さ(図中上下方向)を11.6mm、幅(図中左右方向)を254mm、長さ(流体の流れ方向)を70mmとした。
【0030】
そして、発熱体33には、セルケース32の横断面における流体の温度分布を均一にするため、磁性体の感温材料35が用いられている。
【0031】
磁性体には、元々、温度上昇による消磁という現象があるため、ある特定の温度で自己温度制御機能を持っている。即ち、磁性体の温度が、ある温度(キュリー温度Tc)を超えると、磁性体は磁性を失う(消磁)。このため、磁性体は、電磁誘導により発熱させたとき、キュリー温度までは温度上昇するが、キュリー温度以上では極端に発熱効率が悪くなり、温度が上がらなくなる。
【0032】
従って、高周波電源側で供給電力を制御することなく、磁性体はキュリー温度近傍で一定温度を維持するようになる。しかも、磁性体として感温材料を用いれば、任意の温度に維持することができることになる。そこで、本発明では発熱体に感温材料を用いることとした。感温材料とは、他の磁性体と異なり、磁性体の組成を調節することによって任意のキュリー温度を得た磁性体材料を称している。
【0033】
図1(a)及び図1(b)に示すように、本実施の形態1では発熱体33の構成材料として5枚の感温材料35A,35B,35C,35D,35Eを用いており、これらの感温材料35A,35B,35C,35D,35Eは、何れもセルケース32の幅方向に波打つように形成された波形板(フィン)となっている。このような波形板の感温材料は、例えば型を用いて容易に製作することができる。本実施の形態1では、波形板の感温材料35A,35B,35C,35D,35Eの寸法を、幅(セルケース32の幅方向)が244mm、ピッチ(波形の谷と谷(山と山)の間隔)が2mm、高さが1mm/1枚とした。
【0034】
また、本実施の形態1で使用した感温材料35A,35B,35C,35D,35Eは、住友特殊金属(株)製であり、Fe−Ni−Crの配合を調整することによりキュリー温度を300℃に設定した。この300℃のキュリー温度は、電磁誘導加熱セル31による電磁誘導加熱時の制御温度、即ち、感温材料35A,35B,35C,35D,35Eの制御温度である。
【0035】
そして、発熱体33は、この5枚の感温材料35A,35B,35C,35D,35Eと、4枚の非磁性体のセパレータ板36A,36B,36C,36Dとを用い、感温材料35A,35B,35C,35D,35Eをセパレータ板36A,36B,36C,36Dを介して積層すること、即ち、感温材料35A−セパレータ板36A−感温材料35B−セパレータ板36B・・・と交互に積層することにより、5段の積層体構造に構成されている。
【0036】
セパレータ板36A,36B,36C,36Dとしては、非磁性体金属の基材として非磁性体のSUS316Lを用い、この基材の表面に非磁性体金属のろう材として汎用的な銅系合金のろう材を積層してなるクラッド構造の板を用いている。セパレータ板36A,36B,36C,36Dの厚さは0.1mm/1枚である。
【0037】
発熱体33の作製手順としては、まず、感温材料35A,35B,35C,35D,35Eとセパレータ板36A,36B,36C,36Dと順次積層して、感温材料35A,35B,35C,35D,35Eとセパレータ板36A,36B,36C,36Dとからなるブロックを形成する。次に、このブロックを高温高圧下で板拡散接合(拡散溶接)することにより、セパレータ板36A,36B,36C,36Dと、感温材料35A,35B,35C,35D,35Eとを拡散接合する。かくして、発熱体33が作製され、接合後の発熱体33の高さは図1に示すように5.5mmであり、発熱体33の幅は244mmである。
【0038】
そして、発熱体33では感温材料35とセパレータ板36との間に流体の流路37が形成され、また、発熱体33をセルケース32内に収容したとき、セルケース32と感温材料35との間にも流体の流路37が形成される。
【0039】
なお、拡散接合とは、周知のように、相互に接触させた金属の母材に対して加圧手段及び加熱手段により高温高圧を加えることにより、相互に接触している前記母材同士の表面間に分子レベルの拡散を起こさせて前記母材同士を接合するという方法である。
【0040】
以上のように、本実施の形態1によれば、発熱体33の構成材料として磁性体の感温材料35A,35B,35C,35D,35Eを用い、この感温材料35A,35B,35C,35D,35Eのキュリー温度を、電磁誘導加熱時の制御温度に設定したことにより、高周波電源側で出力調整をすることなく、感温材料35A,35B,35C,35D,35E自体で制御温度(キュリー温度)を維持する。
【0041】
このため、高周波電源の制御プログラムを簡素化することができ、制御プログラムの製作工程が短縮される。また、従来はセルケース端部に端部効果に伴う温度の不均一さが見られたが、感温材料35A,35B,35C,35D,35Eを用いたことにより、定常時にはこれも解消することができる。つまり、感温材料35A,35B,35C,35D,35Eは、高周波電源から誘導コイル34への通電を開始したとき、過渡時にはセルケース32の横断面(流体の流れ方向と垂直な断面)において外側に位置する部分の温度が先に上昇するものの、300℃(キュリー温度)に到達する時間は高周波電源出力が600Wの場合で30秒程度であるため、1分以内には前記断面における温度分布が均一になる。従って、このときにセルケース32内に流される流体は、感温材料35A,35B,35C,35D,35Eにより均一に加熱されて前記断面における温度分布が均一となる。そして、このように端部効果に伴う温度の不均一が解消されることにより、従来の発熱体では手間がかかっていた磁性体の並べ替え作業などが不要となる。
【0042】
また、本実施の形態1によれば、発熱体33は、波形板の感温材料35A,35B,35C,35D,35Eをセパレータ板36A,36B,36C,36Dを介して積層することにより、感温材料35A,35B,35C,35D,35Eとセパレータ板36A,36B,36C,36Dとの間に流体の流路37を形成してなる6段の積層体構造としたため、従来のように微細な非磁性パイプを整列させたり、微細な磁性パイプを非磁性パイプに挿入したりする場合に比べて製作が容易である。発熱体33の製作コストに関しては、感温材料を波形板とするために初期のみ型代が必要になるが、発熱体を製作するたびに微細管を引き抜き加工により製作して、これらを溶着時に整列させなければならない従来の方法に比べ、製作数が増えるほど低コストで製作することができるようになる。
【0043】
また、本実施の形態1では、セパレータ板36A,36B,36C,36Dとして、基材の表面にろう材が積層されたクラッド構造の板を用いているため、感温材料35A,35B,35C,35D,35Eとセパレータ板36A,36B,36C,36Dとを接合する際、ろう材を塗布する手間が不要である。なお、ろう材を用いた場合、ろう材の成分により、ろう材部分が誘導加熱される可能性があるが、本実施の形態で使用したろう材は、厚さが0.01mmtと、感温材料に対して非常に薄いため、誘導加熱の発熱効率が非常に低くなっており、温度分布を乱すほど加熱されることはない。
【0044】
ところで、例えば電磁誘導加熱セルで加熱した気体等の流体を、電磁誘導加熱セルの後段(下流)に配置された熱処理装置で用いる場合、前記流体の流れ方向と垂直な断面の温度分布が、電磁誘導加熱セル内では均一であっても、電磁誘導加熱セルから出て後段の熱処理装置へと流れていくにしたがい、放熱により外周側の温度が低下して熱処理装置の入口では不均一になってしまうことがある。
【0045】
このような問題点に対処するためには、発熱体の前記断面における外周側の温度を内側の温度よりも高くすることにより、電磁誘導加熱セルから出た流体の温度が、前記断面において外周側のほうが内側よりも高くなるようにすればよい。そこで、以下の実施の形態2〜5では、前記断面における外周側の発熱体温度を内側の発熱体温度よりも高くする場合について説明する。
【0046】
<実施の形態2>
図2は本発明の実施の形態2に係る電磁誘導による流体加熱装置(電磁誘導加熱セル)の構成図である。
【0047】
図2に示すように、本実施の形態2の電磁誘導加熱セル31では、積層体構造の発熱体33が、セルケース32の幅方向において3分割されている(分割部33A,33B,33C)。左右両側の分割部34A,34Bはそれぞれ横幅が22mmであり、中央の分割部34Cは横幅が200mmである。
【0048】
そして、中央の分割部34Cの感温材料35A,35B,35C,35D,35Eは、キュリー温度が、制御温度として上記実施の形態1と同様に300℃に設定されている(以下、この分割部を標準温度型発熱体とも称する)が、左右両側の分割部35A,35Bの感温材料35A,35B,35C,35D,35Eは、キュリー温度が、制御温度として330℃に設定されている(以下、この分割部を高温型発熱体とも称する)。
【0049】
その他の構成については、上記実施の形態1の電磁誘導加熱セルと同様であるため、ここでの説明は省略する。
【0050】
以上のように、本実施の形態2の電磁誘導加熱セル31よれば、発熱体33をセルケース32の幅方向において3分割し、中央の分割部33Cは感温材料35A,35B,35C,35D,35Eのキュリー温度を300℃に設定した標準温度型発熱体とする一方、左右両側の分割部33A,33Bは感温材料35A,35B,35C,35D,35Eのキュリー温度を330℃に設定した高温型発熱体とすることにより、流体の流れ方向と垂直な断面において、感温材料35A,35B,35C,35D,35Eの温度分布が、前記幅方向の中央部よりも左右両端部のほうが高くなるため、これらの感温材料35A,35B,35C,35D,35Eによって加熱される流体の温度分布も、前記幅方向の中央部よりも左右両端部のほうが高くなる。
【0051】
このため、例えば電磁誘導加熱セル31の後段(下流)に配置された熱処理装置において前記流体を利用する場合、前記流体は、電磁誘導加熱セル31を出てから熱処理装置に達するまでの放熱によって温度が低下しても、この温度低下を考慮して予め電磁誘導加熱セル31の高温型発熱体33A,33Bと標準温度型発熱体33Cとにより、外側の温度のほうが内側の温度よりも高くなるように加熱されるため、熱処理装置の入口では前記断面における温度分布がより均一になる。
【0052】
なお、上記では発熱体33を3分割しているが、必ずしもこれに限定するものではなく、3分割以上であってもよい。即ち、発熱体33をセルケース32の幅方向において少なくとも3分割し、各分割部の感温材料のキュリー温度を、前記幅方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも高く設定すればよい。
【0053】
<実施の形態3>
図3は本発明の実施の形態3に係る電磁誘導による流体加熱装置(電磁誘導加熱セル)の構成図である。
【0054】
図3に示すように、本実施の形態3の電磁誘導加熱セル32では、積層体構造の発熱体33が、セルケース32の幅方向において3分割されている(分割部33A,33B,33C)。左右両側の分割部34A,34Bはそれぞれ横幅が22mmであり、中央の分割部34Cは横幅が200mmである。
【0055】
中央の分割部34Cは、上記実施の形態1と同様に波形のピッチが2mm、高さが1mm/1枚である5枚の感温材料35A,35B,35C,35D,35Eを用いて5段の積層体構造に構成されている(以下、これを標準フィン型発熱体とも称する)。この標準フィン型発熱体34Cの高さは5.5mmである。
【0056】
これに対し、左右両側の分割部35A,35Bは、何れも波形のピッチを1.2mm、高さを0.8mm/1枚とした6枚の波形状板の感温材料35F,35G,35H,35I,35J,35Kと、5枚のセパレータ板36E,36F,36G,36H,36Iとを用い、感温材料35F,35G,35H,35I,35J,35Kをセパレータ板36E,36F,36G,36H,36Iを介して積層する(感温材料35F−セパレータ板36E−感温材料35G−セパレータ板36F・・・と交互に積層する)ことにより、6段の積層体構造に構成されている(以下、これを小フィン型発熱体とも称する)。この小フィン型発熱体35A,35Bの高さも、標準フィン型発熱体36Cと同じ5.5mmである。
【0057】
なお、感温材料35F,35G,35H,35I,35J,35Kのキュリー温度は感温材料35A,35B,35C,35D,35Eと同じ300℃である。また、セパレータ板36E,36F,36G,36H,36Iは、セパレータ板35A,35B,35C,35D,35Eと同じクラッド構造のものである。
【0058】
その他の構成については、上記実施の形態1の電磁誘導加熱セルと同様であるため、ここでの説明は省略する。
【0059】
以上のように、本実施の形態3によれば、発熱体33をセルケース32の幅方向において3分割し、中央の分割部33Cは感温材料35A,35B,35C,35D,35Eの波形のピッチを2mm、高さを1mm/1枚に設定して標準フィン型発熱体とする一方、左右両側の分割部33A,33Bは感温材料35F,35G,35H,35I,35J,35Kの波形のピッチを1.2mm、高さを0.8mm/1枚に設定して小フィン型発熱体としたことにより、小フィン型発熱体33A,33Bのほうが標準フィン型発熱体33Cよりも流体と熱交換する熱交換面積が増え、また、流体の流れ方向と垂直な断面において、発熱体(感温材料)の温度分布が、前記幅方向の中央部よりも左右両端部のほうが高くなるため、これらの感温材料35A,35B,35C,35D,35E、35F,35G,35H,35I,35J,35Kによって加熱される流体の温度分布も、前記幅方向の中央部よりも左右両端部のほうが高くなる。
【0060】
このため、上記実施の形態2の場合と同様に、例えば電磁誘導加熱セル31の後段(下流)に配置された熱処理装置において前記流体を利用する場合、前記流体は、電磁誘導加熱セル31を出てから熱処理装置に達するまでの放熱によって温度が低下しても、この温度低下を考慮して予め電磁誘導加熱セル31の小フィン型発熱体33A,33Bと標準フィン型発熱体33Cとで外側の温度のほうが内側の温度よりも高くなるように加熱されるため、熱処理装置の入口では前記断面における温度分布がより均一になる。
【0061】
なお、上記では発熱体33を3分割しているが、必ずしもこれに限定するものではなく、3分割以上であってもよい。また、上記では熱交換面積を増やすために波形のピッチと高さを小さくしているが、必ずしもこれに限定するものではなく、ピッチと高さの何れか一方のみを小さくしてもよい。即ち、発熱体33をセルケース32の幅方向において少なくとも3分割し、各分割部の感温材料の波形のピッチを、前記幅方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも小さく設定すればよい。或いは、発熱体33をセルケース32の幅方向において少なくとも3分割し、各分割部の感温材料の波形の高さを、前記幅方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも小さく設定して、各分割部の感温材料の積層数を、前記幅方向において外側に位置する分割部のほうが内側に位置する分割部よりも多くすればよい。
【0062】
ところで、上記実施の形態2,3では流体の流れ方向と垂直な断面において、セルケースの幅方向の両側の流体温度を中央部の流体温度よりも高くする場合の構成について説明しているが、放熱による流体温度の不均一は、セルケースの幅方向だけでなく、高さ方向にも生じる。そこで、以下の実施の形態4,5では、前記断面において、特にセルケースの高さ方向の外側の発熱体温度を内側の発熱体温度よりも高くする場合について説明する。
【0063】
<実施の形態4>
図2を参照して説明すると、本実施の形態4の電磁誘導による流体加熱装置(電磁誘導加熱セル)では、セルケース32の高さ方向において最も外側に位置する(最下段及び最上段の)感温材料35A,35Eのキュリー温度を、制御温度として330℃に設定することにより、内側(2段目、3段目、4段目)の感温材料35B,35C,35Dの制御温度(キュリー温度:300℃)よりも高くしている。
【0064】
その他の構成については、上記実施の形態1の電磁誘導加熱セルと同様であるため、ここでの説明は省略する。
【0065】
以上のように、本実施の形態4によれば、感温材料35A,35B,35C,35D,35Eのキュリー温度を、セルケース32の高さ向において外側に位置する感温材料35A,35Eのほうが内側に位置する感温材料35B,35C,35Dよりも高く設定したことにより、流体の流れ方向と垂直な断面において、前記高さ方向の外側の感温材料35A,35Eの温度のほうが内側の感温材料35B,35C,35Dの温度よりも高くなるため、これらの感温材料35A,35B,35C,35D,35Eによって加熱される流体の温度分布も、前記高さ方向において外側の温度のほうが内側の温度よりも高くなる。
【0066】
従って、例えば電磁誘導加熱セル31の後段(下流)に配置された熱処理装置において前記流体を利用する場合、前記流体は、電磁誘導加熱セル31を出てから熱処理装置に達するまでの放熱によって温度が低下しても、この温度低下を考慮して予め電磁誘導加熱セル31の感温材料33A,33Eと感温材料35B,35C,35Dとで外側の温度のほうが内側の温度よりも高くなるように加熱されるため、熱処理装置の入口では前記断面における温度分布がより均一になる。
【0067】
なお、上記では上下両端の感温材料のキュリー温度のみを大きくしているが、必ずしもこれに限定するものではない。即ち、積層した複数枚の感温材料のキュリー温度を、セルケースの高さ方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも高く設定すればよい。
【0068】
<実施の形態5>
図4は本発明の実施の形態5に係る電磁誘導による流体加熱装置(電磁誘導加熱セル)の構成図である。
【0069】
図4に示すように、本実施の形態5の電磁誘導加熱セル31では、5段の積層体構造の発熱体33を構成する感温材料35A,35B,35C,35D,35Eのうち、セルケース32の高さ方向において最も外側に位置する(最下段及び最上段の)感温材料35A,35Eの波形のピッチを1.2mmとすることにより、内側(2段目、3段目、4段目)に位置する感温材料35B,35C,35Dのピッチ(2mm)よりも小さくしている。
【0070】
その他の構成については、上記実施の形態1の電磁誘導加熱セルと同様であるため、ここでの説明は省略する。
【0071】
以上のように、本実施の形態5によれば、感温材料の波形のピッチを、セルケースの高さ方向において外側に位置する感温材料33A,33Eのほうが内側に位置する感温材料35B,35C,35Dよりも小さく設定したことにより、外側の感温材料33A,33Eのほうが内側の感温材料35B,35C,35Dよりも流体との熱交換面積が増えるため、流体の流れ方向と垂直な断面において、外側の感温材料35A,35Eの温度のほうが内側の感温材料35B,35C,35Dの温度よりも高くなるため、これらの感温材料35A,35B,35C,35D,35Eによって加熱される流体の温度分布も、前記高さ方向において外側の温度のほうが内側の温度よりも高くなる。
【0072】
従って、上記実施の形態4の場合と同様に、例えば電磁誘導加熱セル31の後段(下流)に配置された熱処理装置において前記流体を利用する場合、前記流体は、電磁誘導加熱セル31を出てから熱処理装置に達するまでの放熱によって温度が低下しても、この温度低下を考慮して予め電磁誘導加熱セル31の感温材料33A,33Eと感温材料35B,35C,35Dとで外側の温度のほうが内側の温度よりも高くなるように加熱されるため、熱処理装置の入口では前記断面における温度分布がより均一になる。
【0073】
なお、上記では上下両端の感温材料の波形のピッチのみを小さくしているが、必ずしもこれに限定するものではない。即ち、積層した複数枚の感温材料の波形のピッチを、セルケースの高さ方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも小さく設定すればよい。
【0074】
<実施の形態6>
上記実施の形態1〜5では感温材料(フィン)とセパレータ板とを接合するためのろう材として一般的な銅系合金を用いている。しかし、微細な電子回路を製造する半導体製造装置の分野では、特に導電性の高い銅材料からの微量なアウトガスを嫌うため、銅系合金のろう材を用いることはできない。
【0075】
つまり、感温材料とセパレータ板とを接合するためにろう材を用いた場合、温度や経時によるろう材の劣化で、ろう材から微量のアウトガスを生じるおそれがある。そして、このとき、ろう材が銅系合金である場合には、ろう材から銅原子が流出して後段のウエハに乗ってしまうおそれがあり、万が一、ウエハに銅原子が乗ってしまうと、ウエハの電子回路の短絡による不良や、レジストのマスキング不良などが生じてしまう。ろう材には、Cuろう、Agろう、Niろうなどがあるが、Niろう以外は何れも多少の銅を含んでいる。
【0076】
そこで、本実施の形態6の電磁誘導による流体加熱装置(電磁誘導加熱セル)では、ろう材に銅を全く含まないNi合金系のNiアモルファスを用いた。図2を参照して説明すると、本実施の形態では、セパレータ板36A,36B,36C,36Dを、非磁性体のSUS316Lなどの基材の表面にろう材としてNiアモルファスを設けた構造とし、このセパレータ板36A,36B,36C,36Dと、感温材料35A,35B,35C,35D,35Eとを高温高圧下で拡散接合した。
【0077】
Niアモルファスは、通常の結晶性のろう材と異なり、非常に薄い箔にできるため、電磁誘導加熱の自己温度調節機能に関与しないろう材部分の厚さを薄くすることができる。従って、Niアモルファスを用いれば、ろう材部分の厚さを薄くすることができるため、セパレータ板36A,36B,36C,36Dの厚さが、銅ろうを用いた上記実施の形態1のでは0.1mmであったのに対し、本実施の形態6ではその半分の0.05mmとなる。また、Niアモルファスは薄い箔とすることができるため、溶融に要する熱量が少なくて済む。
【0078】
なお、Niアモルファスは銅系合金に比べて2桁高コストであるため、本実施の形態6では、セパレータ板36A,36B,36C,36Dをクラッド構造とはせず、感温材料35A,35B,35C,35D,35Eとの溶接部にのみNiアモルファスを設けた構造とすることにより、ろう材の使用量を減らしている。
【0079】
また、このNiアモルファスを用いたセパレータ板36A,36B,36C,36Dと、感温材料35A,35B,35C,35D,35Eとを接合してなる発熱体33は、セパレータ板36A,36B,36C,36Dが薄くなったことにより、高さが上記実施の形態1の発熱体33の高さ(5.5mm)に比べて0.3mm小さくなった。このため、発熱体33とセルケース32との間には隙間が生じたが、この隙間には断熱性のスペーサを設けた。
【0080】
その他の構成については、上記実施の形態1の電磁誘導加熱セルと同様であるため、ここでの説明は省略する。
【0081】
以上のように、本実施の形態6の電磁誘導加熱セル31よれば、ろう材としてNi合金系のNiアモルファスを用いたことにより、ろう材に銅を含んでおらず、銅原子がウエハに乗って短絡などの不良を招くおそれがないため、半導体製造装置にも適用することができる。しかも、Niアモルファスは非常に薄い箔とすることができるため、電磁誘導加熱の自己温度調節機能に関与しないろう材部分の厚さを薄くすることができ、且つ、ろう材の溶融に要する熱量を低減することもできる。
【0082】
なお、上記実施の形態1〜6の構成は、必要に応じて適宜組み合わせてもよい。例えば実施の形態2,3の組み合わせ、実施の形態4,5の組み合わせ、実施の形態2〜6の組み合わせなど、全ての組み合わせが可能である。
【0083】
【発明の効果】
以上、発明の実施の形態とともに具体的に説明したように、第1発明の電磁誘導による流体加熱装置によれば、セルケースと、前記セルケース内に収容された発熱体と、前記セルケースの外側に設けられた誘導コイルとを備え、前記誘導コイルに交流電流を流して電磁誘導により前記発熱体を発熱させ、この発熱体によって前記セルケース内を流れる流体を加熱する流体加熱装置において、前記発熱体の構成材料として磁性体の感温材料を用い、この感温材料のキュリー温度を、電磁誘導加熱時の制御温度に設定したことを特徴とするため、交流電源側で出力調整をすることなく、感温材料自体で制御温度(キュリー温度)を維持する。このため、交流電源の制御プログラムを簡素化することができ、制御プログラムの製作工程が短縮される。また、従来はセルケース端部に端部効果に伴う温度の不均一さが見られたが、感温材料を用いたことにより、定常時にはこれも解消することができる。従って、このときにセルケース内に流される流体は、感温材料により均一に加熱されて流体の流れ方向と垂直な断面における温度分布が均一となる。そして、このように端部効果に伴う温度の不均一が解消されることにより、従来の発熱体では手間がかかっていた磁性体の並べ替え作業などが不要となる。
【0084】
また、第2発明の電磁誘導による流体加熱装置によれば、第1発明の電磁誘導による流体加熱装置において、前記セルケースは、前記流体の流れ方向と垂直な断面が矩形状であり、前記感温材料は、前記セルケースの幅方向に波打つように形成した波形板であり、前記発熱体は、前記感温材料を非磁性体のセパレータ板を介して複数枚積層することにより、前記感温材料と前記セパレータ板との間に前記流体の流路を形成してなる複数段の積層体構造であることを特徴とするため、従来のように微細な非磁性パイプを整列させたり、微細な磁性パイプを非磁性パイプに挿入したりする場合に比べて製作が容易であり、コストの低減も図ることができる。
【0085】
また、第3発明の電磁誘導による流体加熱装置によれば、第2発明の電磁誘導による流体加熱装置において、前記セパレータ板は、基材の表面にろう材が積層されたクラッド構造の板であることを特徴するため、感温材料とセパレータ板とを接合する際、ろう材を塗布する手間が不要である。
【0086】
また、第4発明の電磁誘導による流体加熱装置によれば、第2又は第3発明の電磁誘導による流体加熱装置において、前記発熱体を前記セルケースの幅方向において少なくとも3分割し、各分割部の感温材料のキュリー温度を、前記幅方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも高く設定したことを特徴とするため、流体の流れ方向と垂直な断面において、感温材料の温度分布が、前記幅方向の内側よりも外側のほうが高くなるため、これらの感温材料によって加熱される流体の温度分布も、前記幅方向の内側よりも外側のほうが高くなる。このため、例えば流体加熱装置の後段(下流)に配置された熱処理装置において前記流体を利用する場合、前記流体は、流体加熱装置を出てから熱処理装置に達するまでの放熱によって温度が低下しても、この温度低下を考慮して予め流体加熱装置により、外側の温度のほうが内側の温度よりも高くなるように加熱されるため、熱処理装置の入口では前記断面における温度分布がより均一になる。
【0087】
また、第5発明の電磁誘導による流体加熱装置によれば、第2〜第4発明の何れかの電磁誘導による流体加熱装置において、前記発熱体を前記セルケースの幅方向において少なくとも3分割し、各分割部の感温材料の波形のピッチを、前記幅方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも小さく設定したことを特徴とするため、前記幅方向の外側の感温材料のほうが内側の感温材料よりも流体との熱交換面積が増え、流体の流れ方向と垂直な断面において、発熱体(感温材料)の温度分布が、前記幅方向の内側よりも外側のほうが高くなるため、これらの感温材料によって加熱される流体の温度分布も、前記幅方向の内側よりも外側のほうが高くなる。このため、例えば流体加熱装置の後段(下流)に配置された熱処理装置において前記流体を利用する場合、前記流体は、流体加熱装置を出てから熱処理装置に達するまでの放熱によって温度が低下しても、この温度低下を考慮して予め流体加熱装置で外側の温度のほうが内側の温度よりも高くなるように加熱されるため、熱処理装置の入口では前記断面における温度分布がより均一になる。
【0088】
また、第6発明の電磁誘導による流体加熱装置によれば、第2〜第5発明の何れかの電磁誘導による流体加熱装置において、前記発熱体を前記セルケースの幅方向において少なくとも3分割し、各分割部の感温材料の波形の高さを、前記幅方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも小さく設定して、各分割部の感温材料の積層数を、前記幅方向において外側に位置する分割部のほうが内側に位置する分割部よりも多くしたことを特徴とするため、前記幅方向の外側の感温材料のほうが内側の感温材料よりも流体との熱交換面積が増え、流体の流れ方向と垂直な断面において、発熱体(感温材料)の温度分布が、前記幅方向の内側よりも外側のほうが高くなるため、これらの感温材料よって加熱される流体の温度分布も、前記幅方向の内側よりも外側のほうが高くなる。このため、例えば流体加熱装置の後段(下流)に配置された熱処理装置において前記流体を利用する場合、前記流体は、流体加熱装置を出てから熱処理装置に達するまでの放熱によって温度が低下しても、この温度低下を考慮して予め流体加熱装置で外側の温度のほうが内側の温度よりも高くなるように加熱されるため、熱処理装置の入口では前記断面における温度分布がより均一になる。
【0089】
また、第7発明の電磁誘導による流体加熱装置によれば、第2〜第6発明の何れかの電磁誘導による流体加熱装置において、前記感温材料のキュリー温度を、前記セルケースの高さ方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも高く設定したことを特徴とするため、流体の流れ方向と垂直な断面において、前記高さ方向の外側の感温材料の温度のほうが内側の感温材料の温度よりも高くなるため、これらの感温材料によって加熱される流体の温度分布も、前記高さ方向において外側の温度のほうが内側の温度よりも高くなる。従って、例えば流体加熱装置の後段(下流)に配置された熱処理装置において前記流体を利用する場合、前記流体は、流体加熱装置を出てから熱処理装置に達するまでの放熱によって温度が低下しても、この温度低下を考慮して予め流体加熱装置で外側の温度のほうが内側の温度よりも高くなるように加熱されるため、熱処理装置の入口では前記断面における温度分布がより均一になる。
【0090】
また、第8発明の電磁誘導による流体加熱装置によれば、第2〜第7発明の何れかの電磁誘導による流体加熱装置において、前記感温材料の波形のピッチを、前記セルケースの高さ方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも小さく設定したことを特徴とするため、前記高さ方向において外側の感温材料のほうが内側の感温材料よりも流体との熱交換面積が増えるため、流体の流れ方向と垂直な断面において、前記高さ方向の外側の感温材料の温度のほうが内側の感温材料の温度よりも高くなるため、これらの感温材料によって加熱される流体の温度分布も、前記高さ方向において外側の温度のほうが内側の温度よりも高くなる。例えば流体加熱装置の後段(下流)に配置された熱処理装置において前記流体を利用する場合、前記流体は、流体加熱装置を出てから熱処理装置に達するまでの放熱によって温度が低下しても、この温度低下を考慮して予め流体加熱装置で外側の温度のほうが内側の温度よりも高くなるように加熱されるため、熱処理装置の入口では前記断面における温度分布がより均一になる。
【0091】
また、第9発明の電磁誘導による流体加熱装置によれば、第3〜第9発明の何れかの電磁誘導による流体加熱装置において、前記ろう材はNi合金であることを特徴とするため、ろう材に銅を含んでおらず、銅原子がウエハに乗って短絡などの不良を招くおそれがないため、半導体製造装置にも適用することができる。
【0092】
また、第10発明の電磁誘導による流体加熱装置によれば、第3〜第9発明の何れかの電磁誘導による流体加熱装置において、前記ろう材はNi合金系のNiアモルファスであることを特徴とするため、Niアモルファスは非常に薄い箔とすることができることから、電磁誘導加熱の自己温度調節機能に関与しないろう材部分の厚さを薄くすることができ、且つ、ろう材の溶融に要する熱量を低減することもできる。
【図面の簡単な説明】
【図1】(a)は本発明の実施の形態1に係る電磁誘導による流体加熱装置(電磁誘導加熱セル)の構成を示す斜視図、(b)は(a)のB部を拡大して示す図である。
【図2】本発明の実施の形態2に係る電磁誘導による流体加熱装置(電磁誘導加熱セル)の構成図である。
【図3】本発明の実施の形態3に係る電磁誘導による流体加熱装置(電磁誘導加熱セル)の構成図である。
【図4】本発明の実施の形態5に係る電磁誘導による流体加熱装置(電磁誘導加熱セル)の構成図である。
【図5】電磁誘導加熱方式の原理図である。
【図6】電磁誘導による流体加熱装置となる一般的な電磁誘導加熱セルの構造図である。
【図7】発熱体の固定構造を示す透視図である。
【図8】加熱セルケースの横断面の長手方向の温度分布を示す図である。
【図9】先に提案した電磁誘導による流体加熱装置(電磁誘導加熱セル)の構成図である。
【図10】横断面が六角形状の集合パイプの例を示す図である。
【符号の説明】
31 電磁誘導による流体加熱装置(電磁誘導加熱セル)
32 セルケース
33 発熱体
33A,33B,33C 分割部
34 誘導コイル
35A〜35K 感温材料
36A〜36I セパレータ板
37 流路
【発明の属する技術分野】
本発明は電磁誘導による流体加熱装置に関し、具体的には電磁誘導により、発熱体に発生した渦電流で発熱体が発熱し、この発熱体に接触する気体や液体などの流体を直接加熱する電磁誘導加熱装置に関するものである。
【0002】
【従来の技術】
従来、気体や液体を加熱する方法には、ボイラーなどのように石油やガスの燃焼エネルギーを熱源にする方法、太陽光などのように自然エネルギーを熱源にする方法、そして電気エネルギーを熱源にする方法がある。
【0003】
燃焼エネルギーを熱源にする方法は、燃料の供給システムなどの補機にコストを費やす必要があり、また、燃焼に対する安全確保や燃焼で生じる排気ガスの適正処理にも余分のコストがかかってしまう。更に、燃焼エネルギーを熱源にする方法は、温度コントロールの応答性が非常に悪い。自然エネルギーを熱源にする方法は、コストが高いばかりでなく、自然条件の影響を直に受けるため、安定した加熱が得られにくい。
【0004】
電気エネルギーを熱源にする方法には抵抗加熱や赤外線加熱などが工業用に使用されているが、抵抗加熱や赤外線加熱は、気体や液体を加熱する熱交換器がヒータからの熱伝導により加熱される間接加熱式であり、加熱効率や温度コントロールの応答性が悪い。
【0005】
これに対して、電気エネルギーを熱源にする方法の一つに、熱交換器自体が発熱体となる直接加熱式の電磁誘導加熱方式がある。図5は電磁誘導加熱方式の原理図である。同図に示すように、発熱体1の外周に巻回された誘導コイル2に高周波電流Iを流すと交番磁束Φが発生し、この交番磁束Φによって発熱体1に渦電流が流れ、この渦電流によって発熱体1が発熱する。その結果、発熱体1に接する気体や液体などの流体が、発熱体1によって直接加熱される。この電磁誘導加熱方式は、温度コントロールの応答性がよく、熱効率も非常に優れていることで知られている。これまで、電磁誘導加熱方式による流体の加熱に関係する技術提案としては、以下のようなものがある。
【0006】
例えば、流体管路内に粒状、線・棒状の小片を多数充填し、前記流体管路の外周の加熱コイルに電流を流すと、前記小片が電磁誘導により発熱し、この小片によって流体が加熱されるという方法がある(特許文献1)。また、波板を積層することで全体として多数の筒を形成して伝熱面積を大きくすることにより、熱効率を改良するという方法もある(特許文献2)。使用周波数帯や伝熱面積に関する具体的な目安を示した電磁誘導加熱装置もある(特許文献3)。
【0007】
【特許文献1】
特開平9−260042号公報
【特許文献2】
特開平9−167679号公報
【特許文献3】
特開平8−264272号公報
【0008】
【発明が解決しようとする課題】
図6は電磁誘導による流体加熱装置となる一般的な電磁誘導加熱セルの構造図であり、図6(a)には円筒状の電磁誘導加熱セルの横断面図を示し、図6(b)には直方体状の電磁誘導加熱セルの横断面図を示している。図6に示す電磁誘導加熱セル3,4は、円筒状又は直方体状のセルケース6内に球や棒、或いはパイプなどからなる発熱体5が収容され、セルケース6の外周に誘導コイル7が巻回された構造となっている。セルケース6の材質としては、セルケース6自体が電磁誘導加熱されてセルケース6の外部へ放熱されることによりセルケース6内を流れる流体の加熱効率を下げてしまうことがないようにするため、電磁誘導によって渦電流が流れない非導電体(絶縁体)を用いる場合が多い。更に、耐熱性や断熱性も考慮すると、セルケース6としてはセラミックス製のものが有効である。
【0009】
また、発熱体の固定方法としては図7に示すような方法がある。図7は発熱体の固定構造を示す透視図である。図7(a)の電磁誘導加熱セル8では、流路管(セルケース)10内に収容された多数の球状の発熱体11を、流路穴の開いた仕切板13で挟んだ構造となっており、図7(b)の電磁誘導加熱セル9では、ろう付けなどの溶接によって構成された集合体構造の発熱体11を、流路管(セルケース)10内に収容した構造となっている。
【0010】
セルケース内を通過した流体は、流体の流れ方向と垂直な断面方向にできるだけ均一に加熱されて、同断面における温度分布ができるだけ均一になっていることが望まれる。しかし、現実には外部への放熱の影響で最外周付近の流体の温度が低くなったり、或いは、高周波に特有な表皮効果により中央部の流体の温度が低くなってしまうことがある。特に、セルケースの横断面(流体の流れ方向と垂直な断面)の形状が長方形や楕円形といった縦横比が1より大である電磁誘導加熱セルの場合には、図7に例示すようにセルケースの横断面の長手方向の温度分布の不均一さが顕著に現れてしまう(端部効果)。なお、図7の上の図は色分けによって温度分布を表現したものであり、温度の高い順にピンク、赤、オレンジ、黄、緑、青、紺となっている。
【0011】
そこで、この問題を解決するため、本願発明者は特願2001−347202号において、非磁性体に磁性体を挿入した構造の発熱体を用いることを提案している。この場合、磁性体は非磁性体に比べて、電磁誘導より急速に加熱され、発熱量が大きいため、非磁性体も電磁誘導で発熱はするものの、磁性体のほうが主な加熱源となり、非磁性体は磁性体からの伝熱で加熱される。
【0012】
この実施例としては、図9に示すような構成の電磁誘導による流体加熱装置(電磁誘導加熱セル)を提案している。図9において左図は電磁誘導加熱セルの横断面図、右図は左図のA−A線矢視の縦断面図である。同図に示す電磁誘導加熱セル21は直方体状のセルケース23を有し、セルケース23内には、非磁性体によって形成された微細パイプである非磁性パイプ22を複数本並列に配設して集合させることにより集合パイプ26が構成され、セルケース23の外周には、断熱材24を介して誘導コイル30が巻回されている。
【0013】
そして、磁性体によって形成された微細パイプである磁性パイプ25を、集合体パイプ26を構成する非磁性パイプ22のうち、適宜の位置の非磁性パイプ22に挿入することにより、集合パイプ26の横断面(流体の流れ方向と垂直な断面)において、集合パイプ26の温度分布を均一とし、この集合パイプ26によって加熱される流体の温度分布が均一になるようにコントロールしている。なお、非磁性パイプ22としては、例えば外径がφ1.12mm、肉厚が0.05mmの微細パイプを用い、磁性パイプ25としては、例えば外径がφ1.0mm、肉厚が0・1mmの微細パイプを用いる。
【0014】
しかし、このような構成の電磁誘導加熱セル21では、セルケース23内の温度の制御性には優れているものの、セルケース23内で、ベースとなる非磁性パイプ22が秩序よく整列している必要があり、特に非磁性パイプ22を均等に締め付けて非磁性パイプ22同士を確実に密着させるために集合パイプ26の横断面形状を図10に示すような六角形状とする場合には、集合パイプ26の製作に非常に手間がかかっていた。なお、図10において、Dは非磁性パイプ22を接合する耐熱接着剤28によって生じたデッドスペース、27はセルケース23の内面と集合パイプ26との間の隙間である。また、使用時にも、温度分布を調節する場合には、微細な磁性パイプ25の本数や位置を変更する必要があり、非常に手間がかかっていた。
【0015】
従って、本発明は上記の事情に鑑み、流体の流れ方向と垂直な断面における流体の温度分布を容易に均一化することなどが可能で安価な電磁誘導による流体加熱装置を提供することを課題とする。
【0016】
【課題を解決するための手段】
上記課題を解決する第1発明の電磁誘導による流体加熱装置は、セルケースと、前記セルケース内に収容された発熱体と、前記セルケースの外側に設けられた誘導コイルとを備え、前記誘導コイルに交流電流を流して電磁誘導により前記発熱体を発熱させ、この発熱体によって前記セルケース内を流れる流体を加熱する流体加熱装置において、前記発熱体の構成材料として磁性体の感温材料を用い、この感温材料のキュリー温度を、電磁誘導加熱時の制御温度に設定したことを特徴とする。
【0017】
また、第2発明の電磁誘導による流体加熱装置は、第1発明の電磁誘導による流体加熱装置において、前記セルケースは、前記流体の流れ方向と垂直な断面が矩形状であり、前記感温材料は、前記セルケースの幅方向に波打つように形成した波形板であり、前記発熱体は、前記感温材料を非磁性体のセパレータ板を介して複数枚積層することにより、前記感温材料と前記セパレータ板との間に前記流体の流路を形成してなる複数段の積層体構造であることを特徴とする。
【0018】
また、第3発明の電磁誘導による流体加熱装置は、第2発明の電磁誘導による流体加熱装置において、前記セパレータ板は、基材の表面にろう材が積層されたクラッド構造の板であることを特徴する。
【0019】
また、第4発明の電磁誘導による流体加熱装置は、第2又は第3発明の電磁誘導による流体加熱装置において、前記発熱体を前記セルケースの幅方向において少なくとも3分割し、各分割部の感温材料のキュリー温度を、前記幅方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも高く設定したことを特徴とする。
【0020】
また、第5発明の電磁誘導による流体加熱装置は、第2〜第4発明の何れかの電磁誘導による流体加熱装置において、前記発熱体を前記セルケースの幅方向において少なくとも3分割し、各分割部の感温材料の波形のピッチを、前記幅方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも小さく設定したことを特徴とする。
【0021】
また、第6発明の電磁誘導による流体加熱装置は、第2〜第5発明の何れかの電磁誘導による流体加熱装置において、前記発熱体を前記セルケースの幅方向において少なくとも3分割し、各分割部の感温材料の波形の高さを、前記幅方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも小さく設定して、各分割部の感温材料の積層数を、前記幅方向において外側に位置する分割部のほうが内側に位置する分割部よりも多くしたことを特徴とする。
【0022】
また、第7発明の電磁誘導による流体加熱装置は、第2〜第6発明の何れかの電磁誘導による流体加熱装置において、前記感温材料のキュリー温度を、前記セルケースの高さ方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも高く設定したことを特徴とする。
【0023】
また、第8発明の電磁誘導による流体加熱装置は、第2〜第7発明の何れかの電磁誘導による流体加熱装置において、前記感温材料の波形のピッチを、前記セルケースの高さ方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも小さく設定したことを特徴とする。
【0024】
また、第9発明の電磁誘導による流体加熱装置は、第3〜第9発明の何れかの電磁誘導による流体加熱装置において、前記ろう材はNi合金であることを特徴とする。
【0025】
また、第10発明の電磁誘導による流体加熱装置は、第3〜第9発明の何れかの電磁誘導による流体加熱装置において、前記ろう材はNi合金系のNiアモルファスであることを特徴とする。
【0026】
【発明の実施の形態】
以下、本発明の実施の形態例を図面に基づき詳細に説明する。
【0027】
<実施の形態1>
図1(a)は本発明の実施の形態1に係る電磁誘導による流体加熱装置(電磁誘導加熱セル)の構成を示す斜視図、図1(b)は図1(a)のB部を拡大して示す図である。
【0028】
図1(a)に示すように、電磁誘導加熱セル31は、セルケース32と、セルケース32内に収容された発熱体33と、セルケース31の外側に設けられた誘導コイル34とを備えた構成となっている。誘導コイル34はセルケース32の外周に巻回されており、図示しない誘導加熱用の高周波電源に接続されている。従って、高周波電源から誘導コイル34に高周波電流が流されると、流体の流れ方向(矢印C参照)に交番磁束が発生し、この交番磁束によって発熱体33に渦電流が生じ、この渦電流によって発熱体33が発熱する。その結果、セルケース32内を流れる気体や液体などの流体が、発熱体33によって直接加熱される。
【0029】
本実施の形態1では、前記高周波電源として周波数50kHz、最大出力600Wのものを用い、誘導コイル34として2mm2 の耐熱IV線を2並列×9ターン巻いた。セルケース32はセラミックスなどの絶縁体からなる直方体状のものであり、横断面、即ち流体の流れ方向と垂直な断面が矩形状(図示例では長方形状)となっている。本実施の形態1では、セルケース32の材質に鳴海製陶製ネオセラム(3mmt )を用い、セルケース32の寸法は高さ(図中上下方向)を11.6mm、幅(図中左右方向)を254mm、長さ(流体の流れ方向)を70mmとした。
【0030】
そして、発熱体33には、セルケース32の横断面における流体の温度分布を均一にするため、磁性体の感温材料35が用いられている。
【0031】
磁性体には、元々、温度上昇による消磁という現象があるため、ある特定の温度で自己温度制御機能を持っている。即ち、磁性体の温度が、ある温度(キュリー温度Tc)を超えると、磁性体は磁性を失う(消磁)。このため、磁性体は、電磁誘導により発熱させたとき、キュリー温度までは温度上昇するが、キュリー温度以上では極端に発熱効率が悪くなり、温度が上がらなくなる。
【0032】
従って、高周波電源側で供給電力を制御することなく、磁性体はキュリー温度近傍で一定温度を維持するようになる。しかも、磁性体として感温材料を用いれば、任意の温度に維持することができることになる。そこで、本発明では発熱体に感温材料を用いることとした。感温材料とは、他の磁性体と異なり、磁性体の組成を調節することによって任意のキュリー温度を得た磁性体材料を称している。
【0033】
図1(a)及び図1(b)に示すように、本実施の形態1では発熱体33の構成材料として5枚の感温材料35A,35B,35C,35D,35Eを用いており、これらの感温材料35A,35B,35C,35D,35Eは、何れもセルケース32の幅方向に波打つように形成された波形板(フィン)となっている。このような波形板の感温材料は、例えば型を用いて容易に製作することができる。本実施の形態1では、波形板の感温材料35A,35B,35C,35D,35Eの寸法を、幅(セルケース32の幅方向)が244mm、ピッチ(波形の谷と谷(山と山)の間隔)が2mm、高さが1mm/1枚とした。
【0034】
また、本実施の形態1で使用した感温材料35A,35B,35C,35D,35Eは、住友特殊金属(株)製であり、Fe−Ni−Crの配合を調整することによりキュリー温度を300℃に設定した。この300℃のキュリー温度は、電磁誘導加熱セル31による電磁誘導加熱時の制御温度、即ち、感温材料35A,35B,35C,35D,35Eの制御温度である。
【0035】
そして、発熱体33は、この5枚の感温材料35A,35B,35C,35D,35Eと、4枚の非磁性体のセパレータ板36A,36B,36C,36Dとを用い、感温材料35A,35B,35C,35D,35Eをセパレータ板36A,36B,36C,36Dを介して積層すること、即ち、感温材料35A−セパレータ板36A−感温材料35B−セパレータ板36B・・・と交互に積層することにより、5段の積層体構造に構成されている。
【0036】
セパレータ板36A,36B,36C,36Dとしては、非磁性体金属の基材として非磁性体のSUS316Lを用い、この基材の表面に非磁性体金属のろう材として汎用的な銅系合金のろう材を積層してなるクラッド構造の板を用いている。セパレータ板36A,36B,36C,36Dの厚さは0.1mm/1枚である。
【0037】
発熱体33の作製手順としては、まず、感温材料35A,35B,35C,35D,35Eとセパレータ板36A,36B,36C,36Dと順次積層して、感温材料35A,35B,35C,35D,35Eとセパレータ板36A,36B,36C,36Dとからなるブロックを形成する。次に、このブロックを高温高圧下で板拡散接合(拡散溶接)することにより、セパレータ板36A,36B,36C,36Dと、感温材料35A,35B,35C,35D,35Eとを拡散接合する。かくして、発熱体33が作製され、接合後の発熱体33の高さは図1に示すように5.5mmであり、発熱体33の幅は244mmである。
【0038】
そして、発熱体33では感温材料35とセパレータ板36との間に流体の流路37が形成され、また、発熱体33をセルケース32内に収容したとき、セルケース32と感温材料35との間にも流体の流路37が形成される。
【0039】
なお、拡散接合とは、周知のように、相互に接触させた金属の母材に対して加圧手段及び加熱手段により高温高圧を加えることにより、相互に接触している前記母材同士の表面間に分子レベルの拡散を起こさせて前記母材同士を接合するという方法である。
【0040】
以上のように、本実施の形態1によれば、発熱体33の構成材料として磁性体の感温材料35A,35B,35C,35D,35Eを用い、この感温材料35A,35B,35C,35D,35Eのキュリー温度を、電磁誘導加熱時の制御温度に設定したことにより、高周波電源側で出力調整をすることなく、感温材料35A,35B,35C,35D,35E自体で制御温度(キュリー温度)を維持する。
【0041】
このため、高周波電源の制御プログラムを簡素化することができ、制御プログラムの製作工程が短縮される。また、従来はセルケース端部に端部効果に伴う温度の不均一さが見られたが、感温材料35A,35B,35C,35D,35Eを用いたことにより、定常時にはこれも解消することができる。つまり、感温材料35A,35B,35C,35D,35Eは、高周波電源から誘導コイル34への通電を開始したとき、過渡時にはセルケース32の横断面(流体の流れ方向と垂直な断面)において外側に位置する部分の温度が先に上昇するものの、300℃(キュリー温度)に到達する時間は高周波電源出力が600Wの場合で30秒程度であるため、1分以内には前記断面における温度分布が均一になる。従って、このときにセルケース32内に流される流体は、感温材料35A,35B,35C,35D,35Eにより均一に加熱されて前記断面における温度分布が均一となる。そして、このように端部効果に伴う温度の不均一が解消されることにより、従来の発熱体では手間がかかっていた磁性体の並べ替え作業などが不要となる。
【0042】
また、本実施の形態1によれば、発熱体33は、波形板の感温材料35A,35B,35C,35D,35Eをセパレータ板36A,36B,36C,36Dを介して積層することにより、感温材料35A,35B,35C,35D,35Eとセパレータ板36A,36B,36C,36Dとの間に流体の流路37を形成してなる6段の積層体構造としたため、従来のように微細な非磁性パイプを整列させたり、微細な磁性パイプを非磁性パイプに挿入したりする場合に比べて製作が容易である。発熱体33の製作コストに関しては、感温材料を波形板とするために初期のみ型代が必要になるが、発熱体を製作するたびに微細管を引き抜き加工により製作して、これらを溶着時に整列させなければならない従来の方法に比べ、製作数が増えるほど低コストで製作することができるようになる。
【0043】
また、本実施の形態1では、セパレータ板36A,36B,36C,36Dとして、基材の表面にろう材が積層されたクラッド構造の板を用いているため、感温材料35A,35B,35C,35D,35Eとセパレータ板36A,36B,36C,36Dとを接合する際、ろう材を塗布する手間が不要である。なお、ろう材を用いた場合、ろう材の成分により、ろう材部分が誘導加熱される可能性があるが、本実施の形態で使用したろう材は、厚さが0.01mmtと、感温材料に対して非常に薄いため、誘導加熱の発熱効率が非常に低くなっており、温度分布を乱すほど加熱されることはない。
【0044】
ところで、例えば電磁誘導加熱セルで加熱した気体等の流体を、電磁誘導加熱セルの後段(下流)に配置された熱処理装置で用いる場合、前記流体の流れ方向と垂直な断面の温度分布が、電磁誘導加熱セル内では均一であっても、電磁誘導加熱セルから出て後段の熱処理装置へと流れていくにしたがい、放熱により外周側の温度が低下して熱処理装置の入口では不均一になってしまうことがある。
【0045】
このような問題点に対処するためには、発熱体の前記断面における外周側の温度を内側の温度よりも高くすることにより、電磁誘導加熱セルから出た流体の温度が、前記断面において外周側のほうが内側よりも高くなるようにすればよい。そこで、以下の実施の形態2〜5では、前記断面における外周側の発熱体温度を内側の発熱体温度よりも高くする場合について説明する。
【0046】
<実施の形態2>
図2は本発明の実施の形態2に係る電磁誘導による流体加熱装置(電磁誘導加熱セル)の構成図である。
【0047】
図2に示すように、本実施の形態2の電磁誘導加熱セル31では、積層体構造の発熱体33が、セルケース32の幅方向において3分割されている(分割部33A,33B,33C)。左右両側の分割部34A,34Bはそれぞれ横幅が22mmであり、中央の分割部34Cは横幅が200mmである。
【0048】
そして、中央の分割部34Cの感温材料35A,35B,35C,35D,35Eは、キュリー温度が、制御温度として上記実施の形態1と同様に300℃に設定されている(以下、この分割部を標準温度型発熱体とも称する)が、左右両側の分割部35A,35Bの感温材料35A,35B,35C,35D,35Eは、キュリー温度が、制御温度として330℃に設定されている(以下、この分割部を高温型発熱体とも称する)。
【0049】
その他の構成については、上記実施の形態1の電磁誘導加熱セルと同様であるため、ここでの説明は省略する。
【0050】
以上のように、本実施の形態2の電磁誘導加熱セル31よれば、発熱体33をセルケース32の幅方向において3分割し、中央の分割部33Cは感温材料35A,35B,35C,35D,35Eのキュリー温度を300℃に設定した標準温度型発熱体とする一方、左右両側の分割部33A,33Bは感温材料35A,35B,35C,35D,35Eのキュリー温度を330℃に設定した高温型発熱体とすることにより、流体の流れ方向と垂直な断面において、感温材料35A,35B,35C,35D,35Eの温度分布が、前記幅方向の中央部よりも左右両端部のほうが高くなるため、これらの感温材料35A,35B,35C,35D,35Eによって加熱される流体の温度分布も、前記幅方向の中央部よりも左右両端部のほうが高くなる。
【0051】
このため、例えば電磁誘導加熱セル31の後段(下流)に配置された熱処理装置において前記流体を利用する場合、前記流体は、電磁誘導加熱セル31を出てから熱処理装置に達するまでの放熱によって温度が低下しても、この温度低下を考慮して予め電磁誘導加熱セル31の高温型発熱体33A,33Bと標準温度型発熱体33Cとにより、外側の温度のほうが内側の温度よりも高くなるように加熱されるため、熱処理装置の入口では前記断面における温度分布がより均一になる。
【0052】
なお、上記では発熱体33を3分割しているが、必ずしもこれに限定するものではなく、3分割以上であってもよい。即ち、発熱体33をセルケース32の幅方向において少なくとも3分割し、各分割部の感温材料のキュリー温度を、前記幅方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも高く設定すればよい。
【0053】
<実施の形態3>
図3は本発明の実施の形態3に係る電磁誘導による流体加熱装置(電磁誘導加熱セル)の構成図である。
【0054】
図3に示すように、本実施の形態3の電磁誘導加熱セル32では、積層体構造の発熱体33が、セルケース32の幅方向において3分割されている(分割部33A,33B,33C)。左右両側の分割部34A,34Bはそれぞれ横幅が22mmであり、中央の分割部34Cは横幅が200mmである。
【0055】
中央の分割部34Cは、上記実施の形態1と同様に波形のピッチが2mm、高さが1mm/1枚である5枚の感温材料35A,35B,35C,35D,35Eを用いて5段の積層体構造に構成されている(以下、これを標準フィン型発熱体とも称する)。この標準フィン型発熱体34Cの高さは5.5mmである。
【0056】
これに対し、左右両側の分割部35A,35Bは、何れも波形のピッチを1.2mm、高さを0.8mm/1枚とした6枚の波形状板の感温材料35F,35G,35H,35I,35J,35Kと、5枚のセパレータ板36E,36F,36G,36H,36Iとを用い、感温材料35F,35G,35H,35I,35J,35Kをセパレータ板36E,36F,36G,36H,36Iを介して積層する(感温材料35F−セパレータ板36E−感温材料35G−セパレータ板36F・・・と交互に積層する)ことにより、6段の積層体構造に構成されている(以下、これを小フィン型発熱体とも称する)。この小フィン型発熱体35A,35Bの高さも、標準フィン型発熱体36Cと同じ5.5mmである。
【0057】
なお、感温材料35F,35G,35H,35I,35J,35Kのキュリー温度は感温材料35A,35B,35C,35D,35Eと同じ300℃である。また、セパレータ板36E,36F,36G,36H,36Iは、セパレータ板35A,35B,35C,35D,35Eと同じクラッド構造のものである。
【0058】
その他の構成については、上記実施の形態1の電磁誘導加熱セルと同様であるため、ここでの説明は省略する。
【0059】
以上のように、本実施の形態3によれば、発熱体33をセルケース32の幅方向において3分割し、中央の分割部33Cは感温材料35A,35B,35C,35D,35Eの波形のピッチを2mm、高さを1mm/1枚に設定して標準フィン型発熱体とする一方、左右両側の分割部33A,33Bは感温材料35F,35G,35H,35I,35J,35Kの波形のピッチを1.2mm、高さを0.8mm/1枚に設定して小フィン型発熱体としたことにより、小フィン型発熱体33A,33Bのほうが標準フィン型発熱体33Cよりも流体と熱交換する熱交換面積が増え、また、流体の流れ方向と垂直な断面において、発熱体(感温材料)の温度分布が、前記幅方向の中央部よりも左右両端部のほうが高くなるため、これらの感温材料35A,35B,35C,35D,35E、35F,35G,35H,35I,35J,35Kによって加熱される流体の温度分布も、前記幅方向の中央部よりも左右両端部のほうが高くなる。
【0060】
このため、上記実施の形態2の場合と同様に、例えば電磁誘導加熱セル31の後段(下流)に配置された熱処理装置において前記流体を利用する場合、前記流体は、電磁誘導加熱セル31を出てから熱処理装置に達するまでの放熱によって温度が低下しても、この温度低下を考慮して予め電磁誘導加熱セル31の小フィン型発熱体33A,33Bと標準フィン型発熱体33Cとで外側の温度のほうが内側の温度よりも高くなるように加熱されるため、熱処理装置の入口では前記断面における温度分布がより均一になる。
【0061】
なお、上記では発熱体33を3分割しているが、必ずしもこれに限定するものではなく、3分割以上であってもよい。また、上記では熱交換面積を増やすために波形のピッチと高さを小さくしているが、必ずしもこれに限定するものではなく、ピッチと高さの何れか一方のみを小さくしてもよい。即ち、発熱体33をセルケース32の幅方向において少なくとも3分割し、各分割部の感温材料の波形のピッチを、前記幅方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも小さく設定すればよい。或いは、発熱体33をセルケース32の幅方向において少なくとも3分割し、各分割部の感温材料の波形の高さを、前記幅方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも小さく設定して、各分割部の感温材料の積層数を、前記幅方向において外側に位置する分割部のほうが内側に位置する分割部よりも多くすればよい。
【0062】
ところで、上記実施の形態2,3では流体の流れ方向と垂直な断面において、セルケースの幅方向の両側の流体温度を中央部の流体温度よりも高くする場合の構成について説明しているが、放熱による流体温度の不均一は、セルケースの幅方向だけでなく、高さ方向にも生じる。そこで、以下の実施の形態4,5では、前記断面において、特にセルケースの高さ方向の外側の発熱体温度を内側の発熱体温度よりも高くする場合について説明する。
【0063】
<実施の形態4>
図2を参照して説明すると、本実施の形態4の電磁誘導による流体加熱装置(電磁誘導加熱セル)では、セルケース32の高さ方向において最も外側に位置する(最下段及び最上段の)感温材料35A,35Eのキュリー温度を、制御温度として330℃に設定することにより、内側(2段目、3段目、4段目)の感温材料35B,35C,35Dの制御温度(キュリー温度:300℃)よりも高くしている。
【0064】
その他の構成については、上記実施の形態1の電磁誘導加熱セルと同様であるため、ここでの説明は省略する。
【0065】
以上のように、本実施の形態4によれば、感温材料35A,35B,35C,35D,35Eのキュリー温度を、セルケース32の高さ向において外側に位置する感温材料35A,35Eのほうが内側に位置する感温材料35B,35C,35Dよりも高く設定したことにより、流体の流れ方向と垂直な断面において、前記高さ方向の外側の感温材料35A,35Eの温度のほうが内側の感温材料35B,35C,35Dの温度よりも高くなるため、これらの感温材料35A,35B,35C,35D,35Eによって加熱される流体の温度分布も、前記高さ方向において外側の温度のほうが内側の温度よりも高くなる。
【0066】
従って、例えば電磁誘導加熱セル31の後段(下流)に配置された熱処理装置において前記流体を利用する場合、前記流体は、電磁誘導加熱セル31を出てから熱処理装置に達するまでの放熱によって温度が低下しても、この温度低下を考慮して予め電磁誘導加熱セル31の感温材料33A,33Eと感温材料35B,35C,35Dとで外側の温度のほうが内側の温度よりも高くなるように加熱されるため、熱処理装置の入口では前記断面における温度分布がより均一になる。
【0067】
なお、上記では上下両端の感温材料のキュリー温度のみを大きくしているが、必ずしもこれに限定するものではない。即ち、積層した複数枚の感温材料のキュリー温度を、セルケースの高さ方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも高く設定すればよい。
【0068】
<実施の形態5>
図4は本発明の実施の形態5に係る電磁誘導による流体加熱装置(電磁誘導加熱セル)の構成図である。
【0069】
図4に示すように、本実施の形態5の電磁誘導加熱セル31では、5段の積層体構造の発熱体33を構成する感温材料35A,35B,35C,35D,35Eのうち、セルケース32の高さ方向において最も外側に位置する(最下段及び最上段の)感温材料35A,35Eの波形のピッチを1.2mmとすることにより、内側(2段目、3段目、4段目)に位置する感温材料35B,35C,35Dのピッチ(2mm)よりも小さくしている。
【0070】
その他の構成については、上記実施の形態1の電磁誘導加熱セルと同様であるため、ここでの説明は省略する。
【0071】
以上のように、本実施の形態5によれば、感温材料の波形のピッチを、セルケースの高さ方向において外側に位置する感温材料33A,33Eのほうが内側に位置する感温材料35B,35C,35Dよりも小さく設定したことにより、外側の感温材料33A,33Eのほうが内側の感温材料35B,35C,35Dよりも流体との熱交換面積が増えるため、流体の流れ方向と垂直な断面において、外側の感温材料35A,35Eの温度のほうが内側の感温材料35B,35C,35Dの温度よりも高くなるため、これらの感温材料35A,35B,35C,35D,35Eによって加熱される流体の温度分布も、前記高さ方向において外側の温度のほうが内側の温度よりも高くなる。
【0072】
従って、上記実施の形態4の場合と同様に、例えば電磁誘導加熱セル31の後段(下流)に配置された熱処理装置において前記流体を利用する場合、前記流体は、電磁誘導加熱セル31を出てから熱処理装置に達するまでの放熱によって温度が低下しても、この温度低下を考慮して予め電磁誘導加熱セル31の感温材料33A,33Eと感温材料35B,35C,35Dとで外側の温度のほうが内側の温度よりも高くなるように加熱されるため、熱処理装置の入口では前記断面における温度分布がより均一になる。
【0073】
なお、上記では上下両端の感温材料の波形のピッチのみを小さくしているが、必ずしもこれに限定するものではない。即ち、積層した複数枚の感温材料の波形のピッチを、セルケースの高さ方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも小さく設定すればよい。
【0074】
<実施の形態6>
上記実施の形態1〜5では感温材料(フィン)とセパレータ板とを接合するためのろう材として一般的な銅系合金を用いている。しかし、微細な電子回路を製造する半導体製造装置の分野では、特に導電性の高い銅材料からの微量なアウトガスを嫌うため、銅系合金のろう材を用いることはできない。
【0075】
つまり、感温材料とセパレータ板とを接合するためにろう材を用いた場合、温度や経時によるろう材の劣化で、ろう材から微量のアウトガスを生じるおそれがある。そして、このとき、ろう材が銅系合金である場合には、ろう材から銅原子が流出して後段のウエハに乗ってしまうおそれがあり、万が一、ウエハに銅原子が乗ってしまうと、ウエハの電子回路の短絡による不良や、レジストのマスキング不良などが生じてしまう。ろう材には、Cuろう、Agろう、Niろうなどがあるが、Niろう以外は何れも多少の銅を含んでいる。
【0076】
そこで、本実施の形態6の電磁誘導による流体加熱装置(電磁誘導加熱セル)では、ろう材に銅を全く含まないNi合金系のNiアモルファスを用いた。図2を参照して説明すると、本実施の形態では、セパレータ板36A,36B,36C,36Dを、非磁性体のSUS316Lなどの基材の表面にろう材としてNiアモルファスを設けた構造とし、このセパレータ板36A,36B,36C,36Dと、感温材料35A,35B,35C,35D,35Eとを高温高圧下で拡散接合した。
【0077】
Niアモルファスは、通常の結晶性のろう材と異なり、非常に薄い箔にできるため、電磁誘導加熱の自己温度調節機能に関与しないろう材部分の厚さを薄くすることができる。従って、Niアモルファスを用いれば、ろう材部分の厚さを薄くすることができるため、セパレータ板36A,36B,36C,36Dの厚さが、銅ろうを用いた上記実施の形態1のでは0.1mmであったのに対し、本実施の形態6ではその半分の0.05mmとなる。また、Niアモルファスは薄い箔とすることができるため、溶融に要する熱量が少なくて済む。
【0078】
なお、Niアモルファスは銅系合金に比べて2桁高コストであるため、本実施の形態6では、セパレータ板36A,36B,36C,36Dをクラッド構造とはせず、感温材料35A,35B,35C,35D,35Eとの溶接部にのみNiアモルファスを設けた構造とすることにより、ろう材の使用量を減らしている。
【0079】
また、このNiアモルファスを用いたセパレータ板36A,36B,36C,36Dと、感温材料35A,35B,35C,35D,35Eとを接合してなる発熱体33は、セパレータ板36A,36B,36C,36Dが薄くなったことにより、高さが上記実施の形態1の発熱体33の高さ(5.5mm)に比べて0.3mm小さくなった。このため、発熱体33とセルケース32との間には隙間が生じたが、この隙間には断熱性のスペーサを設けた。
【0080】
その他の構成については、上記実施の形態1の電磁誘導加熱セルと同様であるため、ここでの説明は省略する。
【0081】
以上のように、本実施の形態6の電磁誘導加熱セル31よれば、ろう材としてNi合金系のNiアモルファスを用いたことにより、ろう材に銅を含んでおらず、銅原子がウエハに乗って短絡などの不良を招くおそれがないため、半導体製造装置にも適用することができる。しかも、Niアモルファスは非常に薄い箔とすることができるため、電磁誘導加熱の自己温度調節機能に関与しないろう材部分の厚さを薄くすることができ、且つ、ろう材の溶融に要する熱量を低減することもできる。
【0082】
なお、上記実施の形態1〜6の構成は、必要に応じて適宜組み合わせてもよい。例えば実施の形態2,3の組み合わせ、実施の形態4,5の組み合わせ、実施の形態2〜6の組み合わせなど、全ての組み合わせが可能である。
【0083】
【発明の効果】
以上、発明の実施の形態とともに具体的に説明したように、第1発明の電磁誘導による流体加熱装置によれば、セルケースと、前記セルケース内に収容された発熱体と、前記セルケースの外側に設けられた誘導コイルとを備え、前記誘導コイルに交流電流を流して電磁誘導により前記発熱体を発熱させ、この発熱体によって前記セルケース内を流れる流体を加熱する流体加熱装置において、前記発熱体の構成材料として磁性体の感温材料を用い、この感温材料のキュリー温度を、電磁誘導加熱時の制御温度に設定したことを特徴とするため、交流電源側で出力調整をすることなく、感温材料自体で制御温度(キュリー温度)を維持する。このため、交流電源の制御プログラムを簡素化することができ、制御プログラムの製作工程が短縮される。また、従来はセルケース端部に端部効果に伴う温度の不均一さが見られたが、感温材料を用いたことにより、定常時にはこれも解消することができる。従って、このときにセルケース内に流される流体は、感温材料により均一に加熱されて流体の流れ方向と垂直な断面における温度分布が均一となる。そして、このように端部効果に伴う温度の不均一が解消されることにより、従来の発熱体では手間がかかっていた磁性体の並べ替え作業などが不要となる。
【0084】
また、第2発明の電磁誘導による流体加熱装置によれば、第1発明の電磁誘導による流体加熱装置において、前記セルケースは、前記流体の流れ方向と垂直な断面が矩形状であり、前記感温材料は、前記セルケースの幅方向に波打つように形成した波形板であり、前記発熱体は、前記感温材料を非磁性体のセパレータ板を介して複数枚積層することにより、前記感温材料と前記セパレータ板との間に前記流体の流路を形成してなる複数段の積層体構造であることを特徴とするため、従来のように微細な非磁性パイプを整列させたり、微細な磁性パイプを非磁性パイプに挿入したりする場合に比べて製作が容易であり、コストの低減も図ることができる。
【0085】
また、第3発明の電磁誘導による流体加熱装置によれば、第2発明の電磁誘導による流体加熱装置において、前記セパレータ板は、基材の表面にろう材が積層されたクラッド構造の板であることを特徴するため、感温材料とセパレータ板とを接合する際、ろう材を塗布する手間が不要である。
【0086】
また、第4発明の電磁誘導による流体加熱装置によれば、第2又は第3発明の電磁誘導による流体加熱装置において、前記発熱体を前記セルケースの幅方向において少なくとも3分割し、各分割部の感温材料のキュリー温度を、前記幅方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも高く設定したことを特徴とするため、流体の流れ方向と垂直な断面において、感温材料の温度分布が、前記幅方向の内側よりも外側のほうが高くなるため、これらの感温材料によって加熱される流体の温度分布も、前記幅方向の内側よりも外側のほうが高くなる。このため、例えば流体加熱装置の後段(下流)に配置された熱処理装置において前記流体を利用する場合、前記流体は、流体加熱装置を出てから熱処理装置に達するまでの放熱によって温度が低下しても、この温度低下を考慮して予め流体加熱装置により、外側の温度のほうが内側の温度よりも高くなるように加熱されるため、熱処理装置の入口では前記断面における温度分布がより均一になる。
【0087】
また、第5発明の電磁誘導による流体加熱装置によれば、第2〜第4発明の何れかの電磁誘導による流体加熱装置において、前記発熱体を前記セルケースの幅方向において少なくとも3分割し、各分割部の感温材料の波形のピッチを、前記幅方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも小さく設定したことを特徴とするため、前記幅方向の外側の感温材料のほうが内側の感温材料よりも流体との熱交換面積が増え、流体の流れ方向と垂直な断面において、発熱体(感温材料)の温度分布が、前記幅方向の内側よりも外側のほうが高くなるため、これらの感温材料によって加熱される流体の温度分布も、前記幅方向の内側よりも外側のほうが高くなる。このため、例えば流体加熱装置の後段(下流)に配置された熱処理装置において前記流体を利用する場合、前記流体は、流体加熱装置を出てから熱処理装置に達するまでの放熱によって温度が低下しても、この温度低下を考慮して予め流体加熱装置で外側の温度のほうが内側の温度よりも高くなるように加熱されるため、熱処理装置の入口では前記断面における温度分布がより均一になる。
【0088】
また、第6発明の電磁誘導による流体加熱装置によれば、第2〜第5発明の何れかの電磁誘導による流体加熱装置において、前記発熱体を前記セルケースの幅方向において少なくとも3分割し、各分割部の感温材料の波形の高さを、前記幅方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも小さく設定して、各分割部の感温材料の積層数を、前記幅方向において外側に位置する分割部のほうが内側に位置する分割部よりも多くしたことを特徴とするため、前記幅方向の外側の感温材料のほうが内側の感温材料よりも流体との熱交換面積が増え、流体の流れ方向と垂直な断面において、発熱体(感温材料)の温度分布が、前記幅方向の内側よりも外側のほうが高くなるため、これらの感温材料よって加熱される流体の温度分布も、前記幅方向の内側よりも外側のほうが高くなる。このため、例えば流体加熱装置の後段(下流)に配置された熱処理装置において前記流体を利用する場合、前記流体は、流体加熱装置を出てから熱処理装置に達するまでの放熱によって温度が低下しても、この温度低下を考慮して予め流体加熱装置で外側の温度のほうが内側の温度よりも高くなるように加熱されるため、熱処理装置の入口では前記断面における温度分布がより均一になる。
【0089】
また、第7発明の電磁誘導による流体加熱装置によれば、第2〜第6発明の何れかの電磁誘導による流体加熱装置において、前記感温材料のキュリー温度を、前記セルケースの高さ方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも高く設定したことを特徴とするため、流体の流れ方向と垂直な断面において、前記高さ方向の外側の感温材料の温度のほうが内側の感温材料の温度よりも高くなるため、これらの感温材料によって加熱される流体の温度分布も、前記高さ方向において外側の温度のほうが内側の温度よりも高くなる。従って、例えば流体加熱装置の後段(下流)に配置された熱処理装置において前記流体を利用する場合、前記流体は、流体加熱装置を出てから熱処理装置に達するまでの放熱によって温度が低下しても、この温度低下を考慮して予め流体加熱装置で外側の温度のほうが内側の温度よりも高くなるように加熱されるため、熱処理装置の入口では前記断面における温度分布がより均一になる。
【0090】
また、第8発明の電磁誘導による流体加熱装置によれば、第2〜第7発明の何れかの電磁誘導による流体加熱装置において、前記感温材料の波形のピッチを、前記セルケースの高さ方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも小さく設定したことを特徴とするため、前記高さ方向において外側の感温材料のほうが内側の感温材料よりも流体との熱交換面積が増えるため、流体の流れ方向と垂直な断面において、前記高さ方向の外側の感温材料の温度のほうが内側の感温材料の温度よりも高くなるため、これらの感温材料によって加熱される流体の温度分布も、前記高さ方向において外側の温度のほうが内側の温度よりも高くなる。例えば流体加熱装置の後段(下流)に配置された熱処理装置において前記流体を利用する場合、前記流体は、流体加熱装置を出てから熱処理装置に達するまでの放熱によって温度が低下しても、この温度低下を考慮して予め流体加熱装置で外側の温度のほうが内側の温度よりも高くなるように加熱されるため、熱処理装置の入口では前記断面における温度分布がより均一になる。
【0091】
また、第9発明の電磁誘導による流体加熱装置によれば、第3〜第9発明の何れかの電磁誘導による流体加熱装置において、前記ろう材はNi合金であることを特徴とするため、ろう材に銅を含んでおらず、銅原子がウエハに乗って短絡などの不良を招くおそれがないため、半導体製造装置にも適用することができる。
【0092】
また、第10発明の電磁誘導による流体加熱装置によれば、第3〜第9発明の何れかの電磁誘導による流体加熱装置において、前記ろう材はNi合金系のNiアモルファスであることを特徴とするため、Niアモルファスは非常に薄い箔とすることができることから、電磁誘導加熱の自己温度調節機能に関与しないろう材部分の厚さを薄くすることができ、且つ、ろう材の溶融に要する熱量を低減することもできる。
【図面の簡単な説明】
【図1】(a)は本発明の実施の形態1に係る電磁誘導による流体加熱装置(電磁誘導加熱セル)の構成を示す斜視図、(b)は(a)のB部を拡大して示す図である。
【図2】本発明の実施の形態2に係る電磁誘導による流体加熱装置(電磁誘導加熱セル)の構成図である。
【図3】本発明の実施の形態3に係る電磁誘導による流体加熱装置(電磁誘導加熱セル)の構成図である。
【図4】本発明の実施の形態5に係る電磁誘導による流体加熱装置(電磁誘導加熱セル)の構成図である。
【図5】電磁誘導加熱方式の原理図である。
【図6】電磁誘導による流体加熱装置となる一般的な電磁誘導加熱セルの構造図である。
【図7】発熱体の固定構造を示す透視図である。
【図8】加熱セルケースの横断面の長手方向の温度分布を示す図である。
【図9】先に提案した電磁誘導による流体加熱装置(電磁誘導加熱セル)の構成図である。
【図10】横断面が六角形状の集合パイプの例を示す図である。
【符号の説明】
31 電磁誘導による流体加熱装置(電磁誘導加熱セル)
32 セルケース
33 発熱体
33A,33B,33C 分割部
34 誘導コイル
35A〜35K 感温材料
36A〜36I セパレータ板
37 流路
Claims (10)
- セルケースと、前記セルケース内に収容された発熱体と、前記セルケースの外側に設けられた誘導コイルとを備え、前記誘導コイルに交流電流を流して電磁誘導により前記発熱体を発熱させ、この発熱体によって前記セルケース内を流れる流体を加熱する流体加熱装置において、
前記発熱体の構成材料として磁性体の感温材料を用い、この感温材料のキュリー温度を、電磁誘導加熱時の制御温度に設定したことを特徴とする電磁誘導による流体加熱装置。 - 請求項1に記載の電磁誘導による流体加熱装置において、
前記セルケースは、前記流体の流れ方向と垂直な断面が矩形状であり、
前記感温材料は、前記セルケースの幅方向に波打つように形成した波形板であり、
前記発熱体は、前記感温材料を非磁性体のセパレータ板を介して複数枚積層することにより、前記感温材料と前記セパレータ板との間に前記流体の流路を形成してなる複数段の積層体構造であることを特徴とする電磁誘導による流体加熱装置。 - 請求項2に記載の電磁誘導による流体加熱装置において、
前記セパレータ板は、基材の表面にろう材が積層されたクラッド構造の板であることを特徴する電磁誘導による流体加熱装置。 - 請求項2又は3に記載の電磁誘導による流体加熱装置において、
前記発熱体を前記セルケースの幅方向において少なくとも3分割し、各分割部の感温材料のキュリー温度を、前記幅方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも高く設定したことを特徴とする電磁誘導による流体加熱装置。 - 請求項2〜4の何れか1項に記載の電磁誘導による流体加熱装置において、
前記発熱体を前記セルケースの幅方向において少なくとも3分割し、各分割部の感温材料の波形のピッチを、前記幅方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも小さく設定したことを特徴とする電磁誘導による流体加熱装置。 - 請求項2〜5の何れか1項に記載の電磁誘導による流体加熱装置において、
前記発熱体を前記セルケースの幅方向において少なくとも3分割し、各分割部の感温材料の波形の高さを、前記幅方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも小さく設定して、各分割部の感温材料の積層数を、前記幅方向において外側に位置する分割部のほうが内側に位置する分割部よりも多くしたことを特徴とする電磁誘導による流体加熱装置。 - 請求項2〜6の何れか1項に記載の電磁誘導による流体加熱装置において、
前記感温材料のキュリー温度を、前記セルケースの高さ方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも高く設定したことを特徴とする電磁誘導による流体加熱装置。 - 請求項2〜7の何れか1項に記載の電磁誘導による流体加熱装置において、
前記感温材料の波形のピッチを、前記セルケースの高さ方向において外側に位置する感温材料のほうが内側に位置する感温材料よりも小さく設定したことを特徴とする電磁誘導による流体加熱装置。 - 請求項3〜9の何れか1項に記載の電磁誘導による流体加熱装置において、
前記ろう材はNi合金であることを特徴とする電磁誘導による流体加熱装置。 - 請求項3〜9の何れか1項に記載の電磁誘導による流体加熱装置において、
前記ろう材はNi合金系のNiアモルファスであることを特徴とする電磁誘導による流体加熱装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003140008A JP2004342540A (ja) | 2003-05-19 | 2003-05-19 | 電磁誘導による流体加熱装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003140008A JP2004342540A (ja) | 2003-05-19 | 2003-05-19 | 電磁誘導による流体加熱装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004342540A true JP2004342540A (ja) | 2004-12-02 |
Family
ID=33528861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003140008A Withdrawn JP2004342540A (ja) | 2003-05-19 | 2003-05-19 | 電磁誘導による流体加熱装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004342540A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006077722A1 (ja) * | 2005-01-20 | 2006-07-27 | Koyo Thermo Systems Co., Ltd. | 型加熱装置 |
WO2020195108A1 (ja) * | 2019-03-22 | 2020-10-01 | 日本碍子株式会社 | ハニカム構造体及び排気ガス浄化装置 |
JP2022000015A (ja) * | 2014-05-21 | 2022-01-04 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | 誘導的に加熱可能なたばこ製品 |
US12121886B2 (en) | 2019-03-22 | 2024-10-22 | Ngk Insulators, Ltd. | Honeycomb structure and exhaust gas purifying device |
-
2003
- 2003-05-19 JP JP2003140008A patent/JP2004342540A/ja not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006077722A1 (ja) * | 2005-01-20 | 2006-07-27 | Koyo Thermo Systems Co., Ltd. | 型加熱装置 |
JP2022000015A (ja) * | 2014-05-21 | 2022-01-04 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | 誘導的に加熱可能なたばこ製品 |
US11903407B2 (en) | 2014-05-21 | 2024-02-20 | Philip Morris Products S.A. | Inductively heatable tobacco product |
JP7544912B2 (ja) | 2014-05-21 | 2024-09-03 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | 誘導的に加熱可能なたばこ製品 |
WO2020195108A1 (ja) * | 2019-03-22 | 2020-10-01 | 日本碍子株式会社 | ハニカム構造体及び排気ガス浄化装置 |
JPWO2020195108A1 (ja) * | 2019-03-22 | 2021-11-18 | 日本碍子株式会社 | ハニカム構造体及び排気ガス浄化装置 |
JP7034376B2 (ja) | 2019-03-22 | 2022-03-11 | 日本碍子株式会社 | ハニカム構造体及び排気ガス浄化装置 |
US12121886B2 (en) | 2019-03-22 | 2024-10-22 | Ngk Insulators, Ltd. | Honeycomb structure and exhaust gas purifying device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105097209B (zh) | 磁性元件 | |
CN105723176B (zh) | 用于生产具有多个通过焊料涂敷支撑物连接的换热器块的板式换热器的方法 | |
JP2008134041A (ja) | 流体加熱装置 | |
JPH07202275A (ja) | 電子冷却素子の集合体 | |
US20160189845A1 (en) | Cooling structure for electromagnetic coil, and electromagnetic actuator | |
US10062497B2 (en) | Pseudo edge-wound winding using single pattern turn | |
JP2004342540A (ja) | 電磁誘導による流体加熱装置 | |
JP4770973B2 (ja) | 熱交換器 | |
WO2024198375A1 (zh) | 电池包及用电装置 | |
US2396522A (en) | Radiator tube construction | |
CN104185325B (zh) | 感应加热装置 | |
CN106575697A (zh) | 热电设备及其加工和使用方法 | |
EP3005830B1 (en) | Heater apparatus and controllable heating process | |
JP3893919B2 (ja) | 流体加熱用の誘導加熱ユニット | |
JP2002313546A (ja) | 電磁誘導式流体加熱装置の加熱セル | |
JP2004288568A (ja) | 電磁誘導による流体加熱装置、集合パイプの製作に用いるパイププレス治具及びパイプ整列治具 | |
JP5331186B2 (ja) | 高周波誘導加熱器の水冷式トランスフォーマー及びその製造方法 | |
JP2003100426A (ja) | 誘導加熱による熱風発生装置 | |
CN112797625A (zh) | 一种高温气体加热装置 | |
JPH04273484A (ja) | ペルチェ素子組み込み熱交換器及びその製造方法 | |
EP0563374A1 (en) | Dual surface heaters | |
EP4383940A1 (en) | Flow through heater and method of manufacture thereof | |
CN110603655A (zh) | 热电换热器 | |
JP2014238995A (ja) | 誘導加熱装置 | |
CN212992642U (zh) | 一种加热线圈及高频加热装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20060801 |