JP2004340516A - Heat exchanger tube and heat exchanger incorporating the same - Google Patents

Heat exchanger tube and heat exchanger incorporating the same Download PDF

Info

Publication number
JP2004340516A
JP2004340516A JP2003139339A JP2003139339A JP2004340516A JP 2004340516 A JP2004340516 A JP 2004340516A JP 2003139339 A JP2003139339 A JP 2003139339A JP 2003139339 A JP2003139339 A JP 2003139339A JP 2004340516 A JP2004340516 A JP 2004340516A
Authority
JP
Japan
Prior art keywords
fluid
heat transfer
metal wire
tube
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003139339A
Other languages
Japanese (ja)
Other versions
JP4201642B2 (en
Inventor
Shoichiro Usui
正一郎 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Kokusai Sangyo Kaisha Ltd
Original Assignee
Usui Kokusai Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Kokusai Sangyo Kaisha Ltd filed Critical Usui Kokusai Sangyo Kaisha Ltd
Priority to JP2003139339A priority Critical patent/JP4201642B2/en
Publication of JP2004340516A publication Critical patent/JP2004340516A/en
Application granted granted Critical
Publication of JP4201642B2 publication Critical patent/JP4201642B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To remove soot deposited on the inner face of a heat exchanger tube without stopping the cooling operation of the heat exchanger tube while eliminating the possibility of lowering the primary heat transfer efficiency of the heat exchanger tube, and to minimize the lowering of heat transfer efficiency of the heat exchanger tube due to the soot by removing the soot within a time when it is less deposited on the inner face of the heat exchanger tube. <P>SOLUTION: On an inner peripheral face 6 of an element tube 3 which has a fluid introduction port 4 and a fluid delivery port 5 at one axial end and at the other axial end, respectively, a plurality of metal wires 7 are annularly arranged in parallel to the axial direction of the element tube 3 in spaced relation. At least one end portion 8 of each metal wire 7 is fixed to the side of the fluid introduction port 4 of the element tube 3 and the metal wire 7 has strength enough for oscillation in random amplitude with the introduction of fluid into the fluid introduction port 4. Soot deposited on the inner peripheral face 6 of the element tube 3 is separated therefrom with the oscillation of the metal wires 7. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、EGRガス冷却装置等の多管式熱交換器にて、冷却水、冷却風、カーエアコン用冷媒、その他の冷却媒体と、EGRガス、煤を含有する燃焼排気ガス等との熱交換を行うために用いる、伝熱管並びにこの伝熱管を組み付けた熱交換器に係るものである。
【0002】
【従来の技術】
【特許文献1】特開平11−108578号公報
【特許文献2】特開2001−227413号公報
【0003】
従来、自動車のエンジン等では、排気ガスの一部を排気ガス系から取り出して、再びエンジンの吸気系に戻し、混合気や吸入空気に加えるEGRシステムが、ガソリンエンジン、ディーゼルエンジンともに用いられていた。EGRシステム、特にディーゼルエンジンの高EGR率のクールドEGRシステムでは、排気ガス中のNOxを低減し、燃費の悪化を防止するとともに、過剰な温度上昇によるEGRバルブの機能低下や耐久性の低下を防止するため、高温のEGRガスを冷却水、冷却風、冷媒、その他の冷却媒体で冷却する装置を設けている。
【0004】
そして、このEGRガス冷却装置は、図5に示す如く、EGRガスが内部を流通可能な複数の細径の伝熱管(1)を配置し、この伝熱管(1)の外側に冷却水や冷却風、冷媒等の冷却媒体を流通させる事により、伝熱管(1)を介してEGRガスと冷却媒体との熱交換を行うものである。
【0005】
このような伝熱管としては、特許文献1記載の発明、特許文献2記載の発明等が知られている。これらの従来公知の伝熱管は、流体の流通する内周面が平滑なものであるから、図6に示す如く、流通する排出ガスに含まれる煤(2)が堆積しやすいものとなる。この伝熱管(1)の内面に、煤(2)が付着して堆積すると、煤(2)が断熱作用を生じ交換熱量が低下し、伝熱管(1)としての性能を低下させるものとなり好ましくない。そこで、従来はこの煤(2)を伝熱管(1)の内面から除去する方法として、伝熱管(1)を一定期間使用した後は、ブラシ状のもので掻き落としたり、伝熱管(1)の冷却作動を停止して伝熱管(1)を高温にする事で煤(2)を焼却して除去する方法が採用されている。
【0006】
【発明が解決しようとする課題】
しかしながら、伝熱管(1)の内面に付着した煤(2)を、ブラシ状のもので掻き落としたり、伝熱管(1)の冷却作動を停止して伝熱管(1)を高温にする事で煤(2)を焼却したりする方法は、多くの手数を要するばかりでなく伝熱管(1)の冷却作動を停止させねば成らず、伝熱管(1)の作業効率を著しく低下させるものとなっている。また、このような欠点を防止し伝熱管(1)の内面への煤(2)の付着を防止する目的で、フッ素樹脂等の表面エネルギーの低いコーティングを伝熱管(1)の内面に施す事も行われている。しかしながら、この表面エネルギーの低いコーティングを伝熱管の内面に施す方法は、フッ素樹脂等の表面エネルギーの低いコーティングが、金属に比較して熱伝導率が小さく伝熱性に乏しいため、本来熱交換器である伝熱管(1)の熱伝達効率を低下させるものとなる。
【0007】
本発明は上述の如き課題を解決しようとするものであって、伝熱管(1)の本来の目的である熱伝達効率を低下させる事が無く、また、伝熱管の冷却作動を停止させずに伝熱管(1)の内面に付着した煤(2)を自動的に除去する事を可能にする。また、この煤(2)の除去を伝熱管(1)の内面への煤(2)の付着量が少ない内に行う事により、煤(2)による伝熱管の熱伝達効率の低下を最小限にしようとするものである。
【0008】
【課題を解決するための手段】
本発明は上述の如き課題を解決するため、第1の発明は、軸方向の一端に流体導入口を、軸方向の他端に流体導出口を設けた素管の内周面に、素管の軸方向と平行に複数本の金属線を間隔を設けて環状に配置し、この金属線の少なくとも一端部を素管の流体導入口側に固定すると共にこの金属線を、流体導入口への流体の導入に伴って揺動し得る強度とし、素管の内周面に付着する煤を金属線の揺動により剥離可能としたことを特徴とする伝熱管に係るものである。
【0009】
また、第2の発明は、軸方向の一端に流体導入口を、軸方向の他端に流体導出口を設けた素管の内周面に、素管の軸方向と平行に複数本の金属線を間隔を設けて環状に配置し、この金属線の少なくとも一端部を素管の流体導入口側に固定すると共にこの金属線を、流体導入口への流体の導入に伴って揺動し得る強度とし、素管の内周面に付着する煤を金属線の揺動により剥離可能とした伝熱管を組み付けたことを特徴とする伝熱管を組み付けた熱交換器に係るものである。
【0010】
また、金属線は、素管の流体導入口から流体導出口迄の全長に渡って連続的に配置し、一端部を流体導入口に、他端部を流体導出口に固定したものであっても良い。
【0011】
また、素管は、流体導入口側から流体導出口側の内面に間隔を設けて固定環を固定し、この複数の固定環の流体導入口側に各々金属線の一端部を固定して形成したものであっても良い。
【0012】
【作用】
上述の如く構成したものに於いて、素管の流体導入口からEGRガス、煤を含有する燃焼排気ガス等の流体を導入すると、流体は流体導出口方向に流動する過程で煤を流体の内面に付着させると共に、流体の流動エネルギーにより金属線を振動させ、軸方向に対して上下左右にランダムな振幅で揺動させる。この揺動は、伝熱管内を流れる流体の速度変化や、EGRシステムに振動が発生する場合等に特に発生し易いものとなる。この揺動により、金属線は素管の内周面に接触して擦る事となり、内周面に付着する煤を、付着の初期に於いて素管の内周面から剥離させることが可能となる。そして、素管の内周面から剥離した煤は流体と共に下流に流出する。
【0013】
そして、金属線は、流体によって揺動が生じることのない強度に形成すると技術的効果を生じないものであって、流体導入口への流体の導入に伴ってランダムな振幅で揺動し得る強度としている。この強度は、金属線を短くすれば揺動は生じにくくなるし、長くすれば揺動は生じやすいものとなる。また、金属線は直径を大きくすれば強度が高まり揺動を生じ難いものとなるし、直径を小さなものとすれば揺動を生じやすいものとなる。
【0014】
また、金属線は、素管の流体導入口から流体導出口迄の全長に渡って連続的に配置しても良く、この場合は金属管の一端部を流体導入口に、他端部を流体導出口に固定して形成する。
【0015】
また、金属線は上記の如く一本の金属管を素管の流体導入口から流体導出口迄の全長に渡って連続的に配置しても良いが、素管の軸方向に於いて複数の金属線を配置しても良い。この場合は、流体導入口側から流体導出口側の内面に間隔を設けて固定環を固定し、この複数の固定環の流体導入口側に各々金属線の一端部を固定して形成するものである。
【0016】
【実施例】
以下、本発明の伝熱管の一実施例を図面に於て説明すれば、(1)は伝熱管で、流体が内部を流動可能な素管(3)の軸方向の一端に流体導入口(4)を設け、軸方向の他端に流体導出口(5)を形成している。この素管(3)の内周面(6)に、素管(3)の軸方向と平行に複数の金属線(7)を所望の間隔を設けて環状に配置している。そして、この金属線(7)の少なくとも一端部(8)を素管(3)の流体導入口(4)の開口縁(10)に係合固定している。また、この金属線(7)は一実施例に於いて、図1、図2に示す如く、素管(3)の流体導入口(4)から流体導出口(5)迄の全長に渡って配置し、一端部(8)を流体導入口(4)の開口縁(10)に折り曲げて係合固定すると共に、他端部(11)を流体導出口(5)の他端開口縁(12)に折り曲げて係合固定している。
【0017】
また、上記の金属線(7)はSUS、インコネル等の耐食性金属により形成し、直径を50μ〜250μの範囲で形成する。金属線(7)の直径を50μよりも細くすると、強度的に弱くなり使用中の断線等を生じ好ましくない。また、金属線(7)の直径を250μよりも太くすると、金属線(7)の強度が大きくなり、流体の素管(3)への導入によっても揺動を生じることが少ないか、生じないものとなり、素管(3)の内面に付着した煤(2)の剥離を有効に行うことが出来ないものとなる。このように、金属線(7)は、流体導入口(4)への流体の導入に伴ってランダムな振幅で揺動し得る強度とし、素管(3)の内周面(6)に付着する煤(2)を金属線(7)の揺動により剥離可能とするものである。
【0018】
また、上記実施例では、素管(3)の流体導入口(4)から流体導出口(5)迄の全長に渡って一本の金属線(7)を配置し、一端部(8)を流体導入口(4)の開口縁(10)に折り曲げて係合固定すると共に、他端部(11)を流体導出口(5)の他端開口縁(12)に折り曲げて係合固定している。しかし、他の異なる第2実施例では、図4に示す如く、素管(3)の軸方向に於いて複数本の金属線(7)を配置しても良い。この場合は、流体導入口(4)側から流体導出口(5)側の内面に、軸方向に於いて所望の間隔毎に固定環(13)を固定する。また、この固定環(13)は、素管(3)の内周面(6)との間に金属線(7)の挿入間隔(14)を設け、この挿入間隔(14)に金属線(7)の一端部(8)を挿入して固定環(13)に折り曲げ係合している。この複数の固定環(13)への金属線(7)の係合固定は、一端部(8)の係合固定位置が流体導入口(4)側に配置されるように固定して形成するものである。
【0019】
上述の如き伝熱管(1)を使用したEGRガス冷却装置(15)である熱交換器を図5に示す。この熱交換器であるEGRガス冷却装置(15)は、円筒状の胴管(16)の両端付近に、内部を密閉可能にチューブシート(17)を一対、接続している。そして、この一対のチューブシート(17)間に、本実施例の伝熱管(1)を複数本、チューブシート(17)を貫通して接続配置している。また、胴管(16)の両端には、EGRガスの導入口(18)と導出口(20)とを設けたボンネット(21)を接続している。
【0020】
更に、胴管(16)の外周には、エンジン冷却水、冷却風、カーエアコン用冷媒等の冷却媒体の流入口(22)と流出口(23)を設ける事により、一対のチューブシート(17)で仕切られた気密空間内を、冷却媒体が流通可能な冷却部(24)としている。また、好ましくはこの冷却部(24)内に、複数の支持板(25)を接合配置し、この支持板(25)に設けた挿通孔(26)に、伝熱管(1)を挿通する事により、バッフルプレートとして伝熱管(1)を安定的に支持するとともに、冷却部(24)内を流動する冷却媒体の流れを蛇行化している。
【0021】
そして、上述の如きEGRガス冷却装置(15)に於いて、導入口(18)から胴管(16)内に高温のEGRガスを導入すると、このEGRガスは胴管(16)内に複数配置した伝熱管(1)内に流入する。この伝熱管(1)を配置した冷却部(24)では、予め伝熱管(1)の外部にエンジン冷却水等の冷却媒体を流通しているので、伝熱管(1)の内外両表面を介してEGRガスと冷却媒体とで熱交換が行われる。
【0022】
上記の熱交換に於いて、伝熱管(1)の内部を流れる流体がディーゼルエンジンの排気ガス等の如く、流体中に煤(2)等を含むものの場合は、伝熱管(1)の内周面にこの煤(2)を付着堆積するものとなる。しかし、本発明の実施例に於いては、素管(3)の流体導入口(4)からEGRガス、煤(2)を含有する燃焼排気ガス等の流体を導入すると、流体は流体導出口(5)方向に流動する過程で、煤(2)を伝熱管(1)の内面に付着させると共に、流体の流動エネルギーにより、図3に示す如く、金属線(7)を振動させ、軸方向に対して上下左右にランダムな振幅で揺動させる。この揺動により、金属線(7)は素管(3)の内周面に付着する煤(2)を、付着の初期に於いて素管(3)の内周面(6)から剥離させることが可能となる。そして、素管(3)の内周面(6)から剥離した煤(2)は流体と共に下流に流出する。
【0023】
従って、従来の如く、伝熱管(1)を一定期間使用した後、ブラシ状のもので掻き落としたり、伝熱管(1)の冷却作動を停止して伝熱管(1)を高温にする事で煤(2)を焼却して除去する等の除去手段を取る必要がない。本発明に於いては、伝熱管(1)の内面への煤(2)の付着は自動的に除去されるため、手数を要しないと共に煤(2)の除去に伝熱管(1)の使用を中断することもないものとなる。
【0024】
【発明の効果】
本発明は上述の如く構成したものであるから、伝熱管の本来の目的である熱伝達効率を低下させる事が無く、また、伝熱管の冷却作動を停止させずに伝熱管の内面に付着した煤を自動的に除去する事ができる。また、この煤の除去を伝熱管の内面への付着量が少ない内に行う事ができ、煤による伝熱管の熱伝達効率の低下を最小限にする事ができるものである。
【図面の簡単な説明】
【図1】本発明の第1実施例を示す斜視図。
【図2】金属線と素管との関係を示す一部省略拡大端面図。
【図3】金属線による煤の除去状況を示す拡大断面図。
【図4】第2実施例の拡大断面図。
【図5】伝熱管を組み付けたEGRガス冷却装置の一例を示す断面図。
【図6】従来例による伝熱管への煤の付着例を示す拡大断面図。
【符号の説明】
1 伝熱管
2 煤
3 素管
4 流体導入口
5 流体導出口
6 内周面
7 金属線
8 一端部
11 他端部
13 固定環
15 ガス冷却装置
[0001]
[Industrial applications]
The present invention relates to a heat exchanger for cooling water, cooling air, a refrigerant for a car air conditioner, and other cooling media, and a combustion exhaust gas containing EGR gas and soot in a multi-tube heat exchanger such as an EGR gas cooling device. The present invention relates to a heat transfer tube used for performing an exchange and a heat exchanger to which the heat transfer tube is assembled.
[0002]
[Prior art]
[Patent Document 1] Japanese Patent Application Laid-Open No. H11-108578 [Patent Document 2] Japanese Patent Application Laid-Open No. 2001-227413
Conventionally, in an engine of an automobile, an EGR system in which a part of exhaust gas is taken out from an exhaust gas system, returned to an intake system of the engine, and added to an air-fuel mixture or intake air has been used for both a gasoline engine and a diesel engine. . An EGR system, particularly a cooled EGR system of a diesel engine with a high EGR rate, reduces NOx in exhaust gas to prevent deterioration of fuel efficiency and also prevents deterioration of EGR valve function and durability due to excessive temperature rise. For this purpose, a device for cooling the high-temperature EGR gas with cooling water, cooling air, a refrigerant, or another cooling medium is provided.
[0004]
In this EGR gas cooling device, as shown in FIG. 5, a plurality of small-diameter heat transfer tubes (1) through which the EGR gas can flow are arranged, and cooling water or cooling water is provided outside the heat transfer tubes (1). The heat exchange between the EGR gas and the cooling medium is performed through the heat transfer tube (1) by circulating a cooling medium such as a wind or a refrigerant.
[0005]
As such a heat transfer tube, the invention described in Patent Document 1 and the invention described in Patent Document 2 are known. In these conventionally known heat transfer tubes, since the inner peripheral surface through which the fluid flows is smooth, soot (2) contained in the flowing exhaust gas easily accumulates as shown in FIG. When the soot (2) adheres and accumulates on the inner surface of the heat transfer tube (1), the soot (2) causes an adiabatic action to reduce the amount of exchanged heat, thereby lowering the performance as the heat transfer tube (1). Absent. Therefore, conventionally, as a method of removing the soot (2) from the inner surface of the heat transfer tube (1), after using the heat transfer tube (1) for a certain period of time, the heat transfer tube (1) is scraped off with a brush-like material or the heat transfer tube (1). The soot (2) is incinerated and removed by making the heat transfer tube (1) high temperature by stopping the cooling operation of the soot.
[0006]
[Problems to be solved by the invention]
However, the soot (2) adhered to the inner surface of the heat transfer tube (1) may be scraped off with a brush, or the cooling operation of the heat transfer tube (1) may be stopped to raise the temperature of the heat transfer tube (1). The method of incinerating the soot (2) not only requires a lot of trouble but also requires the cooling operation of the heat transfer tube (1) to be stopped, which significantly reduces the work efficiency of the heat transfer tube (1). ing. In order to prevent such a defect and prevent soot (2) from adhering to the inner surface of the heat transfer tube (1), a coating having a low surface energy such as fluororesin is applied to the inner surface of the heat transfer tube (1). Has also been done. However, this method of applying a coating having a low surface energy to the inner surface of a heat transfer tube is based on a heat exchanger because a coating having a low surface energy, such as a fluororesin, has a low heat conductivity and a poor heat conductivity as compared with a metal. The heat transfer efficiency of a certain heat transfer tube (1) is reduced.
[0007]
The present invention is intended to solve the above-described problems, and does not reduce the heat transfer efficiency, which is the original purpose of the heat transfer tube (1), and does not stop the cooling operation of the heat transfer tube. It is possible to automatically remove soot (2) attached to the inner surface of the heat transfer tube (1). Also, by removing the soot (2) while the amount of the soot (2) adhered to the inner surface of the heat transfer tube (1) is small, the decrease in the heat transfer efficiency of the heat transfer tube due to the soot (2) is minimized. It is something to try.
[0008]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION In order to solve the above-described problems, the first invention is directed to a method in which a fluid inlet is provided at one end in an axial direction and a fluid outlet is provided at the other end in the axial direction. A plurality of metal wires are arranged annularly at intervals with being parallel to the axial direction of the metal wire, and at least one end of the metal wire is fixed to the fluid inlet side of the raw tube, and the metal wire is connected to the fluid inlet. A heat transfer tube according to the present invention is characterized in that it has a strength capable of swinging with the introduction of a fluid, and soot attached to the inner peripheral surface of the raw tube can be peeled off by swinging a metal wire.
[0009]
Further, the second invention provides a method for manufacturing a plurality of metal plates parallel to the axial direction of a base tube on an inner peripheral surface of the base tube having a fluid inlet at one end in the axial direction and a fluid outlet at the other end in the axial direction. The wires are arranged annularly at intervals, and at least one end of the metal wire is fixed to the fluid inlet side of the raw tube, and the metal wire can be swung with the introduction of the fluid into the fluid inlet. The present invention relates to a heat exchanger to which a heat transfer tube has been attached, wherein the heat transfer tube has a strength and is capable of separating soot adhering to the inner peripheral surface of the raw tube by swinging a metal wire.
[0010]
Further, the metal wire is arranged continuously over the entire length from the fluid inlet to the fluid outlet of the raw tube, with one end fixed to the fluid inlet and the other end fixed to the fluid outlet. Is also good.
[0011]
In addition, the base tube is formed by fixing a fixed ring at an interval from the fluid inlet side to the inner surface of the fluid outlet side, and fixing one end of a metal wire to each of the plurality of fixed rings on the fluid inlet side. It may be what you did.
[0012]
[Action]
In the configuration described above, when a fluid such as EGR gas or soot-containing combustion exhaust gas is introduced from the fluid inlet of the raw pipe, the fluid flows in the direction of the fluid outlet and the soot flows into the inner surface of the fluid. At the same time, the metal wire is vibrated by the flow energy of the fluid, and is swung up and down and right and left at random with respect to the axial direction. This swing is particularly likely to occur when the speed of the fluid flowing in the heat transfer tube changes, or when vibration occurs in the EGR system. Due to this swing, the metal wire comes into contact with the inner peripheral surface of the raw tube and rubs, so that the soot adhering to the inner peripheral surface can be separated from the inner peripheral surface of the raw tube in the initial stage of adhesion. Become. Then, the soot separated from the inner peripheral surface of the raw tube flows out downstream with the fluid.
[0013]
The metal wire has no technical effect when formed to a strength that does not cause oscillation due to the fluid. And As for the strength, if the metal wire is shortened, the swing hardly occurs, and if the metal wire is long, the swing easily occurs. In addition, if the diameter of the metal wire is increased, the strength is increased and it is difficult for the metal wire to oscillate.
[0014]
Further, the metal wire may be continuously arranged over the entire length from the fluid inlet to the fluid outlet of the raw tube. In this case, one end of the metal tube is connected to the fluid inlet, and the other end is connected to the fluid inlet. It is formed fixed to the outlet.
[0015]
Further, as described above, the metal wire may be one metal tube arranged continuously over the entire length from the fluid inlet to the fluid outlet of the raw tube, but a plurality of metal tubes may be arranged in the axial direction of the raw tube. A metal wire may be arranged. In this case, a fixed ring is fixed at a distance from the fluid inlet side to the inner surface on the fluid outlet side, and one end of each metal wire is fixed to the fluid inlet side of the plurality of fixed rings. It is.
[0016]
【Example】
Hereinafter, an embodiment of the heat transfer tube of the present invention will be described with reference to the drawings. (1) is a heat transfer tube, and a fluid introduction port (1) is provided at one axial end of a raw tube (3) through which fluid can flow. 4) is provided, and a fluid outlet (5) is formed at the other end in the axial direction. A plurality of metal wires (7) are annularly arranged on the inner peripheral surface (6) of the raw tube (3) at a desired interval in parallel with the axial direction of the raw tube (3). At least one end (8) of the metal wire (7) is engaged and fixed to the opening edge (10) of the fluid inlet (4) of the raw tube (3). In one embodiment, the metal wire (7) extends over the entire length from the fluid inlet (4) to the fluid outlet (5) of the raw pipe (3) as shown in FIGS. And one end (8) is bent and engaged with the opening edge (10) of the fluid inlet (4), and the other end (11) is connected to the other opening edge (12) of the fluid outlet (5). ) To be engaged and fixed.
[0017]
The metal wire (7) is formed of a corrosion-resistant metal such as SUS or Inconel, and has a diameter in the range of 50 μm to 250 μm. If the diameter of the metal wire (7) is smaller than 50 μm, the strength is weakened, and breakage during use or the like is not preferred. Further, when the diameter of the metal wire (7) is larger than 250 μm, the strength of the metal wire (7) increases, so that the introduction of the fluid into the raw pipe (3) causes little or no oscillation. As a result, the soot (2) adhered to the inner surface of the raw tube (3) cannot be effectively separated. As described above, the metal wire (7) has a strength capable of swinging at a random amplitude with the introduction of the fluid into the fluid introduction port (4), and adheres to the inner peripheral surface (6) of the raw tube (3). The soot (2) to be removed can be separated by the swing of the metal wire (7).
[0018]
Further, in the above embodiment, one metal wire (7) is arranged over the entire length from the fluid inlet (4) to the fluid outlet (5) of the raw pipe (3), and one end (8) is connected. The other end (11) is bent and engaged with the other opening edge (12) of the fluid outlet (5) while being bent and engaged with the opening edge (10) of the fluid introduction port (4). I have. However, in another different second embodiment, as shown in FIG. 4, a plurality of metal wires (7) may be arranged in the axial direction of the raw pipe (3). In this case, the fixed rings (13) are fixed at desired intervals in the axial direction on the inner surface from the fluid inlet (4) side to the fluid outlet (5) side. The fixed ring (13) has an insertion interval (14) for the metal wire (7) between the fixed ring (13) and the inner peripheral surface (6) of the raw tube (3). One end (8) of (7) is inserted and bent and engaged with the fixed ring (13). The engagement and fixing of the metal wire (7) to the plurality of fixing rings (13) is performed by fixing the one end (8) such that the engagement fixing position of the one end (8) is arranged on the fluid introduction port (4) side. Things.
[0019]
FIG. 5 shows a heat exchanger which is an EGR gas cooling device (15) using the heat transfer tube (1) as described above. The EGR gas cooling device (15), which is a heat exchanger, has a pair of tube sheets (17) connected near both ends of a cylindrical body tube (16) so that the inside can be hermetically sealed. A plurality of heat transfer tubes (1) of this embodiment are connected and arranged between the pair of tube sheets (17) through the tube sheet (17). A bonnet (21) having an EGR gas inlet (18) and an outlet (20) is connected to both ends of the body tube (16).
[0020]
Further, by providing an inlet (22) and an outlet (23) for a cooling medium such as engine cooling water, cooling air, or a refrigerant for a car air conditioner on the outer periphery of the body tube (16), a pair of tube sheets (17) is provided. The inside of the air-tight space partitioned by ()) is a cooling unit (24) through which a cooling medium can flow. Preferably, a plurality of support plates (25) are joined and arranged in the cooling section (24), and the heat transfer tube (1) is inserted through the insertion hole (26) provided in the support plate (25). Thereby, the heat transfer tube (1) is stably supported as a baffle plate, and the flow of the cooling medium flowing in the cooling unit (24) is meandered.
[0021]
In the EGR gas cooling device (15) as described above, when high-temperature EGR gas is introduced into the body tube (16) from the introduction port (18), a plurality of EGR gases are arranged in the body tube (16). Flows into the heat transfer tube (1). In the cooling section (24) in which the heat transfer tube (1) is arranged, a cooling medium such as engine cooling water flows in advance outside the heat transfer tube (1), so that the cooling medium flows through both the inner and outer surfaces of the heat transfer tube (1). Thus, heat exchange is performed between the EGR gas and the cooling medium.
[0022]
In the above heat exchange, when the fluid flowing inside the heat transfer tube (1) contains soot (2) or the like in the fluid, such as exhaust gas of a diesel engine, the inner periphery of the heat transfer tube (1) is used. The soot (2) is deposited on the surface. However, in the embodiment of the present invention, when a fluid such as an EGR gas or a combustion exhaust gas containing soot (2) is introduced from the fluid inlet (4) of the raw pipe (3), the fluid is discharged from the fluid outlet. In the process of flowing in the direction (5), the soot (2) is attached to the inner surface of the heat transfer tube (1), and the metal wire (7) is vibrated by the flow energy of the fluid as shown in FIG. Swings at random amplitudes up, down, left and right. By this swing, the metal wire (7) causes the soot (2) adhering to the inner peripheral surface of the raw tube (3) to separate from the inner peripheral surface (6) of the raw tube (3) at the initial stage of the adhesion. It becomes possible. Then, the soot (2) separated from the inner peripheral surface (6) of the raw tube (3) flows out downstream with the fluid.
[0023]
Therefore, as in the prior art, after using the heat transfer tube (1) for a certain period of time, the heat transfer tube (1) can be scraped off with a brush, or the cooling operation of the heat transfer tube (1) can be stopped to raise the temperature of the heat transfer tube (1). It is not necessary to take a removing means such as burning and removing the soot (2). In the present invention, since the adhesion of soot (2) to the inner surface of the heat transfer tube (1) is automatically removed, no trouble is required, and the use of the heat transfer tube (1) for removing the soot (2) is not required. Will not be interrupted.
[0024]
【The invention's effect】
Since the present invention is configured as described above, it does not lower the heat transfer efficiency, which is the original purpose of the heat transfer tube, and adheres to the inner surface of the heat transfer tube without stopping the cooling operation of the heat transfer tube. Soot can be automatically removed. Further, the removal of the soot can be performed while the amount of the soot adhering to the inner surface of the heat transfer tube is small, and a decrease in the heat transfer efficiency of the heat transfer tube due to the soot can be minimized.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a first embodiment of the present invention.
FIG. 2 is a partially omitted enlarged end view showing a relationship between a metal wire and a raw pipe.
FIG. 3 is an enlarged sectional view showing a soot removal state by a metal wire.
FIG. 4 is an enlarged sectional view of a second embodiment.
FIG. 5 is a cross-sectional view showing an example of an EGR gas cooling device in which a heat transfer tube is assembled.
FIG. 6 is an enlarged sectional view showing an example of adhesion of soot to a heat transfer tube according to a conventional example.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 heat transfer tube 2 soot 3 element tube 4 fluid inlet 5 fluid outlet 6 inner peripheral surface 7 metal wire 8 one end 11 other end 13 fixed ring 15 gas cooling device

Claims (6)

軸方向の一端に流体導入口を、軸方向の他端に流体導出口を設けた素管の内周面に、素管の軸方向と平行に複数本の金属線を間隔を設けて環状に配置し、この金属線の少なくとも一端部を素管の流体導入口側に固定すると共にこの金属線を、流体導入口への流体の導入に伴って揺動し得る強度とし、素管の内周面に付着する煤を金属線の揺動により剥離可能としたことを特徴とする伝熱管。A fluid introduction port is provided at one end in the axial direction, and a plurality of metal wires are provided in parallel with the axial direction of the raw pipe at intervals on an inner peripheral surface of the raw pipe provided with a fluid outlet at the other axial end. At least one end of the metal wire is fixed to the fluid introduction port side of the raw tube, and the metal wire has a strength capable of swinging with the introduction of fluid into the fluid introduction port, A heat transfer tube characterized in that soot adhering to a surface can be separated by swinging a metal wire. 軸方向の一端に流体導入口を、軸方向の他端に流体導出口を設けた素管の内周面に、素管の軸方向と平行に複数本の金属線を間隔を設けて環状に配置し、この金属線の少なくとも一端部を素管の流体導入口側に固定すると共にこの金属線を、流体導入口への流体の導入に伴って揺動し得る強度とし、素管の内周面に付着する煤を金属線の揺動により剥離可能とした伝熱管を組み付けたことを特徴とする伝熱管を組み付けた熱交換器。A fluid introduction port is provided at one end in the axial direction, and a plurality of metal wires are provided in parallel with the axial direction of the raw pipe at intervals on an inner peripheral surface of the raw pipe provided with a fluid outlet at the other axial end. At least one end of the metal wire is fixed to the fluid introduction port side of the raw tube, and the metal wire has a strength capable of swinging with the introduction of fluid into the fluid introduction port, A heat exchanger to which a heat transfer tube is attached, wherein a heat transfer tube capable of removing soot adhering to a surface by swinging a metal wire is attached. 金属線は、素管の流体導入口から流体導出口迄の全長に渡って連続的に配置し、一端部を流体導入口に、他端部を流体導出口に固定したことを特徴とする請求項1の伝熱管。The metal wire is disposed continuously over the entire length from the fluid inlet to the fluid outlet of the raw tube, and one end is fixed to the fluid inlet and the other end is fixed to the fluid outlet. Item 1. The heat transfer tube according to Item 1. 金属線は、素管の流体導入口から流体導出口迄の全長に渡って連続的に配置し、一端部を流体導入口に、他端部を流体導出口に固定したことを特徴とする請求項2の伝熱管を組み付けた熱交換器。The metal wire is disposed continuously over the entire length from the fluid inlet to the fluid outlet of the raw tube, and one end is fixed to the fluid inlet and the other end is fixed to the fluid outlet. Item 2. A heat exchanger to which the heat transfer tube according to Item 2 is assembled. 素管は、流体導入口側から流体導出口側の内面に間隔を設けて固定環を固定し、この複数の固定環の流体導入口側に各々金属線の一端部を固定して形成したことを特徴とする請求項1の伝熱管。The base tube is formed by fixing a fixed ring at a distance from the fluid inlet side to the inner surface of the fluid outlet side and fixing one end of a metal wire to each of the plurality of fixed rings at the fluid inlet side. The heat transfer tube according to claim 1, wherein: 素管は、流体導入口側から流体導出口側の内面に間隔を設けて固定環を固定し、この複数の固定環の流体導入口側に各々金属線の一端部を固定して形成したことを特徴とする請求項2の伝熱管を組み付けた熱交換器。The base tube is formed by fixing a fixed ring at a distance from the fluid inlet side to the inner surface of the fluid outlet side and fixing one end of a metal wire to each of the plurality of fixed rings at the fluid inlet side. A heat exchanger to which the heat transfer tube according to claim 2 is assembled.
JP2003139339A 2003-05-16 2003-05-16 Heat transfer tube and heat exchanger assembled with this heat transfer tube Expired - Fee Related JP4201642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003139339A JP4201642B2 (en) 2003-05-16 2003-05-16 Heat transfer tube and heat exchanger assembled with this heat transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003139339A JP4201642B2 (en) 2003-05-16 2003-05-16 Heat transfer tube and heat exchanger assembled with this heat transfer tube

Publications (2)

Publication Number Publication Date
JP2004340516A true JP2004340516A (en) 2004-12-02
JP4201642B2 JP4201642B2 (en) 2008-12-24

Family

ID=33528463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003139339A Expired - Fee Related JP4201642B2 (en) 2003-05-16 2003-05-16 Heat transfer tube and heat exchanger assembled with this heat transfer tube

Country Status (1)

Country Link
JP (1) JP4201642B2 (en)

Also Published As

Publication number Publication date
JP4201642B2 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
JP4707388B2 (en) Heat transfer tube for combustion exhaust gas containing soot and heat exchanger assembled with this heat transfer tube
US20110113755A1 (en) Filter device for filtering automobile exhaust gas
US6776815B2 (en) Particulate filter
JP2007038140A (en) Catalytic carrier for cleaning exhaust gas
JPH1113555A (en) Egr gas cooling device
JP2004340516A (en) Heat exchanger tube and heat exchanger incorporating the same
JP5227755B2 (en) EGR cooler
JP2004239600A (en) Heat transfer pipe externally provided with resin fin member
JP2000146465A (en) Method for preventing adhesion of foreign object in exhaust gas recirculation burning system
JP2000213426A (en) Recirculating exhaust gas cooling device
JP4266741B2 (en) Heat transfer tube with fins
JP2002350071A (en) Double pipe heat exchanger
JP2009228635A (en) Exhaust emission control device
JPH09310991A (en) Egr gas cooler
JP2005030677A (en) Heat transfer tube armored with resin fin member
JP2004191035A (en) Heat transfer pipe internally provided with resin pipe
JP2000310161A (en) Egr cooler
JP2004100598A (en) Exhaust emission control device of engine and joint pipe for controlling emissions having the same
JP2006283708A (en) Exhaust emission control device
JP2004317060A (en) Heat transfer pipe with fin member internally mounted
JP2004309075A (en) Heat transfer pipe internally having fin member and method of manufacturing the heat transfer pipe
JP2004191036A (en) Heat transfer pipe internally provided with fin member made of resin material
JP3035847B1 (en) Fluid heating device
JP2000257512A (en) Egr cooler
JPH08334017A (en) Double exhaust pipe of engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060501

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081001

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees