JPH08334017A - Double exhaust pipe of engine - Google Patents

Double exhaust pipe of engine

Info

Publication number
JPH08334017A
JPH08334017A JP7140656A JP14065695A JPH08334017A JP H08334017 A JPH08334017 A JP H08334017A JP 7140656 A JP7140656 A JP 7140656A JP 14065695 A JP14065695 A JP 14065695A JP H08334017 A JPH08334017 A JP H08334017A
Authority
JP
Japan
Prior art keywords
pipe
inner pipe
engine
exhaust gas
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7140656A
Other languages
Japanese (ja)
Inventor
Satoru Imabetsupu
悟 今別府
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP7140656A priority Critical patent/JPH08334017A/en
Publication of JPH08334017A publication Critical patent/JPH08334017A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L27/00Adjustable joints, Joints allowing movement
    • F16L27/12Adjustable joints, Joints allowing movement allowing substantial longitudinal adjustment or movement

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Exhaust Silencers (AREA)
  • Joints Allowing Movement (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PURPOSE: To reliably absorb a thermal expansion difference between an outer tube and an inner tube by improving a temperature rising characteristic of exhaust gas when an engine is started. CONSTITUTION: In a double exhaust pipe of an engine which is provided with an outer tube 1 and an inner tube 2 constituted by respectively joining the circumferential directional side edges of divided circumferential walls 1A, 1B, 2A and 2B to each other and whose inner tube 2 is housed in the outer tube 1 by leaving a clearance and in which the inside of the inner tube 2 is formed as an exhaust gas passage, projecting edge parts 5A, 5B, 6A and 6B projecting while curving outward in the radial direction are arranged on the side edges of the respective divided circumferential walls 1A, 1B, 2A and 2B. The side edges are welded and joined together on the outside ends of the projecting edge parts 5A, 5B, 6A and 6B, and positions of a welding joining part 6 of the inner tube 2 and a welding joining part 5 of the outer tube 5 are dislocated in the circumferential direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エンジンと触媒との間
に配置される二重排気管に係り、特にエキゾーストマニ
ホールドに適用するのに好適な二重排気管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a double exhaust pipe arranged between an engine and a catalyst, and more particularly to a double exhaust pipe suitable for application to an exhaust manifold.

【0002】[0002]

【従来の技術】自動車においては、排気管の下流部に触
媒を配置し、排気ガスの浄化を図ることが行われてい
る。この場合、浄化効率の面ではエンジン始動時が問題
となる。エンジン始動時には、触媒及び排気ガスが共に
低温である。よって、触媒温度が活性温度に至らないた
めに、化学変化が起こらず、排気ガス内の未燃成分が十
分に反応しきれない状況が発生する。
2. Description of the Related Art In automobiles, a catalyst is arranged downstream of an exhaust pipe to purify exhaust gas. In this case, in terms of purification efficiency, there is a problem when the engine is started. When the engine is started, both the catalyst and the exhaust gas have a low temperature. Therefore, since the catalyst temperature does not reach the activation temperature, a chemical change does not occur, and a situation occurs in which the unburned components in the exhaust gas cannot fully react.

【0003】これに対処するため、排気ガスの保温を図
った二重排気管が提案されている。二重排気管は、外管
の内部に隙間を持たせて内管を同心に配置し、外管と内
管との間に中空の断熱層を確保したものである。
In order to deal with this, a double exhaust pipe has been proposed in which the temperature of the exhaust gas is kept warm. In the double exhaust pipe, the inner pipe is concentrically arranged with a gap inside the outer pipe, and a hollow heat insulating layer is secured between the outer pipe and the inner pipe.

【0004】二重排気管は、外管で構造上の強度を確保
し、排気ガス通路を構成する内管の肉厚を極力薄くする
ことにより、排気ガスが接触する部分の熱容量を小さく
することができる。また、内管と外管との間に中空の断
熱層を設けていることにより、外管を通しての熱の逃げ
を減らすことができる。従って、エンジンの始動時に、
排気管の内壁の温度を速やかに上昇させることができ、
排ガスの保温効果を高めることができる。しかし、内管
と外管の間に大きな温度差が生じるため、両者の熱膨脹
差を吸収する構造を取り入れなければならない。
In the double exhaust pipe, the structural strength is secured by the outer pipe, and the wall thickness of the inner pipe forming the exhaust gas passage is made as thin as possible to reduce the heat capacity of the portion in contact with the exhaust gas. You can Further, since the hollow heat insulating layer is provided between the inner pipe and the outer pipe, it is possible to reduce heat escape through the outer pipe. Therefore, when starting the engine,
The temperature of the inner wall of the exhaust pipe can be raised quickly,
The heat retention effect of exhaust gas can be enhanced. However, since a large temperature difference occurs between the inner pipe and the outer pipe, it is necessary to adopt a structure that absorbs the difference in thermal expansion between the two.

【0005】この種の二重排気管の従来例として、図9
及び図10に示すものが知られている。
As a conventional example of this type of double exhaust pipe, FIG.
And the one shown in FIG. 10 is known.

【0006】図9は特開昭56−96114号公報に記
載の二重排気管を示す。この二重排気管では、半筒状の
2つの分割周壁1A、1Bにより外管1を構成し、同様
に、半筒状の2つの分割周壁2A、2Bにより内管2を
構成している。内管2は外管1の内部に収容され、外管
1の分割周壁1A、1Bの周方向の側縁5A、5B間
に、内管2の分割周壁2A、2Bの周方向の側縁6A、
6Bが挟まれ、側縁5A、5B、側縁6A、6Bを同時
に溶接固定することにより、二重排気管が構成されてい
る。
FIG. 9 shows a double exhaust pipe described in JP-A-56-96114. In this double exhaust pipe, the outer pipe 1 is composed of the two half-cylindrical divided peripheral walls 1A and 1B, and similarly, the inner pipe 2 is composed of the two semi-cylindrical divided peripheral walls 2A and 2B. The inner pipe 2 is housed inside the outer pipe 1, and between the peripheral side edges 5A and 5B of the divided peripheral walls 1A and 1B of the outer pipe 1, the peripheral side edges 6A of the divided peripheral walls 2A and 2B of the inner pipe 2 are disposed. ,
6B is sandwiched, and the side edges 5A, 5B and the side edges 6A, 6B are welded and fixed at the same time to form a double exhaust pipe.

【0007】このように、半割り形式で外管や内管を構
成する場合、パイプを曲げて作るのと違い、曲げ加工し
づらい材料でも作れる。従って、耐酸化性や耐腐食性の
高いステンレス材でも、複雑に湾曲したエキゾーストマ
ニホールドを比較的容易に作ることができる。この場
合、薄い材料で内管を作る場合に特に有効である。
As described above, when the outer pipe and the inner pipe are constructed in a half-divided form, unlike the case where the pipe is bent, a material which is difficult to bend can be made. Therefore, even with a stainless material having high oxidation resistance and corrosion resistance, a complicatedly curved exhaust manifold can be relatively easily manufactured. In this case, it is particularly effective when the inner tube is made of a thin material.

【0008】また、図10は実開昭56−67318号
公報に記載の二重排気管を示す。
FIG. 10 shows a double exhaust pipe described in Japanese Utility Model Laid-Open No. 56-67318.

【0009】この二重排気管では、内管2と外管1との
隙間にスペーサ8を介装し、このスペーサ8で外管1と
内管2の熱膨脹差を吸収するようにしている。
In this double exhaust pipe, a spacer 8 is provided in the gap between the inner pipe 2 and the outer pipe 1, and the spacer 8 absorbs the difference in thermal expansion between the outer pipe 1 and the inner pipe 2.

【0010】[0010]

【発明が解決しようとする課題】ところで、図9に示し
た二重排気管は、内管2が外管1に溶接接合部で拘束さ
れているため、内管2の長さ方向の伸びを吸収すること
ができず、内管が破損する可能性が高い。また、内管2
が外管1に接しているため、熱の逃げが大きく、排気ガ
スの昇温特性が低下するという問題がある。
By the way, in the double exhaust pipe shown in FIG. 9, since the inner pipe 2 is constrained to the outer pipe 1 by the welded joint, the elongation of the inner pipe 2 in the longitudinal direction is reduced. It cannot be absorbed and the inner tube is likely to be damaged. Also, the inner pipe 2
Is in contact with the outer pipe 1, there is a problem that heat is largely released and the temperature rise characteristic of the exhaust gas is deteriorated.

【0011】また、図10に示した二重排気管は、エキ
ゾーストマニホールドのように、出口部で幾つかのポー
トが集合しているものに適用した場合、径方向の伸びと
応力がその部分に集中するため、スペーサ8では変形や
応力を十分に吸収できず、内管2を破損する可能性があ
る。
Further, when the double exhaust pipe shown in FIG. 10 is applied to an exhaust manifold in which several ports are gathered, such as an exhaust manifold, radial extension and stress are applied to the portion. Since the spacers 8 are concentrated, the spacer 8 cannot sufficiently absorb the deformation and the stress, and the inner pipe 2 may be damaged.

【0012】本発明は、上記事情を考慮し、エンジン始
動時の排気ガスの昇温特性の向上を図ることができ、し
かも外管と内管の熱膨脹差の吸収を確実に行い得るエン
ジンの二重管エキゾーストマニホールドを提供すること
を目的とする。
In consideration of the above circumstances, the present invention provides an engine which can improve the temperature rise characteristic of exhaust gas at the time of starting the engine and can surely absorb the difference in thermal expansion between the outer pipe and the inner pipe. An object is to provide a heavy pipe exhaust manifold.

【0013】[0013]

【課題を解決するための手段】請求項1の発明は、それ
ぞれ分割周壁の周方向側縁を相互に接合することにより
構成された外管及び内管を有し、外管内に隙間を持って
内管が収容され、内管内が排気ガスの通路とされたエン
ジンの二重排気管において、前記各分割周壁の側縁に
は、径方向外方に湾曲しながら突出する突出縁部が設け
られ、該突出縁部の外端で前記側縁が溶接接合され、且
つ内管の溶接接合部と外管の溶接接合部の位置が周方向
にずれていることを特徴とする。
The invention according to claim 1 has an outer tube and an inner tube which are constructed by mutually joining the circumferential side edges of the divided peripheral walls, and there is a gap in the outer tube. In a double exhaust pipe of an engine in which an inner pipe is housed and the inside of which serves as a passage for exhaust gas, a projecting edge portion that projects while curving radially outward is provided at a side edge of each of the divided peripheral walls. The side edges are welded to each other at the outer end of the projecting edge portion, and the positions of the welded joint portion of the inner pipe and the welded joint portion of the outer pipe are displaced from each other in the circumferential direction.

【0014】請求項2の発明は、請求項1記載のエンジ
ンの二重排気管であって、前記内管の端部を、外管の端
部に設けたフランジよりも外方に突出させると共に、内
管の接合部に設けられた突出縁部を内管の端部まで延長
して設け、さらに前記フランジに密着させたガスケット
の内周縁で、前記突出縁部の外端を保持したことを特徴
とする。
According to a second aspect of the present invention, there is provided a dual exhaust pipe for an engine according to the first aspect, wherein the end portion of the inner pipe is projected outward from a flange provided at the end portion of the outer pipe. The projecting edge portion provided at the joint portion of the inner pipe is extended to the end portion of the inner tube, and the outer edge of the projecting edge portion is held by the inner peripheral edge of the gasket that is in close contact with the flange. Characterize.

【0015】請求項3の発明は、請求項1又は2記載の
エンジンの二重排気管であって、外管の上流端部のフラ
ンジの内周部に下流側に向けて突出した筒部を設け、前
記内管の接合部を上流端部まで延長して、該上流端部に
拡径部を設け、該拡径部内に前記フランジの筒部を挿入
したことを特徴とする。
According to a third aspect of the present invention, there is provided a dual exhaust pipe for an engine according to the first or second aspect, wherein a cylindrical portion protruding toward a downstream side is provided at an inner peripheral portion of a flange at an upstream end portion of the outer pipe. It is characterized in that the joint portion of the inner pipe is extended to the upstream end portion, an enlarged diameter portion is provided at the upstream end portion, and the tubular portion of the flange is inserted into the enlarged diameter portion.

【0016】請求項4の発明は、請求項1〜3のいずれ
かに記載のエンジンの二重排気管であって、エキゾース
トマニホールドに適用され、該エキゾーストマニホール
ドの出口部において、前記内管の接合部が、エキゾース
トマニホールドの各ポートの集合方向に対して垂直に配
置されていることを特徴とする。
A fourth aspect of the present invention is a double exhaust pipe for an engine according to any one of the first to third aspects, which is applied to an exhaust manifold, and the inner pipe is joined at an outlet portion of the exhaust manifold. The parts are arranged perpendicularly to the collecting direction of the ports of the exhaust manifold.

【0017】[0017]

【作用】請求項1の発明では、高温時の内管の径方向の
熱膨脹が、突出縁部の湾曲部分の変形により吸収され
る。また、内管の長さ方向の熱膨脹は、内管が外管に拘
束されていないことで吸収される。また、内管の溶接接
合部と外管の溶接接合部の位置が周方向にずれているの
で、製作に当たって、内管を内部に収容した状態で外管
を溶接する際、内管と外管の固着を防止することができ
る。
According to the first aspect of the invention, the thermal expansion in the radial direction of the inner pipe at high temperature is absorbed by the deformation of the curved portion of the protruding edge portion. Further, the thermal expansion of the inner tube in the length direction is absorbed because the inner tube is not constrained by the outer tube. In addition, since the positions of the welded joint of the inner pipe and the welded joint of the outer pipe are displaced in the circumferential direction, when welding the outer pipe with the inner pipe housed inside during manufacturing, the inner pipe and the outer pipe are Can be prevented.

【0018】請求項2の発明では、内管は外管に拘束さ
れていないため、内管の長さ方向の熱膨脹が吸収され
る。また、内管の接合部に設けた突出縁部をガスケット
の内周縁で保持したので、内管のずれが生じない。
According to the second aspect of the present invention, since the inner tube is not bound by the outer tube, thermal expansion in the lengthwise direction of the inner tube is absorbed. Further, since the protruding edge portion provided at the joint portion of the inner pipe is held by the inner peripheral edge of the gasket, the inner pipe is not displaced.

【0019】請求項3の発明では、内管の上流端部に形
成した拡径部に、フランジの一部を挿入しているため、
内管と外管の間の隙間に排気ガスが流れ込むことを防止
できる。
According to the third aspect of the invention, since a part of the flange is inserted into the enlarged diameter portion formed at the upstream end portion of the inner pipe,
Exhaust gas can be prevented from flowing into the gap between the inner pipe and the outer pipe.

【0020】請求項4の発明では、エキゾーストマニホ
ールドのポートの温度分布により、ポートの集合方向に
熱膨脹の差による応力が発生するが、その応力が内管の
接合部で吸収される。
According to the fourth aspect of the present invention, due to the temperature distribution of the ports of the exhaust manifold, stress is generated due to the difference in thermal expansion in the direction in which the ports are assembled, but the stress is absorbed at the joint portion of the inner pipe.

【0021】[0021]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1は、本発明を適用した二重管エキゾースト
マニホールド20の外観図である。図2は図1のII−
II矢視断面図、図3は二重管エキゾーストマニホール
ド20の途中の構造を示す断面図、図4は図1のIV−
IV矢視断面図である。また、図5は図1のV矢視図、
図6はその断面図、図7は図5のフランジにガスケット
を装着した図、図8はその断面図である。なお、各断面
図中矢印Fは排気ガスの流れ方向を示す。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an external view of a double pipe exhaust manifold 20 to which the present invention is applied. FIG. 2 shows II- of FIG.
II is a cross-sectional view taken in the direction of the arrow, FIG. 3 is a cross-sectional view showing the structure in the middle of the double pipe exhaust manifold 20, and FIG.
FIG. 4 is a sectional view taken along the line IV. Further, FIG. 5 is a view on arrow V of FIG.
6 is a sectional view thereof, FIG. 7 is a diagram in which a gasket is attached to the flange of FIG. 5, and FIG. 8 is a sectional view thereof. The arrow F in each sectional view indicates the flow direction of the exhaust gas.

【0022】図2に示すように、エキゾーストマニホー
ルド20の強度部材となるよう肉厚に形成された外管1
の内部には、外管1より薄肉(例えば、0.5mm)に
形成された内管2が、隙間3を持って同心状に配置され
ており、内管2の内部が排気ガスの通路となっている。
外管1の両端には十分な厚みを持ったフランジ10、3
0が溶接されている。内管2は、高速走行時等に高温の
排気ガスに曝されることから、酸化や腐食による劣化防
止のため、ステンレス材で形成されている。
As shown in FIG. 2, the outer pipe 1 is formed to be thick so as to be a strength member of the exhaust manifold 20.
An inner pipe 2 formed to be thinner than the outer pipe 1 (for example, 0.5 mm) is concentrically arranged with a gap 3 in between, and the inside of the inner pipe 2 serves as an exhaust gas passage. Has become.
Flange 10, 3 with sufficient thickness on both ends of the outer tube 1.
0 is welded. The inner pipe 2 is exposed to high-temperature exhaust gas when traveling at high speed, and is therefore made of a stainless material to prevent deterioration due to oxidation and corrosion.

【0023】内管2は、図2において左右に分割されて
おり、プレス加工により形成された2つの分割周壁2
A、2Bからなる。この場合、プレス成形品からなるの
で、パイプの曲げ加工で発生するしわや亀裂は生じな
い。各々の分割周壁2A、2Bの周方向の両側縁には、
径方向外方に湾曲しながら突出(例えば2〜3mm)す
る突出縁部6A、6Bがそれぞれ設けられており、突出
縁部6A、6Bの外端で分割周壁2A、2Bが相互に溶
接接合されている。その接合部を符号6で示す。
The inner pipe 2 is divided into right and left in FIG. 2, and two divided peripheral walls 2 formed by press working.
It consists of A and 2B. In this case, since it is made of a press-molded product, wrinkles and cracks generated by bending the pipe do not occur. On both side edges in the circumferential direction of each divided peripheral wall 2A, 2B,
Protruding edge portions 6A and 6B are provided so as to project (for example, 2 to 3 mm) while curving radially outward, and the divided peripheral walls 2A and 2B are welded to each other at the outer ends of the protruding edge portions 6A and 6B. ing. The joint is indicated by reference numeral 6.

【0024】また、外管1は、図2において上下に分割
されており、プレス加工により形成された2つの分割周
壁1A、1Bからなる。各々の分割周壁1A、1Bの周
方向の両側縁には、径方向外方に湾曲しながら突出する
突出縁部5A、5Bが設けられており、突出縁部5A、
5Bの外端で分割周壁1A、1Bが相互に溶接接合され
ている。その接合部を符号5で示す。
The outer tube 1 is divided into upper and lower parts in FIG. 2 and is composed of two divided peripheral walls 1A and 1B formed by press working. Projecting edge portions 5A and 5B that project while curving radially outward are provided on both side edges in the circumferential direction of each of the divided peripheral walls 1A and 1B.
The divided peripheral walls 1A and 1B are welded to each other at the outer end of 5B. The joint is indicated by reference numeral 5.

【0025】内管2と外管1が組み付けられた状態で、
内管2の接合部6と外管1の接合部5は、その位置がお
およそ90度の位相差を持ち、接合部6と接合部5とが
周方向に90度ずれている。このため、外管1の接合部
5の溶接時に、内管2の接合部6をも一緒に溶接して固
着してしまうことがない。また、内管2の接合部6の外
端は、外管1の内周より内側に位置し、エキゾーストマ
ニホールド20全体が常温の時には、内管2の突出縁部
6A,6Bの先端が外管1に接触することはない。
With the inner pipe 2 and the outer pipe 1 assembled,
The joint portion 6 of the inner pipe 2 and the joint portion 5 of the outer pipe 1 have a phase difference of about 90 degrees, and the joint portion 6 and the joint portion 5 are deviated from each other by 90 degrees in the circumferential direction. For this reason, when the joint portion 5 of the outer pipe 1 is welded, the joint portion 6 of the inner pipe 2 is not welded and fixed together. Further, the outer end of the joint portion 6 of the inner pipe 2 is located inside the inner circumference of the outer pipe 1, and when the entire exhaust manifold 20 is at room temperature, the tips of the projecting edges 6A and 6B of the inner pipe 2 are the outer pipe. There is no contact with 1.

【0026】また、内管2の長手方向の途中には、図3
に示すように、管壁を外側に凸に湾曲させた環状湾曲部
22が設けられている。
In the middle of the inner tube 2 in the longitudinal direction, as shown in FIG.
As shown in, an annular curved portion 22 is provided in which the tube wall is curved outwardly in a convex shape.

【0027】次に、エキゾーストマニホールドの入口部
の構成について、図4を参照しながら説明する。内管2
の接合部6は内管2の先端まで形成されており、接合部
6を途中で終えることによる穴空きはない。また、内管
2の上流端部には、入口側に向かって径を拡張した拡径
部12が設けられている。一方、フランジ10の内周は
内管2と同程度の径に形成され、外管1の内周位置より
も径方向内方に出っ張っている。その内周部には、下流
側に向けて突出した筒部14が設けられており、その筒
部14が内管2の端部の拡径部12内に嵌合されてい
る。この場合、筒部14の内径は、内管2の通常径部
(拡径部12以外の部分)の内径より僅かに小さいか、
同程度に設定されている。また、外径は、内管2の拡径
部12の内径より僅かに小さく形成されている。なお、
内管2の拡径部12の先端とフランジ10の内側面との
間には、内管2の伸びを吸収する隙間15が確保されて
いる。
Next, the structure of the inlet portion of the exhaust manifold will be described with reference to FIG. Inner tube 2
The joint portion 6 is formed up to the tip of the inner tube 2, and there is no hole due to the joint portion 6 being terminated halfway. Further, the upstream end portion of the inner pipe 2 is provided with an enlarged diameter portion 12 whose diameter is expanded toward the inlet side. On the other hand, the inner circumference of the flange 10 is formed to have a diameter similar to that of the inner tube 2, and projects radially inward from the inner circumference position of the outer tube 1. The inner peripheral portion is provided with a tubular portion 14 that projects toward the downstream side, and the tubular portion 14 is fitted into the enlarged diameter portion 12 at the end portion of the inner pipe 2. In this case, the inner diameter of the tubular portion 14 is slightly smaller than the inner diameter of the normal diameter portion (the portion other than the enlarged diameter portion 12) of the inner pipe 2, or
It is set to the same level. The outer diameter is formed slightly smaller than the inner diameter of the expanded diameter portion 12 of the inner pipe 2. In addition,
A gap 15 for absorbing the extension of the inner pipe 2 is secured between the tip of the enlarged diameter portion 12 of the inner pipe 2 and the inner side surface of the flange 10.

【0028】次に、エキゾーストマニホールド20の各
気筒集合出口部の構成について図5〜図8を参照しなが
ら説明する。内管2の下流側端部(フロントチューブ側
端部)は、図6に示すように、外管1に溶接固定したフ
ランジ30よりも外方(フロントチューブ側)に突出し
ており、内管2の接合部6はその下流側端部にまで延長
されている。この場合、接合部6の位置は、エキゾース
トマニホールド20の各気筒が集合する方向(図1、図
5の矢印H方向)に対して垂直な方向に配置されてい
る。フランジ30の内径は、内管2の接合部6の外端間
寸法より大きく設定され、内管2は、外管1及びフラン
ジ30とは直接接していない。
Next, the structure of each cylinder assembly outlet of the exhaust manifold 20 will be described with reference to FIGS. As shown in FIG. 6, the downstream end (front tube side end) of the inner pipe 2 projects outward (front tube side) from the flange 30 welded and fixed to the outer pipe 1. The joint portion 6 of is extended to the downstream side end portion thereof. In this case, the position of the joint portion 6 is arranged in a direction perpendicular to the direction in which the cylinders of the exhaust manifold 20 are assembled (the direction of arrow H in FIGS. 1 and 5). The inner diameter of the flange 30 is set larger than the dimension between the outer ends of the joint portion 6 of the inner pipe 2, and the inner pipe 2 is not in direct contact with the outer pipe 1 and the flange 30.

【0029】このエキゾーストマニホールド20の下流
側端部には、図7、図8に示すように、該エキゾースト
マニホールド20をフロントチューブと接続する際にガ
スケット32が装着される。ガスケット32は、エキゾ
ーストマニホールド20のフランジ30とフロントチュ
ーブのフランジとの間に挟持されるもので、その内周縁
32aが内管2の接合部6の外端に接するように、内径
が設定されている。そして、このガスケット32によっ
て、内管2の端部が位置ずれしないよう保持されてい
る。
As shown in FIGS. 7 and 8, a gasket 32 is attached to the downstream end of the exhaust manifold 20 when the exhaust manifold 20 is connected to the front tube. The gasket 32 is sandwiched between the flange 30 of the exhaust manifold 20 and the flange of the front tube, and its inner diameter is set so that the inner peripheral edge 32 a thereof contacts the outer end of the joint portion 6 of the inner pipe 2. There is. Then, the gasket 32 holds the end portion of the inner pipe 2 so as not to be displaced.

【0030】次に作用を説明する。まず、エンジン始動
時における排気ガス温度の昇温について説明する。エン
ジンの停止直後を除き、エンジン始動時の二重管エキゾ
ーストマニホールド20の外管1および内管2の温度
は、外気温と同じである、エンジン始動後、二重管エキ
ゾーストマニホールド20内では、内管2内を流れる排
気ガスによって、まず内管2が暖められる。この結果、
内管2の壁温は上昇するが、内管2に与えた熱量だけ排
気ガスの温度は低下する。
Next, the operation will be described. First, the temperature rise of the exhaust gas temperature when the engine is started will be described. Except immediately after the engine is stopped, the temperature of the outer pipe 1 and the inner pipe 2 of the double-pipe exhaust manifold 20 at the time of engine start is the same as the outside temperature. The inner pipe 2 is first warmed by the exhaust gas flowing in the pipe 2. As a result,
Although the wall temperature of the inner pipe 2 rises, the temperature of the exhaust gas lowers by the amount of heat given to the inner pipe 2.

【0031】この場合、本実施例では、内管2の肉厚を
薄くしているので、内管2の熱容量が小さく、内管2の
壁温が早期に上昇する。従って、排気ガスから内管2へ
の伝熱量が低く抑えられ、排気ガスの温度低下が抑制さ
れ、その結果、この二重管エキゾーストマニホールド2
0の後方に設置してある触媒の入口ガス温度を早期に上
昇させることができる。
In this case, in this embodiment, since the wall thickness of the inner pipe 2 is thin, the heat capacity of the inner pipe 2 is small and the wall temperature of the inner pipe 2 rises early. Therefore, the amount of heat transferred from the exhaust gas to the inner pipe 2 is suppressed to a low level, and the temperature decrease of the exhaust gas is suppressed. As a result, the double pipe exhaust manifold 2
The inlet gas temperature of the catalyst installed behind 0 can be raised early.

【0032】また、内管2と外管1の接合部5、6は、
約90度の位相差をもつため、エキゾーストマニホール
ド製造時に内管2と外管1を一緒に溶接してしまうこと
はなく、内管2と外管1の接触を回避して、接触による
内管2から外管1への熱伝導を防止することができる。
このため、排気ガス温度の低下を抑制できる。
The joint portions 5 and 6 of the inner pipe 2 and the outer pipe 1 are
Since there is a phase difference of about 90 degrees, the inner pipe 2 and the outer pipe 1 are not welded together during manufacturing of the exhaust manifold, and the inner pipe 2 and the outer pipe 1 are prevented from contacting with each other, and the inner pipe due to the contact is prevented. It is possible to prevent heat conduction from 2 to the outer tube 1.
Therefore, a decrease in exhaust gas temperature can be suppressed.

【0033】また、エキゾーストマニホールド20の入
口部では、内管2がフランジ10の筒部14の外周に嵌
合しているため、フランジ10の筒部14内を流れる排
気ガスが、内管2と外管1の隙間3へ流れ込むことがな
く、この結果、排気ガスが隙間3へ流れ込むことによる
排気ガス温度の低下を抑制できる。
At the inlet of the exhaust manifold 20, the inner pipe 2 is fitted on the outer periphery of the tubular portion 14 of the flange 10, so that the exhaust gas flowing in the tubular portion 14 of the flange 10 is discharged to the inner pipe 2. The exhaust gas does not flow into the gap 3 of the outer pipe 1, and as a result, a decrease in the exhaust gas temperature due to the flow of exhaust gas into the gap 3 can be suppressed.

【0034】さらに、内管2の端部に拡径部12を設
け、この拡径部12にフランジ10の筒部14を挿入し
ているので、フランジ10の筒部14から内管2へ入る
ときに大きな径の変更や段差が生じることがない。この
ため、この部分で排気ガスの熱伝達率が大きく増加し
て、排気ガスから内管2への伝熱量が増加するというこ
とがない。従って、排気ガスの昇温特性の向上を図るこ
とができ、触媒の早期活性化が達成される。
Further, since the enlarged diameter portion 12 is provided at the end portion of the inner pipe 2 and the cylindrical portion 14 of the flange 10 is inserted into the enlarged diameter portion 12, the cylindrical portion 14 of the flange 10 enters the inner pipe 2. Occasionally, a large diameter change or step does not occur. Therefore, the heat transfer coefficient of the exhaust gas is not significantly increased in this portion, and the amount of heat transfer from the exhaust gas to the inner pipe 2 is not increased. Therefore, the temperature rising characteristic of the exhaust gas can be improved, and the early activation of the catalyst can be achieved.

【0035】次に、市街地走行時等の排気ガスやエキゾ
ーストマニホールドが十分に暖まった状態では、内管2
と外管1の管壁温の違い、および管を構成する材料の違
いにより、内管2と外管1との間に熱膨脹差が生じる。
Next, when exhaust gas and exhaust manifold are sufficiently warmed when driving in urban areas, the inner pipe 2
A difference in thermal expansion between the inner pipe 2 and the outer pipe 1 occurs due to a difference in wall temperature between the outer pipe 1 and the outer pipe 1.

【0036】すなわち、外管1は、直接排気ガスに曝さ
れず、また走行風により冷却されるため、表面温度が低
くなり、内管2に比べて熱膨脹が少ない。一方、高温の
排気ガスに直接曝され、内管2と外管1の隙間7の空気
層で断熱される内管2は、高温となり、大きな熱膨脹が
発生する。
That is, since the outer tube 1 is not directly exposed to the exhaust gas and is cooled by the running wind, the surface temperature is low and the thermal expansion is less than that of the inner tube 2. On the other hand, the inner pipe 2 that is directly exposed to the high-temperature exhaust gas and is thermally insulated by the air layer in the gap 7 between the inner pipe 2 and the outer pipe 1 has a high temperature and a large thermal expansion occurs.

【0037】エキゾーストマニホールド20の入口部に
おいては、内管2の長さ方向の熱膨脹は、内管2の先端
の拡径部12とフランジ10との間の隙間15で吸収さ
れ、径方向の熱膨脹は、内管2と外管1の隙間で吸収さ
れる。
At the inlet of the exhaust manifold 20, the thermal expansion in the lengthwise direction of the inner pipe 2 is absorbed by the gap 15 between the enlarged diameter portion 12 at the tip of the inner pipe 2 and the flange 10, and the thermal expansion in the radial direction occurs. Are absorbed in the gap between the inner pipe 2 and the outer pipe 1.

【0038】このとき、内管2とフランジ10の筒部1
4の温度差と、径方向の構造の違いにより、内管2とフ
ランジ10の筒部14の径方向に熱膨脹による伸びの差
が生じ、内管2と筒部14の間に隙間が発生する。この
ため、その隙間より排気ガスが、内管2と外管1の隙間
3に漏れ出し、排気ガスの温度が低下するおそれがある
が、内管2と筒部14の隙間を通しての排気ガスの流れ
込みは、排気ガスが十分に暖まり、エキゾーストマニホ
ールド20の後段の触媒が十分に活性化してから起こる
ことになるので、触媒の性能を落とすことにはならな
い。むしろ、排気ガス高温時に、外管1と内管2の隙間
3へ排気ガスが流れ込んで、排気ガスが冷却されること
により、触媒の高温劣化が防止されることになる。
At this time, the inner tube 2 and the tubular portion 1 of the flange 10
Due to the temperature difference of 4 and the difference in the radial structure, a difference in expansion due to thermal expansion occurs in the radial direction between the inner tube 2 and the tubular portion 14 of the flange 10, and a gap is generated between the inner tube 2 and the tubular portion 14. . Therefore, the exhaust gas may leak from the gap to the gap 3 between the inner pipe 2 and the outer pipe 1 and the temperature of the exhaust gas may decrease. The inflow does not deteriorate the performance of the catalyst because the exhaust gas is sufficiently warmed and the catalyst in the latter stage of the exhaust manifold 20 is sufficiently activated. Rather, when the exhaust gas temperature is high, the exhaust gas flows into the gap 3 between the outer pipe 1 and the inner pipe 2 and the exhaust gas is cooled, so that the catalyst is prevented from deterioration due to high temperature.

【0039】また、エキゾーストマニホールド20の途
中においては、内管2の長さ方向の熱膨脹が、内管2に
形成してある環状湾曲部22で吸収される。この場合、
内管2と外管1が相互に固着されていないから、内管2
の長さ方向による伸びによって内管2の移動が阻害され
ず、内管2の破損が防止される。また、径方向の熱膨脹
は、内管2の接合部6に含まれる突出縁部6A,6Bの
湾曲形状により吸収される。
In the middle of the exhaust manifold 20, the thermal expansion of the inner pipe 2 in the lengthwise direction is absorbed by the annular curved portion 22 formed in the inner pipe 2. in this case,
Since the inner pipe 2 and the outer pipe 1 are not fixed to each other, the inner pipe 2
The movement of the inner pipe 2 is not hindered by the extension in the length direction of the inner pipe 2, and the inner pipe 2 is prevented from being damaged. Further, the thermal expansion in the radial direction is absorbed by the curved shapes of the projecting edge portions 6A and 6B included in the joint portion 6 of the inner pipe 2.

【0040】さらに、エキゾーストマニホールド20の
各気筒集合出口部においても、内管2の熱膨脹吸収は同
じである。しかし、エキゾーストマニホールド20の各
気筒集合出口部では、長さの異なる気筒が集合するた
め、気筒毎に集合部に集まる排気ガス温度が異なる。長
さの短い気筒の排気ガス温度が高くなるため、各内管2
毎に温度分布が生じ、この結果、内管2の熱膨脹が均一
でなくなる。このため、図1に示すエキゾーストマニホ
ールド20の各気筒集合出口部では、長さの短い気筒の
内管2の熱膨脹による図中左右方向の応力を受けること
になる。
Furthermore, the thermal expansion absorption of the inner pipe 2 is the same at each cylinder collecting outlet of the exhaust manifold 20. However, at the cylinder collecting outlets of the exhaust manifold 20, since the cylinders having different lengths are gathered, the exhaust gas temperature gathered in the gathering portion is different for each cylinder. Since the exhaust gas temperature of the short cylinder becomes high, each inner pipe 2
A temperature distribution occurs every time, and as a result, the thermal expansion of the inner tube 2 is not uniform. Therefore, the outlets of the respective cylinders of the exhaust manifold 20 shown in FIG. 1 are subjected to a stress in the left-right direction in the figure due to thermal expansion of the inner pipe 2 of the cylinder having a short length.

【0041】この点、前記した従来例のように、内管の
接合部と外管の接合部を一体固着した場合(図9参照)
や、内管をスペーサで保持している場合(図10参照)
は、内管にかかる応力を吸収できずに、内管2の破損を
引き起こす可能性があるが、本実施例の場合は、図7に
示すように、内管2の接合部6をガスケット32で保持
しており、内管2が応力を受ける方向(矢印H方向)に
は接合部6がなく、十分な隙間が確保されているので、
内管2の熱膨脹差による応力を吸収でき、内管2の破損
を防止できる。
In this respect, when the joint portion of the inner pipe and the joint portion of the outer pipe are integrally fixed as in the conventional example described above (see FIG. 9).
Or when the inner tube is held by a spacer (see Fig. 10)
May not be able to absorb the stress applied to the inner pipe and may cause damage to the inner pipe 2. However, in the case of the present embodiment, as shown in FIG. Since there is no joint 6 in the direction in which the inner tube 2 receives stress (the direction of arrow H), a sufficient gap is secured,
The stress due to the difference in thermal expansion of the inner pipe 2 can be absorbed, and the inner pipe 2 can be prevented from being damaged.

【0042】二重管エキゾーストマニホールド20にお
いて、一番問題となるのは、内管2の高温時の熱膨脹と
低温時の収縮の繰り返しによる熱疲労であるが、本実施
例では、内管2の途中に形成してある環状湾曲部22
と、内管2の接合部6にある湾曲状突出縁部6A、6B
とで熱変形が吸収されるため、熱疲労による内管2の破
損は起きない。
In the double pipe exhaust manifold 20, the most problematic problem is thermal fatigue due to repeated thermal expansion of the inner pipe 2 at high temperature and contraction of the inner pipe 2 at low temperature. An annular curved portion 22 formed on the way
And curved protruding edges 6A, 6B at the joint 6 of the inner tube 2.
Since the thermal deformation is absorbed by and, the inner tube 2 is not damaged by thermal fatigue.

【0043】[0043]

【発明の効果】以上説明したように、請求項1の発明に
よれば、内管と外管の接合部の位置を周方向にずらして
いるので、内管と外管の固着を防ぐことができ、内管か
ら外管への熱伝導による排気ガス温度の低下を防止する
ことができ、その結果、後段の触媒の早期活性化を促す
ことができる。また、内管と外管の固着を防げる上に、
内管の接合部に湾曲形状の突出縁部を設けているので、
内管の熱膨脹を確実に吸収することができ、内管の破損
を防止することができる。
As described above, according to the invention of claim 1, since the position of the joint portion between the inner pipe and the outer pipe is displaced in the circumferential direction, it is possible to prevent the inner pipe and the outer pipe from being fixed to each other. Therefore, it is possible to prevent the exhaust gas temperature from decreasing due to heat conduction from the inner pipe to the outer pipe, and as a result, it is possible to promote the early activation of the catalyst in the subsequent stage. Also, in addition to preventing the inner and outer tubes from sticking together,
Since a curved protruding edge is provided at the joint of the inner pipe,
The thermal expansion of the inner pipe can be reliably absorbed, and the inner pipe can be prevented from being damaged.

【0044】請求項2の発明によれば、内管の突出縁部
をガスケットで保持するため、内管をずれ無く保持する
ことができると共に、内管の熱膨脹を確実に吸収するこ
とができる。
According to the second aspect of the present invention, since the protruding edge portion of the inner pipe is held by the gasket, the inner pipe can be held without displacement and the thermal expansion of the inner pipe can be reliably absorbed.

【0045】請求項3の発明によれば、内管の接合部を
上流端部まで延長し、フランジの筒部を内管に挿入して
内管を保持するようにしたので、内管と外管の隙間に通
じる可能性のある部分を、フランジの筒部で極力塞ぐこ
とができる。従って、内管と外管の隙間への排気ガスの
流れ込みを防止することができ、排気ガス温度の低下を
抑制して、触媒の活性化を促すことができる。
According to the third aspect of the invention, the joint portion of the inner pipe is extended to the upstream end portion, and the tubular portion of the flange is inserted into the inner pipe to hold the inner pipe. The portion that may lead to the gap between the tubes can be closed as much as possible with the tubular portion of the flange. Therefore, it is possible to prevent the exhaust gas from flowing into the gap between the inner pipe and the outer pipe, suppress the decrease in the exhaust gas temperature, and promote the activation of the catalyst.

【0046】請求項4の発明によれば、内管の接合部を
ポートの集合方向に対して垂直に配置したので、内管の
温度分布による熱応力を確実に吸収することができ、内
管の破損を防止することができる。
According to the invention of claim 4, since the joint portion of the inner pipe is arranged perpendicularly to the collecting direction of the ports, the thermal stress due to the temperature distribution of the inner pipe can be surely absorbed, and the inner pipe can be surely absorbed. Can be prevented from being damaged.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の二重管エキゾーストマニホ
ールドの外観図である。
FIG. 1 is an external view of a double pipe exhaust manifold according to an embodiment of the present invention.

【図2】図1のII−II矢視断面図である。FIG. 2 is a sectional view taken along the line II-II of FIG.

【図3】同実施例のエキゾーストマニホールドの長手方
向の途中の構造を示す断面図である。
FIG. 3 is a cross-sectional view showing the structure in the middle of the exhaust manifold of the same embodiment in the longitudinal direction.

【図4】図1のIV−IV矢視断面図である。4 is a sectional view taken along the line IV-IV in FIG.

【図5】図1のV矢視図である。5 is a view on arrow V in FIG. 1. FIG.

【図6】図5のVI−VI矢視断面図である。6 is a cross-sectional view taken along the line VI-VI of FIG.

【図7】図5の状態にガスケットを装着した状態を示す
図である。
7 is a diagram showing a state in which a gasket is attached to the state of FIG.

【図8】図7のVIII−VIII矢視断面図である。8 is a sectional view taken along the line VIII-VIII in FIG.

【図9】従来の二重排気管の一部断面図である。FIG. 9 is a partial cross-sectional view of a conventional double exhaust pipe.

【図10】別の従来の二重排気管の一部断面図である。FIG. 10 is a partial cross-sectional view of another conventional double exhaust pipe.

【符号の説明】[Explanation of symbols]

1 外管 1A,1B 分割周壁 2 内管 2A,2B 分割周壁 3 隙間 5 接合部 5A,5B 突出縁部 6 接合部 6A,6B 突出縁部 10,30 フランジ 12 拡径部 14 筒部 20 二重管エキゾーストマニホールド 32 ガスケット 32a 内周縁 1 Outer pipe 1A, 1B Divided peripheral wall 2 Inner pipe 2A, 2B Divided peripheral wall 3 Gap 5 Joined portion 5A, 5B Projected edge portion 6 Joined portion 6A, 6B Projected edge portion 10, 30 Flange 12 Expanded portion 14 Cylindrical portion 20 Double Pipe Exhaust Manifold 32 Gasket 32a Inner peripheral edge

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 それぞれ分割周壁の周方向側縁を相互に
接合することにより構成された外管及び内管を有し、外
管内に隙間を持って内管が収容され、内管内が排気ガス
の通路とされたエンジンの二重排気管において、 前記各分割周壁の側縁には、径方向外方に湾曲しながら
突出する突出縁部が設けられ、該突出縁部の外端で前記
側縁が溶接接合され、且つ内管の溶接接合部と外管の溶
接接合部の位置が周方向にずれていることを特徴とする
エンジンの二重排気管。
1. An outer pipe and an inner pipe, each of which is configured by mutually joining circumferential side edges of divided peripheral walls, wherein the inner pipe is accommodated with a gap in the outer pipe, and the inner pipe has exhaust gas inside. In the double exhaust pipe of the engine, which is defined as the passage of the above, a protruding edge portion that protrudes while curving radially outward is provided at a side edge of each of the divided peripheral walls, and the outer edge of the protruding edge portion serves as the side portion. A double exhaust pipe for an engine, characterized in that the edges are welded and the positions of the welded joint of the inner pipe and the welded joint of the outer pipe are displaced in the circumferential direction.
【請求項2】 請求項1記載のエンジンの二重排気管で
あって、 前記内管の端部を、外管の端部に設けたフランジよりも
外方に突出させると共に、内管の接合部に設けられた突
出縁部を内管の端部まで延長して設け、さらに前記フラ
ンジに密着させたガスケットの内周縁で、前記突出縁部
の外端を保持したことを特徴とするエンジンの二重排気
管。
2. The double exhaust pipe for an engine according to claim 1, wherein the end portion of the inner pipe is projected outward from a flange provided at the end portion of the outer pipe, and the inner pipe is joined. The protruding edge portion provided on the portion is extended to the end portion of the inner pipe, and the outer edge of the protruding edge portion is held by the inner peripheral edge of the gasket that is in close contact with the flange. Double exhaust pipe.
【請求項3】 請求項1又は2記載のエンジンの二重排
気管であって、 外管の上流端部のフランジの内周部に下流側に向けて突
出した筒部を設け、前記内管の接合部を上流端部まで延
長して、該上流端部に拡径部を設け、該拡径部内に前記
フランジの筒部を挿入したことを特徴とするエンジンの
二重排気管。
3. The double exhaust pipe for an engine according to claim 1, wherein a cylindrical portion protruding toward the downstream side is provided on an inner peripheral portion of a flange at an upstream end portion of the outer pipe, A double exhaust pipe for an engine, characterized in that the joint portion of the above is extended to an upstream end portion, an enlarged diameter portion is provided at the upstream end portion, and the cylindrical portion of the flange is inserted into the enlarged diameter portion.
【請求項4】 請求項1〜3のいずれかに記載のエンジ
ンの二重排気管であって、 エキゾーストマニホールドに適用され、該エキゾースト
マニホールドの出口部において、前記内管の接合部が、
エキゾーストマニホールドの各ポートの集合方向に対し
て垂直に配置されていることを特徴とするエンジンの二
重排気管。
4. The double exhaust pipe of the engine according to claim 1, which is applied to an exhaust manifold, and a joint portion of the inner pipe is provided at an outlet portion of the exhaust manifold.
A double exhaust pipe for an engine, which is arranged perpendicularly to the direction in which each port of the exhaust manifold is assembled.
JP7140656A 1995-06-07 1995-06-07 Double exhaust pipe of engine Pending JPH08334017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7140656A JPH08334017A (en) 1995-06-07 1995-06-07 Double exhaust pipe of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7140656A JPH08334017A (en) 1995-06-07 1995-06-07 Double exhaust pipe of engine

Publications (1)

Publication Number Publication Date
JPH08334017A true JPH08334017A (en) 1996-12-17

Family

ID=15273721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7140656A Pending JPH08334017A (en) 1995-06-07 1995-06-07 Double exhaust pipe of engine

Country Status (1)

Country Link
JP (1) JPH08334017A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010518317A (en) * 2007-02-16 2010-05-27 ダイムラー・アクチェンゲゼルシャフト Internal combustion engine with multiple combustion chambers
JP2012518115A (en) * 2009-02-13 2012-08-09 ウニベルシダッド・ポリテクニカ・デ・バレンシア Exhaust manifold for reciprocating engine with turbocharger
KR20160003637A (en) * 2013-04-24 2016-01-11 에바라 간쿄 플랜트 가부시키가이샤 Immersed heat transfer tube for fluidized bed boiler, and fluidized bed boiler
KR20180040140A (en) 2015-09-08 2018-04-19 닛신 세이코 가부시키가이샤 Welding method of austenitic stainless steel plate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010518317A (en) * 2007-02-16 2010-05-27 ダイムラー・アクチェンゲゼルシャフト Internal combustion engine with multiple combustion chambers
US8291880B2 (en) 2007-02-16 2012-10-23 Daimler Ag Internal combustion engine comprising several combustion chambers
JP2012518115A (en) * 2009-02-13 2012-08-09 ウニベルシダッド・ポリテクニカ・デ・バレンシア Exhaust manifold for reciprocating engine with turbocharger
KR20160003637A (en) * 2013-04-24 2016-01-11 에바라 간쿄 플랜트 가부시키가이샤 Immersed heat transfer tube for fluidized bed boiler, and fluidized bed boiler
KR20180040140A (en) 2015-09-08 2018-04-19 닛신 세이코 가부시키가이샤 Welding method of austenitic stainless steel plate

Similar Documents

Publication Publication Date Title
JPH09264129A (en) Exhaust manifold
US5784881A (en) Multi-part exhaust manifold assembly with welded connections
JP2006250524A (en) Multi-pipe type heat recovery apparatus
EP1091101B1 (en) Exhaust pipe assembly of two-passage construction
JP3204011B2 (en) Engine double exhaust pipe
JPH0989491A (en) Egr gas cooling device
JP4624460B2 (en) Exhaust manifold
JPH08334017A (en) Double exhaust pipe of engine
JP4709682B2 (en) Engine exhaust system
JP3736894B2 (en) Engine exhaust pipe structure
JPH1018839A (en) Double pipe exhaust manifold
JP3572751B2 (en) Double structure exhaust manifold
CN103306795A (en) Dual pipe exhaust manifold
JPH08277711A (en) Double pipe integrated flexible tube
JP2959307B2 (en) Exhaust pipe of internal combustion engine
JPH0842335A (en) Double tube integrated flexible tube
JP3999382B2 (en) Insulated exhaust manifold for engine
JP3827208B2 (en) Engine muffler and motorcycle
JP3802206B2 (en) Inner pipe of double pipe exhaust manifold
JP3204039B2 (en) Engine double exhaust pipe
JPH08189349A (en) Double exhaust pipe for engine
JP3964321B2 (en) Vehicle exhaust system
JP3006376B2 (en) Exhaust pipe of internal combustion engine
JPH0868319A (en) Exhaust double-pipe structure
JP4307623B2 (en) Silencer