JP4844600B2 - Exhaust heat recovery unit - Google Patents

Exhaust heat recovery unit Download PDF

Info

Publication number
JP4844600B2
JP4844600B2 JP2008185663A JP2008185663A JP4844600B2 JP 4844600 B2 JP4844600 B2 JP 4844600B2 JP 2008185663 A JP2008185663 A JP 2008185663A JP 2008185663 A JP2008185663 A JP 2008185663A JP 4844600 B2 JP4844600 B2 JP 4844600B2
Authority
JP
Japan
Prior art keywords
exhaust
heat recovery
exhaust gas
pipe
exhaust heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008185663A
Other languages
Japanese (ja)
Other versions
JP2010024907A (en
Inventor
高晴 永利
正克 坪内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008185663A priority Critical patent/JP4844600B2/en
Publication of JP2010024907A publication Critical patent/JP2010024907A/en
Application granted granted Critical
Publication of JP4844600B2 publication Critical patent/JP4844600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Silencers (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、排気ガスの熱を冷却媒体に伝熱することで排気熱を有効に活用するために使用される排気熱回収器に関する。   The present invention relates to an exhaust heat recovery unit used for effectively utilizing exhaust heat by transferring heat of exhaust gas to a cooling medium.

一般に、内燃機関や燃焼装置等の排気管の途中に設けられ、必要時に内部流路を切り替えて、気体媒体や液体媒体へ排気ガスの熱を回収する熱交換器(以下、「排気熱回収器」という。)が知られている。   Generally, a heat exchanger (hereinafter referred to as an “exhaust heat recovery device”) is provided in the middle of an exhaust pipe of an internal combustion engine, a combustion apparatus, etc., and switches the internal flow path when necessary to recover the heat of exhaust gas to a gaseous medium or liquid medium. ") Is known.

この排気熱回収器において、回収された熱は、冷却媒体を介して車両等の必要箇所まで配送され、あるいは、途中で別の冷却媒体と二次的な熱交換をして、最終的に暖房、各種機器の暖機、および油脂類の加熱等に供される。一方、熱回収不要時には、排気熱回収器内の流路を切り替えて排気ガスをバイパス流路へ誘導し、熱交換部を経由することなくストレートに排出して、圧損の増加を抑えている。したがって、バイパス時においては、流路内に熱交換部がないことは勿論のこと、バイパス流路が太くストレートであることが望まれる。   In this exhaust heat recovery unit, the recovered heat is delivered to a necessary place such as a vehicle via a cooling medium, or is subjected to secondary heat exchange with another cooling medium in the middle, and finally heated. It is used for warming up various devices and heating oils and fats. On the other hand, when heat recovery is unnecessary, the flow path in the exhaust heat recovery device is switched to guide the exhaust gas to the bypass flow path, and the exhaust gas is discharged straight without going through the heat exchanging portion, thereby suppressing an increase in pressure loss. Therefore, at the time of bypassing, it is desirable that the bypass channel is thick and straight, as well as having no heat exchange part in the channel.

この種の流路切換式排気熱回収器の構造としては、同軸状に配置された複数管間の環状空隙を流路とする、いわゆる多重管式が一般的である。   As a structure of this type of flow path switching type exhaust heat recovery device, a so-called multi-tube type in which an annular gap between a plurality of tubes arranged coaxially is used as a flow path is common.

かかる多重管式排気熱回収器の典型的な例としては、特許文献1および2で提案されているものを挙げることができる。   Typical examples of such a multi-tube exhaust heat recovery device include those proposed in Patent Documents 1 and 2.

特許文献1にて提案された多重管式排気熱回収器では、外筒と中間筒と内筒が同軸状に配されており、内筒内は第1の排気通路に、内筒と中間筒の間隙は第2の排気通路に、中間筒と外筒の間隙は冷却媒体通路に、それぞれ画定されている。そして、それらの上流側には、内筒前端を開閉自在な弁体が設けられ、閉塞時には排気ガスを熱回収路たる第2の排気通路へ主体的に誘導した後、小孔群から第1の排気通路内へ還流し排出する。一方、開放時には、排気ガスは、バイパス流路たる第1の排気通路へ主体的に誘導・排出される。熱回収の要否に応じて弁体を開閉回動して、流路が適宜選択される。   In the multi-tube exhaust heat recovery device proposed in Patent Document 1, the outer cylinder, the intermediate cylinder, and the inner cylinder are arranged coaxially, and the inner cylinder is connected to the first exhaust passage, and the inner cylinder and the intermediate cylinder are arranged. Is defined in the second exhaust passage, and the gap between the intermediate cylinder and the outer cylinder is defined in the cooling medium path. Further, on the upstream side thereof, a valve body capable of opening and closing the front end of the inner cylinder is provided, and at the time of closing, exhaust gas is mainly guided to the second exhaust passage serving as a heat recovery passage, and then the first through the small hole group. Return to the exhaust passage and discharge. On the other hand, at the time of opening, the exhaust gas is mainly guided and discharged to the first exhaust passage serving as a bypass flow path. Depending on the necessity of heat recovery, the valve body is opened and closed and the flow path is appropriately selected.

特許文献2にて提案された多重管式排気熱回収器では、外筒と内筒とが同軸状に配されており、内筒内は第1の排気通路に、内筒と外筒の間隙は第2の排気通路にそれぞれ画定されている。そして、螺旋管の冷却媒体通路が第2の排気通路内に設けられている。内筒下流端内には、弁体が開閉自在に配されており、内筒上流端には、小孔群が穿設されている。このような構成により、弁体閉塞時には排気ガスを熱回収路たる第2の排気通路へ主体的に誘導し、螺旋管状の冷却媒体通路に当てて、熱回収を行う。   In the multi-pipe exhaust heat recovery device proposed in Patent Document 2, the outer cylinder and the inner cylinder are arranged coaxially, and the inner cylinder has a first exhaust passage and a gap between the inner cylinder and the outer cylinder. Are respectively defined in the second exhaust passages. A cooling medium passage of the spiral tube is provided in the second exhaust passage. A valve body is disposed in the inner cylinder downstream end so as to be openable and closable, and a small hole group is formed in the inner cylinder upstream end. With such a configuration, when the valve body is closed, the exhaust gas is mainly guided to the second exhaust passage serving as a heat recovery path, and is applied to the spiral tubular cooling medium path to perform heat recovery.

ところが、特許文献1に記載の多重管式排気熱回収器においては、構造強度を中間筒が担うため厚肉化を避けられないが、熱交換効率を向上させるためには伝熱壁である中間筒を薄くしなければならないという背反を有し、効率的で高い強度の排気熱回収器を得難い。   However, in the multi-pipe type exhaust heat recovery device described in Patent Document 1, since the intermediate tube bears the structural strength, it is inevitable to increase the thickness. However, in order to improve the heat exchange efficiency, the intermediate tube which is a heat transfer wall It is difficult to obtain an efficient and high strength exhaust heat recovery device, which has the contradiction that the tube must be thinned.

また、特許文献2に記載の多重管式排気熱回収器においては、簡素な2重管構造であるものの、冷却媒体通路が螺旋管であるが故の問題を内包する。すなわち、高温の排気ガスは最上流の(1巻き目)螺旋には当たるがそれ以降は全面に当り難いため、熱交換効率が低い。したがって、この冷却媒体通路では、螺旋長や太さを増したとしても所望の熱回収は困難という問題がある。さらに、螺旋状の管を環状の第2の排気通路と干渉せぬよう固定し、両端を外筒に貫通させることは非常に製造困難であるとともに、ばね状物を脈動流体中に曝す構造は、振動破損を招くおそれがある。   Moreover, although the multi-tube exhaust heat recovery device described in Patent Document 2 has a simple double-pipe structure, it has a problem because the cooling medium passage is a spiral tube. That is, the high-temperature exhaust gas hits the uppermost (first winding) spiral, but after that it is difficult to hit the entire surface, so the heat exchange efficiency is low. Therefore, in this cooling medium passage, there is a problem that desired heat recovery is difficult even if the spiral length and thickness are increased. Furthermore, it is very difficult to manufacture a helical tube that is fixed so as not to interfere with the annular second exhaust passage, and to penetrate both ends into the outer cylinder, and the structure for exposing the spring-like object to the pulsating fluid is as follows. There is a risk of vibration damage.

そこで、特許文献3では、流路切換型の多重管式熱回収器において、軸方向へ延在する環状の冷却媒体通路を、外筒内面に固定した中間筒によって構成することによって、簡素な構造で熱回収効率を向上させるようにしている。
実開昭63−110615号公報 実開昭63−115520号公報 特開2006−250524号公報
Therefore, in Patent Document 3, in the multi-tube heat recovery device of the flow channel switching type, a simple structure is obtained by configuring the annular cooling medium passage extending in the axial direction with an intermediate cylinder fixed to the inner surface of the outer cylinder. The heat recovery efficiency is improved.
Japanese Utility Model Publication No. 63-110615 Japanese Utility Model Publication No. 63-115520 JP 2006-250524 A

しかしながら、特許文献3に記載の排気熱回収器にあっては、ラジエータの熱負荷に関して、排気熱回収器の設定は、排気熱非回収時も少なからず冷却水に影響を与えてしまう。つまり、ラジエータの負荷増による冷却増分だけ電力消費に至り、実用の燃費に影響するという問題がある。加えて、周辺熱害などの配慮も必要となる。   However, in the exhaust heat recovery device described in Patent Document 3, regarding the heat load of the radiator, the setting of the exhaust heat recovery device has a considerable effect on the cooling water even when exhaust heat is not recovered. That is, there is a problem that power consumption is reached only by the increment of cooling due to an increase in the load on the radiator, which affects the actual fuel consumption. In addition, it is necessary to consider surrounding heat damage.

これは、排気熱回収部への排気ガス導入口が常に一定面積開口しており、高負荷時には、高温ガスがこの開口から排気熱回収部に伝熱されるため、コンパクトな排気熱回収器を考えると、導入口から排気熱回収部までの距離を長く取ることが難しいからである。   This is because the exhaust gas inlet to the exhaust heat recovery unit is always open to a certain area, and high temperature gas is transferred from this opening to the exhaust heat recovery unit at high load, so consider a compact exhaust heat recovery unit This is because it is difficult to increase the distance from the inlet to the exhaust heat recovery unit.

本発明は、上記技術的課題に鑑みなされたもので、排気熱の回収不要時の排気熱回収部への排気ガスの流れを抑制し、高温時の回収熱量を低減し得る、排気熱回収器の提供を目的とする。   The present invention has been made in view of the above technical problem, and an exhaust heat recovery device capable of suppressing the flow of exhaust gas to the exhaust heat recovery unit when exhaust heat recovery is unnecessary and reducing the amount of recovered heat at a high temperature. The purpose is to provide.

上記目的を達成するため、本発明にかかる排気熱回収器は、排気ガスの熱を冷却媒体に伝熱することで排気熱を有効に活用するために使用される排気熱回収器であって、内部に排気ガスの熱を冷却媒体に伝熱する熱交換部を有する排気熱回収部と、前端側を排気ガス入口とするバイパスパイプと、排気ガスを排気熱回収部へ導入するために多数の開口が形成されているパンチングパイプと、パンチングパイプの後端を開閉することにより排気ガスの回収/非回収を切り替える排気バルブとを含み、上記バイパスパイプは、排気流上流側で閉塞部材としてのエンドプレートに固定された状態で後方に延出され、上記パンチングパイプは、後端側が排気流下流側で上記排気熱回収部に固定された状態で前方に延出され、上記排気熱回収部の冷却媒体に起因する熱膨張と上記排気ガス入口の排気ガス温度に起因する熱膨張との差により、上記パンチングパイプの開口を遮蔽する、上記バイパスパイプの後端と上記パンチングパイプの開口との相対的な位置関係が変化する。   In order to achieve the above object, an exhaust heat recovery device according to the present invention is an exhaust heat recovery device used to effectively utilize exhaust heat by transferring heat of exhaust gas to a cooling medium, An exhaust heat recovery part having a heat exchange part for transferring heat of the exhaust gas to the cooling medium inside, a bypass pipe having the front end side as an exhaust gas inlet, and a large number of parts for introducing the exhaust gas into the exhaust heat recovery part A punching pipe in which an opening is formed, and an exhaust valve for switching recovery / non-recovery of exhaust gas by opening and closing a rear end of the punching pipe, and the bypass pipe is an end as a closing member upstream of the exhaust flow The punching pipe extends rearward while being fixed to the plate, and the punching pipe extends forward with the rear end side being fixed to the exhaust heat recovery unit on the downstream side of the exhaust flow, and cooling the exhaust heat recovery unit. Medium The relative expansion between the rear end of the bypass pipe and the opening of the punching pipe that shields the opening of the punching pipe due to the difference between the thermal expansion due to the thermal expansion and the thermal expansion due to the exhaust gas temperature at the exhaust gas inlet. The positional relationship changes.

上記構成において、パンチングパイプの開口を遮蔽する、バイパスパイプの後端とパンチングパイプの開口との相対的な位置関係は、排気熱回収部の冷却媒体に起因する熱膨張と排気ガス入口の排気ガス温度に起因する熱膨張との差により変化する。それゆえ、早期に暖機させるために冷却媒体温度の上昇を促したい、冷間始動時には、バイパスパイプの温度が低いのでパンチングパイプの開口の有効領域面積を大きく取れるので、排気熱回収性能が向上する。一方、高負荷による排気ガスの温度上昇、および冷却媒体への受熱をラジエータ負荷から抑えたいときには、バイパスパイプが熱伸びするので、排気バルブの開放と合わせて、排気熱回収部への熱の回り込みが抑制され、回収熱量を低減することができる。   In the above configuration, the relative positional relationship between the rear end of the bypass pipe and the opening of the punching pipe that shields the opening of the punching pipe is determined by the thermal expansion caused by the cooling medium of the exhaust heat recovery unit and the exhaust gas at the exhaust gas inlet. It changes depending on the difference from thermal expansion due to temperature. Therefore, to increase the temperature of the cooling medium in order to warm up quickly, the temperature of the bypass pipe is low during cold start, so the effective area of the opening of the punching pipe can be increased, improving exhaust heat recovery performance To do. On the other hand, when the exhaust gas temperature rise due to a high load and the heat received by the cooling medium are to be suppressed from the radiator load, the bypass pipe heats up, so when the exhaust valve is opened, the heat circulates to the exhaust heat recovery unit. Is suppressed, and the amount of recovered heat can be reduced.

本発明によると、排気熱の回収不要時の排気熱回収部への排気ガスの流れを抑制し、高温時の回収熱量を低減することができる。   According to the present invention, it is possible to suppress the flow of exhaust gas to the exhaust heat recovery section when exhaust heat recovery is unnecessary, and to reduce the amount of recovered heat at a high temperature.

以下、本発明の実施の形態を添付図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

[第1の実施の形態]
図1は本発明の第1の実施の形態にかかる排気熱回収器の内部構造を簡略化して示す図である。
[First embodiment]
FIG. 1 is a diagram showing a simplified internal structure of an exhaust heat recovery device according to a first embodiment of the present invention.

図1を参照して、本実施の形態にかかる排気熱回収器1は、エンジンの排気ガスの熱を冷却水に伝熱することで排気熱を有効に活用するために使用されるものであって、内部に排気ガスの熱を冷却水に伝熱する熱交換部2a,2bを有する排気熱回収部3と、前端側を排気ガス入口とするバイパスパイプ4と、排気ガスを排気熱回収部3へ導入するために多数の微小な開口5が形成されているパンチングパイプ6と、パンチングパイプ6の後端を開閉することにより排気ガスの回収/非回収を切り替える排気バルブ7とを備えている。   Referring to FIG. 1, an exhaust heat recovery device 1 according to the present embodiment is used for effectively utilizing exhaust heat by transferring the heat of engine exhaust gas to cooling water. The exhaust heat recovery unit 3 having heat exchange units 2a and 2b for transferring the heat of the exhaust gas to the cooling water, the bypass pipe 4 having the front end side as the exhaust gas inlet, and the exhaust gas as the exhaust heat recovery unit 3 is provided with a punching pipe 6 in which a large number of minute openings 5 are formed for introduction into the exhaust gas 3, and an exhaust valve 7 for switching exhaust gas recovery / non-recovery by opening and closing the rear end of the punching pipe 6. .

熱交換部2a,2bには、それぞれ、冷却水流路が設けられている。これら熱交換部2a,2bは、間隔を隔てて内外に配置されている。これにより、内側熱交換部2aとパンチングパイプ6との間には、内側排気ガス流路8aが形成され、外側熱交換部2bと内側熱交換部2aとの間には、外側排気ガス流路8bが形成される。   A cooling water flow path is provided in each of the heat exchange units 2a and 2b. These heat exchanging parts 2a and 2b are arranged inside and outside at intervals. Thus, an inner exhaust gas flow path 8a is formed between the inner heat exchange part 2a and the punching pipe 6, and an outer exhaust gas flow path is formed between the outer heat exchange part 2b and the inner heat exchange part 2a. 8b is formed.

バイパスパイプ4は、排気流上流側(図1においてAで示す箇所)で閉塞部材としてのエンドプレート9に固定された状態で後方に延出されている。一方、パンチングパイプ6は、後端側が排気流下流側(図1においてBで示す箇所)で排気熱回収部3に固定された状態で前方に延出されている。そして、排気熱回収部3の冷却水に起因する熱膨張と排気ガス入口の排気ガス温度に起因する熱膨張との差により、パンチングパイプ6の開口5を遮蔽する、バイパスパイプ4の後端とパンチングパイプ6の開口5との相対的な位置関係が変化するようになっている。   The bypass pipe 4 extends rearward in a state of being fixed to an end plate 9 serving as a closing member on the exhaust flow upstream side (location indicated by A in FIG. 1). On the other hand, the punching pipe 6 extends forward in a state in which the rear end side is fixed to the exhaust heat recovery unit 3 on the exhaust flow downstream side (location indicated by B in FIG. 1). And the rear end of the bypass pipe 4 that shields the opening 5 of the punching pipe 6 due to the difference between the thermal expansion caused by the cooling water of the exhaust heat recovery unit 3 and the thermal expansion caused by the exhaust gas temperature at the exhaust gas inlet The relative positional relationship with the opening 5 of the punching pipe 6 changes.

また、バイパスパイプ4は、図示しない前側接続管に接続されるが、パンチングパイプ6は、バイパスパイプ4に対してリング状のメッシュ構造を有する保持部材10で支持されている。さらに、バイパスパイプ4の肉厚は、パンチングパイプ6に比して薄肉とされている。   The bypass pipe 4 is connected to a front connection pipe (not shown), but the punching pipe 6 is supported by a holding member 10 having a ring-shaped mesh structure with respect to the bypass pipe 4. Further, the wall thickness of the bypass pipe 4 is thinner than that of the punching pipe 6.

排気バルブ7は、バルブ軸11に開閉自在に支持され、その開閉動作は、図示しないサーモアクチュエータにより行なわれる。   The exhaust valve 7 is supported by the valve shaft 11 so as to be freely opened and closed, and the opening and closing operation is performed by a thermoactuator (not shown).

ここで、本排気熱回収器1において行なわれる排気ガスの熱回収について説明する。   Here, the heat recovery of the exhaust gas performed in the exhaust heat recovery device 1 will be described.

エンジンから排出された排気ガスがバイパスパイプ4内を流れているときに、図1(a)に示すように、排気バルブ7が閉じられると、バイパスパイプ4を通過していた排気ガスは、矢印で示すように、パンチングパイプ6の開口5を通過して、内側熱回収排気ガス流路8aへ導入され矢印の方向へ向かって流れる。内側熱回収排気ガス流路8aを流れる排気ガスは、内側熱交換部2a内の冷却水との間で熱交換を行なった後、エンドプレート9内で反転して外側熱回収排気ガス流路8bへ導入される。   When the exhaust gas discharged from the engine flows through the bypass pipe 4, as shown in FIG. 1A, when the exhaust valve 7 is closed, the exhaust gas passing through the bypass pipe 4 is changed to an arrow. As shown by, the gas passes through the opening 5 of the punching pipe 6 and is introduced into the inner heat recovery exhaust gas flow path 8a and flows in the direction of the arrow. The exhaust gas flowing through the inner heat recovery exhaust gas flow path 8a exchanges heat with the cooling water in the inner heat exchange section 2a, and then reverses in the end plate 9 to reverse the outer heat recovery exhaust gas flow path 8b. To be introduced.

同様に、外側熱回収排気ガス流路8b内を流れる排気ガスも、内側熱交換部2aおよび外側熱交換部2b内の冷却水との間で熱交換を行ないつつ、外側熱回収排気ガス流路8bを通り抜ける。その後、排気ガスは、下流側の排気系構成部材へと排出される。   Similarly, the exhaust gas flowing in the outer heat recovery exhaust gas passage 8b also exchanges heat with the cooling water in the inner heat exchange portion 2a and the outer heat exchange portion 2b, while the outer heat recovery exhaust gas passage. Go through 8b. Thereafter, the exhaust gas is discharged to the exhaust system constituent members on the downstream side.

本排気熱回収器1で排気ガスの熱を回収しない場合や、本排気熱回収器1で回収する熱量を抑える場合は、図1(b)に示すように、排気バルブ7が開放される。排気バルブ7が開放されると、バイパスパイプ4の開口5を通じて、内側熱回収排気ガス流路8aへ導かれていた排気ガスの大部分が、矢印で示すように、バイパスパイプ4を通過して、パンチングパイプ6の後端から下流側の排気系構成要素へ排出される。   When the heat of the exhaust gas is not recovered by the exhaust heat recovery device 1 or when the amount of heat recovered by the exhaust heat recovery device 1 is suppressed, the exhaust valve 7 is opened as shown in FIG. When the exhaust valve 7 is opened, most of the exhaust gas led to the inner heat recovery exhaust gas flow path 8a through the opening 5 of the bypass pipe 4 passes through the bypass pipe 4 as indicated by an arrow. Then, the air is discharged from the rear end of the punching pipe 6 to the exhaust system components on the downstream side.

ところで、上述したように、パンチングパイプ6の開口5を遮蔽する、バイパスパイプ4の後端とパンチングパイプ6の開口5との相対的な位置関係は、排気熱回収部3の冷却水に起因する熱膨張と排気ガス入口の排気ガス温度に起因する熱膨張との差により変化する。   By the way, as described above, the relative positional relationship between the rear end of the bypass pipe 4 and the opening 5 of the punching pipe 6 that shields the opening 5 of the punching pipe 6 is caused by the cooling water of the exhaust heat recovery unit 3. It varies depending on the difference between the thermal expansion and the thermal expansion caused by the exhaust gas temperature at the exhaust gas inlet.

それゆえ、早期に暖機させるために冷却水温度の上昇を促したい、冷間始動時には、バイパスパイプ4の温度が低いのでパンチングパイプ6の開口5の有効領域面積を大きく取れるので、排気熱回収性能が向上する。   Therefore, it is desired to increase the temperature of the cooling water in order to warm up early. At the time of cold start, since the temperature of the bypass pipe 4 is low, the effective area of the opening 5 of the punching pipe 6 can be increased, so that the exhaust heat recovery Performance is improved.

一方、高負荷による排気ガスの温度上昇、および冷却水への受熱をラジエータ負荷から抑えたいときには、バイパスパイプ4が、図1(b)に示すように、変位量Cをもって熱伸びするので、排気バルブ7の開放と合わせて、排気熱回収部3への熱の回り込みが抑制され、回収熱量を低減することができる。   On the other hand, when it is desired to suppress the temperature rise of the exhaust gas due to a high load and the heat received by the cooling water from the radiator load, the bypass pipe 4 is thermally expanded with a displacement amount C as shown in FIG. Along with the opening of the valve 7, the flow of heat into the exhaust heat recovery unit 3 is suppressed, and the amount of recovered heat can be reduced.

ちなみに、図3に示すように、Eを基準としたFの伸び(E〜F)、Fを基準としたGの伸び(F〜G)およびEを基準としたHの伸びは、以下の式で求められる。   Incidentally, as shown in FIG. 3, the elongation of F based on E (E to F), the elongation of G based on F (F to G), and the elongation of H based on E are expressed by the following equations. Is required.

(1)Eを基準としたFの伸び(E〜F)
(長さ)300mm×(平均温度)80℃×(熱膨張率)1.2×10-5
=0.29mm
(2)Fを基準としたGの伸び(F〜G)
(長さ)20mm×(平均温度)500℃×(熱膨張率)1.2×10-5
=0.12mm
(3)Eを基準としたHの伸び
(長さ)300mm×(平均温度)800℃×(熱膨張率)1.2×10-5
=2.88mm
上記(1)〜(3)より、バイパスパイプ4の伸び時、開口5の相対変位量は、(3)−((1)−(2))=2.88mm−0.29mm+0.12mm=2.71mmとなる。
(1) E elongation based on E (E to F)
(Length) 300 mm × (Average temperature) 80 ° C. × (Coefficient of thermal expansion) 1.2 × 10 −5
= 0.29 mm
(2) G elongation based on F (F to G)
(Length) 20 mm × (Average temperature) 500 ° C. × (Thermal expansion coefficient) 1.2 × 10 −5
= 0.12 mm
(3) H elongation based on E (length) 300 mm × (average temperature) 800 ° C. × (thermal expansion coefficient) 1.2 × 10 −5
= 2.88mm
From the above (1) to (3), when the bypass pipe 4 is extended, the relative displacement amount of the opening 5 is (3) − ((1) − (2)) = 2.88 mm−0.29 mm + 0.12 mm = 2. .71 mm.

また、バイパスパイプ4をリング状のメッシュ構造を有する保持部材10でパンチングパイプ6と接触支持することで、直接伝熱が避けられるので、さらに急激な冷却水の温度上昇を抑えることができる。   Moreover, since the heat transfer can be avoided by directly supporting the bypass pipe 4 with the punching pipe 6 by the holding member 10 having a ring-shaped mesh structure, it is possible to suppress a further rapid increase in the temperature of the cooling water.

さらに、バイパスパイプ4の肉厚をパンチングパイプ6に比して薄肉とすることで、熱容量自体を低減でき、この点においても、さらに急な冷却水の温度上昇を抑制できる。   Furthermore, the heat capacity itself can be reduced by making the wall thickness of the bypass pipe 4 thinner than that of the punching pipe 6, and in this respect also, it is possible to suppress a further rapid increase in the temperature of the cooling water.

[第2の実施の形態]
図3は本発明の第2の実施の形態にかかる排気熱回収器の内部構造を簡略化して示す図である。
[Second Embodiment]
FIG. 3 is a diagram showing a simplified internal structure of an exhaust heat recovery device according to the second embodiment of the present invention.

図3を参照して、本実施の形態にかかる排気熱回収器1の特徴は、バイパスパイプ4とパンチングパイプ6との間に生じるギャップ(隙間)に、触媒マットのような断熱材20を介在させた点にあり、その他の構成は第1の実施の形態と同様である。   Referring to FIG. 3, the exhaust heat recovery device 1 according to the present embodiment is characterized in that a heat insulating material 20 such as a catalyst mat is interposed in a gap (gap) generated between the bypass pipe 4 and the punching pipe 6. The other configuration is the same as that of the first embodiment.

なお、本実施の形態において、バイパスパイプ4とパンチングパイプ6との間に生じるギャップの全領域に断熱材20を介在させてもかまわない。   In the present embodiment, the heat insulating material 20 may be interposed in the entire region of the gap generated between the bypass pipe 4 and the punching pipe 6.

本実施の形態によると、第1の実施の形態と同様の作用・効果を奏することに加えて、以下の作用・効果を奏する。   According to the present embodiment, in addition to the same operations and effects as those of the first embodiment, the following operations and effects are achieved.

バイパスパイプ4とパンチングパイプ6との間に生じるギャップに断熱材20を配置しているので、内部空気の対流に起因する熱伝導を抑止できる。そのため、排気ガスバイパス(排気ガス非回収)時に熱交換部2a,2bへの熱伝導が抑制される。   Since the heat insulating material 20 is disposed in the gap generated between the bypass pipe 4 and the punching pipe 6, heat conduction caused by convection of internal air can be suppressed. Therefore, heat conduction to the heat exchange parts 2a and 2b is suppressed during exhaust gas bypass (exhaust gas non-recovery).

[第3の実施の形態]
図4は本発明の第3の実施の形態にかかる排気熱回収器の内部構造を簡略化して示す図である。
[Third embodiment]
FIG. 4 is a diagram showing a simplified internal structure of an exhaust heat recovery device according to the third embodiment of the present invention.

図4を参照して、本実施の形態にかかる排気熱回収器1の特徴は、バイパスパイプ4と前側接続管30との接続部を2重管構造にした点にあり、その他の構成は第2の実施の形態と同様である。   Referring to FIG. 4, the exhaust heat recovery device 1 according to the present embodiment is characterized in that the connection portion between the bypass pipe 4 and the front side connection pipe 30 has a double pipe structure, and the other configuration is the first. This is the same as the second embodiment.

本実施の形態によると、第2の実施の形態と同様の作用・効果を奏することに加えて、以下の作用・効果を奏する。   According to the present embodiment, in addition to the same functions and effects as those of the second embodiment, the following functions and effects are achieved.

バイパスパイプ4と前側接続管30との接続部を2重管構造とすることにより、排気熱回収時の排気ガス温度の放射冷却を抑えつつ、高負荷時には、パンチングパイプ6の温度上昇も抑えることができる。   By connecting the bypass pipe 4 and the front connection pipe 30 with a double pipe structure, the exhaust gas temperature during exhaust heat recovery is suppressed from radiative cooling, and the temperature of the punching pipe 6 is also suppressed during high loads. Can do.

[第4の実施の形態]
図5は本発明の第4の実施の形態にかかる排気熱回収器の内部構造を簡略化して示す図である。
[Fourth embodiment]
FIG. 5 is a diagram showing a simplified internal structure of an exhaust heat recovery device according to the fourth embodiment of the present invention.

図5を参照して、本実施の形態にかかる排気熱回収器1の特徴は、バルブ軸11の軸ケース40を排気流下流側に向かって開放した円弧形状とし、この円弧形状をなす軸ケース40を排気熱回収部3の直後に所定の間隔を隔てて近接配置し、それによってバルブ軸11を半円状に覆った点にあり、その他の構成は実施の形態と同様である。   Referring to FIG. 5, the exhaust heat recovery device 1 according to the present embodiment is characterized by an arc shape in which the shaft case 40 of the valve shaft 11 is opened toward the exhaust flow downstream side, and the shaft case forming this arc shape. 40 is located immediately after the exhaust heat recovery unit 3 with a predetermined interval, thereby covering the valve shaft 11 in a semicircular shape, and other configurations are the same as in the embodiment.

本実施の形態によると、第3の実施の形態と同様の作用・効果を奏することに加えて、以下の作用・効果を奏する。   According to the present embodiment, in addition to the same operations and effects as those of the third embodiment, the following operations and effects are achieved.

回収直後の排気ガスがバルブ軸11および軸ケース40に集中して当たるため、バルブ軸11周りが高温にさらされない。   Since the exhaust gas immediately after collection is concentrated on the valve shaft 11 and the shaft case 40, the periphery of the valve shaft 11 is not exposed to high temperatures.

また、排気ガス非回収時も、排気熱回収部3に軸ケース40(バルブ軸11周り)が近接しているので、排気バルブ7の開口付近に比べ温度を低く抑えることができる。   Further, even when the exhaust gas is not recovered, the shaft case 40 (around the valve shaft 11) is close to the exhaust heat recovery unit 3, so that the temperature can be suppressed lower than the vicinity of the opening of the exhaust valve 7.

さらに、回収器出ガス直下のバルブ軸11は、軸ケース40で半円状に覆われているので、出ガス中の凝縮水を軸ケース40でさえぎり、バルブ軸11が被水するのを防止できる。   Further, since the valve shaft 11 directly below the collector gas is covered in a semicircular shape by the shaft case 40, the condensate in the gas is blocked by the shaft case 40 and the valve shaft 11 is prevented from getting wet. it can.

[排気熱回収器1の冷却水出口側の水配管構造]
図6は排気熱回収器の冷却水出口側の水配管構造を簡略化して示す図である。なお、この図では、第1の実施の形態にかかる排気熱回収器を適用した例を示しているが、他の実施の形態2〜4にかかる排気熱回収器を適用してもよいことは云うまでもない。
[Water piping structure on the outlet side of the cooling water of the exhaust heat recovery unit 1]
FIG. 6 is a simplified view of the water piping structure on the cooling water outlet side of the exhaust heat recovery device. In addition, in this figure, although the example which applied the exhaust heat recovery device concerning 1st Embodiment is shown, it may apply the exhaust heat recovery device concerning other Embodiments 2-4. Needless to say.

図6を参照して、この排気熱回収器1の冷却水出口側の水配管構造は、通常、車両は、車両中央に床下トンネル50を有していることに着目したものであって、このトンネル50内面を覆うインシュレータ51の下部に排気熱回収器1を含む排気系52が配置されてなる。   Referring to FIG. 6, the water piping structure on the cooling water outlet side of the exhaust heat recovery device 1 pays attention to the fact that the vehicle normally has an underfloor tunnel 50 in the center of the vehicle. An exhaust system 52 including the exhaust heat recovery device 1 is disposed below the insulator 51 that covers the inner surface of the tunnel 50.

具体的には、排気熱回収器1の出口水配管53を排気熱回収器本体の上部から上方に延出させるともに、出口水配管53が接続されるアウト管54を車両前方に向かって上向きに配索させ、さらに、出口水配管53とアウト管54とは、ともにインシュレータ51の下でほぼ平行に排気管55と並んで配索されている。   Specifically, the outlet water pipe 53 of the exhaust heat recovery device 1 is extended upward from the upper part of the exhaust heat recovery device main body, and the out pipe 54 to which the outlet water piping 53 is connected is directed upward toward the front of the vehicle. Further, the outlet water pipe 53 and the out pipe 54 are arranged alongside the exhaust pipe 55 almost in parallel under the insulator 51.

このような配管構造とすることで、冷却水の大気冷却を低減でき、かつ、安定した上向き配索を実現できる。   By setting it as such a piping structure, the air cooling of a cooling water can be reduced and stable upward wiring can be implement | achieved.

なお、本発明は上記実施の形態に限定されるものではなく、本明細書に添付の特許請求の範囲内での種々の設計変更および修正を加え得ることは勿論である。   Note that the present invention is not limited to the above-described embodiment, and various design changes and modifications can be made within the scope of the appended claims.

本発明の第1の実施の形態にかかる排気熱回収器の内部構造を簡略化して示す図である。It is a figure which simplifies and shows the internal structure of the exhaust heat recovery device concerning the 1st Embodiment of this invention. バイパスパイプの伸び時、開口の形成部の相対変位量の計算基準点などを示す図である。It is a figure which shows the calculation reference point etc. of the relative displacement amount of the formation part of an opening at the time of expansion of a bypass pipe. 本発明の第2の実施の形態にかかる排気熱回収器の内部構造を簡略化して示す図である。It is a figure which simplifies and shows the internal structure of the exhaust heat recovery device concerning the 2nd Embodiment of this invention. 本発明の第3の実施の形態にかかる排気熱回収器の内部構造を簡略化して示す図である。It is a figure which simplifies and shows the internal structure of the exhaust heat recovery device concerning the 3rd Embodiment of this invention. 本発明の第4の実施の形態にかかる排気熱回収器の内部構造を簡略化して示す図である。It is a figure which simplifies and shows the internal structure of the exhaust heat recovery device concerning the 4th Embodiment of this invention. 排気熱回収器の冷却水出口側の水配管構造を簡略化して示す図である。It is a figure which simplifies and shows the water piping structure by the side of the cooling water outlet of an exhaust heat recovery device.

符号の説明Explanation of symbols

1 排気熱回収器
2a,2b 熱交換部
3 排気熱回収部
4 バイパスパイプ
5 開口
6 パンチングパイプ
9 エンドプレート
DESCRIPTION OF SYMBOLS 1 Exhaust heat recovery device 2a, 2b Heat exchange part 3 Exhaust heat recovery part 4 Bypass pipe 5 Opening 6 Punching pipe 9 End plate

Claims (1)

排気ガスの熱を冷却媒体に伝熱することで排気熱を有効に活用するために使用される排気熱回収器であって、
内部に排気ガスの熱を冷却媒体に伝熱する熱交換部を有する排気熱回収部と、
前端側を排気ガス入口とするバイパスパイプと、
排気ガスを排気熱回収部へ導入するために多数の開口が形成されているパンチングパイプと、
パンチングパイプの後端を開閉することにより排気ガスの回収/非回収を切り替える排気バルブとを含み、
上記バイパスパイプは、排気流上流側で閉塞部材としてのエンドプレートに固定された状態で後方に延出され、
上記パンチングパイプは、後端側が排気流下流側で上記排気熱回収部に固定された状態で前方に延出され、
上記排気熱回収部の冷却媒体に起因する熱膨張と上記排気ガス入口の排気ガス温度に起因する熱膨張との差により、上記パンチングパイプの開口を遮蔽する、上記バイパスパイプの後端と上記パンチングパイプの開口との相対的な位置関係が変化することを特徴とする排気熱回収器。
An exhaust heat recovery device used to effectively utilize exhaust heat by transferring heat of exhaust gas to a cooling medium,
An exhaust heat recovery section having a heat exchange section for transferring heat of the exhaust gas to the cooling medium inside;
A bypass pipe with the front end side as an exhaust gas inlet;
A punching pipe in which a large number of openings are formed in order to introduce exhaust gas into the exhaust heat recovery section;
An exhaust valve that switches between recovery and non-recovery of exhaust gas by opening and closing the rear end of the punching pipe,
The bypass pipe extends backward in a state of being fixed to an end plate as a closing member on the upstream side of the exhaust flow,
The punching pipe extends forward in a state where the rear end side is fixed to the exhaust heat recovery unit on the exhaust flow downstream side,
The rear end of the bypass pipe and the punching that shield the opening of the punching pipe due to the difference between the thermal expansion caused by the cooling medium of the exhaust heat recovery unit and the thermal expansion caused by the exhaust gas temperature at the exhaust gas inlet An exhaust heat recovery device characterized in that a relative positional relationship with an opening of a pipe changes.
JP2008185663A 2008-07-17 2008-07-17 Exhaust heat recovery unit Active JP4844600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008185663A JP4844600B2 (en) 2008-07-17 2008-07-17 Exhaust heat recovery unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008185663A JP4844600B2 (en) 2008-07-17 2008-07-17 Exhaust heat recovery unit

Publications (2)

Publication Number Publication Date
JP2010024907A JP2010024907A (en) 2010-02-04
JP4844600B2 true JP4844600B2 (en) 2011-12-28

Family

ID=41730978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008185663A Active JP4844600B2 (en) 2008-07-17 2008-07-17 Exhaust heat recovery unit

Country Status (1)

Country Link
JP (1) JP4844600B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101123161B1 (en) 2010-05-03 2012-03-20 세종공업 주식회사 Exhaust heat recovery apparatus
KR101637257B1 (en) * 2010-06-29 2016-07-07 현대자동차 주식회사 Heat exchanger for exhaust heat withdrawal of vehicle
KR101241211B1 (en) * 2010-12-09 2013-03-13 현대자동차주식회사 Heat exchanger for exhaust heat withdrawal of vehicle
JP5789433B2 (en) * 2011-07-04 2015-10-07 カルソニックカンセイ株式会社 Waste heat recovery unit
CN108026817B (en) * 2016-01-22 2019-12-20 双叶产业株式会社 Integrated exhaust heat recovery device
DE102016216281A1 (en) * 2016-08-30 2018-03-01 HANON SYSTEMS, jusik hoesa bypass valve

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110615A (en) * 1986-10-28 1988-05-16 Osaki Electric Co Ltd Amorphous current transformer
JPS63115520A (en) * 1986-10-31 1988-05-20 松下冷機株式会社 Apparatus for preparing coffee or the like
JP2002138825A (en) * 2000-11-07 2002-05-17 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2006250524A (en) * 2005-02-14 2006-09-21 Sango Co Ltd Multi-pipe type heat recovery apparatus
JP2007315370A (en) * 2006-04-24 2007-12-06 Futaba Industrial Co Ltd Exhaust heat recovery exhaust emission control device

Also Published As

Publication number Publication date
JP2010024907A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
JP4844600B2 (en) Exhaust heat recovery unit
CN101117090B (en) Support structure of exhaust system heat exchanger
JP4281789B2 (en) Exhaust heat recovery device
US7921640B2 (en) Exhaust gas waste heat recovery
EP2570646B1 (en) High gas inlet temperature EGR system
KR101072329B1 (en) Heat exchanger
JP2016515180A (en) Heat recovery system and heat exchanger
JP5941878B2 (en) Heat exchanger and heat exchange device
JP2004183651A (en) Housing for turbocharger
JP2006250524A (en) Multi-pipe type heat recovery apparatus
CN110725729A (en) Heat exchanger for internal combustion engine
CN101358565B (en) Exhaust heat recovery apparatus
JP2007285264A (en) Heat exchanger
JPH09152283A (en) Heat exchanger
JP4407666B2 (en) Exhaust heat exchanger
JP2007239595A (en) Arrangement structure of exhaust system heat exchanger
JP4483313B2 (en) Engine exhaust pipe heat exchange structure
JP2011038467A (en) Exhaust gas recirculating device of engine
JP2007247554A (en) Exhaust heat recovery device
JP2008175461A (en) Heat exchanger
JP2006275038A (en) Heat recovery machine
JP6171699B2 (en) Exhaust heat recovery unit
JP2012102923A (en) Heat recovery device
JP6471867B2 (en) Waste heat recovery device
JPH1054230A (en) Heat recovery device of exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4844600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250