JP2006250524A - Multi-pipe type heat recovery apparatus - Google Patents

Multi-pipe type heat recovery apparatus Download PDF

Info

Publication number
JP2006250524A
JP2006250524A JP2006033055A JP2006033055A JP2006250524A JP 2006250524 A JP2006250524 A JP 2006250524A JP 2006033055 A JP2006033055 A JP 2006033055A JP 2006033055 A JP2006033055 A JP 2006033055A JP 2006250524 A JP2006250524 A JP 2006250524A
Authority
JP
Japan
Prior art keywords
heat recovery
cooling medium
cylinder
passage
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006033055A
Other languages
Japanese (ja)
Inventor
Shuichi Hase
周一 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sango Co Ltd
Original Assignee
Sango Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sango Co Ltd filed Critical Sango Co Ltd
Priority to JP2006033055A priority Critical patent/JP2006250524A/en
Publication of JP2006250524A publication Critical patent/JP2006250524A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/103Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of more than two coaxial conduits or modules of more than two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/08Tubular elements crimped or corrugated in longitudinal section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Exhaust Silencers (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve heat recovery efficiency with a simple structure in a flow passage switch type multi-pipe type heat recovery apparatus. <P>SOLUTION: In this multi-pipe type heat recovery apparatus, an annular cooling medium passage 9 extending to an axial direction is constituted by an intermediate cylinder 4 fixed to an inner surface of an outer cylinder. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

本発明は、内燃機関等の排気通路に設けられ排気ガスと冷却媒体を熱交換する多重管式熱回収器に関し、特に、熱交換時に流通する環状流路と中央を貫通するバイパス流路とを選択的に切換え得る多重管式熱回収器に係る。  The present invention relates to a multi-tube heat recovery device that is provided in an exhaust passage of an internal combustion engine or the like and exchanges heat between exhaust gas and a cooling medium, and in particular, includes an annular passage that circulates during heat exchange and a bypass passage that passes through the center The present invention relates to a multi-tube heat recovery device that can be selectively switched.

従来、内燃機関や燃焼装置等の排気管の途中に設けられ、必要時に内部流路を切換えて、気体媒体や液体媒体へ排気ガスの熱を回収する熱交換器(以下、熱回収器と言う)が知られている。回収された熱は、媒体(以下、冷却媒体と言う)を介して車両等の必要箇所まで配送され、あるいは、途中で別の冷却媒体と二次的な熱交換をして、最終的に暖房や、各種機器の暖機や、油脂類の加熱等に供される。一方、熱回収不要時には、熱回収器内の流路を切換えて排気ガスをバイパス流路へ誘導し、熱交換部を経由することなくストレートに排出して、圧損の増加を抑えている。従ってバイパス時においては、流路内に熱交換部器がないことはもちろん、バイパス流路が太くストレートであることが望まれる。  Conventionally, a heat exchanger (hereinafter referred to as a heat recovery unit) that is provided in the middle of an exhaust pipe of an internal combustion engine, a combustion apparatus or the like, switches the internal flow path when necessary, and recovers the heat of the exhaust gas to a gaseous medium or a liquid medium. )It has been known. The recovered heat is delivered to a necessary location such as a vehicle via a medium (hereinafter referred to as a cooling medium), or is subjected to secondary heat exchange with another cooling medium on the way, and finally heated. It is also used for warming up various devices and heating oils and fats. On the other hand, when heat recovery is unnecessary, the flow path in the heat recovery unit is switched to guide the exhaust gas to the bypass flow path, and the exhaust gas is discharged straight without going through the heat exchanging portion, thereby suppressing an increase in pressure loss. Therefore, at the time of bypass, it is desirable that the bypass channel is thick and straight, as well as not having a heat exchanger in the channel.

この種の流路切換式熱回収器の構造としては、同軸状に配置された複数管間の環状空隙を流路とする、所謂多重管式が一般的である。多重管式熱回収器の構造としては実開昭63−110615号公報に記載のものが知られており、図10は同公報に記載の代表的な構造を示す。外筒101と中間筒103と内筒102は同軸状に配されており、内筒102内は第1排気通路106に、内筒102と中間筒103の間隙は第2排気通路107に、中間筒103と外筒101の間隙は冷却媒体通路108に、夫々画定されている。そしてそれらの上流側には、内筒106前端を略開閉自在な弁体104が設けられ、閉塞時には排気ガスを熱回収路たる第2排気通路107へ主体的に誘導した後、小孔群105から第1排気通路内へ還流し排出する。一方、開放時には、排気ガスはバイパス流路たる第1排気通路106へ主体的に誘導・排出される。熱回収要否に応じ弁体104を開閉回動して、流路を適宜選択している。  As a structure of this type of flow path switching type heat recovery device, a so-called multi-tube type in which an annular gap between a plurality of tubes arranged coaxially is used as a flow path is common. As the structure of the multi-tube heat recovery device, the structure described in Japanese Utility Model Laid-Open No. 63-110615 is known, and FIG. 10 shows a typical structure described in the same publication. The outer cylinder 101, the intermediate cylinder 103, and the inner cylinder 102 are coaxially arranged, and the inner cylinder 102 has a first exhaust passage 106, and the inner cylinder 102 and the intermediate cylinder 103 have a gap between the second exhaust passage 107 and the middle. A gap between the cylinder 103 and the outer cylinder 101 is defined in the cooling medium passage 108. Further, on the upstream side thereof, a valve body 104 that can open and close substantially at the front end of the inner cylinder 106 is provided. When closed, exhaust gas is mainly guided to the second exhaust passage 107 serving as a heat recovery passage, and then the small hole group 105 is provided. To return to the first exhaust passage and discharge. On the other hand, at the time of opening, the exhaust gas is mainly guided and discharged to the first exhaust passage 106 serving as a bypass flow path. The valve body 104 is opened and closed according to the necessity of heat recovery, and the flow path is appropriately selected.

もうひとつの多重管式熱回収器の構造として、実開昭63−115520号公報に記載のものも知られており、図11は同公報に記載の代表的な構造を示す。外筒201と内筒202は同軸状に配されており、内筒202内は第1排気通路205に、内筒202と外筒201の間隙は第2排気通路206に夫々画定されている。そして、螺旋管の冷却媒体通路207が第2排気通路206内に設けられている。内筒202下流端内には弁体203が開閉自在に配されており、内筒202上流端には小孔群204が穿設されている。このような構成により、弁体203閉塞時には排気ガスを熱回収路たる第2排気通路206へ主体的に誘導し、螺旋管状の冷却媒体通路207に当てて、熱回収を行う。  Another structure of the multi-tube heat recovery device is known as described in Japanese Utility Model Laid-Open No. 63-115520, and FIG. 11 shows a typical structure described in the same publication. The outer cylinder 201 and the inner cylinder 202 are coaxially arranged. The inner cylinder 202 is defined by a first exhaust passage 205, and the gap between the inner cylinder 202 and the outer cylinder 201 is defined by a second exhaust passage 206. A cooling medium passage 207 of a helical tube is provided in the second exhaust passage 206. A valve body 203 is disposed in the downstream end of the inner cylinder 202 so as to be openable and closable, and a small hole group 204 is formed in the upstream end of the inner cylinder 202. With such a configuration, when the valve body 203 is closed, the exhaust gas is mainly guided to the second exhaust passage 206 serving as a heat recovery path, and is applied to the spiral tubular cooling medium path 207 to perform heat recovery.

実開昭63−110615号公報Japanese Utility Model Publication No. 63-110615 実開昭63−115520号公報Japanese Utility Model Publication No. 63-115520

しかしながら、特許文献1に記載の多重管式熱回収器においては、構造強度を中間筒103が担うため厚肉化を避けられないが、熱交換効率を向上させるためには伝熱壁である中間筒103を薄くしなければならないという背反を有し、効率的で高い強度の熱回収器を得難い。  However, in the multi-tube heat recovery device described in Patent Document 1, since the intermediate tube 103 bears the structural strength, it is inevitable to increase the thickness. However, in order to improve heat exchange efficiency, the intermediate tube 103 is a heat transfer wall. It is difficult to obtain an efficient and high-strength heat recovery device that has the contradiction that the tube 103 must be thinned.

また、特許文献2に記載の多重管式熱回収器においては、簡素な2重管構造であるものの、冷却媒体通路207が螺旋管であるが故の問題を内包する。すなわち、高温の排気ガスは最上流の(1巻き目)螺旋には当たるがそれ以降は全面に当り難いため、熱交換効率が低い。従って、この冷却媒体通路では、螺旋長や太さを増したとしても所望の熱回収は困難という問題がある。さらに、螺旋状の管を環状の第2排気通路206と干渉せぬよう固定し、両端を外筒207に貫通させることは非常に製造困難であるとともに、バネ状物を脈動流体中に曝す構造は、振動破損を招く惧れがある。  Moreover, although the multi-tube heat recovery device described in Patent Document 2 has a simple double-pipe structure, it has a problem because the cooling medium passage 207 is a spiral tube. That is, the high-temperature exhaust gas hits the uppermost (first winding) spiral, but after that it is difficult to hit the entire surface, so the heat exchange efficiency is low. Therefore, in this cooling medium passage, there is a problem that desired heat recovery is difficult even if the spiral length and thickness are increased. Furthermore, it is very difficult to manufacture the spiral tube so that it does not interfere with the annular second exhaust passage 206, and the both ends penetrate the outer tube 207, and the structure in which the spring-like material is exposed to the pulsating fluid. May cause vibration damage.

上記課題を解決するため、本発明は請求項1記載のように、排気通路に設けられ排気ガスと冷却媒体を熱交換する多重管式熱回収器であって、内包する切換手段によって排気ガスの流路を選択し熱回収状態を変更するものにおいて、外筒と内筒の間に中間筒を配するとともに、この中間筒は外筒内面に固定され冷却媒体の通路を構成するものである。  In order to solve the above-described problems, the present invention provides a multi-tube heat recovery device provided in an exhaust passage for exchanging heat between exhaust gas and a cooling medium, as described in claim 1, wherein In selecting the flow path and changing the heat recovery state, an intermediate cylinder is disposed between the outer cylinder and the inner cylinder, and this intermediate cylinder is fixed to the inner surface of the outer cylinder and constitutes a passage for the cooling medium.

さらに、請求項2記載のように、内筒の外面にも第2の中間筒を設けて、別の冷却媒体通路を増設し、内外の冷却媒体通路で排気ガス流路を囲繞してもよい。  Further, as described in claim 2, a second intermediate cylinder may be provided on the outer surface of the inner cylinder to add another cooling medium passage, and the exhaust gas flow path may be surrounded by the inner and outer cooling medium passages. .

そして、請求項3記載のように、上記中間筒の表面に螺旋条痕や突起や起伏などによる凹凸を設け、流体との熱交換を促進させるとよい。  Further, as described in claim 3, it is preferable that the surface of the intermediate cylinder is provided with irregularities such as spiral streaks, protrusions, and undulations to promote heat exchange with the fluid.

また、請求項4記載のように、上記多重管式熱回収器と触媒コンバータ及び/又は消音器を外筒内に一体的に構成してもよい。  Further, as described in claim 4, the multi-tube heat recovery device, the catalytic converter and / or the silencer may be integrally formed in the outer cylinder.

請求項1記載の発明によれば、2重管の外筒内面に、軸方向へ延在する環状の冷却媒体通路を薄肉の中間筒によって構成したので、熱回収効率の高さを維持したまま、軽量で構造簡略かつ製造容易な内部流路切換え式の多重管式熱回収器を実現できる。  According to the first aspect of the present invention, the annular cooling medium passage extending in the axial direction is formed on the inner surface of the outer tube of the double tube by the thin intermediate tube, so that the high heat recovery efficiency is maintained. Thus, it is possible to realize a multi-tube heat recovery device that is lightweight, has a simple structure, and is easy to manufacture.

請求項2記載の発明によれば、更なる冷却媒体通路の増設により排気通路を囲繞することになり、熱回収効率が向上する。  According to the second aspect of the present invention, the exhaust passage is surrounded by the further expansion of the cooling medium passage, so that the heat recovery efficiency is improved.

請求項3記載の発明によれば、流体である排気ガス、冷却媒体ともに中間筒との接触面積が増えて境界面での接触が改善され、更に熱回収効率が向上する。  According to the third aspect of the present invention, both the exhaust gas, which is a fluid, and the cooling medium increase the contact area with the intermediate cylinder, improve the contact at the boundary surface, and further improve the heat recovery efficiency.

請求項4記載の発明によれば、別体の排気ガス浄化器及び/又は消音器を、排気管を介して接続するのに比べて重量・スペースを節約可能であるとともに、耐久性も向上する。  According to the fourth aspect of the present invention, it is possible to save weight and space as compared to connecting a separate exhaust gas purifier and / or a silencer via an exhaust pipe, and also improve durability. .

本発明を実施するための最良の形態を図1乃至図8に示す実施例に基づいて説明する。図1及び図2に示す第1の実施例において、熱回収器1はその構造強度を主に担う外筒2によって外殻が構成され、外筒2の両端にテーパ状ネッキング部が一体形成されている。そして、冷却媒体の導入ポート5と排出ポート6を夫々嵌合固定している。外筒2の上流側ネッキング部には内筒3が嵌合固定され、内筒3は外筒2内へ延出する。外筒2の下流側ネッキング部には、例えば排気管16等の後流部品が嵌合固定される。そして、内筒3の下流端には排気ガス圧により開閉される弁体10がブラケット11を介して軸支されており、図示しない付勢手段によって常時は内筒3後端を閉塞している。また、内筒3の上流側には小孔群12が穿設されており、弁体10による内筒3後端の閉塞時には、排気ガスが第1排気通路7から第2排気通路8へ積極的に導出される。以上の構成部材は、全て耐食性を有する金属製である。なお、内筒3の上流端は、通常は上流側排気管と嵌合接続されるが、上流側排気管を内筒3としてもよいし、締結用フランジを外嵌してもよい。  The best mode for carrying out the present invention will be described based on the embodiment shown in FIGS. In the first embodiment shown in FIGS. 1 and 2, the heat recovery unit 1 has an outer shell composed of an outer cylinder 2 mainly responsible for the structural strength, and tapered necking portions are integrally formed at both ends of the outer cylinder 2. ing. The introduction port 5 and the discharge port 6 for the cooling medium are fitted and fixed, respectively. The inner cylinder 3 is fitted and fixed to the upstream necking portion of the outer cylinder 2, and the inner cylinder 3 extends into the outer cylinder 2. A downstream component such as the exhaust pipe 16 is fitted and fixed to the downstream necking portion of the outer cylinder 2. A valve body 10 that is opened and closed by exhaust gas pressure is pivotally supported via a bracket 11 at the downstream end of the inner cylinder 3, and the rear end of the inner cylinder 3 is normally closed by a biasing means (not shown). . Further, a small hole group 12 is formed on the upstream side of the inner cylinder 3, and when the rear end of the inner cylinder 3 is closed by the valve body 10, exhaust gas is positively passed from the first exhaust passage 7 to the second exhaust passage 8. Are derived. The above constituent members are all made of metal having corrosion resistance. The upstream end of the inner cylinder 3 is usually fitted and connected to the upstream exhaust pipe, but the upstream exhaust pipe may be the inner cylinder 3 or a fastening flange may be externally fitted.

排気ガス圧によって開閉する弁体10は、排気装置においては周知の所謂動圧式可変バルブであるので詳細説明を省くが、内筒3内の排気ガス圧(あるいは流量)が一定以下の時は閉塞しており、一定値以上で付勢に抗して開き始め、動圧の増大に応じ開度を増す。これに伴い、弁体10が開いた時点で主流は第2排気通路8から第1排気通路7へ変わり、熱回収指向から排気ガスの流出(通過)指向へと移行する。従って、熱回収を基本としつつも、内燃機関等の高出力時(大流量時)には熱回収をバイパスし、低抵抗にて排気ガスを通過させることができる。また、切換え制御を排気ガス圧に依存せず任意に行いたい場合には、弁体10の駆動軸を外筒2外へ気密に延出し、周知のモータやアクチュエータ等による強制駆動制御を援用してもよい。強制開閉によれば、排気ガスが動圧として弁体を開ける分の仕事が不要となるので、バイパス時の低圧損要求に一層適う。また、動圧式、強制開閉式ともに弁体10は、フラップ式以外にも、バタフライ式、スライド式、閉塞体嵌合式等、周知の弁方式を援用すればよい。更に、アクチュエータに関しては、電気式、油圧式、空圧式などが周知だが、熱に応じてストロークするサーモワックスや形状記憶合金等を動圧式可変バルブに組合せて、排気ガスや冷媒の温度に応じた補助制御を加えてもよい。  The valve body 10 that opens and closes by the exhaust gas pressure is a so-called dynamic pressure variable valve that is well-known in the exhaust system, and will not be described in detail. However, the valve body 10 is closed when the exhaust gas pressure (or flow rate) in the inner cylinder 3 is below a certain level. It begins to open against the bias at a certain value or more, and the opening degree increases as the dynamic pressure increases. Accordingly, when the valve body 10 is opened, the main flow changes from the second exhaust passage 8 to the first exhaust passage 7 and shifts from the heat recovery direction to the exhaust gas outflow (passage) direction. Accordingly, while the heat recovery is fundamental, it is possible to bypass the heat recovery and pass the exhaust gas with low resistance when the internal combustion engine or the like is at a high output (at a high flow rate). Further, when it is desired to perform the switching control arbitrarily without depending on the exhaust gas pressure, the drive shaft of the valve body 10 is airtightly extended to the outside of the outer cylinder 2 and the forced drive control by a known motor or actuator is used. May be. According to the forced opening and closing, the work for opening the valve body as the exhaust gas is a dynamic pressure becomes unnecessary, which is more suitable for the low pressure loss requirement at the time of bypass. Moreover, what is necessary is just to use well-known valve systems, such as a butterfly type, a slide type, and a closing body fitting type, for the valve body 10 in addition to a flap type for both the dynamic pressure type and the forced open / close type. Furthermore, with regard to actuators, electric, hydraulic, pneumatic, etc. are well known, but thermowax or shape memory alloy that strokes in response to heat is combined with a dynamic pressure variable valve to respond to the temperature of exhaust gas or refrigerant. Auxiliary control may be added.

外筒2の内面には、軸方向に延在する環状の冷却媒体通路9が画定されるように中間筒4が設置され、その両端の密着部13及び14が外筒2の内面へ気密に固定されている。このような構造であるので、中間筒4は全体強度に関係なく薄肉設定が可能であるので、熱伝達効率を向上できる。導入ポート5から流入した冷却媒体(水)は冷却媒体通路(ウォータージャケット)9を満たし、上流へ流れながら排気ガスと熱交換し、熱を持って排出ポート6から流出する。このように熱回収が実施される過程で熱交換面積をより多く確保するために、中間筒4には管軸方向へ螺旋溝状の凹凸15が形成されているが、これによって冷却媒体と排気ガスに乱流が発生し境界層を活性化して、一層熱交換が促進される。  The intermediate cylinder 4 is installed on the inner surface of the outer cylinder 2 so as to define an annular cooling medium passage 9 extending in the axial direction, and the close contact portions 13 and 14 at both ends thereof are airtight to the inner surface of the outer cylinder 2. It is fixed. Since it is such a structure, since the intermediate cylinder 4 can be set thin regardless of the overall strength, the heat transfer efficiency can be improved. The cooling medium (water) flowing in from the introduction port 5 fills the cooling medium passage (water jacket) 9, exchanges heat with the exhaust gas while flowing upstream, and flows out from the discharge port 6 with heat. In order to secure a larger heat exchange area in the process of heat recovery in this way, the intermediate cylinder 4 is formed with spiral groove irregularities 15 in the tube axis direction. Turbulence occurs in the gas and activates the boundary layer, further promoting heat exchange.

以上のように構成したので、軽量かつ簡素な構造で所望の熱回収量を達成できる。また、構造強度を担う外筒2の内面に中間筒4を付設したので、外力による破損の懸念なく薄肉化、ひいては熱交換効率を追求できる。さらに、凹凸の追加等、中間筒4の形状や面積設定の自由度も大きい。  Since it comprised as mentioned above, desired heat recovery amount can be achieved with a lightweight and simple structure. In addition, since the intermediate cylinder 4 is attached to the inner surface of the outer cylinder 2 that bears the structural strength, it is possible to pursue a reduction in thickness and eventually heat exchange efficiency without fear of damage due to external force. Furthermore, the degree of freedom in setting the shape and area of the intermediate cylinder 4 such as the addition of irregularities is great.

なお、各管の横断面形状は円に限らず任意の異形断面でもよいし、同軸配置に限らず相互に偏芯(オフセット)配置されていても構わない。また、外筒2に両端ネッキングを一体形成する場合は、内装物を挿入後にスピニング加工やスエージング加工等の周知の塑性加工法を適用すれば良い。また、別体のネッキング部を溶接等で一体化しても構わないし、外筒2全体をプレス部品の溶接組付体としても構わない。スピニング加工を適用する場合には、特許登録第2957153号の偏芯スピニング加工法や、特許登録第2957154号の傾斜スピニング加工法を用いるとよい。中間筒4も同様に一体形成でも別体組立品でも構わないが、外筒2への固定においては、密着部13及び14を気密に溶接固定する必要があり、全周ろう付けやレーザ溶接を適用するとよい。あるいは、軸方向の相対熱膨張差を吸収するために、外筒2及び/又は中間筒4の一部を蛇腹構造としても良いし、密着部13あるいは14に気密性の緩衝部材を嵌合させてもよい。  In addition, the cross-sectional shape of each pipe | tube is not restricted to a circle | round | yen, Arbitrary irregular cross-sections may be sufficient, and not only a coaxial arrangement | positioning but eccentricity (offset) arrangement | positioning mutually may be sufficient. Further, when both ends necking is integrally formed on the outer cylinder 2, a known plastic working method such as spinning or swaging may be applied after the interior is inserted. Further, a separate necking portion may be integrated by welding or the like, or the entire outer cylinder 2 may be used as a welded assembly of a pressed part. When applying the spinning process, it is preferable to use the eccentric spinning process of Patent Registration No. 2957153 or the inclined spinning process of Patent Registration No. 2957154. Similarly, the intermediate cylinder 4 may be integrally formed or a separate assembly. However, in the fixing to the outer cylinder 2, the contact portions 13 and 14 need to be hermetically welded and fixed. It is good to apply. Alternatively, in order to absorb the difference in relative thermal expansion in the axial direction, a part of the outer cylinder 2 and / or the intermediate cylinder 4 may have a bellows structure, or an airtight buffer member may be fitted to the contact portion 13 or 14. May be.

さらに、中間筒4表面に設ける凹凸については、螺旋等の線条溝、突起、ディンプル、全体の緩やかな起伏等、その形状や配列や大きさは任意である。熱交換促進と流体抵抗増加という背反を適宜バランスさせるように、設定すればよい。  Further, the irregularities provided on the surface of the intermediate cylinder 4 may have any shape, arrangement, and size, such as a spiral groove or the like, protrusions, dimples, and gentle undulations. What is necessary is just to set so that the tradeoff of heat exchange promotion and fluid resistance increase may be balanced appropriately.

図3に示す第2の実施例は、上記第1の実施例と基本構成は同じであるが、中間筒20の形状が異なる。中間筒20の内面が軸方向(図の左右方向)に沿ってテーパ状となっており、それに伴い、冷却媒体通路21及び第2排気通路22の断面積が軸方向に徐変する略円錐状を成す。これにより、排気ガス及び冷却媒体がテーパ面に強く当接するため、熱交換が促進される。この構造に上述の凹凸を組合せると、更に熱交換効率が向上する。なお、テーパは逆向きの傾斜でもよいし、曲面を併用しても構わない。  The basic configuration of the second embodiment shown in FIG. 3 is the same as that of the first embodiment, but the shape of the intermediate cylinder 20 is different. The inner surface of the intermediate cylinder 20 is tapered along the axial direction (left-right direction in the figure), and accordingly, the cross-sectional areas of the cooling medium passage 21 and the second exhaust passage 22 gradually change in the axial direction. Is made. Thereby, since exhaust gas and a cooling medium contact | abut to a taper surface strongly, heat exchange is accelerated | stimulated. When the above-described irregularities are combined with this structure, the heat exchange efficiency is further improved. The taper may be inclined in the opposite direction, or a curved surface may be used in combination.

図4に示す第3の実施例は、更なる熱回収量を企図し、冷却媒体通路(ウォータージャケット)を内筒外周にも増設したものである。上述の通り、外筒30内面には中間筒32が冷却媒体通路36を構成している。同様に内筒3の外周面にも第2の中間筒31を固着し、第2の冷却媒体通路37を独立して構成する。すなわち、第2の排気通路35を中間筒32内面と第2の中間筒31外面とで囲繞するようにする。そして、冷却媒体通路36と第2の冷却媒体通路37を細管状の連通管33及び34によって互いに貫通固定し、冷却媒体を連通自在にする。なお、連通管の本数及び配置は任意である。  In the third embodiment shown in FIG. 4, a further heat recovery amount is intended, and a cooling medium passage (water jacket) is also added to the outer periphery of the inner cylinder. As described above, the intermediate cylinder 32 forms the cooling medium passage 36 on the inner surface of the outer cylinder 30. Similarly, the second intermediate cylinder 31 is also fixed to the outer peripheral surface of the inner cylinder 3, and the second cooling medium passage 37 is configured independently. That is, the second exhaust passage 35 is surrounded by the inner surface of the intermediate cylinder 32 and the outer surface of the second intermediate cylinder 31. Then, the cooling medium passage 36 and the second cooling medium passage 37 are fixed to each other through thin tubular communication pipes 33 and 34 so that the cooling medium can communicate freely. The number and arrangement of communication pipes are arbitrary.

導入ポート5から冷却媒体通路36に流入した冷却媒体は、冷却媒体通路36内を流れると共に連通管34を経由し第2の冷却媒体通路37内へも流入し、その内部を流れる。そして連通管33によって集合した冷却媒体は、排出ポート6から排出される。第2排気通路35は中間筒32と第2の中間筒31の間に、すなわち冷却媒体通路36と第2の冷却媒体通路37の間に形成されるので、両方に囲まれて熱交換を行い、熱交換率が一層向上する。もちろん、中間筒32と第2の中間筒31には、上述の如くテーパや凹凸を付加してもよい。なお、本実施例では外筒30の前端部である直管部38と内筒3の間に金属製の緩衝材部39を挟持させており、外筒30と内筒3間の温度差による相対的な熱膨張差に追従可能なようにしてあるが、この機構を適宜使用するとよい。  The cooling medium flowing into the cooling medium passage 36 from the introduction port 5 flows in the cooling medium passage 36 and also flows into the second cooling medium passage 37 via the communication pipe 34 and flows therein. The cooling medium collected by the communication pipe 33 is discharged from the discharge port 6. Since the second exhaust passage 35 is formed between the intermediate cylinder 32 and the second intermediate cylinder 31, that is, between the cooling medium passage 36 and the second cooling medium passage 37, heat exchange is performed by being surrounded by both. The heat exchange rate is further improved. Of course, the intermediate cylinder 32 and the second intermediate cylinder 31 may be tapered or uneven as described above. In the present embodiment, a metal cushioning member 39 is sandwiched between the straight tube portion 38 that is the front end portion of the outer tube 30 and the inner tube 3, and due to a temperature difference between the outer tube 30 and the inner tube 3. Although it is possible to follow a relative difference in thermal expansion, this mechanism may be used as appropriate.

図5に示す第4の実施例は、第1実施例の熱回収器の上流に排気ガス浄化器たる触媒コンバータ部50を、下流に消音器部51を一体に併設したものである。上流側と下流側に延長された外筒40の上流端は傾斜状のネッキング部46を有し、下流端は同軸のネッキング部47を有して、中間部に第1実施例の熱回収器を内装している。内筒41の前端はテーパ状に拡径するフレア部42が一体形成され、外筒内面に固定されている。そしてフレア部42には通孔43が複数穿設され、上流の排気ガスを第2排気通路45へ導入可能となっている。フレア部42の上流には、触媒担体48が保持材49を介して外筒40内面に挟持されている。一方、弁体10の下流では、消音器部51を画定するセパレータ52が外筒40内面に固定され、セパレータ52の中心にはアウトレットパイプ53が嵌装されている。そして、セパレータ52とアウトレットパイプ53と外筒40に囲繞される空間には、消音材55たるグラスウールが一定密度で充填されており、アウトレットパイプ53に穿設された小孔群54と協働し、共鳴型消音器として機能する。  In the fourth embodiment shown in FIG. 5, a catalytic converter unit 50 as an exhaust gas purifier is provided upstream of the heat recovery unit of the first embodiment, and a silencer unit 51 is integrally provided downstream. The upstream end of the outer cylinder 40 extended to the upstream side and the downstream side has an inclined necking portion 46, the downstream end has a coaxial necking portion 47, and the heat recovery device of the first embodiment at the intermediate portion. Decorated. The front end of the inner cylinder 41 is integrally formed with a flare portion 42 whose diameter is increased in a tapered shape, and is fixed to the inner surface of the outer cylinder. A plurality of through holes 43 are formed in the flare portion 42 so that upstream exhaust gas can be introduced into the second exhaust passage 45. A catalyst carrier 48 is sandwiched between the inner surface of the outer cylinder 40 via a holding member 49 upstream of the flare portion 42. On the other hand, on the downstream side of the valve body 10, a separator 52 that defines the silencer portion 51 is fixed to the inner surface of the outer cylinder 40, and an outlet pipe 53 is fitted in the center of the separator 52. The space surrounded by the separator 52, the outlet pipe 53, and the outer cylinder 40 is filled with glass wool as a sound deadening material 55 at a constant density, and cooperates with the small hole group 54 formed in the outlet pipe 53. It functions as a resonance type silencer.

このような一体化により、別体の装置を排気管で連結するよりも重量的にもスペース的にも、そして製造コスト的にも有利となるばかりか、全体強度向上により耐久性も向上するとともに、表面積減少により放熱ロスも最少になる。更に、触媒担体での化学反応で高温化した排気ガスを直後に熱回収できるので、熱回収にロスがない。また、凹凸を有する第2排気通路45や弁体10によって高周波異音が発生された場合にも、その直後の共鳴型消音器により確実に消音される。  Such integration not only has advantages in terms of weight, space, and manufacturing cost, but also improves durability by improving overall strength, compared to connecting separate devices with exhaust pipes. The heat dissipation loss is minimized by reducing the surface area. Furthermore, since the exhaust gas heated to a high temperature by a chemical reaction at the catalyst carrier can be recovered immediately, there is no loss in heat recovery. Further, even when high-frequency abnormal noise is generated by the concave and convex second exhaust passage 45 or the valve body 10, it is surely silenced by the resonance type silencer immediately after that.

なお、熱回収器と組合せる触媒コンバータ及び/又は消音器の有無や個数や配列順序は任意である。また、触媒コンバータと消音器は、周知のあらゆる種類及び製法を適用してよい。特に触媒コンバータにおいては、触媒担体48と保持材49を挿入後に外筒40を縮径し保持材49(緩衝マット)を圧縮する、所謂サイジング工法が適する。また、セラミック製の担体に限らず金属製担体を保持材を介さず内装したり、直接、外筒端部に溶接固定してもよい。消音器部分は、弁体10とセパレータ52間に必然的に生じる空間を大きく設定して、拡張室56として消音に供するとよい。また、これら以外の排気ガス浄化器、例えばディーゼル・パティキュレート・フィルター(DPF)や改質器等と組合せてもよい。更に、本実施例では外筒40は一つの筒体から形成されているが、複数部品を溶接等で組付けて一体化した外筒でも構わない。  In addition, the presence or absence, the number, and the arrangement order of the catalytic converter and / or the silencer combined with the heat recovery unit are arbitrary. In addition, all known types and manufacturing methods may be applied to the catalytic converter and the silencer. In particular, in a catalytic converter, a so-called sizing method is suitable in which the outer cylinder 40 is reduced in diameter after the catalyst carrier 48 and the holding material 49 are inserted, and the holding material 49 (buffer mat) is compressed. Further, not only the ceramic carrier but also a metal carrier may be installed without a holding material, or directly welded to the outer cylinder end. The muffler portion may be provided with a large space inevitably generated between the valve body 10 and the separator 52 and used as an expansion chamber 56 for noise reduction. Moreover, you may combine with exhaust gas purifiers other than these, for example, a diesel particulate filter (DPF), a reformer, etc. Furthermore, in this embodiment, the outer cylinder 40 is formed from a single cylinder, but an outer cylinder in which a plurality of parts are assembled by welding or the like may be used.

図6に示す第5の実施例は、第3実施例における熱回収器の内筒3と第2の中間筒31の間に第3の中間筒68を増設し、緩衝部材39を用いる応力緩和機構の位置を変更したものである。第3の中間筒68は、内筒3との間に緩衝部材39を挟持するとともに第2の中間筒62に密着固定され、第2の冷却媒体通路66の内周壁を形成する。金属ワイヤメッシュから成る緩衝部材39は、内筒3にスポット溶接で固定されている。このような構成により、内筒3と第3の中間筒68間に熱膨張差に起因する軸方向の相対応力が生じても、緩衝部材39が内筒3表面を摺動するので、応力が開放され破損の懸念がない。また、バイパス時には内筒3内を高温の排気ガスが多量に通過し内筒3が過熱するが、第3の中間筒68と両緩衝部材39で囲まれる空間は、高熱が冷却媒体及び中間筒へ伝達することを避ける熱遮断層としても機能する。なお、緩衝部材を内筒3ではなく第3の中間筒68に固定してもよいし、ワイヤメッシュに限らず摺動部材ならば任意である。さらに、内筒3に多孔を穿設し、第3の中間筒68と画緩衝部材39で囲まれる空間を、第4実施例のような共鳴型消音器として使用してもよい。  In the fifth embodiment shown in FIG. 6, a third intermediate cylinder 68 is added between the inner cylinder 3 and the second intermediate cylinder 31 of the heat recovery apparatus in the third embodiment, and the stress relaxation using the buffer member 39 is performed. The position of the mechanism is changed. The third intermediate cylinder 68 sandwiches the buffer member 39 with the inner cylinder 3 and is closely fixed to the second intermediate cylinder 62 to form an inner peripheral wall of the second cooling medium passage 66. The buffer member 39 made of a metal wire mesh is fixed to the inner cylinder 3 by spot welding. With such a configuration, even if an axial relative stress caused by a difference in thermal expansion occurs between the inner cylinder 3 and the third intermediate cylinder 68, the buffer member 39 slides on the surface of the inner cylinder 3, so that the stress is reduced. It is open and there is no fear of damage. Further, at the time of bypass, a large amount of high-temperature exhaust gas passes through the inner cylinder 3 and the inner cylinder 3 is overheated. However, in the space surrounded by the third intermediate cylinder 68 and both the buffer members 39, high heat is generated by the cooling medium and the intermediate cylinder. It also functions as a heat barrier layer that avoids transmission to The buffer member may be fixed to the third intermediate cylinder 68 instead of the inner cylinder 3, and is not limited to a wire mesh but may be any sliding member. Further, the inner cylinder 3 may be perforated and the space surrounded by the third intermediate cylinder 68 and the image buffer member 39 may be used as a resonance silencer as in the fourth embodiment.

図7に示す第6の実施例は、第3実施例における熱回収器の導入ポート5と排出ポート6を変更したものである。導入ポート72先端を連通管34あるいは第2の冷却媒体通路37に臨ませて、冷却媒体を優先的に第2の冷却媒体通路37へ導き、排出ポート73を導入ポート72の略対向位置に配する。このような構成により、冷却媒体は先ず内周側の第2の冷却媒体通路37内を流れ、次いで、連通管33を経由して外周側の冷却媒体通路36へ流れ込み、反転流下し排出ポート73から排出される。冷却媒体が異方向の2経路を流れるので、滞留時間が長くなり熱回収効率が向上する。  In the sixth embodiment shown in FIG. 7, the introduction port 5 and the discharge port 6 of the heat recovery unit in the third embodiment are changed. The leading end of the introduction port 72 faces the communication pipe 34 or the second cooling medium passage 37, the cooling medium is preferentially guided to the second cooling medium passage 37, and the discharge port 73 is arranged at a position substantially opposite to the introduction port 72. To do. With such a configuration, the cooling medium first flows in the second cooling medium passage 37 on the inner peripheral side, then flows into the cooling medium passage 36 on the outer peripheral side via the communication pipe 33, and reversely flows down to the discharge port 73. Discharged from. Since the cooling medium flows through two paths in different directions, the residence time becomes longer and the heat recovery efficiency is improved.

図8に示す第7の実施例は、熱回収器の横断面図であり、断面位置は第1実施例(図1)と同位置である。第3実施例の熱回収器の中間筒32と第2の中間筒31との間の第2排気通路ほぼ全域に亘って、放射状に起伏するフィン80を増設したものである。フィン80は薄板の金属を折り曲げて一体的に形成され、内径側折り返しは第2の中間筒31に、外径側折り返しは中間筒32に、それぞれ溶着されている。断面は所謂花びら型であり、この断面が軸方向に亘って延在する。これにより、第2排気通路内を流下する排気ガスがフィン80全面に接触し、フィン80の受熱が中間筒32及び第2の中間筒31へ確実に伝達されるので、一層熱回収効率が向上する。ただし、フィン80は排気ガスにとって流体抵抗であるので、圧損による背圧増加は背反として勘案する必要がある。  The seventh embodiment shown in FIG. 8 is a cross-sectional view of the heat recovery device, and the cross-sectional position is the same as that of the first embodiment (FIG. 1). In the third embodiment, fins 80 that are undulated radially are provided over almost the entire area of the second exhaust passage between the intermediate cylinder 32 and the second intermediate cylinder 31 of the heat recovery device. The fins 80 are integrally formed by bending a thin metal plate, and the inner side folding is welded to the second intermediate cylinder 31, and the outer diameter folding is welded to the intermediate cylinder 32. The cross section is a so-called petal shape, and this cross section extends in the axial direction. As a result, the exhaust gas flowing down in the second exhaust passage comes into contact with the entire surface of the fin 80, and the heat received by the fin 80 is reliably transmitted to the intermediate cylinder 32 and the second intermediate cylinder 31, thereby further improving the heat recovery efficiency. To do. However, since the fin 80 is a fluid resistance for the exhaust gas, it is necessary to consider the increase in the back pressure due to the pressure loss as a contradiction.

なお、本実施例の所謂花びら型フィン80は熱交換器においては周知であるが、この他の周知の断面形状を適用してもよいし、軸周りに捩れていても、多層でも、あるいは軸方向で間歇的に存在してもよい。固定方法も、溶接、ろう付け、カシメ等任意であるし、フィン自身のスプリングバックを利用して、固定することなく挟持してもよい。更に熱回収率向上を求めるのであれば、バイパス通路たる第1排気通路7内にもフィンを増設してもよい。もちろん、第1実施例や第2実施例の各排気通路中に設けても構わない。  The so-called petal fin 80 of the present embodiment is well known in heat exchangers, but other well-known cross-sectional shapes may be applied, twisted around the axis, multilayered, or axial May exist intermittently in the direction. The fixing method may be any method such as welding, brazing, caulking, etc., and may be clamped without fixing using the spring back of the fin itself. If further improvement in the heat recovery rate is desired, fins may be additionally installed in the first exhaust passage 7 serving as a bypass passage. Of course, you may provide in each exhaust passage of 1st Example or 2nd Example.

図9に示す第8の実施例は、2種類の回転塑性加工により製造された熱回収器98とその中間組立体81の縦断面図である。先ず(a)工程において、実施例1と同様に貫通固定された導入ポート85および排出ポート86を有する外筒85を用意し、その内部に一体パイプから成る中間筒84を挿入、固定して、中間組立体81を得る。中間筒84の中央部には、周知のローラ転造法などにより管軸方向へ連続する螺旋溝83が複数条刻設されており、これが実施例1の凹凸同様、熱交換の促進に寄与する。中間筒84の両端は拡径されており、この拡径部89、90の外面と外筒82の内面が密着した状態でレーザ等で全周溶接され、気密の溶接部87、88が形成される。これによって、外筒82と中間筒84で画定された冷却媒体通路85が形成される。この状態において、冷却媒体通路85に流体を満たし、液密性を確認しておくと良い。  The eighth embodiment shown in FIG. 9 is a longitudinal sectional view of a heat recovery device 98 and its intermediate assembly 81 manufactured by two types of rotational plastic working. First, in the step (a), an outer cylinder 85 having an introduction port 85 and a discharge port 86 fixed in the same manner as in the first embodiment is prepared, and an intermediate cylinder 84 made of an integral pipe is inserted and fixed therein. An intermediate assembly 81 is obtained. A plurality of spiral grooves 83 continuous in the tube axis direction are formed in the central portion of the intermediate cylinder 84 by a known roller rolling method or the like, and this contributes to the promotion of heat exchange like the unevenness of the first embodiment. . Both ends of the intermediate cylinder 84 are enlarged in diameter, and are welded all around with a laser or the like in a state where the outer surfaces of the enlarged diameter parts 89 and 90 and the inner surface of the outer cylinder 82 are in close contact with each other to form airtight welds 87 and 88. The As a result, a cooling medium passage 85 defined by the outer cylinder 82 and the intermediate cylinder 84 is formed. In this state, it is preferable to fill the cooling medium passage 85 with a fluid and confirm the liquid tightness.

次いで(b)工程において、中間組立体81内に実施例1と同様、小孔群12、弁体10、ブラケット11を有する内筒3を挿入し、上流端部91および下流端部92に対して周知のスピニング加工を施して、任意形状の上流側ネッキング部93および下流側ネッキング部94を得る。スピニング加工は、外筒82に対して相対的に公転し接触するスピニングローラ97にて行なうが、外筒を非回転状態に固定した状態でスピニングローラ97を公転させる方法が好ましい。このような工程を経て、熱回収器98を得る。  Next, in step (b), the inner cylinder 3 having the small hole group 12, the valve body 10, and the bracket 11 is inserted into the intermediate assembly 81 in the same manner as in the first embodiment, and the upstream end portion 91 and the downstream end portion 92 are inserted. Then, an upstream necking portion 93 and a downstream necking portion 94 having arbitrary shapes are obtained by performing known spinning processing. The spinning process is performed by the spinning roller 97 that revolves and contacts the outer cylinder 82 relatively, but a method of revolving the spinning roller 97 with the outer cylinder fixed in a non-rotating state is preferable. The heat recovery device 98 is obtained through such steps.

熱回収器98は実施例1と同様、内筒84内の排気ガス圧(あるいは流量)が一定値以下の時は弁体10が閉塞しており、一定値以上で付勢に抗して開き始め、動圧の増大に応じ開度を増す。これに伴い、弁体10が開いた時点で主流は第2排気通路96から第1排気通路95へと変わり、熱回収指向から徘気ガスの流出(通過)指向へと移行する。このように、実施例1と同等機能の熱回収器を2種類の回転塑性加工によって形成できるので、加工時間および加工コストの低減が図れるとともに、外筒82および中間筒84が夫々パイプ材から一体形成できるので、耐久性・信頼性が向上する。また、回転塑性加工故に形状の設定自由度が大きいので、排気ガス浄化器や消音器との一体化においては、一層有利である。  As in the first embodiment, the heat recovery device 98 is closed when the exhaust gas pressure (or flow rate) in the inner cylinder 84 is a predetermined value or less, and opens against a bias at a certain value or more. First, the opening is increased as the dynamic pressure increases. Accordingly, when the valve element 10 is opened, the main flow changes from the second exhaust passage 96 to the first exhaust passage 95 and shifts from the heat recovery direction to the outflow (passage) direction of the aeration gas. As described above, since the heat recovery device having the same function as that of the first embodiment can be formed by two types of rotary plastic processing, the processing time and processing cost can be reduced, and the outer cylinder 82 and the intermediate cylinder 84 are integrally formed from the pipe material. Since it can be formed, durability and reliability are improved. Further, since the degree of freedom in setting the shape is large because of the rotational plastic working, it is more advantageous in the integration with the exhaust gas purifier and the silencer.

以上、本発明の実施例を説明してきたが、本発明は上述の実施例に限られるものではなく、本発明の趣旨を逸脱しない範囲の設計変更があっても、本発明に包含される。また、冷却媒体への熱回収を主目的とする狭義の熱回収器(ヒートコレクタ)に限らず、冷却媒体の加熱を目的とする熱交換器(オイルウオーマ等)や、排気ガスの冷却を主目的とする熱交換器(排気クーラ等)も熱回収器として包含する。また、冷却媒体は水に限らず、最適な液体や気体を適宜用いればよい。更に、主たる排気管への装着のみならず、EGRクーラ等、傍流(枝流)排気管への適用も包含する。そして、適用対象は車両等の内燃機関用に限定するものではなく、汎用エンジンや据置式燃焼装置等、あらゆる排気ガス発生装置の排気系に適用可能である。  Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and design changes within a range not departing from the gist of the present invention are also included in the present invention. It is not limited to a heat recovery device (heat collector) in a narrow sense that mainly recovers heat to the cooling medium, but is also used for heat exchangers (such as oil worms) for the purpose of heating the cooling medium and cooling exhaust gas The heat exchanger (exhaust cooler, etc.) is also included as a heat recovery device. The cooling medium is not limited to water, and an optimal liquid or gas may be used as appropriate. Furthermore, it includes not only the attachment to the main exhaust pipe but also the application to a side flow (branch flow) exhaust pipe such as an EGR cooler. The application target is not limited to an internal combustion engine such as a vehicle, but can be applied to an exhaust system of any exhaust gas generator such as a general-purpose engine or a stationary combustion device.

第1の実施例の熱回収器を示す概略断面図である。It is a schematic sectional drawing which shows the heat recovery device of a 1st Example. 第1の実施例のA−A断面図である。It is AA sectional drawing of a 1st Example. 第2の実施例の熱回収器を示す概略断面図である。It is a schematic sectional drawing which shows the heat recovery device of a 2nd Example. 第3の実施例の熱回収器を示す概略断面図である。It is a schematic sectional drawing which shows the heat recovery device of a 3rd Example. 第4の実施例の熱回収器を示す概略断面図である。It is a schematic sectional drawing which shows the heat recovery device of a 4th Example. 第5の実施例の熱回収器を示す概略断面図である。It is a schematic sectional drawing which shows the heat recovery device of a 5th Example. 第6の実施例の熱回収器を示す概略断面図である。It is a schematic sectional drawing which shows the heat recovery device of a 6th Example. 第7の実施例の熱回収器を示す概略断面図である。It is a schematic sectional drawing which shows the heat recovery device of a 7th Example. 第8の実施例の熱回収器を示す概略断面図である。It is a schematic sectional drawing which shows the heat recovery device of an 8th Example. 従来例の熱回収器を示す概略断面図である。It is a schematic sectional drawing which shows the heat recovery device of a prior art example. 従来例の熱回収器を示す概略断面図である。It is a schematic sectional drawing which shows the heat recovery device of a prior art example.

符号の説明Explanation of symbols

1,98 熱回収器
2,30,40,71,82 外筒
3,41 内筒
4,20,32,84 中間筒
31 第2の中間筒
5,72,85 導入ポート
6,73,86 排出ポート
7,44,95 第1排気通路
8,35,45,67,96 第2排気通路
9,21,36,65,85 冷却媒体通路
37,66 第2の冷却媒体通路
33,34,63,64 連通管
10 弁体
11 ブラケット
12,54 小孔群
13,14 密着部
15 凹凸
38 直管部
39 緩衝部材
42 フレア部
43 通孔
46,47 ネッキング部
48 触媒担体
49 保持材
50 触媒コンバータ部
51 消音器部
52 セパレータ
53 アウトレットパイプ
55 消音材
68 第3の中間筒
80 フィン
81 中間組立体
83 螺旋溝
87,88 溶接部
89,90 拡径部
91 上流側端部
92 下流側端部
93 上流側ネッキング部
94 下流側ネッキング部
97 スピニングローラ
1,98 Heat recovery device 2, 30, 40, 71, 82 Outer cylinder 3, 41 Inner cylinder 4, 20, 32, 84 Intermediate cylinder 31 Second intermediate cylinder 5, 72, 85 Inlet ports 6, 73, 86 Discharge Ports 7, 44, 95 First exhaust passages 8, 35, 45, 67, 96 Second exhaust passages 9, 21, 36, 65, 85 Cooling medium passages 37, 66 Second cooling medium passages 33, 34, 63, 64 Communication pipe 10 Valve body 11 Brackets 12 and 54 Small hole groups 13 and 14 Adhering part 15 Concavity and convexity 38 Straight pipe part 39 Buffer member 42 Flare part 43 Through hole 46 and 47 Necking part 48 Catalyst carrier 49 Holding material 50 Catalytic converter part 51 Silencer part 52 Separator 53 Outlet pipe 55 Silencer 68 Third intermediate cylinder 80 Fin 81 Intermediate assembly 83 Spiral groove 87, 88 Welding part 89, 90 Expanded part 91 Upstream end 92 Downstream end 93 Upstream side necking part 94 Downstream side necking part 97 Spinning roller

Claims (4)

排気通路に設けられ排気ガスと冷却媒体を熱交換する多重管式熱回収器であって、内包する切換手段によって排気ガスの流路を選択し熱回収状態を変更するものにおいて、外筒と内筒の間に中間筒を配するとともに、該中間筒は前記外筒内面に固定され冷却媒体の通路を構成することを特徴とする多重管式熱回収器。A multi-tube heat recovery device provided in the exhaust passage for exchanging heat between the exhaust gas and the cooling medium, wherein the exhaust gas flow path is selected by the included switching means and the heat recovery state is changed. A multi-tube heat recovery device, wherein an intermediate tube is disposed between the tubes, and the intermediate tube is fixed to the inner surface of the outer tube to form a passage for a cooling medium. 前記内筒の外面に固定され冷却媒体の通路を構成する第2の中間筒を設け、該第2の中間筒と前記中間筒を冷却媒体が流通可能に連通するとともに、両中間筒に囲繞されて排気ガス流路が形成されたことを特徴とする請求項1に記載の多重管式熱回収器。A second intermediate cylinder that is fixed to the outer surface of the inner cylinder and forms a passage for the cooling medium is provided. The second intermediate cylinder and the intermediate cylinder are communicated with each other so that the cooling medium can flow therethrough, and are surrounded by both intermediate cylinders. The multi-tube heat recovery device according to claim 1, wherein an exhaust gas flow path is formed. 少なくとも前記中間筒に凹凸を設けたことを特徴とする請求項1又は2に記載の多重管式熱回収器。The multi-tube heat recovery device according to claim 1, wherein at least the intermediate tube is provided with irregularities. 排気ガス浄化器及び/又は消音器を一体的に構成することを特徴とする請求項1又は2又は3に記載の多重管式熱回収器。The multi-pipe heat recovery device according to claim 1, 2 or 3, wherein the exhaust gas purifier and / or the silencer are integrally formed.
JP2006033055A 2005-02-14 2006-01-12 Multi-pipe type heat recovery apparatus Pending JP2006250524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006033055A JP2006250524A (en) 2005-02-14 2006-01-12 Multi-pipe type heat recovery apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005069999 2005-02-14
JP2006033055A JP2006250524A (en) 2005-02-14 2006-01-12 Multi-pipe type heat recovery apparatus

Publications (1)

Publication Number Publication Date
JP2006250524A true JP2006250524A (en) 2006-09-21

Family

ID=37091211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006033055A Pending JP2006250524A (en) 2005-02-14 2006-01-12 Multi-pipe type heat recovery apparatus

Country Status (1)

Country Link
JP (1) JP2006250524A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024907A (en) * 2008-07-17 2010-02-04 Toyota Motor Corp Exhaust heat recovery equipment
JP2012122471A (en) * 2010-12-09 2012-06-28 Hyundai Motor Co Ltd Waste heat recovery apparatus of vehicle
JP2012184678A (en) * 2011-03-03 2012-09-27 Yutaka Giken Co Ltd Exhaust heat recovery device
US8327634B2 (en) 2006-12-06 2012-12-11 Toyota Jidosha Kabushiki Kaisha Exhaust heat recovery system
JP2013500590A (en) * 2009-07-24 2013-01-07 ビーエスエスティー エルエルシー Thermoelectric power generator, method of manufacturing thermoelectric power generator, and method of generating power using thermoelectric power generator
JP2013047480A (en) * 2011-08-29 2013-03-07 Sakamoto Industry Co Ltd Exhaust gas heat recovery device
JP2013087679A (en) * 2011-10-17 2013-05-13 Taiho Kogyo Co Ltd Egr cooler
JP2013122366A (en) * 2011-12-09 2013-06-20 Hyundai Motor Co Ltd Heat exchanger
WO2014025036A1 (en) * 2012-08-10 2014-02-13 フタバ産業株式会社 Exhaust heat recovery device
JP2014517184A (en) * 2011-04-13 2014-07-17 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Apparatus with heat exchanger for automotive thermoelectric generator
US9006557B2 (en) 2011-06-06 2015-04-14 Gentherm Incorporated Systems and methods for reducing current and increasing voltage in thermoelectric systems
US9293680B2 (en) 2011-06-06 2016-03-22 Gentherm Incorporated Cartridge-based thermoelectric systems
US9306143B2 (en) 2012-08-01 2016-04-05 Gentherm Incorporated High efficiency thermoelectric generation
EP3139012A4 (en) * 2014-04-04 2017-03-22 Nissan Motor Co., Ltd Exhaust system of engine
WO2017126124A1 (en) * 2016-01-22 2017-07-27 フタバ産業株式会社 Integrated exhaust heat recovery device
DE102016216281A1 (en) 2016-08-30 2018-03-01 HANON SYSTEMS, jusik hoesa bypass valve
CN108656426A (en) * 2018-06-12 2018-10-16 无锡双象橡塑机械有限公司 Left-and-right spiral formula alternating temperature roller
WO2018224295A1 (en) * 2017-06-08 2018-12-13 Volkswagen Aktiengesellschaft Device for recovering heat from a heating fluid
WO2019135312A1 (en) * 2018-01-05 2019-07-11 日本碍子株式会社 Heat exchange member, heat exchanger, and heat exchanger having purification means
WO2021124582A1 (en) * 2019-12-20 2021-06-24 エム・テクニック株式会社 Heat exchanger
CN113958386A (en) * 2021-12-22 2022-01-21 诸城市大路机械有限公司 Exhaust device with silencing function
US11397052B2 (en) * 2019-09-12 2022-07-26 Ngk Insulators, Ltd. Heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114093A (en) * 1984-09-14 1986-05-31 Aisin Seiki Co Ltd Heat exchanger
JPS63110615U (en) * 1987-01-08 1988-07-15
JPH08313177A (en) * 1995-05-15 1996-11-29 Nippon Pipe Syst Kk Multi-tube type heat exchanger
JP2001336417A (en) * 2000-05-24 2001-12-07 Denso Corp Exhaust apparatus
JP2003314982A (en) * 2002-04-17 2003-11-06 Matsumoto Jukogyo Kk Double pipe type heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114093A (en) * 1984-09-14 1986-05-31 Aisin Seiki Co Ltd Heat exchanger
JPS63110615U (en) * 1987-01-08 1988-07-15
JPH08313177A (en) * 1995-05-15 1996-11-29 Nippon Pipe Syst Kk Multi-tube type heat exchanger
JP2001336417A (en) * 2000-05-24 2001-12-07 Denso Corp Exhaust apparatus
JP2003314982A (en) * 2002-04-17 2003-11-06 Matsumoto Jukogyo Kk Double pipe type heat exchanger

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8327634B2 (en) 2006-12-06 2012-12-11 Toyota Jidosha Kabushiki Kaisha Exhaust heat recovery system
JP2010024907A (en) * 2008-07-17 2010-02-04 Toyota Motor Corp Exhaust heat recovery equipment
JP2013500590A (en) * 2009-07-24 2013-01-07 ビーエスエスティー エルエルシー Thermoelectric power generator, method of manufacturing thermoelectric power generator, and method of generating power using thermoelectric power generator
US9276188B2 (en) 2009-07-24 2016-03-01 Gentherm Incorporated Thermoelectric-based power generation systems and methods
JP2012122471A (en) * 2010-12-09 2012-06-28 Hyundai Motor Co Ltd Waste heat recovery apparatus of vehicle
JP2012184678A (en) * 2011-03-03 2012-09-27 Yutaka Giken Co Ltd Exhaust heat recovery device
JP2014517184A (en) * 2011-04-13 2014-07-17 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Apparatus with heat exchanger for automotive thermoelectric generator
US9293680B2 (en) 2011-06-06 2016-03-22 Gentherm Incorporated Cartridge-based thermoelectric systems
US9006557B2 (en) 2011-06-06 2015-04-14 Gentherm Incorporated Systems and methods for reducing current and increasing voltage in thermoelectric systems
JP2013047480A (en) * 2011-08-29 2013-03-07 Sakamoto Industry Co Ltd Exhaust gas heat recovery device
JP2013087679A (en) * 2011-10-17 2013-05-13 Taiho Kogyo Co Ltd Egr cooler
JP2013122366A (en) * 2011-12-09 2013-06-20 Hyundai Motor Co Ltd Heat exchanger
US9306143B2 (en) 2012-08-01 2016-04-05 Gentherm Incorporated High efficiency thermoelectric generation
WO2014025036A1 (en) * 2012-08-10 2014-02-13 フタバ産業株式会社 Exhaust heat recovery device
AU2013300402B2 (en) * 2012-08-10 2016-02-25 Futaba Industrial Co., Ltd. Exhaust heat recovery device
JP2014034963A (en) * 2012-08-10 2014-02-24 Futaba Industrial Co Ltd Exhaust heat recovery device
EP3139012A4 (en) * 2014-04-04 2017-03-22 Nissan Motor Co., Ltd Exhaust system of engine
US10087800B2 (en) 2014-04-04 2018-10-02 Nissan Motor Co., Ltd. Engine exhaust apparatus
JPWO2017126124A1 (en) * 2016-01-22 2018-04-26 フタバ産業株式会社 Integrated exhaust heat recovery device
WO2017126124A1 (en) * 2016-01-22 2017-07-27 フタバ産業株式会社 Integrated exhaust heat recovery device
US10508574B2 (en) 2016-01-22 2019-12-17 Futaba Industrial Co., Ltd. Integrated exhaust heat recovery device
DE102016216281A1 (en) 2016-08-30 2018-03-01 HANON SYSTEMS, jusik hoesa bypass valve
WO2018224295A1 (en) * 2017-06-08 2018-12-13 Volkswagen Aktiengesellschaft Device for recovering heat from a heating fluid
RU2727499C1 (en) * 2017-06-08 2020-07-21 Фольксваген Акциенгезельшафт Device for recuperation of heat from heating medium
JP7166246B2 (en) 2018-01-05 2022-11-07 日本碍子株式会社 Heat exchange member, heat exchanger and heat exchanger with purification means
WO2019135312A1 (en) * 2018-01-05 2019-07-11 日本碍子株式会社 Heat exchange member, heat exchanger, and heat exchanger having purification means
JPWO2019135312A1 (en) * 2018-01-05 2020-11-19 日本碍子株式会社 Heat exchanger, heat exchanger and heat exchanger with purification means
US11591950B2 (en) 2018-01-05 2023-02-28 Ngk Insulators, Ltd. Heat exchanging member, heat exchanger and heat exchanger with purifier
CN108656426A (en) * 2018-06-12 2018-10-16 无锡双象橡塑机械有限公司 Left-and-right spiral formula alternating temperature roller
US11397052B2 (en) * 2019-09-12 2022-07-26 Ngk Insulators, Ltd. Heat exchanger
WO2021124582A1 (en) * 2019-12-20 2021-06-24 エム・テクニック株式会社 Heat exchanger
CN113958386B (en) * 2021-12-22 2022-02-25 诸城市大路机械有限公司 Exhaust device with silencing function
CN113958386A (en) * 2021-12-22 2022-01-21 诸城市大路机械有限公司 Exhaust device with silencing function

Similar Documents

Publication Publication Date Title
JP2006250524A (en) Multi-pipe type heat recovery apparatus
EP1884634B1 (en) Support structure of exhaust system heat exchanger
JP5264734B2 (en) Heat exchanger for internal combustion engines
US20080163613A1 (en) Vehicle exhaust system structure
CN101287956A (en) Exhaust gas heat exchanger
EP1978323A2 (en) Heat exchanger with telescoping expansion joint
JP2001207910A (en) Heat exchanger for multiple cylinder internal combustion engine
JP2007315370A (en) Exhaust heat recovery exhaust emission control device
US10508580B2 (en) Combined heat exchanger and exhaust silencer
US7322403B2 (en) Heat exchanger with modified tube surface feature
JP2007285264A (en) Heat exchanger
JP4844600B2 (en) Exhaust heat recovery unit
JP4483313B2 (en) Engine exhaust pipe heat exchange structure
WO2003056265A1 (en) Heat exchanger
JP2007113559A (en) Silencer for internal combustion engine
JP2021042924A (en) Heat exchanger
JP2006275038A (en) Heat recovery machine
JP5838406B2 (en) Exhaust gas heat recovery device
JP4270661B2 (en) Multi-tube type EGR gas cooling device and manufacturing method thereof
JP2006258084A (en) Heat recovery equipment
JP4121187B2 (en) EGR gas cooling device
JPH1018839A (en) Double pipe exhaust manifold
JP4655560B2 (en) Exhaust system silencer
CN111997721A (en) Exhaust heat recovery system
JP2511497Y2 (en) Waste heat recovery type exhaust muffler

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090113

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110126

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A02 Decision of refusal

Effective date: 20110705

Free format text: JAPANESE INTERMEDIATE CODE: A02