JP2007285264A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2007285264A
JP2007285264A JP2006115968A JP2006115968A JP2007285264A JP 2007285264 A JP2007285264 A JP 2007285264A JP 2006115968 A JP2006115968 A JP 2006115968A JP 2006115968 A JP2006115968 A JP 2006115968A JP 2007285264 A JP2007285264 A JP 2007285264A
Authority
JP
Japan
Prior art keywords
heat exchanger
exhaust
cooling water
exhaust gas
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006115968A
Other languages
Japanese (ja)
Inventor
Takeshi Yamada
武志 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006115968A priority Critical patent/JP2007285264A/en
Publication of JP2007285264A publication Critical patent/JP2007285264A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/103Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of more than two coaxial conduits or modules of more than two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger inhibiting increase of flow resistance of low temperature fluid due to heat exchange with high temperature fluid. <P>SOLUTION: In a heat exchanger 10 for exhaust heat recovery, an exhaust gas heat exchanger path 38 for circulating exhaust gas which is high temperature fluid and a cooling water heat exchange path 44 for circulating engine cooling water which is low temperature fluid exchanging heat with exhaust gas are adjacently provided. Channel cross-sectional area of the cooling water heat exchange path 44 is continuously expanded from an upstream side toward a downstream side in a flow direction of engine cooling water. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、例えば自動車等の排気ガスと冷却液との熱交換を行って排気熱を回収するための排気熱回収器等に適用される熱交換器に関する。   The present invention relates to a heat exchanger applied to an exhaust heat recovery device or the like for recovering exhaust heat by performing heat exchange between an exhaust gas of an automobile or the like and a coolant.

排気ガスの排気系路中に該排気ガスと冷却水との熱交換器を配設した技術が知られている(例えば、特許文献1参照)。この技術では、排気ガスが流通する複数の直管状の管体を周囲から覆う直管状のシェル内に形成された冷却水路を、冷却水が排気ガスと同じ向きに流通しつつ排気熱を回収するようになっている。
特開2004−293395号公報
A technique in which a heat exchanger for exhaust gas and cooling water is disposed in an exhaust gas passage of exhaust gas is known (for example, see Patent Document 1). In this technique, exhaust heat is recovered while cooling water flows in the same direction as the exhaust gas in a cooling water channel formed in a straight tubular shell covering a plurality of straight tubular bodies through which exhaust gas flows. It is like that.
JP 2004-293395 A

しかしながら、上記の如き従来の技術では、排気ガスから受熱した冷却水が膨張して通水抵抗が増大する問題があった。   However, the conventional technology as described above has a problem that the cooling water received from the exhaust gas expands and the water flow resistance increases.

本発明は、上記事実を考慮して、高温流体との熱交換による低温流体の流動抵抗の増加を抑制することができる熱交換器を得ることが目的である。   In view of the above fact, an object of the present invention is to obtain a heat exchanger that can suppress an increase in flow resistance of a low temperature fluid due to heat exchange with a high temperature fluid.

請求項1記載の発明に係る熱交換器は、高温流体を流通させるための高温側流路と、内部を流通する低温流体と前記高温側流路を流通する高温流体との熱交換可能に該高温側流路に隣接して設けられ、かつ前記低温流体の流れ方向の上流側から下流側に向けて流路断面積が連続的又は段階的に拡大されている低温側流路と、を備えている。   The heat exchanger according to claim 1 is capable of exchanging heat between a high-temperature side channel for circulating a high-temperature fluid, a low-temperature fluid flowing through the inside, and a high-temperature fluid flowing through the high-temperature side channel. A low-temperature side channel provided adjacent to the high-temperature side channel and having a channel cross-sectional area continuously or stepwise expanded from the upstream side to the downstream side in the flow direction of the low-temperature fluid. ing.

請求項1記載の熱交換器では、高温流体と低温流体との熱交換によって、高温流体が冷却される(放熱する)と共に低温流体が加熱される(受熱する)。この加熱によって低温流体は体積膨張する。ここで、低温流体が流通する冷温側流路は、低温流体の上流から下流に向けて連続的又は段階的に流路断面積が拡大する形状(テーパ形状等)であるため、低温流体の体積膨張による流動抵抗の増加が抑制される。   In the heat exchanger according to claim 1, the high temperature fluid is cooled (dissipates heat) and the low temperature fluid is heated (receives heat) by heat exchange between the high temperature fluid and the low temperature fluid. This heating causes the cryogenic fluid to expand in volume. Here, since the cold-side flow path through which the low-temperature fluid flows has a shape (tapered shape, etc.) in which the cross-sectional area of the flow path expands continuously or stepwise from the upstream to the downstream of the low-temperature fluid, the volume of the low-temperature fluid An increase in flow resistance due to expansion is suppressed.

このように、請求項1記載の熱交換器では、高温流体との熱交換による低温流体の流動抵抗の増加を抑制する(流動抵抗の低減を図る)ことができる。一方、高温流体は、放熱によって体積が縮小されるので、流動抵抗の増加が問題となることはない。なお、低温流体の流れ方向の上流側から下流側に向けて流路断面積が連続的又は段階的に拡大されているとの要件は、低温流体の流れ方向の途中に上流側よりも下流側の流路断面積が小さくなる部分が形成されないように低温流体の流れ方向の上流側から下流側に向けて流路断面積を拡大することを示し、流路断面積の増加割合は一定であって不定であっても良い。したがって、例えば、低温側流路の流路壁は、断面視で流れ方向に対し傾斜した直線状であっても良く、傾斜角の変化点を有する折れ線状であっても良く、曲線状であっても良く、階段状であっても良い。   Thus, in the heat exchanger according to claim 1, it is possible to suppress an increase in the flow resistance of the low temperature fluid due to heat exchange with the high temperature fluid (a reduction in the flow resistance). On the other hand, since the volume of the high-temperature fluid is reduced by heat radiation, an increase in flow resistance does not become a problem. In addition, the requirement that the flow path cross-sectional area is continuously or stepwise expanded from the upstream side to the downstream side in the flow direction of the low-temperature fluid is that the downstream side of the upstream side in the flow direction of the low-temperature fluid. This indicates that the channel cross-sectional area is enlarged from the upstream side to the downstream side in the flow direction of the low-temperature fluid so that the portion where the channel cross-sectional area becomes small is not formed. May be indefinite. Therefore, for example, the flow path wall of the low temperature side flow path may be a straight line inclined with respect to the flow direction in a cross-sectional view, may be a polygonal line having a change point of the inclination angle, or may be a curved line. It may be a stepped shape.

請求項2記載の発明に係る熱交換器は、請求項1記載の熱交換器において、前記高温側流路は、前記低温流体の流れ方向の上流側から下流側に向けて流路断面積が連続的又は段階的に縮小されている。   The heat exchanger according to a second aspect of the present invention is the heat exchanger according to the first aspect, wherein the high temperature side flow path has a flow path cross-sectional area from the upstream side to the downstream side in the flow direction of the low temperature fluid. Reduced continuously or stepwise.

請求項2記載の熱交換器では、低温側流路は、隔壁(管壁等)を介して隣接する高温側流路側に張り出すようにして下流側に向けて流路断面積を拡大しているため、全体として大型化することがない。したがって例えば、外郭部(シェル等)の外径を一定に保ちながら、下流側に向けて低温側流路の流路断面積を拡大することができる。   In the heat exchanger according to claim 2, the low-temperature flow path is expanded to the downstream side so as to protrude toward the adjacent high-temperature flow path via a partition wall (tube wall or the like). Therefore, it does not increase in size as a whole. Therefore, for example, the channel cross-sectional area of the low temperature side channel can be expanded toward the downstream side while keeping the outer diameter of the outer shell (shell, etc.) constant.

請求項3記載の発明に係る熱交換器は、請求項2記載の熱交換器において、前記低温流体の流れ方向と前記高温流体の流れ方向とが同じ向きである。   The heat exchanger according to a third aspect of the present invention is the heat exchanger according to the second aspect, wherein the flow direction of the low-temperature fluid and the flow direction of the high-temperature fluid are the same direction.

請求項3記載の熱交換器では、低温流体と高温流体とが同じ方向に流れる(高温流体と低温流体とで上下流側が一致する)並行流型熱交換を構成しているため、低温側流の流路断面積が上流側から下流側に向けて連続的又は段階的に拡大する一方、高温側流路は、上流から下流に向けて流路断面積が連続的又は段階的に減少している。これにより、高温側流路は、高温流体が高温である(相対的に体積が大きい)上流側の流路断面が大きく、熱交換に伴い体積が縮小する下流側に向け流路断面が徐々に縮小するので、低温側流路が高温側流路の張り出すことに伴う高温側流動抵抗の増加が防止される。すなわち、熱交換器全体の大きさを維持すると共に高温流体の流動抵抗の増大を防止しながら、低温流体の流動抵抗の低減を図ることができる。   In the heat exchanger according to claim 3, since the low-temperature fluid and the high-temperature fluid flow in the same direction (the high-temperature fluid and the low-temperature fluid coincide with each other on the upstream and downstream sides), The cross-sectional area of the channel increases continuously or stepwise from the upstream side to the downstream side, while the cross-sectional area of the high-temperature side channel decreases continuously or stepwise from the upstream side to the downstream side. Yes. As a result, the high-temperature flow path has a large flow-path cross section on the upstream side where the high-temperature fluid is hot (relatively large in volume), and the flow-path cross section gradually decreases toward the downstream where the volume decreases with heat exchange. Since it shrinks, an increase in the high-temperature side flow resistance due to the low-temperature side channel extending from the high-temperature side channel is prevented. That is, it is possible to reduce the flow resistance of the low-temperature fluid while maintaining the size of the entire heat exchanger and preventing an increase in the flow resistance of the high-temperature fluid.

以上説明したように本発明に係る熱交換器は、高温流体との熱交換による低温流体の流動抵抗の増加を抑制することができるという優れた効果を有する。   As described above, the heat exchanger according to the present invention has an excellent effect that an increase in flow resistance of a low temperature fluid due to heat exchange with a high temperature fluid can be suppressed.

本発明の第1の実施形態に係る熱交換器としての排気熱回収用熱交換器10について、図1及び図2に基づいて説明する。なお、以下の説明で、単に上流・下流の語を用いるときは、排気ガスの流れ方向の上流・下流を示すものとする。   An exhaust heat recovery heat exchanger 10 as a heat exchanger according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2. In the following description, when the terms upstream and downstream are simply used, they indicate upstream and downstream in the flow direction of the exhaust gas.

図2には、排気熱回収用熱交換器10が適用された排気熱回収システム18の概略全体構成が模式的なフロー図にて示されている。この図に示される如く、排気熱回収システム18は、自動車の内燃機関エンジン12の高温流体としての排気ガスが有する熱を、低温流体(冷却媒体)としてのエンジン冷却水との熱交換によって回収し、暖房やエンジン12の暖機促進等に利用する装置である。   FIG. 2 shows a schematic overall flow diagram of the exhaust heat recovery system 18 to which the exhaust heat recovery heat exchanger 10 is applied. As shown in this figure, an exhaust heat recovery system 18 recovers heat of exhaust gas as a high-temperature fluid of an internal combustion engine 12 of an automobile by heat exchange with engine cooling water as a low-temperature fluid (cooling medium). It is a device used for heating and promoting warm-up of the engine 12.

エンジン12には、排気ガスを導出する排気経路を構成する排気管14が接続されている。排気管14による排気ガスの排出経路上には、上流側から順に触媒コンバータ16、排気熱回収用熱交換器10、メインマフラ20が配設されている。触媒コンバータ16は、内蔵した触媒16Aによって通過する排気ガスを浄化するように構成されている。消音器としてのメインマフラ20は、排気ガスを大気中に排出するのに伴って生じる排気音を低減するように構成されている。   The engine 12 is connected to an exhaust pipe 14 that constitutes an exhaust path for leading exhaust gas. A catalytic converter 16, an exhaust heat recovery heat exchanger 10, and a main muffler 20 are arranged in this order from the upstream side on the exhaust gas discharge path by the exhaust pipe 14. The catalytic converter 16 is configured to purify exhaust gas passing therethrough by a built-in catalyst 16A. The main muffler 20 as a silencer is configured to reduce the exhaust noise generated when exhaust gas is discharged into the atmosphere.

排気熱回収用熱交換器10は、排気ガスとエンジン冷却水のとの熱交換によって排気ガスの熱をエンジン冷却水に回収させる構成とされている。また、この排気熱回収用熱交換器10内には、排気ガスのバイパス流路22、該バイパス流路22を開閉するための流路切替装置としての流路切替バルブ24が配設されており、排気ガスがエンジン冷却水との熱交換を行う排気熱回収モードと、排気ガスがバイパス流路22を通過するノーマルモードとを切り替え得る構成とされている。以下、具体的に説明する。   The exhaust heat recovery heat exchanger 10 is configured to recover the heat of the exhaust gas to the engine coolant by heat exchange between the exhaust gas and the engine coolant. The exhaust heat recovery heat exchanger 10 is provided with a bypass flow path 22 for exhaust gas and a flow path switching valve 24 as a flow path switching device for opening and closing the bypass flow path 22. The exhaust heat recovery mode in which the exhaust gas exchanges heat with the engine coolant and the normal mode in which the exhaust gas passes through the bypass flow path 22 can be switched. This will be specifically described below.

図1(A)及び図1(B)に示される如く、排気熱回収用熱交換器10は、それぞれ円筒状に形成されると共に同心円状に配置された内筒26とシェルとしての外筒28とを有して構成されており、内筒26と外筒28との間に排気ガスとエンジン冷却水とが熱交換を行うための熱交換部30が構成されている。   As shown in FIGS. 1 (A) and 1 (B), the exhaust heat recovery heat exchanger 10 is formed in a cylindrical shape and is arranged concentrically and an outer tube 28 as a shell. A heat exchanging unit 30 for exchanging heat between the exhaust gas and the engine coolant is formed between the inner cylinder 26 and the outer cylinder 28.

内筒26は、軸線方向が水平方向(例えば、車体前後方向)と一致するように配置され、外筒28の軸心部を貫通しており、軸線方向の両端部が排気管14に接続されて連続している。内筒26は、排気管14の一部として構成されても良い。また、排気熱回収用熱交換器10は、上流端が内筒26の外周に気密状態で固定されると共に下流端が外筒28の上流端28Aに接続されたコニカル胴32と、下流端が内筒26の外周に気密状態で固定されると共に上流端が外筒28の下流端28Bに接続されたコニカル胴34とを備えている。   The inner cylinder 26 is disposed so that the axial direction coincides with the horizontal direction (for example, the longitudinal direction of the vehicle body), passes through the axial center portion of the outer cylinder 28, and both ends in the axial direction are connected to the exhaust pipe 14. Are continuous. The inner cylinder 26 may be configured as a part of the exhaust pipe 14. The exhaust heat recovery heat exchanger 10 has an upstream end fixed to the outer periphery of the inner cylinder 26 in an airtight state and a downstream end connected to the upstream end 28A of the outer cylinder 28, and a downstream end A conical cylinder 34 is fixed to the outer periphery of the inner cylinder 26 in an airtight state and has an upstream end connected to a downstream end 28 </ b> B of the outer cylinder 28.

この排気熱回収用熱交換器10における熱交換部30には、内筒26とコニカル胴32との間の空間である排気ガス入口ヘッダ36と、内筒26と外筒28との間に形成された略円筒状空間(後述する冷却水管42の占有分を除く空間)である高温側流路としての排気ガス熱交換路38と、内筒26とコニカル胴34との間の空間である排気ガス出口ヘッダ40とが形成されている。一方、内筒26の内部は、上記したバイパス流路22とされている。この内筒26には、コニカル胴32の内側部分に設けられて排気ガス入口ヘッダ36に連通する熱交換器入口孔26Aと、コニカル胴34の内側部分に設けられて排気ガス出口ヘッダ40に連通する熱交換器出口孔26Bとが形成されている。   The heat exchanger 30 in the exhaust heat recovery heat exchanger 10 is formed between an exhaust gas inlet header 36, which is a space between the inner cylinder 26 and the conical cylinder 32, and the inner cylinder 26 and the outer cylinder 28. Exhaust gas heat exchange path 38 as a high-temperature side flow path that is a substantially cylindrical space (a space excluding the portion occupied by a cooling water pipe 42 to be described later), and an exhaust gas that is a space between the inner cylinder 26 and the conical cylinder 34. A gas outlet header 40 is formed. On the other hand, the inside of the inner cylinder 26 is the bypass channel 22 described above. The inner cylinder 26 is provided in an inner portion of the conical cylinder 32 and communicates with an exhaust gas inlet header 36, and is provided in an inner portion of the conical cylinder 34 and communicates with an exhaust gas outlet header 40. The heat exchanger outlet hole 26B is formed.

排気ガス熱交換路38内には、冷却水管42が配設されており、排気熱回収用熱交換器10におけるエンジン冷却水の流通路である低温側流路としての冷却水熱交換路44を構成している。この実施形態では、冷却水管42は、二重筒の内側に内筒26を覆う筒状の冷却水熱交換路44を形成している。より具体的には、冷却水管42は、略円筒状の内水管42Aと、コニカル(円錐筒)状に形成された外水管42Bと、内水管42Aと外水管42Bとの軸線方向端部管を塞ぐ一対の蓋板42Cとを有して構成されている。これにより、冷却水管42の内水管42A、42B、42Cに囲まれた冷却水熱交換路44は、軸線方向一方側から下方側に向けて流路断面積が連続的に(徐々に)拡大している。   A cooling water pipe 42 is disposed in the exhaust gas heat exchange path 38, and a cooling water heat exchange path 44 as a low-temperature side flow path that is a flow path of engine cooling water in the exhaust heat recovery heat exchanger 10 is provided. It is composed. In this embodiment, the cooling water pipe 42 forms a cylindrical cooling water heat exchange path 44 that covers the inner cylinder 26 inside the double cylinder. More specifically, the cooling water pipe 42 includes a substantially cylindrical inner water pipe 42A, an outer water pipe 42B formed in a conical (conical cylinder) shape, and axial end portions of the inner water pipe 42A and the outer water pipe 42B. And a pair of lid plates 42C for closing. Thus, the cooling water heat exchange path 44 surrounded by the inner water pipes 42A, 42B, and 42C of the cooling water pipe 42 has a channel cross-sectional area that continuously (gradually) expands from one side in the axial direction toward the lower side. ing.

そして、排気熱回収用熱交換器10では、冷却水熱交換路44における流路断面積の小さい側がエンジン冷却水の流れ方向上流側とされ、冷却水熱交換路44における流路断面積の大きい側がエンジン冷却水の流れ方向下流側とされるように、マクロ的にはエンジン冷却水が筒状の冷却水熱交換路44を軸線方向に沿って流れる構成とされている。また、この実施形態では、エンジン冷却水の流れ方向が排気ガスの流れ方向と一致しており、排気熱回収用熱交換器10は並行流型熱交換器とされている。   In the exhaust heat recovery heat exchanger 10, the side with the smaller flow path cross-sectional area in the cooling water heat exchange path 44 is the upstream side in the flow direction of the engine cooling water, and the flow path cross-sectional area in the cooling water heat exchange path 44 is larger. Macroscopically, the engine cooling water flows along the axial direction in the cylindrical cooling water heat exchange path 44 so that the side is the downstream side in the flow direction of the engine cooling water. In this embodiment, the flow direction of the engine cooling water coincides with the flow direction of the exhaust gas, and the exhaust heat recovery heat exchanger 10 is a parallel flow heat exchanger.

したがって、上記の如く円筒形状に形成された外筒28と内筒26との間に形成された円筒状空間における冷却水管42(冷却水熱交換路44)の占有分を除く排気ガス熱交換路38は、排気ガス流れ方向の上流から下流に向けて流路断面積が徐々に減少している。以上説明した冷却水管42は、冷却水流れ方向の上流側部分が外筒28を貫通して設けられた入口ポート46に接続されると共に、冷却水流れ方向の下流側部分が外筒28を貫通して設けられた出口ポート48に接続されている。   Therefore, the exhaust gas heat exchange path excluding the portion occupied by the cooling water pipe 42 (cooling water heat exchange path 44) in the cylindrical space formed between the outer cylinder 28 and the inner cylinder 26 formed in a cylindrical shape as described above. No. 38 has a channel cross-sectional area that gradually decreases from upstream to downstream in the exhaust gas flow direction. The cooling water pipe 42 described above is connected to the inlet port 46 provided in the upstream portion in the cooling water flow direction through the outer cylinder 28, and the downstream portion in the cooling water flow direction passes through the outer cylinder 28. The outlet port 48 is connected to the outlet port 48.

以上説明した排気熱回収用熱交換器10では、流路切替バルブ24が内筒26(バイパス流路22)を閉止している場合には、排気ガスが排気ガス熱交換路38に流れることで熱交換機能を果たし、流路切替バルブ24が内筒26を開放している場合には、排気ガスが主にバイパス流路22を流れて排気ガスバイパス機能を果たす構成とされている。なお、冷却水管42が配設された排気ガス熱交換路38の流動抵抗(圧力損失)は、開放されているバイパス流路22の流動抵抗に対し大きく、流路切替バルブ24が内筒26を開放している場合には、排気ガス熱交換路38には殆ど排気ガスが流れない構成とされている。   In the exhaust heat recovery heat exchanger 10 described above, when the flow path switching valve 24 closes the inner cylinder 26 (bypass flow path 22), the exhaust gas flows into the exhaust gas heat exchange path 38. When the heat exchange function is performed and the flow path switching valve 24 opens the inner cylinder 26, the exhaust gas mainly flows through the bypass flow path 22 to perform the exhaust gas bypass function. Note that the flow resistance (pressure loss) of the exhaust gas heat exchange path 38 provided with the cooling water pipe 42 is larger than the flow resistance of the opened bypass flow path 22, and the flow path switching valve 24 connects the inner cylinder 26. When it is open, almost no exhaust gas flows through the exhaust gas heat exchange path 38.

流路切替バルブ24は、図示しない制御装置としてのECUによって制御され、例えば、エンジン12の暖機促進要求がされた場合、エンジン冷却水温が低いときに暖房要求がされた場合などにバイパス流路22を閉止する(排気熱回収モードを選択する)ようになっている。また、ECUは、例えばエンジン冷却水温が上昇して閾値を超えた場合に、流路切替バルブ24を開作動して22を開放させる(排気熱回収モードからノーマルモードに切り替える)ようになっている。   The flow path switching valve 24 is controlled by an ECU as a control device (not shown). For example, when a warm-up promotion request is made for the engine 12, a heating request is made when the engine coolant temperature is low, etc. 22 is closed (exhaust heat recovery mode is selected). Further, for example, when the engine coolant temperature rises and exceeds the threshold, the ECU opens the flow path switching valve 24 to open 22 (switch from the exhaust heat recovery mode to the normal mode). .

一方、排気熱回収システム18は、エンジン冷却水の熱を暖房用に回収するフロントヒータコア50、リヤヒータコア52、及びエンジン冷却水をフロントヒータコア50、リヤヒータコア52に循環させるヒータ温水路54を備えている。フロントヒータコア50とリヤヒータコア52とは、並列に配置されている。そして、ヒータ温水路54におけるリヤヒータコア52の下流側に排気熱回収用熱交換器10が配置されている。すなわち、ヒータ温水路54におけるリヤヒータコア52側に入口ポート46が配置されると共に、ヒータ温水路54におけるエンジン12の上流側に出口ポート48が配置されている。この実施形態では、排気熱回収用熱交換器10は、エンジン冷却水の系統においては、フロントヒータコア50に対し並列でかつリヤヒータコア52に対し直列に配置されている。   On the other hand, the exhaust heat recovery system 18 includes a front heater core 50 and a rear heater core 52 that recover the heat of the engine coolant for heating, and a heater hot water passage 54 that circulates the engine coolant to the front heater core 50 and the rear heater core 52. Yes. The front heater core 50 and the rear heater core 52 are arranged in parallel. The exhaust heat recovery heat exchanger 10 is disposed downstream of the rear heater core 52 in the heater hot water passage 54. That is, the inlet port 46 is disposed on the heater warm water passage 54 on the rear heater core 52 side, and the outlet port 48 is disposed on the heater warm water passage 54 on the upstream side of the engine 12. In this embodiment, the exhaust heat recovery heat exchanger 10 is arranged in parallel to the front heater core 50 and in series to the rear heater core 52 in the engine cooling water system.

したがって、排気熱回収システム18では、図1のヒータ温水路54上に示す矢印の通りエンジン冷却水が流れるようになっている。これにより、エンジン12を通った高温の温水がフロントヒータコア50及びリヤヒータコア52を通る際に熱交換されて暖房に利用され、リヤヒータコア52にて降温されたエンジン冷却水が排気熱回収用熱交換器10に導入されて上記排気ガスと熱交換する構成である。排気熱回収用熱交換器10を通過したエンジン冷却水は、フロントヒータコア50を通過したエンジン冷却水と共にエンジン12に戻されるようになっている。このように、排気熱回収用熱交換器10は、例えば暖房機能の観点からは、エンジン12によって加熱される前のエンジン冷却水を予熱する予熱器として機能する構成である。   Therefore, in the exhaust heat recovery system 18, the engine cooling water flows as shown by the arrows on the heater hot water passage 54 in FIG. As a result, when hot hot water that has passed through the engine 12 passes through the front heater core 50 and the rear heater core 52, heat is exchanged and used for heating, and engine cooling water that has been cooled at the rear heater core 52 is used for heat recovery for exhaust heat recovery. It is the structure which is introduce | transduced into the container 10 and heat-exchanges with said exhaust gas. The engine coolant that has passed through the exhaust heat recovery heat exchanger 10 is returned to the engine 12 together with the engine coolant that has passed through the front heater core 50. Thus, the exhaust heat recovery heat exchanger 10 is configured to function as a preheater that preheats the engine coolant before being heated by the engine 12 from the viewpoint of the heating function, for example.

次に、本第1の実施形態の作用を説明する。   Next, the operation of the first embodiment will be described.

上記構成の排気熱回収システム18では、エンジン12の始動直後のようにエンジン冷却水温が低い場合には、例えば暖房要求やエンジン12の暖機促進要求に基づいてECUが流路切替バルブ24を閉駆動してバイパス流路22を閉止させる。すなわち、排気熱回収モードが選択される。すると、エンジン12の排気ガスはバイパス流路22を流れず、排気熱回収用熱交換器10の排気ガス熱交換路38に導入される。排気ガス熱交換路38に導入された排気ガスは、排気熱回収用熱交換器10においてエンジン冷却水との間で熱交換を行い、エンジン冷却水を加熱させる。これにより、暖房が促進され又はエンジン12の暖機が促進される。   In the exhaust heat recovery system 18 configured as described above, when the engine coolant temperature is low, such as immediately after the engine 12 is started, the ECU closes the flow path switching valve 24 based on, for example, a heating request or a warm-up promotion request for the engine 12. Driven to close the bypass passage 22. That is, the exhaust heat recovery mode is selected. Then, the exhaust gas of the engine 12 does not flow through the bypass flow path 22 but is introduced into the exhaust gas heat exchange path 38 of the exhaust heat recovery heat exchanger 10. The exhaust gas introduced into the exhaust gas heat exchange path 38 exchanges heat with the engine coolant in the exhaust heat recovery heat exchanger 10 to heat the engine coolant. Thereby, heating is accelerated | stimulated or the warming-up of the engine 12 is accelerated | stimulated.

この熱交換によって排気ガスは、エンジン冷却水に放熱することで例えば略400℃から略100℃まで降温(冷却)されて体積が減少し、一方、エンジン冷却水は、排気ガスからの受熱によって例えば略80℃から82℃乃至83℃まで昇温されて体積膨張する。   By this heat exchange, the exhaust gas radiates heat to the engine cooling water, for example, the temperature is lowered (cooled) from about 400 ° C. to about 100 ° C. and the volume is reduced. On the other hand, the engine cooling water is The temperature is increased from about 80 ° C. to 82 ° C. to 83 ° C., and the volume expands.

ここで、排気熱回収用熱交換器10では、冷却水熱交換路44の流路断面積が上流から下流に向けて連続的に拡大されているため、エンジン冷却水の排気ガスとの熱交換(受熱)に伴う体積膨張によって該エンジン冷却水の流動抵抗(通水抵抗)が増大することが防止又は著しく抑制される。すなわち、エンジン冷却水の下流側への流動に伴う体積膨張が冷却水熱交換路44の下流側に向けた容量拡大によって吸収される。   Here, in the heat exchanger 10 for exhaust heat recovery, the flow passage cross-sectional area of the cooling water heat exchange passage 44 is continuously enlarged from upstream to downstream, so that heat exchange with the exhaust gas of the engine cooling water is performed. An increase in flow resistance (water flow resistance) of the engine cooling water due to volume expansion accompanying (heat reception) is prevented or significantly suppressed. That is, the volume expansion accompanying the flow of the engine coolant downstream is absorbed by the capacity expansion toward the downstream of the coolant heat exchange path 44.

これにより、エンジン冷却水を駆動するウォータポンプの負荷が低減される。特に、エンジン12によって機械的に駆動されるメカポンプと比較して容量に余裕の少ない電動ポンプをウォータポンプとして用いた自動車(例えば、車輪の駆動源としてエンジン12の他に電気モータを有し、走行中にエンジン12を停止する場合があるハイブリッド車等)においては、エンジン冷却水の流動抵抗を低減することによる電動ポンプの負荷軽減効果が大きいため、適用された自動車の燃費改善に対する寄与度が大きい。   Thereby, the load of the water pump that drives the engine coolant is reduced. In particular, an automobile using an electric pump having a small capacity as a water pump compared with a mechanical pump mechanically driven by the engine 12 (for example, an electric motor in addition to the engine 12 as a driving source for wheels, and running) In the case of a hybrid vehicle or the like that may stop the engine 12 in the middle), the load reduction effect of the electric pump by reducing the flow resistance of the engine cooling water is large, and thus the contribution to the improvement of the fuel consumption of the applied vehicle is large. .

このように、本発明の第1の実施形態に係る排気熱回収用熱交換器10では、排気ガスとの熱交換によってエンジン冷却水の流動抵抗が増加することを抑制することができる。   Thus, in the heat exchanger 10 for exhaust heat recovery according to the first embodiment of the present invention, it is possible to suppress an increase in the flow resistance of engine cooling water due to heat exchange with the exhaust gas.

一方、排気熱回収用熱交換器10では、排気ガス熱交換路38の流路断面積が上流から下流に向けて連続的に縮小されているが、換言すれば、冷却水熱交換路44が下流側ほど大きく排気ガス熱交換路38に張り出しているが、上記の通り排気ガスはエンジン冷却水との熱交換によって体積が縮小されるので、排気抵抗が増大することがない。これにより、排気抵抗の増大に起因する燃費の悪化も防止される。   On the other hand, in the heat exchanger 10 for exhaust heat recovery, the flow passage cross-sectional area of the exhaust gas heat exchange path 38 is continuously reduced from upstream to downstream. In other words, the cooling water heat exchange path 44 is Although the exhaust gas heats out to the exhaust gas heat exchange path 38 more downstream, the exhaust gas is reduced in volume by heat exchange with the engine coolant as described above, so that the exhaust resistance does not increase. As a result, fuel consumption deterioration due to an increase in exhaust resistance is also prevented.

そして、排気熱回収用熱交換器10では、排気ガス熱交換路38と冷却水熱交換路44とで流れ方向が一致した並行流型熱交換器であるため、排気ガス熱交換路38の流路断面積を下流側に向けて徐々に縮小しつつ冷却水熱交換路44の流路断面積を下流に向けて徐々に拡大する構成が実現された。これにより、排気熱回収用熱交換器10は、排気ガス熱交換路38、冷却水熱交換路44の流路断面積が流れ方向各部で一定であり熱交換性能が同等である熱交換器と比較して、外筒28の外径を拡大することなく、換言すれば、自動車の搭載スペースを増すことなく、上記した各効果を奏する(機能を果たす)ことができる。   The exhaust heat recovery heat exchanger 10 is a parallel flow type heat exchanger in which the flow directions of the exhaust gas heat exchange path 38 and the cooling water heat exchange path 44 coincide with each other. A configuration has been realized in which the cross-sectional area of the cooling water heat exchange path 44 is gradually increased toward the downstream while the path cross-sectional area is gradually reduced toward the downstream side. As a result, the heat exchanger 10 for exhaust heat recovery is a heat exchanger in which the cross-sectional areas of the exhaust gas heat exchange path 38 and the cooling water heat exchange path 44 are constant in each part in the flow direction and the heat exchange performance is equivalent. In comparison, the above-described effects (functions) can be achieved without increasing the outer diameter of the outer cylinder 28, in other words, without increasing the mounting space of the automobile.

次いで、本発明の他の実施形態を説明する。なお、上記第1の実施形態又は前出の構成と基本的に同一の部品・部分については上記第1の実施形態又は前出の構成と同一の符号を付して説明、図示を省略する場合がある。   Next, another embodiment of the present invention will be described. In addition, the same reference numerals as those in the first embodiment or the above-described configuration are used for the parts / parts basically the same as those in the first embodiment or the above-mentioned configuration, and the description and illustration are omitted. There is.

(第2の実施形態)
図3には、本発明の第2の実施形態に係る排気熱回収用熱交換器60が側断面図にて示されている。この図に示される如く、排気熱回収用熱交換器60は、排気ガスの流れ方向とエンジン冷却水の流れ方向とが逆向きである対向流型熱交換器である点で、並行流型熱交換器である排気熱回収用熱交換器10とは異なる。
(Second Embodiment)
FIG. 3 is a side sectional view showing an exhaust heat recovery heat exchanger 60 according to a second embodiment of the present invention. As shown in this figure, the exhaust heat recovery heat exchanger 60 is a counter flow type heat exchanger in which the flow direction of the exhaust gas and the flow direction of the engine cooling water are opposite to each other. It differs from the heat exchanger 10 for exhaust heat recovery which is an exchanger.

具体的には、排気熱回収用熱交換器60は、冷却水管42が排気ガス熱交換路38内で排気熱回収用熱交換器10における向きとは逆向きに配置されており、入口ポート46が出口ポート48に対し排気ガス流れの下流側に配置されている。これにより、排気熱回収用熱交換器60は、排気ガス熱交換路38の流路断面積が下流(エンジン冷却水の上流側)側に向けて徐々に拡大される構成とされている。排気熱回収用熱交換器60の他の構成は、排気熱回収用熱交換器10の対応する構成と同じである。   Specifically, in the heat exchanger 60 for exhaust heat recovery, the cooling water pipe 42 is disposed in the exhaust gas heat exchange path 38 in the direction opposite to the direction in the heat exchanger 10 for exhaust heat recovery, and the inlet port 46 Is disposed downstream of the outlet port 48 in the exhaust gas flow. Thus, the exhaust heat recovery heat exchanger 60 is configured such that the flow passage cross-sectional area of the exhaust gas heat exchange passage 38 is gradually enlarged toward the downstream side (upstream side of the engine cooling water). Other configurations of the exhaust heat recovery heat exchanger 60 are the same as the corresponding configurations of the exhaust heat recovery heat exchanger 10.

したがって、第2の実施形態に係る排気熱回収用熱交換器60によっても、エンジン冷却水の流動抵抗の低減について、第1の実施形態に係る排気熱回収用熱交換器10と同様の作用によって同様の効果を得ることができる。また、排気熱回収用熱交換器60は、対向流型の熱交換器であるため、排気熱回収用熱交換器10と比較して熱交換効率が良好である。さらに、排気熱回収用熱交換器10では、円筒状の外筒28の内側に冷却水熱交換路44を構成(配設)しているため、自動車の搭載スペースを増すことがない。さらにまた、排気熱回収用熱交換器60によっても、排気ガスの排気抵抗は、排気ガス熱交換路38の流動に伴って(排気ガス熱交換路38自体の形状に起因して)増大することがない。   Therefore, the exhaust heat recovery heat exchanger 60 according to the second embodiment also reduces the flow resistance of the engine cooling water by the same action as the exhaust heat recovery heat exchanger 10 according to the first embodiment. Similar effects can be obtained. Further, since the exhaust heat recovery heat exchanger 60 is a counterflow type heat exchanger, the heat exchange efficiency is better than that of the exhaust heat recovery heat exchanger 10. Furthermore, in the heat exchanger 10 for exhaust heat recovery, since the cooling water heat exchange path 44 is configured (arranged) inside the cylindrical outer cylinder 28, the mounting space of the automobile is not increased. Furthermore, the exhaust heat recovery heat exchanger 60 also increases the exhaust gas exhaust resistance with the flow of the exhaust gas heat exchange path 38 (due to the shape of the exhaust gas heat exchange path 38 itself). There is no.

(第3の実施形態)
図4には、本発明の第3の実施形態に係る排気熱回収用熱交換器70が側断面図にて示されている。この図に示される如く、排気熱回収用熱交換器70は、円筒形状の外筒28に代えて、排気ガス流れ方向の下流側から上流側に向けて内径が連続的に拡大されたコニカル形状の外筒72を備える点で、第2の実施形態に係る排気熱回収用熱交換器60とは異なる。
(Third embodiment)
FIG. 4 is a side sectional view showing an exhaust heat recovery heat exchanger 70 according to a third embodiment of the present invention. As shown in this figure, an exhaust heat recovery heat exchanger 70 is a conical shape whose inner diameter is continuously increased from the downstream side to the upstream side in the exhaust gas flow direction instead of the cylindrical outer cylinder 28. This is different from the exhaust heat recovery heat exchanger 60 according to the second embodiment in that an outer cylinder 72 is provided.

外筒72は、その平均内径が外筒28の内径に略一致しており、かつそのテーパ角が外水管42B(冷却水熱交換路44の外周側)のテーパ角に対し同等か又は若干小とされてしている。これにより、排気熱回収用熱交換器70の排気ガス熱交換路38は、その流路断面積が排気ガスの流れ方向の各部において略一定とされている。排気熱回収用熱交換器70の他の構成は、排気熱回収用熱交換器60の対応する構成と同じである。   The outer cylinder 72 has an average inner diameter substantially equal to the inner diameter of the outer cylinder 28, and the taper angle thereof is equal to or slightly smaller than the taper angle of the outer water pipe 42B (the outer peripheral side of the cooling water heat exchange path 44). It is said that. As a result, the exhaust gas heat exchange passage 38 of the exhaust heat recovery heat exchanger 70 has a substantially constant cross-sectional area in each part of the exhaust gas flow direction. Other configurations of the exhaust heat recovery heat exchanger 70 are the same as the corresponding configurations of the exhaust heat recovery heat exchanger 60.

したがって、第3の実施形態に係る排気熱回収用熱交換器70によっても、エンジン冷却水の流動抵抗の低減について、第1の実施形態に係る排気熱回収用熱交換器10と同様の作用によって同様の効果を得ることができる。また、外筒72を備えた排気熱回収用熱交換器70では、排気熱回収用熱交換器60と比較して、排気ガス熱交換路38の上流端(排気ガス入口)の流路断面積が大きくなるため、排気ガス流の絞り部が形成されることがない(絞り効果が抑制される)。このため、並行流型熱交換器と比較して熱交換効率の良好な対向流型熱交換器において、排気ガス熱交換路38の入口部の絞り効果による背圧上昇を防止することができる。   Therefore, the exhaust heat recovery heat exchanger 70 according to the third embodiment also reduces the flow resistance of the engine cooling water by the same action as the exhaust heat recovery heat exchanger 10 according to the first embodiment. Similar effects can be obtained. Further, in the exhaust heat recovery heat exchanger 70 provided with the outer cylinder 72, compared to the exhaust heat recovery heat exchanger 60, the flow path cross-sectional area at the upstream end (exhaust gas inlet) of the exhaust gas heat exchange path 38. Therefore, the throttle part of the exhaust gas flow is not formed (the throttle effect is suppressed). For this reason, in the counterflow type heat exchanger having better heat exchange efficiency than the parallel flow type heat exchanger, it is possible to prevent the back pressure from increasing due to the throttling effect at the inlet of the exhaust gas heat exchange path 38.

(第4の実施形態)
図5には、本発明の第4の実施形態に係る排気熱回収用熱交換器80が側断面図にて示されている。この図に示される如く、排気熱回収用熱交換器80は、円筒形状の外筒28に代えて、排気ガス流れ方向の上流側から下流側に向けて内径が連続的に拡大されたコニカル形状の外筒82を備える点で、第1の実施形態に係る排気熱回収用熱交換器10とは異なる。
(Fourth embodiment)
FIG. 5 is a side sectional view showing an exhaust heat recovery heat exchanger 80 according to a fourth embodiment of the present invention. As shown in this figure, an exhaust heat recovery heat exchanger 80 is a conical shape whose inner diameter is continuously enlarged from the upstream side to the downstream side in the exhaust gas flow direction instead of the cylindrical outer cylinder 28. This is different from the heat exchanger 10 for exhaust heat recovery according to the first embodiment in that an outer cylinder 82 is provided.

外筒82は、その平均内径が外筒28の内径に略一致しており、かつそのテーパ角が外水管42B(冷却水熱交換路44の外周側)のテーパ角に対し同等か又は若干小とされている。これにより、排気熱回収用熱交換器80の排気ガス熱交換路38は、その流路断面積が排気ガスの流れ方向の各部において略一定とされている。排気熱回収用熱交換器80の他の構成は、排気熱回収用熱交換器10の対応する構成と同じである。   The outer cylinder 82 has an average inner diameter substantially equal to the inner diameter of the outer cylinder 28, and the taper angle thereof is equal to or slightly smaller than the taper angle of the outer water pipe 42B (the outer peripheral side of the cooling water heat exchange path 44). It is said that. As a result, the exhaust gas heat exchange path 38 of the heat exchanger 80 for exhaust heat recovery has a substantially constant cross-sectional area in each part of the exhaust gas flow direction. Other configurations of the exhaust heat recovery heat exchanger 80 are the same as the corresponding configurations of the exhaust heat recovery heat exchanger 10.

したがって、第4の実施形態に係る排気熱回収用熱交換器80によっても、排気ガス熱交換路38の流路断面積を下流側に向けて徐々に縮小させることによる効果(大型化防止)を除き、第1の実施形態に係る排気熱回収用熱交換器10と同様の作用によって同様の効果を得ることができる。   Therefore, the exhaust heat recovery heat exchanger 80 according to the fourth embodiment also has an effect (preventing enlargement) by gradually reducing the cross-sectional area of the exhaust gas heat exchange path 38 toward the downstream side. Except for this, the same effect can be obtained by the same operation as the exhaust heat recovery heat exchanger 10 according to the first embodiment.

なお、上記した第1乃至第4の実施形態では、冷却水管42が円筒形状の略円筒状の内水管42Aを有する例を示したが、本発明はこれに限定されず、例えば、略円筒状の内水管42Aに代えてテーパ状の内水管を設けても良い。この場合、外水管42Bに代えて円筒状の外水管を設ける構成とすることも可能である。   In the first to fourth embodiments described above, the cooling water pipe 42 has an example of the cylindrical inner water pipe 42A. However, the present invention is not limited to this, for example, a substantially cylindrical shape. Instead of the inner water pipe 42A, a tapered inner water pipe may be provided. In this case, a configuration in which a cylindrical outer water pipe is provided instead of the outer water pipe 42B is also possible.

(第5の実施形態)
図6(A)には、本発明の第5の実施形態に係る排気熱回収用熱交換器90が側断面図にて示されており、図6(B)には、図6(A)の6A−6A線に沿った断面図が示されている。この図に示される如く、排気熱回収用熱交換器90は、内筒26すなわちバイパス流路22が内部に設けられていない点で、並行流型熱交換器である排気熱回収用熱交換器10とは異なる。
(Fifth embodiment)
FIG. 6 (A) shows a side sectional view of an exhaust heat recovery heat exchanger 90 according to the fifth embodiment of the present invention, and FIG. 6 (B) shows FIG. 6 (A). A sectional view taken along line 6A-6A is shown. As shown in this figure, the exhaust heat recovery heat exchanger 90 is an exhaust heat recovery heat exchanger which is a parallel flow heat exchanger in that the inner cylinder 26, that is, the bypass passage 22 is not provided therein. Different from 10.

この排気熱回収用熱交換器90は、円板状に形成されると共に外筒28の内側に気密状態で保持された上下流一対の管板92と、上下流端がそれぞれ一対の管板92を貫通した複数のガス管94とを備えている。これにより、排気熱回収用熱交換器90では、複数のガス管94の内側の空間が排気ガス熱交換路38とされると共に、外筒28と上下流一対の管板92とで囲まれた空間から各ガス管94(排気ガス熱交換路38)の占有分を除く部分が冷却水熱交換路44とされている。   The heat exchanger 90 for exhaust heat recovery is formed in a disc shape and is held in an airtight state inside the outer cylinder 28, and a pair of upstream and downstream tube plates 92, and an upstream and downstream end of each pair of tube plates 92. And a plurality of gas pipes 94 penetrating therethrough. Thus, in the exhaust heat recovery heat exchanger 90, the space inside the plurality of gas pipes 94 is defined as the exhaust gas heat exchange path 38 and surrounded by the outer cylinder 28 and the pair of upstream and downstream tube plates 92. A portion excluding the occupied portion of each gas pipe 94 (exhaust gas heat exchange path 38) from the space is a cooling water heat exchange path 44.

そして、この実施形態では、各ガス管94は、それぞれ排気ガス流れ方向の上流側から下流側に向けて連続的に流路断面積が減少するテーパ管とされている。また、入口ポート46は、出口ポート48に対し排気ガス流れ方向の上流側に配置されている。これにより、排気熱回収用熱交換器90は、冷却水熱交換路44の流路断面積がエンジン冷却水流れ方向の上流から下流に向けて連続的に拡大する構成とされており、かつ並行流型の熱交換器とされている。   In this embodiment, each gas pipe 94 is a tapered pipe whose flow path cross-sectional area continuously decreases from the upstream side to the downstream side in the exhaust gas flow direction. The inlet port 46 is disposed upstream of the outlet port 48 in the exhaust gas flow direction. As a result, the exhaust heat recovery heat exchanger 90 is configured such that the flow passage cross-sectional area of the cooling water heat exchange passage 44 continuously increases from upstream to downstream in the engine coolant flow direction, and in parallel. It is a flow type heat exchanger.

図示は省略するが、バイパス流路22は、排気熱回収用熱交換器90の外部に該排気熱回収用熱交換器90と並列となるように配置されたバイパス管の内部空間として設けられている。排気熱回収用熱交換器90の他の構成は、排気熱回収用熱交換器10の対応する構成と同じである。   Although not shown, the bypass flow path 22 is provided outside the exhaust heat recovery heat exchanger 90 as an internal space of a bypass pipe arranged in parallel with the exhaust heat recovery heat exchanger 90. Yes. Other configurations of the exhaust heat recovery heat exchanger 90 are the same as the corresponding configurations of the exhaust heat recovery heat exchanger 10.

したがって、第5の実施形態に係る排気熱回収用熱交換器90によっても、第1の実施形態に係る排気熱回収用熱交換器10と同様の作用によって同様の効果を得ることができる。   Therefore, the exhaust heat recovery heat exchanger 90 according to the fifth embodiment can achieve the same effect by the same operation as the exhaust heat recovery heat exchanger 10 according to the first embodiment.

なお、第5の実施形態では、バイパス流路22が外筒28の外部に設けられた例を示したが、例えば、図6(B)に示す外筒28の軸心部に位置するガス管94に代えて、内筒26(バイパス流路22)を設けた構成としても良い。また、この構成において、入口ポート46と出口ポート48とを入れ替えると共に複数のガス管94の向きを入れ替え、第2の実施形態に相当する対向流型の熱交換器を構成することも可能である。   In the fifth embodiment, an example in which the bypass flow path 22 is provided outside the outer cylinder 28 has been shown. For example, a gas pipe positioned at the axial center of the outer cylinder 28 shown in FIG. Instead of 94, an inner cylinder 26 (bypass channel 22) may be provided. In this configuration, the counter flow type heat exchanger corresponding to the second embodiment can be configured by exchanging the inlet port 46 and the outlet port 48 and exchanging the directions of the plurality of gas pipes 94. .

また、第5の実施形態では、複数のガス管94の全てをテーパ管とした例を示したが、本発明はこれに限定されず、例えば、一部のガス管94を直管としても良い。   In the fifth embodiment, an example in which all of the plurality of gas pipes 94 are tapered pipes has been described. However, the present invention is not limited to this, and for example, some of the gas pipes 94 may be straight pipes. .

(第6の実施形態)
図7には、本発明の第6の実施形態に係る排気熱回収用熱交換器100が側断面図にて示されている。この図に示される如く、排気熱回収用熱交換器100は、冷却水流れ方向の下流側に向けて冷却水熱交換路44の流路断面積を同じ割合で増加させる冷却水管42に代えて、流路断面積の増加率がエンジン冷却水の流れ方向の途中で変化する冷却水管102を備える点で、第1の実施形態に係る排気熱回収用熱交換器10とは異なる。
(Sixth embodiment)
FIG. 7 is a side sectional view showing an exhaust heat recovery heat exchanger 100 according to a sixth embodiment of the present invention. As shown in this figure, the exhaust heat recovery heat exchanger 100 is replaced with a cooling water pipe 42 that increases the cross-sectional area of the cooling water heat exchange path 44 at the same rate toward the downstream side in the cooling water flow direction. The heat exchanger 10 for exhaust heat recovery according to the first embodiment is different from the heat exchanger 10 for exhaust heat recovery according to the first embodiment in that it includes a cooling water pipe 102 in which the rate of increase in the cross-sectional area of the flow path changes in the flow direction of the engine cooling water.

具体的には、冷却水管102は、コニカル状に形成された外水管42Bに代えて、外水管102Aを有して構成されている。外水管102Aは、エンジン冷却水の流れ方向の上流側から下流側に向けて徐々に内径が増加しており、その流れ方向中間部にはテーパ角の変化点102Bが設定されている。この実施形態では、外水管102Aは、テーパ角の変化点102Bに対する上流側のテーパ角(流路断面積の増加割合)よりも、テーパ角の変化点102Bに対する下流側のテーパ角の方が大きい設定とされている。   Specifically, the cooling water pipe 102 is configured to include an outer water pipe 102A in place of the outer water pipe 42B formed in a conical shape. The outer water pipe 102A has an inner diameter that gradually increases from the upstream side to the downstream side in the flow direction of the engine cooling water, and a taper angle changing point 102B is set at an intermediate portion in the flow direction. In this embodiment, the outer water pipe 102A has a larger taper angle on the downstream side with respect to the taper angle change point 102B than on the upstream taper angle with respect to the taper angle change point 102B. It is set.

冷却水管102の他の構成は、冷却水管42の対応する構成と同じである。すなわち、排気熱回収用熱交換器100の他の構成は、第1の実施形態に係る排気熱回収用熱交換器10の対応する構成と同じである。   The other configuration of the cooling water pipe 102 is the same as the corresponding configuration of the cooling water pipe 42. That is, the other configuration of the exhaust heat recovery heat exchanger 100 is the same as the corresponding configuration of the exhaust heat recovery heat exchanger 10 according to the first embodiment.

したがって、第6の実施形態に係る排気熱回収用熱交換器100によっても、第1の実施形態に係る排気熱回収用熱交換器10と同様の作用によって同様の効果を得ることができる。   Therefore, the exhaust heat recovery heat exchanger 100 according to the sixth embodiment can achieve the same effect by the same action as the exhaust heat recovery heat exchanger 10 according to the first embodiment.

(第7の実施形態)
図8には、本発明の第7の実施形態に係る排気熱回収用熱交換器110が側断面図にて示されている。この図に示される如く、排気熱回収用熱交換器110は、冷却水流れ方向の下流側に向けて冷却水熱交換路44の流路断面積を段階的に増加させる冷却水管冷却水熱交換路112を備える点で、第1の実施形態に係る排気熱回収用熱交換器10とは異なる。
(Seventh embodiment)
FIG. 8 is a side sectional view showing an exhaust heat recovery heat exchanger 110 according to a seventh embodiment of the present invention. As shown in this figure, the heat exchanger 110 for exhaust heat recovery is a cooling water pipe cooling water heat exchange that gradually increases the cross-sectional area of the cooling water heat exchange path 44 toward the downstream side in the cooling water flow direction. It differs from the exhaust heat recovery heat exchanger 10 according to the first embodiment in that a path 112 is provided.

具体的には、冷却水管112は、コニカル状に形成された外水管42Bに代えて、外水管112Aを有して構成されている。外水管112Aは、エンジン冷却水の流れ方向の途中部に形成された段部112Bにおいて内径が段階的に(この実施形態では、1段階で)増加している。   Specifically, the cooling water pipe 112 is configured to have an outer water pipe 112A in place of the outer water pipe 42B formed in a conical shape. The outer water pipe 112 </ b> A has an inner diameter that increases stepwise (in this embodiment, in one step) at a stepped portion 112 </ b> B formed in the middle of the flow direction of the engine cooling water.

冷却水管122の他の構成は、冷却水管42の対応する構成と同じである。すなわち、排気熱回収用熱交換器110の他の構成は、第1の実施形態に係る排気熱回収用熱交換器10の対応する構成と同じである。   Other configurations of the cooling water pipe 122 are the same as the corresponding configurations of the cooling water pipe 42. That is, the other configuration of the exhaust heat recovery heat exchanger 110 is the same as the corresponding configuration of the exhaust heat recovery heat exchanger 10 according to the first embodiment.

したがって、第7の実施形態に係る排気熱回収用熱交換器110によっても、第1の実施形態に係る排気熱回収用熱交換器10と同様の作用によって同様の効果を得ることができる。   Therefore, the exhaust heat recovery heat exchanger 110 according to the seventh embodiment can achieve the same effect by the same action as the exhaust heat recovery heat exchanger 10 according to the first embodiment.

(第8の実施形態)
図9には、本発明の第8の実施形態に係る排気熱回収用熱交換器120が側断面図にて示されている。この図に示される如く、排気熱回収用熱交換器120は、冷却水流れ方向の下流側に向けて冷却水熱交換路44の流路断面積を段階的に増加させる冷却水管冷却水熱交換路122を備える点で、第1の実施形態に係る排気熱回収用熱交換器10とは異なる。
(Eighth embodiment)
FIG. 9 is a side sectional view showing an exhaust heat recovery heat exchanger 120 according to an eighth embodiment of the present invention. As shown in this figure, the heat exchanger 120 for exhaust heat recovery is a cooling water pipe cooling water heat exchange that gradually increases the cross-sectional area of the cooling water heat exchange path 44 toward the downstream side in the cooling water flow direction. It differs from the exhaust heat recovery heat exchanger 10 according to the first embodiment in that a path 122 is provided.

具体的には、冷却水管122は、コニカル状に形成された外水管42Bに代えて、外水管122Aを有して構成されている。外水管122Aは、エンジン冷却水の流れ方向の途中部に形成された複数(この実施形態では3つ)の段部122B、122C、122Dにおいて、それぞれ内径が段階的に増加している。   Specifically, the cooling water pipe 122 is configured to include an outer water pipe 122A in place of the outer water pipe 42B formed in a conical shape. The outer water pipe 122A has a plurality of (in this embodiment, three) step portions 122B, 122C, 122D formed in the middle in the flow direction of the engine cooling water, and the inner diameters thereof increase stepwise.

冷却水管122の他の構成は、冷却水管42の対応する構成と同じである。すなわち、排気熱回収用熱交換器120の他の構成は、第1の実施形態に係る排気熱回収用熱交換器10の対応する構成と同じである。   Other configurations of the cooling water pipe 122 are the same as the corresponding configurations of the cooling water pipe 42. In other words, the other configuration of the exhaust heat recovery heat exchanger 120 is the same as the corresponding configuration of the exhaust heat recovery heat exchanger 10 according to the first embodiment.

したがって、第8の実施形態に係る排気熱回収用熱交換器120によっても、第1の実施形態に係る排気熱回収用熱交換器10と同様の作用によって同様の効果を得ることができる。   Therefore, the exhaust heat recovery heat exchanger 120 according to the eighth embodiment can achieve the same effect by the same action as the exhaust heat recovery heat exchanger 10 according to the first embodiment.

なお、第6乃至第8の実施形態に係る冷却水熱交換路44の流路断面積が増加割合を異ならせて増加する構成や段階的に増加する構成を、第5の実施形態に係る複数のガス管94に適用しても良い。   Note that a configuration in which the flow passage cross-sectional area of the cooling water heat exchange channel 44 according to the sixth to eighth embodiments is increased at different increasing rates or a configuration in which the flow rate is increased in stages is a plurality of configurations according to the fifth embodiment. The gas pipe 94 may be applied.

さらに、上記各実施形態では、本発明の熱交換器が排気熱回収システム18を構成する排気熱回収用熱交換器10、60、70、80、90、100、110、120として適用された例を示したが、本発明はこれに限定されず、各種用途の熱交換器に適用が可能である。   Further, in each of the above embodiments, the heat exchanger of the present invention is applied as the exhaust heat recovery heat exchanger 10, 60, 70, 80, 90, 100, 110, 120 constituting the exhaust heat recovery system 18. However, the present invention is not limited to this, and can be applied to various types of heat exchangers.

本発明の第1の実施形態に係る熱交換器を示す側断面図である。It is a sectional side view which shows the heat exchanger which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る熱交換器が適用された排気熱回収システムのシステムフロー図である。1 is a system flow diagram of an exhaust heat recovery system to which a heat exchanger according to a first embodiment of the present invention is applied. 本発明の第2の実施形態に係る熱交換器を示す側断面図である。It is a sectional side view which shows the heat exchanger which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る熱交換器を示す側断面図である。It is a sectional side view which shows the heat exchanger which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る熱交換器を示す側断面図である。It is a sectional side view which shows the heat exchanger which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る熱交換器を示す図であって、(A)は側断面図、(B)は図6(A)の6A−6A線に沿った正面断面図である。It is a figure which shows the heat exchanger which concerns on the 5th Embodiment of this invention, Comprising: (A) is a sectional side view, (B) is front sectional drawing along the 6A-6A line | wire of FIG. 6 (A). . 本発明の第6の実施形態に係る熱交換器を示す側断面図である。It is a sectional side view which shows the heat exchanger which concerns on the 6th Embodiment of this invention. 本発明の第7の実施形態に係る熱交換器を示す側断面図である。It is a sectional side view which shows the heat exchanger which concerns on the 7th Embodiment of this invention. 本発明の第8の実施形態に係る熱交換器を示す側断面図である。It is a sectional side view which shows the heat exchanger which concerns on the 8th Embodiment of this invention.

符号の説明Explanation of symbols

10 排気熱回収用熱交換器(熱交換器)
38 排気ガス熱交換路(高温側流路)
44 冷却水熱交換路(低温側流路)
60・70・80・90・100・110・120 排気熱回収用熱交換器(熱交換器)
10 Heat exchanger for exhaust heat recovery (heat exchanger)
38 Exhaust gas heat exchange path (high temperature side flow path)
44 Cooling water heat exchange path (low temperature side flow path)
60/70/80/90/100/110/120 Exhaust heat recovery heat exchanger (heat exchanger)

Claims (3)

高温流体を流通させるための高温側流路と、
内部を流通する低温流体と前記高温側流路を流通する高温流体との熱交換可能に該高温側流路に隣接して設けられ、かつ前記低温流体の流れ方向の上流側から下流側に向けて流路断面積が連続的又は段階的に拡大されている低温側流路と、
を備えた熱交換器。
A high-temperature channel for circulating a high-temperature fluid;
Provided adjacent to the high temperature side flow path so that heat exchange between the low temperature fluid flowing through the inside and the high temperature fluid flowing through the high temperature side flow path is possible, and from the upstream side toward the downstream side in the flow direction of the low temperature fluid A low-temperature channel whose cross-sectional area is expanded continuously or stepwise,
With heat exchanger.
前記高温側流路は、前記低温流体の流れ方向の上流側から下流側に向けて流路断面積が連続的又は段階的に縮小されている請求項1記載の熱交換器。   2. The heat exchanger according to claim 1, wherein the high-temperature channel has a channel cross-sectional area that is continuously or stepwise reduced from an upstream side to a downstream side in the flow direction of the low-temperature fluid. 前記低温流体の流れ方向と前記高温流体の流れ方向とが同じ向きである請求項2記載の熱交換器。   The heat exchanger according to claim 2, wherein a flow direction of the low-temperature fluid and a flow direction of the high-temperature fluid are the same direction.
JP2006115968A 2006-04-19 2006-04-19 Heat exchanger Pending JP2007285264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006115968A JP2007285264A (en) 2006-04-19 2006-04-19 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006115968A JP2007285264A (en) 2006-04-19 2006-04-19 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2007285264A true JP2007285264A (en) 2007-11-01

Family

ID=38757268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006115968A Pending JP2007285264A (en) 2006-04-19 2006-04-19 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2007285264A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638661A (en) * 1991-07-15 1994-02-15 Kanebo Ltd Inverting device for arranging randomly supplied face of noodle ball in one direction
JP2011511920A (en) * 2008-02-12 2011-04-14 ギルバート,パトリック Heat exchanger
JP2013036448A (en) * 2011-08-10 2013-02-21 Nippon Soken Inc Exhaust gas cooling adapter
JP2013092125A (en) * 2011-10-26 2013-05-16 Toyota Motor Corp Thermoelectric generator
JP2013126844A (en) * 2011-12-19 2013-06-27 Valeo Japan Co Ltd Electric heating type hot water heating apparatus, vehicle air-conditioning apparatus provided therewith, and vehicle
JP2015142916A (en) * 2008-09-30 2015-08-06 フォースト・フィジックス・リミテッド・ライアビリティ・カンパニーForced Physics LLC Method and apparatus for control of fluid temperature and flow
CN107420186A (en) * 2017-09-11 2017-12-01 张家港保税区通勤精密机械有限公司 A kind of engine antifreezing type water tank
CN111102848A (en) * 2019-12-13 2020-05-05 涡阳县晟丰新型建材有限公司 Coal gangue brick kiln flue gas waste heat utilization system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638661A (en) * 1991-07-15 1994-02-15 Kanebo Ltd Inverting device for arranging randomly supplied face of noodle ball in one direction
JP2011511920A (en) * 2008-02-12 2011-04-14 ギルバート,パトリック Heat exchanger
JP2015142916A (en) * 2008-09-30 2015-08-06 フォースト・フィジックス・リミテッド・ライアビリティ・カンパニーForced Physics LLC Method and apparatus for control of fluid temperature and flow
JP2013036448A (en) * 2011-08-10 2013-02-21 Nippon Soken Inc Exhaust gas cooling adapter
JP2013092125A (en) * 2011-10-26 2013-05-16 Toyota Motor Corp Thermoelectric generator
JP2013126844A (en) * 2011-12-19 2013-06-27 Valeo Japan Co Ltd Electric heating type hot water heating apparatus, vehicle air-conditioning apparatus provided therewith, and vehicle
CN107420186A (en) * 2017-09-11 2017-12-01 张家港保税区通勤精密机械有限公司 A kind of engine antifreezing type water tank
CN111102848A (en) * 2019-12-13 2020-05-05 涡阳县晟丰新型建材有限公司 Coal gangue brick kiln flue gas waste heat utilization system

Similar Documents

Publication Publication Date Title
JP4281789B2 (en) Exhaust heat recovery device
JP2007285264A (en) Heat exchanger
CN101117090B (en) Support structure of exhaust system heat exchanger
JP2008069750A (en) Exhaust heat recovery device
KR101072329B1 (en) Heat exchanger
US20130146263A1 (en) Heat exchanger
JP2006250524A (en) Multi-pipe type heat recovery apparatus
JP2010059960A (en) Exhaust heat recovery device
US10508580B2 (en) Combined heat exchanger and exhaust silencer
JP2009068809A (en) Hybrid heat exchanger
JP4407666B2 (en) Exhaust heat exchanger
JP4582042B2 (en) Exhaust heat recovery device with silencer function
JP4324219B2 (en) Engine exhaust gas heat recovery device and energy supply device using the same
JP4844600B2 (en) Exhaust heat recovery unit
JP2008232084A (en) Exhaust gas heat recovering muffler
JP2008101496A (en) Exhaust system heat exchanger
JP2011214537A (en) Exhaust gas heat recovery device
JP2007239595A (en) Arrangement structure of exhaust system heat exchanger
JP2007321741A (en) Exhaust heat recovery device
JP4324216B2 (en) Engine exhaust gas heat recovery unit and engine-driven heat pump or cogeneration system using the same
JP2007113559A (en) Silencer for internal combustion engine
KR101307322B1 (en) Exhaust heat recovery device in automobile
JP2007247554A (en) Exhaust heat recovery device
JP2006207888A (en) Double-pipe type heat exchanger
JP2008014295A (en) Exhaust gas heat recovery device