JP5331186B2 - 高周波誘導加熱器の水冷式トランスフォーマー及びその製造方法 - Google Patents

高周波誘導加熱器の水冷式トランスフォーマー及びその製造方法 Download PDF

Info

Publication number
JP5331186B2
JP5331186B2 JP2011234062A JP2011234062A JP5331186B2 JP 5331186 B2 JP5331186 B2 JP 5331186B2 JP 2011234062 A JP2011234062 A JP 2011234062A JP 2011234062 A JP2011234062 A JP 2011234062A JP 5331186 B2 JP5331186 B2 JP 5331186B2
Authority
JP
Japan
Prior art keywords
cooling water
thin plate
block
secondary winding
cooled transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011234062A
Other languages
English (en)
Other versions
JP2012099813A (ja
Inventor
ジー ソン、ビョン
Original Assignee
ピーエステック カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ピーエステック カンパニー リミテッド filed Critical ピーエステック カンパニー リミテッド
Publication of JP2012099813A publication Critical patent/JP2012099813A/ja
Application granted granted Critical
Publication of JP5331186B2 publication Critical patent/JP5331186B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/16Water cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/324Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F2038/003High frequency transformer for microwave oven

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Transformer Cooling (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、トランスフォーマー(Transformer)に関し、より詳しくは、高周波誘導加熱器に使われるトランスフォーマーの構造を直間接水冷式により構成して、高効率で、かつ軽量化させることができるようになることで、窮極的には高周波誘導加熱器を小型及び携帯型でも構成できるようにする水冷式トランスフォーマー及びその製造方法に関する。
一般に、誘導加熱は金属を加熱する主要な方式であって、長所が多くて広く使われている。このような誘導加熱を効果的に遂行するために、加熱コイルに電流増幅用トランスフォーマーを連結することによって、金属の被加熱物に投入される電流密度を高めて該当被加熱物を誘導加熱するようになる。
トランスフォーマーは、1次回路から交流電力の供給を受けて電子誘導作用により2次回路に電力を供給する装置であって、変圧器とも呼ばれる。トランスフォーマーにおいて電圧は、1次コイル及び2次コイルに巻かれる巻線比(Turns Ratio)に比例し、電流は巻線比に反比例する(V:V=N:N=1/I:1/I)。理想的なトランスフォーマーの場合には、入力電力と出力電力とが同一な100%のエネルギー変換効率が可能であるが、実際的にはトランスフォーマーで多様な損失が発生して変換効率の低下が発生する。
トランスフォーマーで発生する損失には、大別してコア損失(Core Loss)と導通損失(Conduction Loss)がある。トランスフォーマーの1次必要最小の巻線数は印加される電圧と周波数、コアの中足断面積及び透磁率により決まる。dB(ヒステリシス曲線の磁束スイング幅)を適切な範囲内に維持することで、コア損失が減り、冷却を別途に行なわなくても自然冷却により収斂可能である。
一方、トランスフォーマーに使われる巻線は、大容量のトランスフォーマーの場合、重さのため、アルミニウムを使用する一部の場合を除いては、銅(Copper)が主流をなす。したがって、トランスフォーマーに電圧が印加されて銅に沿って電流が流れながらIRに該当する量の電力損失である導通損失または銅損が発生するようになる。
また、高周波電圧を印加する場合には、トランスフォーマーの内部の巻線は表皮効果(Skin Effect)と近接効果(Proximity Effect)によって電流の部分偏り現象が極大化し、巻線の抵抗値が幾何級数的に増加し、これによって導通損失が格段に増加して、トランスフォーマーの変換効率が格段に落ちる短所がある。ここで、表皮効果とは、導体に高周波電流が流れる場合、導体の表面に電流が偏向する現象である。また、近接効果とは、2つの平衡に位置した導体に高周波電流が反対方向に流れる場合、高周波電流が2導体が対向している表面のみに集中的に流れる現象である。したがって、高周波において表皮効果によって導体の表面に集中した電流は近接効果によって導体の一側表面のみに偏重される。
このような表皮効果及び近接効果を克服するために、トランスフォーマーは一般的な裸銅線でない、エナメル絶縁コーティングされた薄い銅線を縒って作ったリッツワイヤー(Litz Wire)を用いて製作される。
しかしながら、リッツワイヤーを用いて大容量のトランスフォーマーを製作する場合には、円形導体の間の孔隙が多くて、ウィンドウ利用率(Window Utility Factor:コアのウィンドウ面積で電流が流れる導体が占める面積の比率)が低くなって、貫通面積が大きいコアを使用しなければならないという問題がある。また、個別巻線に絶縁作業(チュービング、テーピング、コーティング等)を行なうことになるので、これによって、内部体積が大きくなり、巻線深部の冷却がよくなされない。大容量のトランスフォーマーの場合、ウィンドウ利用率の低下に伴う大きなコアの使用によって製造コストが増大する一方、コアのサイズが大きくなりながら巻線単一ターン(Turn)当たり巻取り長さが増えて、全巻線長さ(即ち、長さに比例して断面積及び導電率に反比例する金属抵抗)が比例的に増大する。このような全てのものが損失に帰結される。また、冷却の問題によって全体装置のサイズも幾何級数的に大きくなる。
これによって、銅パイプに水を流して冷却させる水冷式トランスフォーマーが高周波大容量用トランスフォーマーではほとんど不回避な選択として受け入れられている。水冷式トランスフォーマーのうち、1−2次巻線重なり方式であるサンドウィッチ構造の巻線方式を用いた水冷式トランスフォーマーが最も良いと知られており、大多数のトランスフォーマー製作社が採択することによって、広く用いられている巻線方式である。
しかしながら、現在広く用いられているサンドウィッチ巻線方式も周波数が高まれば表皮効果と近接効果により発生する損失が大きくなる短所がある。また、銅パイプで巻線を製作すれば、1−2次巻線の間の電磁気的な結合係数が落ちて、漏洩インダクタンスが増加する。一般的な商用60Hzトランスフォーマーの漏洩インダクタンスは、電力効率に大きく影響を及ぼさないが、高周波誘導加熱のコイルに該当する電流増幅用トランスフォーマーのような場合では意味が変わる。加熱コイルに格納された磁気的なエネルギーと共振コンデンサに格納された静電気的なエネルギーが電磁気的な共振を起こして加熱する誘導加熱では、電流増幅用トランスフォーマーの漏洩インダクタンスが加熱コイルインダクタンスに合算されて主要な変数として登場する。入力電力量対比共振エネルギー比率(Q Factor)の高い場合には、電流増幅用トランスフォーマーの1次電圧/電流も大きくなる。即ち、漏洩が多くなって1次印加電圧が増大し、共振周波数は落ちて、トランス不飽和満足1次最小巻線数は大きくなって、再度導通損失が増加する悪循環に至るようになる。したがって、巻線数の増加に反比例するトランスフォーマーの変換効率を考慮すれば、コアのウィンドウと中足面積が大きくなって大型になり、1−2次の電磁気結合率が落ちて(漏洩インダクタンスが大きくなって)、結果的に効率が低くなる発散的な問題点を有するようになる。
例えば、1,000V及び1,000A入力の1,000kVAトランスフォーマーの場合、20kHzの周波数で10ターンに設計されたならば、1つの銅パイプの両面に1,000Aを供給しなければならないが、この場合、トランスフォーマーの適切な変換効率のための銅パイプの幅は非常に大きくなって、銅パイプの製作がほとんど不可能な水準になる。特に、通電電流の侵入深さの厚さが周波数の自乗根に反比例するので、周波数が高まるほど導電効率が低くなり、適切な導電効率を維持するためには銅パイプの幅が非常に大きくなる等の重大な問題がある。しかも、体積と重さが相対的に大きくなって、移動型や動的慣性の大きい分野では設置及び使用に適合しない。
また、入力電圧の高い状態であるので、銅パイプの内部に流れる冷却水連結部の漏電量を減らすために、電極端に連結される冷却水導入部絶縁ホースの長さも電圧に比例して長く配管されなければならないという不便性があり、1−2次巻線を別に冷却させるために、内部に電気的に絶縁可能な冷却ホース分岐管が必要である。銅パイプ等の熔接は、高温の銀ろう熔接を必要とするが、このような場合、熟練した酸素熔接工の力量に便乗せざるをえなくて、変形加工に伴う費用及び熔接工程上の費用が大幅上昇する問題もある。
本発明は、1次巻線と2次巻線を薄い銅板で行い、これら銅板が多重積層された構造を備えながら2次巻線のみ直接的に伝導により冷却する冷却手段を含んで、装置のサイズを増大させなくても1−2次巻線の全ての発生熱を冷却させることができるようにすることで、小さい体積にも等価的な電力量を満たす高効率特性と共に軽量化させることができるようになり、これによって、窮極的に高周波誘導加熱器を小型及び携帯型でも構成できるようにする水冷式トランスフォーマーを提供することをその目的とする。
また、本発明の他の目的は、前述した水冷式トランスフォーマーを製造する工程が単純化されて、大量生産時に自動化を図ることができるようにする水冷式トランスフォーマーの製造方法を提供することにある。
本発明に係る水冷式トランスフォーマーは、内部に冷却水用中空部を有する輪形状の冷却水ジャケットブロック、上記冷却水ジャケットブロックと対向するように位置し、内部に冷却水用中空部が形成された一対の折半部が同一平面上に突き合わせて構成される出力側ブロック、上記冷却水ジャケットブロックと上記出力側ブロックに連結され、積層される多数の2次巻線薄板、上記冷却水ジャケットブロックと上記出力側ブロックとの間に位置し積層され、かつ上記2次巻線薄板の間間に各々配置され、互いに結線され、パワーケーブルと連結される多数の1次巻線薄板、上記1次巻線薄板と上記2次巻線薄板との間毎に介される絶縁シート、上記冷却水ジャケットブロックの中空部と上記出力側ブロックの中空部とを連通させるように設置されて冷却水を連通させる一対の連結管、及び積層された上記1次巻線薄板と上記2次巻線薄板とを直角に貫通して位置されるコアを含むことを特徴とする。
本発明に係る水冷式トランスフォーマーの製造方法は、多数の1次巻線薄板と多数の2次巻線薄板とを交互に積層し、かつ上記1次巻線薄板及び上記2次巻線薄板の間毎に絶縁シートを挿入して積層するステップ、上記積層された巻線薄板と一対の連結管を冷却水ジャケットブロックと出力側ブロックとの間に位置させるステップと、上記2次巻線薄板の一側先端と上記各連結管の一端を上記冷却水ジャケットブロックに半田付けするステップ、上記2次巻線薄板の他側先端と上記各連結管の他端を上記出力側ブロックに半田付けするステップ、及び上記積層された巻線薄板を貫通するようにコアを組み立てるステップを含むことを特徴とする。
以上、本発明に係る水冷式トランスフォーマーによれば、1次巻線と2次巻線を薄い銅板で行い、これら銅板が積層された構造を備えながら2次巻線の間間に介された1次巻線を間接的に冷却させる冷却手段を含んで、装置のサイズを増大させなくても発生する熱を冷却させることができる効果がある。
特に、巻線の配線距離が短くて導体の断面積が小さくても、相対的な抵抗が小さくなりながら効率が増大し、1−2次巻線の間の電磁気的な結合係数が大きくなり、漏洩インダクタンスが極めて少なくなる。結果的に、共振型回路負荷(L−C)の電圧増幅の幅(漏洩部分が加えたれた)が減って、トランスフォーマーの1次巻線電圧(L両端電圧)が減ることになって、1次最小巻線数が低くなって、全巻線長さがより減ることができる。これによって、高効率と共に軽量化させることができる要因となり、これによって、窮極的に高周波誘導加熱器を小型及び携帯型でも構成できるようにする効果がある。
しかも、本発明に係る水冷式トランスフォーマーによれば、積層され圧着された1−2次巻線薄板を冷却水ジャケットブロックと出力側ブロックとの間に強固に固定し、一対の連結管が冷却水ジャケットブロックと出力側ブロックとを連通するようになることで、固定用ジグ類、冷却ホース分岐管などの付属品を必要としない。また、構成要素間の孔隙(伝熱妨害空間、断熱特性空間)がほとんどなく、一体に連結されているので、作動時、孔隙や組立による振動がなく、1−2次巻線間の絶縁寿命が長くなる。したがって、製造コストの低減と組み立てられた製品の機能性が向上する効果がある。
また、本発明に係る水冷式トランスフォーマーの製造方法によれば、製造する工程が単純化するので、大量生産時、自動化を図ることができ、熟練した高温酸素熔接工の人力を必要としない付加的な長所もある。
本発明に係るトランスフォーマーが適用できる高周波誘導加熱器が有する電気回路の概略図である。 本発明に係るトランスフォーマーを概略的に示す分解斜視図である。 本発明に係るトランスフォーマーを逆にして出力側ブロックから見た組立斜視図である。 図3に図示された巻線薄板の積層状態をより詳しく示す断面図である。 冷却水ジャケットブロックの正面図と背面図である。 出力側ブロックを構成する折半部の正面図と背面図及び一側面図である。 1次巻線薄板の例を示す平面図である。 2次巻線薄板を示す平面図である。 本発明に係るトランスフォーマーが高周波誘導加熱器に設けられる例を示す図である。
以下、本発明の好ましい実施形態を添付した図面を参照しつつ詳細に説明する。
各図面の構成要素に参照符号を付加するに当たって、同一な構成要素に対してはたとえ他の図面上に表示されても、できる限り同一な符号を有するようにしていることに留意しなければならない。また、本発明を説明するに当たって、関連した公知構成または機能に対する具体的な説明が本発明の要旨を曖昧にすることができると判断される場合にはその詳細な説明は省略する。
図1は、本発明に係るトランスフォーマーが適用できる高周波誘導加熱器が有する電気回路の概略図である。
金属の硬化処理や熔接に用いられる誘導加熱器は、大部分周波数50〜60Hzの3相交流電圧源からエネルギーの供給を受ける。誘導加熱器の電源装置の内には3相交流電圧源を直流電圧源や直流電流源に変換するコンバータ(Converter:図示せず)と、該直流電源を必要な硬化層の深さによって適切な高周波交流電源に変換するインバータ(Inverter)1を含んでいる。
また、誘導加熱器の電源装置は、加熱コイル5の力率を改善してインバータ1の容量を減らし、効率を改善するための共振コンデンサ2と、加熱コイル5のインピーダンスを電源電圧に整合させるための電圧マッチング用変圧器(Matching Transformer)3、及び加熱コイル5と電源装置との間の導通損失を減らすための電流増幅用変流器(Current Transformer)4を更に含んでいる。未説明符号6はパワーケーブルである。
高周波誘導加熱方式は、電磁気誘導作用を用いて加熱コイル5に高周波電流を流して高周波磁場が発生するようにすることで、該高周波磁場の内にある金属の被加熱物7に誘導電流が流れるようにする。特に、高周波誘導加熱方式は、周波数の高い高周波電流を使用するため、電流の表皮作用及び近接効果により被加熱物7の表面層に磁束及び渦電流が集中し、その時に発生する熱損失(渦電流損失、ヒステリシス損失など)が被加熱物7の表面層を加熱するようになる。このような原理により被加熱物7の必要な部分にエネルギーを集中させて効率良い急速加熱が可能になる。
本発明は、実質的に前述した電流増幅用変流器4に関するものであって、以下ではトランスフォーマーと通称する。
図2は本発明に係るトランスフォーマーを概略的に示す分解斜視図であり、図3は本発明に係るトランスフォーマーを逆にして出力側ブロックから見た組立斜視図であり、図4は図3に図示された巻線薄板の積層状態をより詳しく示す断面図である。
本発明に係る水冷式トランスフォーマーは、内部に冷却水用中空部11(図5参照)を有する輪形状('ロ'字形状)の冷却水ジャケットブロック10、該冷却水ジャケットブロック10と対向するように位置して内部に冷却水用中空部21(図6参照)が形成された一対の折半部22a、22bが同一平面上で側方に突き合わせて構成される出力側ブロック20、冷却水ジャケットブロック10と出力側ブロック20に拘束され、積層される多数の1次巻線薄板30、冷却水ジャケットブロック10と出力側ブロック20に半田付けにより連結され、1次巻線薄板30の間間に配置された多数の2次巻線薄板40、冷却水ジャケットブロック10の中空部11と出力側ブロック20の中空部21を連通させるように冷却水ジャケットブロック10と出力側ブロック20との間に設けられて冷却水を連通させる一対の連結管50、及び積層された1次巻線薄板30と2次巻線薄板40とを直角に貫通して位置されるコア60を含んでいる。
冷却水ジャケットブロック10と出力側ブロック20の折半部22a、22bは、伝熱特性に優れて、半田付けの親和力に優れる銅で作られることが好ましいが、これに限定されず、アルミニウムなどの他の金属で作られることもできる。
図5により詳しく図示したように、冷却水ジャケットブロック10の一側面には第1冷却水流入口12と第1冷却水流出口13が所定の間隔を置いて形成されている。冷却水ジャケットブロック10の他側面には第2冷却水流出口14と第2冷却水流入口15が所定の間隔を置いて形成されている。
冷却水ジャケットブロック10の中空部11は第1冷却水流入口12を通じて流入した冷却水が第2冷却水流出口14により後述する第1連結管50aに進むように第1冷却水流入口12及び第2冷却水流出口14を連通させる。また、中空部11は後述する第2連結管50bから第2冷却水流入口15を通じて入ってきた冷却水が第1冷却水流出口13により流出されるように第2冷却水流入口15及び第1冷却水流出口13を連通させる。併せて、中空部11は冷却水ジャケットブロック10の内部でその輪形状に沿って形成されており、第1冷却水流入口12と第1冷却水流出口13、そして第2冷却水流入口15と第2冷却水流出口14とが互いに連通するように形成されている。結局、第1冷却水流入口12、第1冷却水流出口13、第2冷却水流入口15、及び第2冷却水流出口14は、全てに対して互いに連通するようになっている。
図6により詳しく図示したように、出力側ブロック20の各折半部22a、22bも中空部21を備えている。第1折半部22aには一側面に第3冷却水流入口23が形成されており、他側面に第4冷却水流出口24が形成されている。これと反対に、第2折半部22bには、第1折半部22aの第3冷却水流入口23が形成された側面と相応する側面に第3冷却水流出口25が形成されており、反対側の側面に第4冷却水流入口26が形成されている。また、第1折半部22aの中空部21は、第1連結管50aから第3冷却水流入口23を通じて入ってきた冷却水が第4冷却水流出口24により後述する加熱コイル5に進むように第3冷却水流入口23及び第4冷却水流出口24を連通させる。同様に、第2折半部22aの中空部21は加熱コイル5から第4冷却水流入口26を通じて入ってきた冷却水が第3冷却水流出口25により第2連結管50bに進むように第4冷却水流入口26及び第3冷却水流出口25を連通させる。結局、第3冷却水流入口23は第4冷却水流出口24のみに互いに連通し、第4冷却水流入口26は第3冷却水流出口25のみに互いに連通するようになっている。
出力側ブロック20の各折半部22a、22bは、第3冷却水流入口23が形成された側面及び第3冷却水流出口25が形成された側面に所定の深さを有する溝部27が形成されている。また、一対の折半部22a、22bが同一平面上で側方に突き合わせられる時、これらの間には絶縁部28(図3参照)が介されて互いに電気的に絶縁される。
冷却水ジャケットブロック10と出力側ブロック20との間にはこれらブロックの中空部11、21を連通させるための連結管50が対をなして設けられる。より詳しくは、第1連結管50aが冷却水ジャケットブロック10の第2冷却水流出口14と出力側ブロック20の第1折半部22aにある第3冷却水流入口23の間に介されて冷却水通路を形成する。また、第2連結管50bが出力側ブロック20の第2折半部22bにある第3冷却水流出口25と冷却水ジャケットブロック10の第2冷却水流入口15の間に介されて冷却水通路を形成する。連結管50は、半田付け親和力と伝熱特性及び衝撃緩衝性を考慮して銅などの金属で作られることが良い。
図4を参照すると、冷却水ジャケットブロック10と出力側ブロック20には多数の2次巻線薄板40が半田付けにより連結固定される。また、多数の1次巻線薄板30が冷却水ジャケットブロック10と出力側ブロック20との間に配置されながら拘束され、かつ2次巻線薄板40の間間に各々介されて積層される。1次巻線薄板30と2次巻線薄板40は、略同一な厚さを有する薄い板状に作られるが、その材質は、銅、アルミニウムなどの金属が良い。このように、巻線用に薄板を使用するため、巻線に高周波電流を印加しても近接効果が緩和乃至相殺されるようになることで、等価的な導体の抵抗が減るようになる。
図7に詳細に図示されたように、1次巻線薄板30は一部が切断された輪形状に形成されながら切断部の両側から長手方向に延びた一対の延長部31を備えている。これら延長部31には今後にパワーケーブル6(図1参照)が連結できるようにするボルト孔32が形成される。巻線順序や位置によって1次巻線薄板30の延長部31は同一な長さを有したり、どの一方がより長く形成される。
例えば、1次巻線薄板30a、30b、30cが図7のように形成され、1次巻線薄板30a、30b、30cが互いに交互に配置されて積層される。このような1次巻線薄板30a、30b、30cの結線は、1つの1次巻線薄板30bから延びた延長部31のうちの1つを他の1次巻線薄板30aの延長部31のうちの1つと電気的に連結し、1次巻線薄板30bから延びた延長部31のうちの残りの1つをもう1つの1次巻線薄板30cの延長部31のうちの1つと電気的に連結することによってなされる。ここで、電気的な連結は各延長部31を適切に曲げて延長部31が接続されるようにしたり、別途の導線またはボルトなどの伝導体(図示せず)を延長部31のボルト孔32を通じて連結して該当延長部31が接続されるようにすることもできる。
図8に詳細に図示されたように、2次巻線薄板40も一部が切断された輪形状に形成され、該切断部は幅方向の中に位置し、所定の距離を有する隙間41を形成する。出力側ブロック20は、前述したように、一対の折半部22a、22bが同一平面上で側方に突き合わせて構成されるが、この際、両側切断部22a、22bの溝部27により生成される薄い段部27aが互いに隣接して積層される2次巻線薄板40の隙間41の間に置かれるようになる。
また、図4を参照すると、1次巻線薄板30と2次巻線薄板40、そして絶縁シート70が互いの間間に交互に積層される。ここで、1次巻線薄板30の切断部と2次巻線薄板40の切断部は、互いに配向するように1次巻線薄板30と2次巻線薄板40が積層される。これによって、1次巻線薄板30の延長部31が一側に向けて集まるようになり、反対に、2次巻線薄板40の隙間41が他側に向けて整列される。
そして、2次巻線薄板30は、隙間41のない方が冷却水ジャケットブロック10の輪形状の中に圧入された後、冷却水ジャケットブロック10の内周面と接する側方の先端が半田付けされて固定される。また、2次巻線薄板40は、その隙間41の方が出力側ブロック20の各切断部22a、22bが有する溝部27の内に挿入された後、溝部27の内面と接する側方先端が半田付けされて固定される。
この際、1次巻線薄板30は、冷却水ジャケットブロック10と出力側ブロック20との間に位置され、かつ2次巻線薄板40の間間に各々介されて積層されながら、特に冷却水ジャケットブロック10の輪形状の中で圧着した状態で置かれるようになる。
併せて、1次巻線薄板30及び2次巻線薄板40が積層される時、薄板の間毎に所定の絶縁シート70が介されて薄板は互いに電気的に絶縁される。この絶縁シート70は高温用絶縁フィルムで製造されることが好ましいが、これに限定されず、紙などの材質の絶縁シートが使われることもできる。
本発明に係るトランスフォーマーは、1次巻線及び2次巻線が互いに稠密に積層され、面対面に配置されて、近接密度が高くて漏洩磁場がなくなるので、漏洩インダクタンスが極小化する効果がある。
積層された巻線薄板30、40が冷却水ジャケットブロック10と出力側ブロック20との間に位置して固定された状態で、コア60が積層された1次巻線薄板30と2次巻線薄板40を直角に貫通するように設けられる。
図3及び図4に示すように、コア60はフェライト(Ferrite)材質を用いて成形したものであって、このようなフェライトコアは使用周波数帯が高いので、容量に比べてサイズが小型化できるので、軽く、ヒステリシス損失が非常に少ないので、高い効率が得られるという長所がある。
図面には、E−E結合形態からなる多数のコア60を含んだ例を表しているが、これに限定されず、E−I結合形態からなる多数のコアを含むこともできる。
E−EまたはE−Iにより結合したコア60のウィンドウの内には積層された巻線薄板30、40と連結管50が位置する。図3に示すように、四角形コアを使用することによって、コア60のウィンドウの内に密集した巻線薄板30、40と連結管50などが位置するようになって、空気層が占める領域が減少しながら伝熱係数が極大化する効果がある。
前述したように、巻線に高周波電流を印加しても等価的な抵抗が減り、漏洩インダクタンスが減って、印加電圧が減るようになり、周波数は高まってコア60の個数を減らして使用できるようになり、これは装置重量が減少する効果が得られる。コア60の個数は容量によって可変できる。
本発明に係る水冷式トランスフォーマーは、図9に図示された一例のように、略ボックス形状のケース90の内に収容される。このケース90はアルミニウムなどの金属で作られる。
また、加熱コイル5が別途のブラケット80を媒介にして出力側ブロック20に連結固定される。加熱コイル5は、中空の金属管部材で形成され、両側先端の開口部5a、5b(図2参照)は、出力側ブロック20、より詳しくは、第1折半部22aの第4冷却水流出口24、及び第2折半部22bの第4冷却水流入口26と各々連通する。ブラケット80にも冷却水を連通させるための貫通孔81が形成されなければならない。
加熱コイル5は最大エネルギーを負荷に伝達するために、被加熱物7(図1参照)の加熱される部分に加熱コイル5を最大限近く設けて多くの磁力線が交差するように設計しなければ、高い磁束密度が得られず、また多い電流が誘導されない。また、加熱コイル5は反対側からの誘導により磁力線が相殺されず、一定の方向を有するように設計されることが好ましい。
高周波誘導加熱に使われる加熱コイル5は、形態とサイズが一定でなく、前述した設計基準を考慮して多様な形態に製造できる。さらに、加熱コイル5の断面は、円形、楕円形、四角形などに形成される。
大電力高周波電流は、加熱コイル5に沿って流れながら、その周囲に磁場を形成するようになり、この際、被加熱物7が加熱コイル5の周囲に形成された磁場を変化させて被加熱物7には誘導電流が発生する。該誘導電流は、金属の固有な電気的な抵抗を有する被加熱物7の所定区間を流れながら、この部分にジュール(Joule)熱を発生させて、結果的に被加熱物7を加熱させるようになる。
以下、本発明に係る水冷式トランスフォーマーの製造方法について説明する。
まず、多数の1次巻線薄板30と多数の2次巻線薄板40を交互に積層するが、1次巻線薄板30の切断部と2次巻線薄板40の切断部とが互いに配向するように積層される。また、1次巻線薄板30及び2次巻線薄板40が積層される時、薄板の間毎に所定の絶縁シート70を挿入して薄板の間を隙間もなく絶縁し、空気層がないように密着されるが、これで伝熱を妨害する孔隙を極小化させる効果がある。
次に、積層された巻線薄板30、40を冷却水ジャケットブロック10と出力側ブロック20との間に位置させる。積層された2次巻線薄板40の隙間41のない方を冷却水ジャケットブロック10に圧入した後、誘導加熱器を用いて半田付け固定し、2次巻線薄板40の隙間41の方を各切断部22a、22bが有する溝部27の内に挿入した後、誘導加熱器で半田付けして固定する。薄板の間に介された絶縁シート70は、耐熱温度の高い高温用絶縁シートであるので、絶縁シート70が介されて組み立てられた状態でも低温(約300℃)の半田付け作業が可能になる。
同時に、第1連結管50aと第2連結管50bを冷却水ジャケットブロック10と出力側ブロック20との間に位置させた後、各ブロックに対して誘導加熱により半田付けする時、共に誘導加熱して半田付けする。このように、誘導加熱により半田付けをする理由は、誘導加熱時、低い状態の温度調節が容易であり、各部材が銅で作られた場合には銅との親和力が高いためである。
次に、積層された巻線薄板30、40を貫通するようにコア60を組み立てる。コア60を巻線薄板30、40及び絶縁シート70と孔隙無しで密着して設置した後、コア60の外周面に沿ってテーピング処理して固定する。この際、使われるテープには、例えば機械的弾力性、耐油性、及び絶縁性に優れるポリエステルフィルムテープを使用することができるが、これに限定されるものではない。
トランスフォーマーは、組立後、略ボックス形状のケース90の内に収容される。
そして、1次巻線薄板30にパワーケーブル6(図1参照)を連結し、出力側ブロック20には別途のブラケット80を媒介にして加熱コイル5を連結設置する。また、出力側ブロック20を構成する両側折半部22a、22bの固定のために、一対のシールドカーバ(図示せず)を上下に嵌めて出力側ブロック20を一体化するようにすることもできる。
このような本発明の水冷式トランスフォーマーを製造する方法によれば、製造する工程が単純化されるため、大量生産時、自動化を図ることができるようになる付加的な長所もある。
また、本発明の水冷式トランスフォーマーを製造する方法は、巻線の組立後、圧着された状態で一度に半田付けするようになっているので、構成要素の間の機械的な流動性が少なくて外部衝撃に強くなり、構成要素の間の孔隙無しで一体に連結されるので、作動時に振動がなくなり、流入する異質物が存在しないので耐久性が増大する。
本発明に係る水冷式トランスフォーマーは、外部の冷却水循環装置(図示せず)から冷却水の供給を受ける。冷却水ジャケットブロック10の第1冷却水流入口12を通じて中空部11の内に流入した冷却水は、第2冷却水流出口14により第1連結管50aに抜け出て、続いて出力側ブロック20の第1折半部22aにある第3冷却水流入口23と中空部21及び第4冷却水流出口24を通過して加熱コイル5に進む。反対に、回帰する時、冷却水は加熱コイル5を経て出力側ブロック20の第2折半部22bにある第4冷却水流入口26と中空部21及び第3冷却水流出口25を通過して第2連結管50bに抜け出て、続いて冷却水ジャケットブロック10の第2冷却水流入口15を通じて中空部11の内に流れて第1冷却水流出口13により冷却水循環装置(図示せず)に排出される。図2には冷却水の流れが矢印で表示されている。
したがって、冷却水は冷却水ジャケットブロック10と出力側ブロック20との間に半田付けにより連結されている2次巻線薄板40を伝導による熱交換により直接的に冷却させることができる。また、冷却水ジャケットブロック10と出力側ブロック20との間に半田付けにより連結されている2次巻線薄板40がこれら2次巻線薄板40の間に各々介されている1次巻線薄板30の周辺を涼しい雰囲気に造成するだけでなく、絶縁シート70を媒介にして伝導による熱交換がなされるようにすることで、1次巻線薄板30を間接的に冷却させることができる。結局、冷却水ジャケットブロック10と出力側ブロック20に対して半田付けされて、電気的に、そして熱的に一体になった2次巻線により半田付けにより連結されていない1次巻線が間接冷却される。
付け加えて、コア60も巻線の冷却によりその影響を受けて間接的に冷却される。勿論、冷却水は加熱コイル5の内部を循環しながらこれを直接的に冷却させることができる。
このような冷却作用は装置の安全性を考慮したものであって、即ち通常1次巻線側は高圧であるので、ユーザの安全に影響を及ぼすことがあるので、水との直接的な接触を避けた状態で間接的に冷却させるようになっており、2次巻線側は1/Nに電圧が降下する状態であるので、漏電や腐食(100%の交流だけ2次に移るようになるのでDC成分が無い)などの可能性が減って、水冷式により冷却しても安全性と寿命が延長される。
このように、冷却水の供給と排出が冷却水ジャケットブロック、連結管、出力側ブロック、及び加熱コイルを連通して構成される冷却水路に沿ってなされるので、冷却水を分岐して供給するための配管などを必要としない。しかも、加熱コイルに使われる冷却水をトランスフォーマーでも共に使用するので、全体的な冷却水貯水容量に従う装置重量の増加がなくなる。また、内部管路上の冷却水量も減って重量減少に助けになる。
また、装置の内に温度の高い部位との温度勾配が常に存在し、冷却後、回帰する冷却水が潜熱を持っているので、適当な平均温度が維持できるようになるので、過冷却による表面結露現象によりもたらされる絶縁破壊の危険が防止される効果も得ることができる。
一方、本発明の水冷式トランスフォーマーが高周波誘導加熱器に適用された例に対して図解しているが、本発明の適用範囲はこれに限定されず、他の任意の分野で使われる装置にも適用可能である。
以上の説明は、本発明の技術思想を例示的に説明したことに過ぎないものであって、本発明が属する技術分野で通常の知識を有する者であれば、本発明の本質的な特性から逸脱しない範囲で多様な修正及び変形が可能である。したがって、本発明に開示された実施形態は本発明の技術思想を限定するためのものではなく、説明するためのものであり、このような実施形態により本発明の技術事象の範囲が限定されるのではない。本発明の保護範囲は請求範囲により解釈されなければならず、それと同等な範囲内にある全ての技術思想は本発明の権利範囲に含まれるものと解釈されるべきである。

Claims (20)

  1. 内部に冷却水用中空部を有する輪形状の冷却水ジャケットブロックと、
    前記冷却水ジャケットブロックと対向するように位置し、内部に冷却水用中空部が形成された一対の折半部が同一平面上に突き合わせて構成される出力側ブロックと、
    前記冷却水ジャケットブロックと前記出力側ブロックに連結固定され、積層される多数の2次巻線薄板と、
    前記冷却水ジャケットブロックと前記出力側ブロックとの間に位置し積層され、かつ前記2次巻線薄板の間間に各々配置され、互いに結線され、パワーケーブルと連結される多数の1次巻線薄板と、
    前記1次巻線薄板と前記2次巻線薄板との間毎に介される絶縁シートと、
    前記冷却水ジャケットブロックの中空部と前記出力側ブロックの中空部とを連通させるように設けられて冷却水を連通させる一対の連結管と、
    積層された前記1次巻線薄板と前記2次巻線薄板とを直角に貫通して位置されるコアと、
    を含むことを特徴とする、水冷式トランスフォーマー。
  2. 前記冷却水ジャケットブロックの一側面には第1冷却水流入口と第1冷却水流出口が間隔を置いて形成されており、前記冷却水ジャケットブロックの他側面には第2冷却水流出口と第2冷却水流入口が間隔を置いて形成されており、
    前記冷却水ジャケットブロックの中空部は、前記第1冷却水流入口及び前記第2冷却水流出口を連通させ、前記第2冷却水流入口及び前記第1冷却水流出口を連通させることを特徴とする、請求項1に記載の水冷式トランスフォーマー。
  3. 前記中空部は前記冷却水ジャケットブロックの内部で輪形状に沿って形成されており、前記第1冷却水流入口、前記第1冷却水流出口、前記第2冷却水流入口、及び前記第2冷却水流出口を全て連通するように形成されていることを特徴とする、請求項2に記載の水冷式トランスフォーマー。
  4. 前記出力側ブロックは第1折半部と第2折半部とを含み、
    前記第1折半部には一側面に第3冷却水流入口が形成されており、他側面に第4冷却水流出口が形成されており、
    前記第2折半部には一側面に第3冷却水流出口が形成されており、他側面に第4冷却水流入口が形成されており、
    前記第1折半部の中空部は前記第3冷却水流入口及び前記第4冷却水流出口を連通させ、
    前記第2折半部の中空部は前記第4冷却水流入口及び前記第3冷却水流出口を連通させることを特徴とする、請求項1に記載の水冷式トランスフォーマー。
  5. 前記出力側ブロックの各折半部は、前記第3冷却水流入口が形成された側面及び前記第3冷却水流出口が形成された側面に溝部が形成されていることを特徴とする、請求項4に記載の水冷式トランスフォーマー。
  6. 前記一対の折半部が同一平面上で突き合わせられる時、前記折半部の間には絶縁部が介されて前記折半部が互いに電気的に絶縁されることを特徴とする、請求項1に記載の水冷式トランスフォーマー。
  7. 前記連結管は第1連結管と第2連結管とを含み、
    前記第1連結管は前記冷却水ジャケットブロックの第2冷却水流出口と前記出力側ブロックの第1折半部にある第3冷却水流入口の間に介されて冷却水通路を形成し、
    前記第2連結管は前記出力側ブロックの第2折半部にある第3冷却水流出口と前記冷却水ジャケットブロックの第2冷却水流入口の間に介されて冷却水通路を形成することを特徴とする、請求項2または4に記載の水冷式トランスフォーマー。
  8. 前記1次巻線薄板は、一部が切断された輪形状に形成されながら切断部の両側から長手方向に延びた一対の延長部を備えていることを特徴とする、請求項1に記載の水冷式トランスフォーマー。
  9. 前記2次巻線薄板は一部が切断された輪形状に形成され、この切断部は幅方向の中に位置し、隙間を形成することを特徴とする、請求項1に記載の水冷式トランスフォーマー。
  10. 前記1次巻線薄板と前記2次巻線薄板とが交互に積層される時、前記1次巻線薄板の切断部と前記2次巻線薄板の切断部とが互いに配向して位置するように積層されることを特徴とする、請求項8または9に記載の水冷式トランスフォーマー。
  11. 前記1次巻線薄板の結線は、1つの1次巻線薄板から延びた延長部のうちの1つを他の1次巻線薄板の延長部のうちの1つと電気的に連結し、前記1つの1次巻線薄板から延びた延長部のうちの残りの1つをもう1つの1次巻線薄板の延長部のうちの1つと電気的に連結することによってなされることを特徴とする、請求項8に記載の水冷式トランスフォーマー。
  12. 前記2次巻線薄板は、前記隙間のない方が前記冷却水ジャケットブロックの輪形状の内に圧入された後、前記冷却水ジャケットブロックの内周面と接する側方先端が半田付けされて固定されることを特徴とする、請求項9に記載の水冷式トランスフォーマー。
  13. 前記出力側ブロックの各切断部は一側面に溝部を備えており、
    前記2次巻線薄板はその隙間の方が前記出力側ブロックの各切断部が有する前記溝部の内に挿入された後、前記溝部の内面と接する側方先端が半田付けされて固定されることを特徴とする、請求項9に記載の水冷式トランスフォーマー。
  14. 中空の金属管部材で形成された加熱コイルを更に備え、
    前記加熱コイルは両側先端に開口部を備え、これら開口部は前記出力側ブロックの第1折半部にある第4冷却水流出口及び第2折半部にある第4冷却水流入口と各々連通するようになることを特徴とする、請求項4に記載の水冷式トランスフォーマー。
  15. 前記加熱コイルは別途のブラケットを媒介にして前記出力側ブロックに連結固定されることを特徴とする、請求項14に記載の水冷式トランスフォーマー。
  16. 前記トランスフォーマーは、ケース内に収容されることを特徴とする、請求項1に記載の水冷式トランスフォーマー。
  17. 多数の1次巻線薄板と多数の2次巻線薄板とを交互に積層し、かつ前記1次巻線薄板及び前記2次巻線薄板の間毎に絶縁シートを挿入して積層するステップと、
    前記積層された巻線薄板と一対の連結管を、互いに対向する冷却水ジャケットブロックと出力側ブロックとの間に位置させ、前記冷却水ジャケットブロックの内部に形成されている冷却水用中空部と前記出力側ブロックの内部に形成されている冷却水用中空部とを前記一対の連結管によって連通させるステップと、
    前記2次巻線薄板の一側先端と前記各連結管の一端を前記冷却水ジャケットブロックに半田付けするステップと、
    前記2次巻線薄板の他側先端と前記各連結管の他端とを前記出力側ブロックに半田付けするステップと、
    前記積層された巻線薄板を貫通するようにコアを組み立てるステップと、
    を含むことを特徴とする、水冷式トランスフォーマーの製造方法。
  18. 前記多数の1次巻線薄板の各々は、一部を切断して形成された切断部を有する輪形状であって、前記各切断部の両側から延びた一対の延長部を備え、1つの1次巻線薄板から延びた延長部のうちの1つを他の1次巻線薄板の延長部のうちの1つと電気的に連結し、前記1つの1次巻線薄板から延びた延長部のうちの残りの1つをもう1つの1次巻線薄板の延長部のうちの1つと電気的に連結して、1次巻線薄板を結線するステップを更に含むことを特徴とする、請求項17に記載の水冷式トランスフォーマーの製造方法。
  19. 前記半田付けするステップは、誘導加熱を用いて半田付けすることを特徴とする、請求項17に記載の水冷式トランスフォーマーの製造方法。
  20. 前記コアを組み立てるステップは、前記コアを巻線薄板及び絶縁シートと孔隙無しで密着するように設置した後、前記コアの外周面に沿ってテーピング処理して固定することを特徴とする、請求項17に記載の水冷式トランスフォーマーの製造方法。
JP2011234062A 2010-11-01 2011-10-25 高周波誘導加熱器の水冷式トランスフォーマー及びその製造方法 Expired - Fee Related JP5331186B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0107474 2010-11-01
KR1020100107474A KR101187323B1 (ko) 2010-11-01 2010-11-01 고주파 유도가열기의 수랭식 트랜스포머 및 이의 제조방법

Publications (2)

Publication Number Publication Date
JP2012099813A JP2012099813A (ja) 2012-05-24
JP5331186B2 true JP5331186B2 (ja) 2013-10-30

Family

ID=46265152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011234062A Expired - Fee Related JP5331186B2 (ja) 2010-11-01 2011-10-25 高周波誘導加熱器の水冷式トランスフォーマー及びその製造方法

Country Status (2)

Country Link
JP (1) JP5331186B2 (ja)
KR (1) KR101187323B1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109831841A (zh) * 2019-04-01 2019-05-31 深圳市普天达智能装备有限公司 用于热弯机的非接触式加热圈
CN111007142B (zh) * 2019-12-19 2022-03-15 华中科技大学 一种电磁辅助在线微观组织检测及调控系统及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6125224Y2 (ja) * 1978-03-13 1986-07-29
JPS54147643U (ja) 1978-04-06 1979-10-13
JP3493524B2 (ja) * 1993-12-27 2004-02-03 昭和電工株式会社 電気自動車のトランスにおける水冷式冷却器
JP3791976B2 (ja) 1996-08-07 2006-06-28 株式会社ミヤデン 高周波加熱装置の出力変成器
JPH11329689A (ja) * 1998-05-19 1999-11-30 Miyaden:Kk 高周波加熱装置の出力変成器
JP2001068360A (ja) * 1999-08-25 2001-03-16 Miyaden Co Ltd 高周波加熱装置の出力変成器
KR20050106809A (ko) 2004-05-06 2005-11-11 세향산업 주식회사 고주파 대전력용 고효율 트랜스포머 및 그에 삽입된 코일 제작기법
JP2008004774A (ja) * 2006-06-22 2008-01-10 Sekisui Chem Co Ltd トランス及び高周波誘導加熱装置
JP2009218417A (ja) * 2008-03-11 2009-09-24 Toyota Motor Corp リアクトル冷却装置

Also Published As

Publication number Publication date
JP2012099813A (ja) 2012-05-24
KR101187323B1 (ko) 2012-10-02
KR20120045732A (ko) 2012-05-09

Similar Documents

Publication Publication Date Title
KR101248499B1 (ko) 평면 코일
JP2986369B2 (ja) 高周波数高電力変成器の空気/液体冷却式金属巻線
US4956626A (en) Inductor transformer cooling apparatus
EP0252719B1 (en) Electric fluid heater
US4488135A (en) Transformer for welding gun
CN104335303A (zh) 非接触供电变压器
JP5317284B2 (ja) 流体加熱装置
JP5646688B2 (ja) 非接触給電システム
JP5331186B2 (ja) 高周波誘導加熱器の水冷式トランスフォーマー及びその製造方法
CN104185325B (zh) 感应加热装置
EP2452346A1 (en) Inductive component equipped with a liquid cooling and a method for manufacturing an inductive component
KR101714869B1 (ko) 유도 가열 장치용 코일 어셈블리 및 이를 포함하는 유도 가열 장치
JP4155577B2 (ja) パイプ誘導加熱装置
CN207425599U (zh) 一种超高频次级谐振变压器
JP2000150259A (ja) 高周波コイル及び高周波トランス
JP4838842B2 (ja) 積層型巻線構造を有するトランスフォーマー
JP4094032B2 (ja) 水冷式トランスの水冷コイルとその水冷式トランス
JP5717011B2 (ja) 高周波誘導加熱装置用変成器
KR100996606B1 (ko) 대전력 고주파 유도 가열 장치용 고주파 케이블
CN115036109A (zh) 平面变压组件及平面变压装置
JPH11186086A (ja) 非接触式電力伝送装置用渦巻型コイルの製造方法
JP4615425B2 (ja) 整合変圧器
KR20100026408A (ko) 대전력 고주파 유도 가열 장치
CN106449047B (zh) 大电流平面变压器及其制作方法
CA2976293C (en) Electromagnetic induction device configured as a multiple magnetic circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130726

R150 Certificate of patent or registration of utility model

Ref document number: 5331186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees