JPH0868319A - Exhaust double-pipe structure - Google Patents

Exhaust double-pipe structure

Info

Publication number
JPH0868319A
JPH0868319A JP20225294A JP20225294A JPH0868319A JP H0868319 A JPH0868319 A JP H0868319A JP 20225294 A JP20225294 A JP 20225294A JP 20225294 A JP20225294 A JP 20225294A JP H0868319 A JPH0868319 A JP H0868319A
Authority
JP
Japan
Prior art keywords
pipe
inner pipe
thermal expansion
outer pipe
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20225294A
Other languages
Japanese (ja)
Inventor
Keizo Tanaka
敬三 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP20225294A priority Critical patent/JPH0868319A/en
Publication of JPH0868319A publication Critical patent/JPH0868319A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Silencers (AREA)

Abstract

PURPOSE: To prevent occurrence of damage caused by thermal stress due to heat expansion difference in an exhaust double-structure pipe which is prepared by fixing an inner pipe to an outer pipe, by providing a heat expansion elimination means for eliminating circumferential heat expansion difference between the inner and outer pipes, at a fixation part of the inner and outer pipes. CONSTITUTION: An exhaust pipe 10 is composed of an inner pipe 12 and an outer pipe 14. A circumferentially extending clearance 15 is formed between the inner pipe 12 and the outer pipe 14, except axial both ends. Each one side of the axial ends of the inner pipe 12 and the outer pipe 14 are connected to each other, by welding, etc. Namely, the inner pipe 12 is fixed to the outer pipe 14 at a fixation part 16 made by welding, etc. An uneven portion 20 as a heat expansion elimination means is formed on the fixation portion 16 of the inner pipe 12. That is, tops of a plurality of projections 20a formed on the inner pipe 12 are fixed to the outer pipe 14. In the case that circumferential heat expansion difference is generated between the inner pipe 12 and the outer pipe 14, recessions 20b which are not fixed to the outer pipe 14 are deformed, for eliminating circumferential expansion difference.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の排気系に用
いられる排気二重管の構造に関し、とくに内管と外管と
の周方向の熱膨張差に起因する熱応力による排気管の損
傷を防止することが可能な排気二重管の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of an exhaust double pipe used in an exhaust system of an internal combustion engine, and more particularly to an exhaust pipe due to thermal stress caused by a difference in thermal expansion between an inner pipe and an outer pipe in a circumferential direction. The present invention relates to a structure of an exhaust double pipe capable of preventing damage.

【0002】[0002]

【従来の技術】自動車における排気ガス浄化触媒の暖機
性能を向上させる一手段として、排気系部品の熱容量を
低減することが行われており、低熱容量化のため二重管
構造とした排気管が採用されている。二重管構造の排気
管の一例として、実開平5−19522号公報が知られ
ている。本公報の排気管では、内管と外管は一端で固定
され他端を自由端とすることにより、内管と外管の軸方
向の熱膨張差を吸収するようにしている。図13は、従
来の二重管構造の排気管の一例を示している。内管1と
外管2は一端のみがスポット溶接等の固定部4により固
定されている。内管1と外管2の他端側には、内管1と
外管2との隙間を一定に保つように周方向に延びるワイ
ヤメッシュ3が設けられている。
2. Description of the Related Art As one means for improving the warm-up performance of an exhaust gas purifying catalyst in an automobile, the heat capacity of exhaust system parts has been reduced, and an exhaust pipe having a double pipe structure for lowering the heat capacity. Has been adopted. As an example of an exhaust pipe having a double pipe structure, Japanese Utility Model Laid-Open No. 19522/1993 is known. In the exhaust pipe of this publication, the inner pipe and the outer pipe are fixed at one end and the other end is made to be a free end so as to absorb the difference in thermal expansion between the inner pipe and the outer pipe in the axial direction. FIG. 13 shows an example of a conventional exhaust pipe having a double pipe structure. Only one end of the inner pipe 1 and the outer pipe 2 is fixed by a fixing portion 4 such as spot welding. On the other end side of the inner pipe 1 and the outer pipe 2, a wire mesh 3 extending in the circumferential direction is provided so as to keep a gap between the inner pipe 1 and the outer pipe 2 constant.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記の実開平
5−19522号公報および図13に示す二重管構造の
排気管では、内管と外管との排気管軸方向の熱膨張差は
吸収できるが、周方向の熱膨張差を吸収することができ
ない。そのため、図14に示すように、内管1と外管2
との固定部(溶接部)4およびその近傍には、周方向に
大きな熱応力が発生し、繰り返しの熱サイクルにより内
管1の固定部近傍の部位には破断部6が生じる。
However, in the exhaust pipe having the double pipe structure shown in Japanese Utility Model Laid-Open No. 5-19522 and FIG. 13, there is a difference in thermal expansion between the inner pipe and the outer pipe in the axial direction of the exhaust pipe. It can absorb, but cannot absorb the difference in thermal expansion in the circumferential direction. Therefore, as shown in FIG. 14, the inner pipe 1 and the outer pipe 2 are
A large thermal stress is generated in the circumferential direction in the fixing portion (welding portion) 4 and the vicinity thereof, and a fracture portion 6 is generated in a portion near the fixing portion of the inner pipe 1 due to repeated thermal cycles.

【0004】本発明の目的は、内管と外管との周方向の
熱膨張差に起因する熱応力により排気管が損傷を防止す
ることが可能な排気二重管構造を提供することにある。
It is an object of the present invention to provide an exhaust double pipe structure capable of preventing the exhaust pipe from being damaged by thermal stress caused by a difference in thermal expansion between the inner pipe and the outer pipe in the circumferential direction. .

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
の排気二重管構造は、つぎのように構成されている。 (1)内管と外管とを固定して成る排気二重管におい
て、該内管と外管との固定部に、内管と外管との周方向
の熱膨張差を吸収する熱膨張吸収手段を設けることを特
徴とする排気二重管構造。 (2)熱膨張吸収手段は、固定部における内管の周方向
外面に凹凸部を形成し、該凸部と外管とを固定して成る
上記(1)記載の排気二重管構造。 (3)内管と外管とを固定して成る排気二重管におい
て、該内管と外管との周方向の熱膨張量がほぼ同じとな
るように内管と外管との熱膨張率を変えたことを特徴と
する排気二重管構造。
An exhaust double pipe structure for achieving this object is constructed as follows. (1) In an exhaust double pipe formed by fixing an inner pipe and an outer pipe, a thermal expansion for absorbing a difference in thermal expansion between the inner pipe and the outer pipe in a circumferential direction at a fixed portion between the inner pipe and the outer pipe. An exhaust double pipe structure characterized by being provided with an absorbing means. (2) The exhaust double pipe structure according to the above (1), wherein the thermal expansion absorbing means is formed by forming a concavo-convex portion on the outer circumferential surface of the inner pipe in the fixing portion, and fixing the convex portion and the outer pipe. (3) In an exhaust double pipe in which the inner pipe and the outer pipe are fixed, the inner pipe and the outer pipe are thermally expanded so that the inner pipe and the outer pipe have substantially the same thermal expansion amount in the circumferential direction. Exhaust double pipe structure characterized by changing the rate.

【0006】[0006]

【作用】上記(1)の排気二重管構造においては、内管
と外管との固定部に熱膨張吸収手段が設けられるので、
内管と外管との周方向の熱膨張差は熱膨張吸収手段によ
って吸収され、固定部およびその近傍には、大きな熱応
力は発生しない。したがって、内管と外管の固定部およ
びその近傍には、熱膨張差に起因する熱応力による損傷
は発生せず、排気管の耐久信頼性が高められる。上記
(2)の排気二重管構造においては、内管の周方向外面
に形成された凹凸部のうち凸部が外管に固定されるの
で、熱膨張差は凹部の変形によって吸収され、内管と外
管の固定部およびその近傍には、大きな熱応力は生じな
い。上記(3)の排気二重管構造においては、内管と外
管の熱膨張率が異なるので、内管の熱膨張量と外管の熱
膨張量とをほぼ同じにすることができる。したがって、
内管と外筒との熱膨張差が生じなくなり、内管と外管の
固定部およびその近傍には、大きな熱応力は生じない。
In the exhaust double pipe structure of the above (1), since the thermal expansion absorbing means is provided at the fixed portion between the inner pipe and the outer pipe,
The thermal expansion difference between the inner tube and the outer tube in the circumferential direction is absorbed by the thermal expansion absorbing means, and no large thermal stress is generated in the fixed portion and its vicinity. Therefore, the fixed portion of the inner pipe and the outer pipe and the vicinity thereof are not damaged by the thermal stress due to the difference in thermal expansion, and the durability reliability of the exhaust pipe is enhanced. In the exhaust double pipe structure of the above (2), since the convex portion of the uneven portion formed on the outer circumferential surface of the inner pipe is fixed to the outer pipe, the difference in thermal expansion is absorbed by the deformation of the concave portion. No large thermal stress occurs in the fixed portion between the tube and the outer tube and its vicinity. In the exhaust double pipe structure of the above (3), since the thermal expansion coefficients of the inner pipe and the outer pipe are different, the thermal expansion amount of the inner pipe and the thermal expansion amount of the outer pipe can be made substantially the same. Therefore,
A difference in thermal expansion between the inner tube and the outer tube does not occur, and large thermal stress does not occur in the fixed portion of the inner tube and the outer tube and in the vicinity thereof.

【0007】[0007]

【実施例】図1および図2は本発明の第1実施例を示し
ており、図3ないし図5は第1実施例の変形例を示して
いる。図6および図7は本発明の第2実施例を示してい
る。図8および図9は本発明の第3実施例を示してお
り、図10および図11は第3実施例の変形例を示して
いる。図12は本発明の第4実施例を示している。ま
ず、各実施例にわたって共通な構成を、例えば図1を参
照して説明する。ただし、共通構成部分には各実施例に
わたって同一符号の使用している。
1 and 2 show a first embodiment of the present invention, and FIGS. 3 to 5 show a modification of the first embodiment. 6 and 7 show a second embodiment of the present invention. 8 and 9 show a third embodiment of the present invention, and FIGS. 10 and 11 show a modification of the third embodiment. FIG. 12 shows a fourth embodiment of the present invention. First, a configuration common to each embodiment will be described with reference to FIG. 1, for example. However, common components are denoted by the same reference numerals throughout the embodiments.

【0008】図1に示すように、10は排気管を示して
おり、排気管10は、内管12と外管14から構成され
ている。外管14は、内管12の外周に配置されてい
る。内管12および外管14は、金属材料からなるパイ
プから構成されている。内管12の肉厚は、外管14の
肉厚よりも薄くなっている。外管14の一端は、内径が
内管12の外径とほぼ同一になるように縮径されてい
る。軸方向端部を除く内管12と外管14との間には、
周方向に延びる隙間15が形成されている。内管12と
外管14の一方の軸方向端部は、溶接等により接合され
ている。内管12は、この溶接等による固定部16によ
り、外管14に固定されている。
As shown in FIG. 1, reference numeral 10 denotes an exhaust pipe, and the exhaust pipe 10 is composed of an inner pipe 12 and an outer pipe 14. The outer pipe 14 is arranged on the outer periphery of the inner pipe 12. The inner pipe 12 and the outer pipe 14 are pipes made of a metal material. The wall thickness of the inner pipe 12 is smaller than the wall thickness of the outer pipe 14. One end of the outer pipe 14 is reduced in diameter so that the inner diameter is substantially the same as the outer diameter of the inner pipe 12. Between the inner pipe 12 and the outer pipe 14 excluding the axial end portion,
A gap 15 extending in the circumferential direction is formed. One axial ends of the inner pipe 12 and the outer pipe 14 are joined by welding or the like. The inner pipe 12 is fixed to the outer pipe 14 by a fixing portion 16 formed by welding or the like.

【0009】つぎに、各実施例に共通な作用について説
明する。排気管10に流入した排気ガスは、内管12お
よび外管14を加熱し、下流側に流れる。内管12は排
気ガスと直接接触するので、外管14よりも高温とな
り、内管12の熱膨張量は外管14の熱膨張量よりも大
となり、内管と外筒には熱膨張差が生じる。内管12と
外管14は、一方の軸方向端部のみが固定されているの
で、内管12と外管14は軸方向にはそれぞれ自由に熱
膨張することができ、内管12と外管14の軸方向の熱
膨張差は吸収される。
Next, the operation common to each embodiment will be described. The exhaust gas flowing into the exhaust pipe 10 heats the inner pipe 12 and the outer pipe 14, and flows to the downstream side. Since the inner pipe 12 is in direct contact with the exhaust gas, the temperature becomes higher than that of the outer pipe 14, the thermal expansion amount of the inner pipe 12 becomes larger than the thermal expansion amount of the outer pipe 14, and the thermal expansion difference between the inner pipe and the outer cylinder is large. Occurs. Since only one axial end portion of the inner pipe 12 and the outer pipe 14 is fixed, the inner pipe 12 and the outer pipe 14 can freely thermally expand in the axial direction, respectively. The axial thermal expansion difference of the tube 14 is absorbed.

【0010】つぎに、第1実施例に特有な構成および作
用について説明する。図1および図2に示すように、内
管12の軸方向端部の固定部16には、熱膨張吸収手段
としての凹凸部20が形成されている。本実施例では、
凹凸部20のうち凸部20aが突き出し部からなり、凹
部20bが突き出し部以外の部位からなっている。凸部
20aは、周方向に一定の間隔をもって設けられてい
る。凸部20aは、半径方向外方に突出しており、断面
形状が半円状となっている。凸部20aは、軸方向に所
定の距離W1 だけ延びている。凸部20aの頂部は、溶
接等による固定部16により外管14の内周面と接合さ
れている。内管12と外管14の排気管軸方向の他端側
には、内管12と外管14との隙間15を一定に保つた
めの周方向に延びるワイヤメッシュ(図示略)が設けら
れている。
Next, the structure and operation peculiar to the first embodiment will be described. As shown in FIG. 1 and FIG. 2, a concavo-convex portion 20 as a thermal expansion absorbing means is formed in the fixed portion 16 at the axial end portion of the inner pipe 12. In this embodiment,
The convex portion 20a of the concave-convex portion 20 is a protruding portion, and the concave portion 20b is a portion other than the protruding portion. The convex portions 20a are provided at regular intervals in the circumferential direction. The convex portion 20a protrudes outward in the radial direction and has a semicircular cross section. The convex portion 20a extends in the axial direction by a predetermined distance W 1 . The top portion of the convex portion 20a is joined to the inner peripheral surface of the outer pipe 14 by the fixing portion 16 formed by welding or the like. A wire mesh (not shown) extending in the circumferential direction is provided on the other end side of the inner pipe 12 and the outer pipe 14 in the exhaust pipe axial direction so as to keep a gap 15 between the inner pipe 12 and the outer pipe 14 constant. There is.

【0011】第1実施例においては、内管12に形成さ
れた複数の凸部20aの頂部が外管14に固定されてい
るので、内管12と外管14との周方向の熱膨張差が生
じた場合は、外管14と固定されていない凹部20bの
変形により、周方向の熱膨張差は吸収される。これによ
り、加熱冷却時の膨張または収縮量の差から生じる周方
向の熱応力が低減され、固定部16およびこの近傍の部
位に作用する熱応力は小となる。したがって、肉厚の薄
い内管12が損傷することはなくなる。
In the first embodiment, since the tops of the plurality of projections 20a formed on the inner pipe 12 are fixed to the outer pipe 14, the difference in thermal expansion between the inner pipe 12 and the outer pipe 14 in the circumferential direction. In the case of occurrence of, the difference in thermal expansion in the circumferential direction is absorbed by the deformation of the recess 20b that is not fixed to the outer tube 14. As a result, the thermal stress in the circumferential direction caused by the difference in expansion or contraction amount during heating and cooling is reduced, and the thermal stress acting on the fixed portion 16 and the portion in the vicinity thereof becomes small. Therefore, the thin inner tube 12 is not damaged.

【0012】図3ないし図5は、第1実施例の変形例を
示している。第1実施例では、凹凸部20が軸方向に所
定の距離だけ延びているが、図5に示すように、本変形
例では凹凸部20が内管12の全長にわたって形成され
ている。これにより、内管12と外管14との間の隙間
15は一定に保たれ、ワイヤメッシュを用いる必要がな
くなる。また、凹凸部20を内管12の全長にわたって
形成することにより、内管12の曲げ剛性が高くなるの
で、熱変形を抑制することができ、内管12の薄肉化が
可能となる。さらに、内管12の薄肉化が可能となるこ
とから、排気管10の熱容量が小さくなり、排気ガス浄
化触媒の暖機性能の向上が図れる。なお、凸部20aと
外管14とを接合する固定部16は、第1実施例と同様
に軸方向端部の一方のみである。
3 to 5 show a modification of the first embodiment. In the first embodiment, the uneven portion 20 extends in the axial direction by a predetermined distance, but as shown in FIG. 5, the uneven portion 20 is formed over the entire length of the inner pipe 12 in this modification. Thereby, the gap 15 between the inner pipe 12 and the outer pipe 14 is kept constant, and it is not necessary to use a wire mesh. Further, since the unevenness 20 is formed over the entire length of the inner pipe 12, the bending rigidity of the inner pipe 12 is increased, so that thermal deformation can be suppressed and the inner pipe 12 can be made thin. Furthermore, since the inner pipe 12 can be made thin, the heat capacity of the exhaust pipe 10 is reduced, and the warm-up performance of the exhaust gas purification catalyst can be improved. The fixing portion 16 that joins the convex portion 20a and the outer pipe 14 is only one of the axial end portions, as in the first embodiment.

【0013】つぎに、第2実施例に特有な構成および作
用について説明する。図6および図7に示すように、内
管12の軸方向端部の固定部16には、熱膨張吸収手段
としての凹凸部22が形成されている。本実施例では、
凹凸部22は波形となっており、凸部22aが山の部分
であり、凹部22bが谷の部分となっている。凹凸部2
2は、排気管軸方向に所定の距離W2 だけ延びている。
凸部22aの頂部は、溶接等による固定部16により外
管14の内周面と接合されている。内管12と外管14
の排気管軸方向の他端側には、内管12と外管14との
隙間15を一定に保つための周方向に延びるワイヤメッ
シュ(図示略)が設けられている。
Next, the structure and operation peculiar to the second embodiment will be described. As shown in FIG. 6 and FIG. 7, a concavo-convex portion 22 as a thermal expansion absorbing means is formed on the fixed portion 16 at the axial end portion of the inner pipe 12. In this embodiment,
The concavo-convex portion 22 has a wavy shape, and the convex portion 22a is a peak portion and the concave portion 22b is a valley portion. Uneven portion 2
2 extends a predetermined distance W 2 in the axial direction of the exhaust pipe.
The top of the convex portion 22a is joined to the inner peripheral surface of the outer pipe 14 by the fixing portion 16 formed by welding or the like. Inner tube 12 and outer tube 14
On the other end side of the exhaust pipe in the axial direction, a wire mesh (not shown) extending in the circumferential direction is provided to keep the gap 15 between the inner pipe 12 and the outer pipe 14 constant.

【0014】第2実施例においては、内管12に形成さ
れた凹凸部22お凸部22aの頂部が外管14に固定さ
れているので、内管12と外管14との周方向の熱膨張
差が生じた場合は、外管14と固定されていない凹部2
2bが変形するので、周方向の熱膨張差は吸収される。
本実施例では凹凸部22には連続的に凸部22aと凹部
22bが形成されるので、第1実施例に比べて熱膨張差
により自由変形できる部分が長くなり、熱応力の低減効
果がより大きくなる。したがって、排気管10の熱疲労
強度をさらに向上することができる。
In the second embodiment, since the tops of the projections and depressions 22a and the projections 22a formed on the inner pipe 12 are fixed to the outer pipe 14, the heat generated in the circumferential direction between the inner pipe 12 and the outer pipe 14 is increased. When a difference in expansion occurs, the outer tube 14 and the recessed portion 2 that is not fixed
Since 2b is deformed, the difference in thermal expansion in the circumferential direction is absorbed.
In this embodiment, since the projections 22a and the recesses 22b are continuously formed in the uneven portion 22, the portion which can be freely deformed due to the difference in thermal expansion becomes longer as compared with the first embodiment, and the effect of reducing the thermal stress is further improved. growing. Therefore, the thermal fatigue strength of the exhaust pipe 10 can be further improved.

【0015】つぎに、第3実施例に特有な構成および作
用について説明する。図8および図9に示すように、内
管12の軸方向端部の固定部16には、熱膨張吸収手段
としての凹凸部24が形成されている。本実施例では、
凹凸部24のうち凸部24aが突起部からなり、凹部2
4bは突起部以外の部位からなっている。凸部24a
は、周方向に一定の間隔をもって設けられている。凸部
24aは、半径方向外方に突出しており、半球面状に形
成されている。凸部24aの頂部は、溶接等による固定
部16により外管14の内周面と接合されている。内管
12と外管14の排気管軸方向の他端側には、内管12
と外管14との隙間を一定に保つための周方向に延びる
ワイヤメッシュ(図示略)が設けられている。
Next, the structure and operation peculiar to the third embodiment will be described. As shown in FIGS. 8 and 9, a concavo-convex portion 24 as a thermal expansion absorbing means is formed in the fixed portion 16 at the axial end portion of the inner pipe 12. In this embodiment,
The convex portion 24a of the concave-convex portion 24 is a protrusion portion, and the concave portion 2
4b is composed of a portion other than the protruding portion. Convex portion 24a
Are provided at regular intervals in the circumferential direction. The convex portion 24a projects outward in the radial direction and is formed in a hemispherical shape. The top portion of the convex portion 24a is joined to the inner peripheral surface of the outer pipe 14 by the fixing portion 16 formed by welding or the like. On the other end side of the inner pipe 12 and the outer pipe 14 in the exhaust pipe axial direction, the inner pipe 12
A wire mesh (not shown) extending in the circumferential direction is provided to keep the gap between the outer tube 14 and the outer tube 14 constant.

【0016】第3実施例においては、内管12に形成さ
れた複数の凸部24aの頂部が外管14に固定されてい
るので、内管12と外管14との周方向の熱膨張差が生
じた場合は、内管12と外管14と固定されていない凹
部24bの変形により、周方向の熱膨張差は吸収され
る。これにより、加熱冷却時の膨張または収縮量の差か
ら生じる周方向の熱応力が低減され、固定部16および
この近傍の部位に作用する熱応力は小となる。したがっ
て、肉厚の薄い内管12の損傷が回避される。
In the third embodiment, since the tops of the plurality of protrusions 24a formed on the inner pipe 12 are fixed to the outer pipe 14, the difference in thermal expansion between the inner pipe 12 and the outer pipe 14 in the circumferential direction. In the case of occurrence of, the difference in thermal expansion in the circumferential direction is absorbed by the deformation of the recess 24b that is not fixed to the inner tube 12 and the outer tube 14. As a result, the thermal stress in the circumferential direction caused by the difference in expansion or contraction amount during heating and cooling is reduced, and the thermal stress acting on the fixed portion 16 and the portion in the vicinity thereof becomes small. Therefore, damage to the thin inner tube 12 is avoided.

【0017】図10ないし図11は、第3実施例の変形
例を示している。第3実施例では、凹凸部24が固定部
16にのみ設けられていたが、図11に示すように、本
変形例では凹凸部24は内管12の全長にわたって形成
されている。これにより、内管12と外管14との間の
隙間は一定に保たれ、ワイヤメッシュを用いる必要がな
くなる。また、凹凸部24を内管12の全長にわたって
形成することにより、内管12の曲げ剛性が高くなるの
で、熱変形を抑制することができ、内管12の薄肉化が
可能となる。内管12の薄肉化が可能となることから、
排気管10の熱容量が小さくなり、排気ガス浄化触媒の
暖機性能の向上が図れる。さらに、曲げ加工が容易とな
るので、排気管10の曲管部への適用も可能となる。な
お、凸部24aと外管14とを接合する固定部16は、
第3実施例と同様に軸方向端部の一方のみである。
10 to 11 show a modification of the third embodiment. In the third embodiment, the uneven portion 24 is provided only on the fixed portion 16, but as shown in FIG. 11, the uneven portion 24 is formed over the entire length of the inner pipe 12 in this modification. As a result, the gap between the inner tube 12 and the outer tube 14 is kept constant, and there is no need to use a wire mesh. Further, since the unevenness 24 is formed over the entire length of the inner pipe 12, the bending rigidity of the inner pipe 12 is increased, so that thermal deformation can be suppressed and the inner pipe 12 can be made thin. Since it is possible to make the inner tube 12 thinner,
The heat capacity of the exhaust pipe 10 is reduced, and the warm-up performance of the exhaust gas purification catalyst can be improved. Furthermore, since the bending process is facilitated, the exhaust pipe 10 can be applied to the curved pipe portion. The fixing portion 16 that joins the convex portion 24a and the outer tube 14 is
Similar to the third embodiment, only one of the axial end portions is provided.

【0018】つぎに、第4実施例に特有な構成および作
用について説明する。図12に示すように、内管12と
外管14は、熱膨張率が異なる金属材料から構成されて
いる。内管12と外管14の熱膨張率は、内管12と外
管14の周方向の熱膨張量がほぼ同じとなるような値に
設定されている。内管12は、高温の排気ガスが直接接
触するので、熱膨張量を小に抑えるために熱膨張率は小
となっており、外管14は内管12よりも温度が多少低
くなるので、熱膨張率は内管12に比べて大となってい
る。
Next, the structure and operation peculiar to the fourth embodiment will be described. As shown in FIG. 12, the inner pipe 12 and the outer pipe 14 are made of metal materials having different coefficients of thermal expansion. The thermal expansion coefficients of the inner pipe 12 and the outer pipe 14 are set to values such that the thermal expansion amounts of the inner pipe 12 and the outer pipe 14 in the circumferential direction are substantially the same. Since the high temperature exhaust gas is in direct contact with the inner pipe 12, the coefficient of thermal expansion is small in order to keep the amount of thermal expansion small, and the temperature of the outer pipe 14 is slightly lower than that of the inner pipe 12. The coefficient of thermal expansion is larger than that of the inner tube 12.

【0019】第4実施例では、内管12と外管14の熱
膨張量がほぼ同じとなるので、周方向の熱膨張差はほと
んど生じない。したがって、内管12と外管14の固定
部16およびその近傍には大きな熱応力は生じなくな
り、内管12が薄肉であっても損傷は生じない。また、
熱膨張差がほとんど生じないことから、第1実施例ない
し第3実施例のように、熱膨張吸収手段としての凹凸部
20、22、24も不要となり、排気管10の構造は従
来と同じでよい。
In the fourth embodiment, the thermal expansion amounts of the inner tube 12 and the outer tube 14 are substantially the same, so there is almost no difference in thermal expansion in the circumferential direction. Therefore, large thermal stress does not occur in the fixed portion 16 of the inner pipe 12 and the outer pipe 14 and the vicinity thereof, and no damage occurs even if the inner pipe 12 is thin. Also,
Since there is almost no difference in thermal expansion, the concave and convex portions 20, 22, and 24 as the thermal expansion absorbing means are unnecessary as in the first to third embodiments, and the structure of the exhaust pipe 10 is the same as the conventional one. Good.

【0020】第1実施例ないし第3実施例における凹凸
部20、22、24の成形方法として、金型プレス成
形、ロール転写成形、液圧成形を用いるのが生産効率の
点から望ましいが、これに限定されるものではない。
From the viewpoint of production efficiency, it is preferable to use die press molding, roll transfer molding, or hydraulic molding as a method of molding the uneven portions 20, 22, 24 in the first to third embodiments. It is not limited to.

【0021】[0021]

【発明の効果】【The invention's effect】

(1)請求項1の排気二重管構造によれば、内管と外管
との固定部に、内管と外管との周方向の熱膨張差を吸収
する熱膨張吸収手段を設けるようにしたので、固定部お
よびその近傍には熱膨張差に起因する大きな熱応力は発
生しなくなり、熱応力による排気管の損傷を防止するこ
とができる。 (2)請求項2の排気二重管構造によれば、固定部にお
ける内管の周方向外面に形成された凹凸部のうちの凸部
に、外管を固定しているので、凹部の変形によって熱膨
張差を吸収することができる。 (3)請求項3の排気二重管構造によれば、内管と外管
との周方向の熱膨張量がほぼ同じとなるように内管と外
管との熱膨張率を変えたので、周方向の熱膨張差がほと
んど生じなくなり、排気管の構造を変えることなく、熱
応力による排気管の損傷を防止することができる。
(1) According to the exhaust double pipe structure of claim 1, a thermal expansion absorbing means for absorbing a thermal expansion difference between the inner pipe and the outer pipe in the circumferential direction is provided in the fixed portion between the inner pipe and the outer pipe. Therefore, large thermal stress due to the difference in thermal expansion does not occur in the fixed portion and its vicinity, and damage to the exhaust pipe due to thermal stress can be prevented. (2) According to the exhaust double pipe structure of claim 2, since the outer pipe is fixed to the convex portion of the uneven portion formed on the outer circumferential surface of the inner pipe in the fixing portion, the concave portion is deformed. Can absorb the difference in thermal expansion. (3) According to the exhaust double pipe structure of the third aspect, the thermal expansion coefficients of the inner pipe and the outer pipe are changed so that the thermal expansion amounts of the inner pipe and the outer pipe in the circumferential direction are substantially the same. The difference in thermal expansion in the circumferential direction hardly occurs, and damage to the exhaust pipe due to thermal stress can be prevented without changing the structure of the exhaust pipe.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る排気二重管構造の要
部断面図である。
FIG. 1 is a sectional view of an essential part of an exhaust double pipe structure according to a first embodiment of the present invention.

【図2】図1のA−A線に沿う断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図1の変形例を示す断面図である。FIG. 3 is a cross-sectional view showing a modified example of FIG.

【図4】図3のB−B線に沿う断面図である。4 is a cross-sectional view taken along the line BB of FIG.

【図5】図3の内管の斜視図である。5 is a perspective view of the inner tube of FIG.

【図6】本発明の第2実施例に係る排気二重管構造の要
部断面図である。
FIG. 6 is a sectional view of an essential part of an exhaust double pipe structure according to a second embodiment of the present invention.

【図7】図6のC−C線に沿う断面図である。7 is a cross-sectional view taken along the line CC of FIG.

【図8】本発明の第3実施例に係る排気二重管構造の要
部断面図である。
FIG. 8 is a sectional view of an essential part of an exhaust double pipe structure according to a third embodiment of the present invention.

【図9】図8のD−D線に沿う断面図である。9 is a sectional view taken along the line DD of FIG.

【図10】図8の変形例を示す断面図である。10 is a cross-sectional view showing a modified example of FIG.

【図11】図10の内管の斜視図である。11 is a perspective view of the inner pipe of FIG.

【図12】本発明の第4実施例に係る排気二重管構造の
要部断面図である。
FIG. 12 is a cross-sectional view of a main part of an exhaust double pipe structure according to a fourth embodiment of the present invention.

【図13】従来の排気二重管構造の断面図である。FIG. 13 is a cross-sectional view of a conventional exhaust double pipe structure.

【図14】図13の部分拡大断面図である。14 is a partially enlarged sectional view of FIG.

【符号の説明】[Explanation of symbols]

12 内管 14 外管 16 固定部 20 熱膨張吸収手段 20a 凸部 22b 凹部 22 熱膨張吸収手段 22a 凸部 22b 凹部 24 熱膨張吸収手段 24a 凸部 24b 凹部 12 inner pipe 14 outer pipe 16 fixing part 20 thermal expansion absorbing means 20a convex portion 22b concave portion 22 thermal expansion absorbing means 22a convex portion 22b concave portion 24 thermal expansion absorbing means 24a convex portion 24b concave portion

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内管と外管とを固定して成る排気二重管
において、該内管と外管との固定部に、内管と外管との
周方向の熱膨張差を吸収する熱膨張吸収手段を設けるこ
とを特徴とする排気二重管構造。
1. In an exhaust double pipe formed by fixing an inner pipe and an outer pipe, a fixed portion between the inner pipe and the outer pipe absorbs a difference in thermal expansion between the inner pipe and the outer pipe in a circumferential direction. An exhaust double-pipe structure characterized by comprising thermal expansion absorbing means.
【請求項2】 熱膨張吸収手段は、固定部における内管
の周方向外面に凹凸部を形成し、該凸部と外管とを固定
して成る請求項1記載の排気二重管構造。
2. The exhaust double pipe structure according to claim 1, wherein the thermal expansion absorbing means is formed by forming a concavo-convex portion on a circumferential outer surface of the inner pipe in the fixing portion, and fixing the convex portion and the outer pipe.
【請求項3】 内管と外管とを固定して成る排気二重管
において、該内管と外管との周方向の熱膨張量がほぼ同
じとなるように内管と外管との熱膨張率を変えたことを
特徴とする排気二重管構造。
3. An exhaust double pipe having an inner pipe and an outer pipe fixed to each other, wherein the inner pipe and the outer pipe are arranged so that the thermal expansion amounts of the inner pipe and the outer pipe are substantially the same. An exhaust double-pipe structure characterized by changing the coefficient of thermal expansion.
JP20225294A 1994-08-26 1994-08-26 Exhaust double-pipe structure Pending JPH0868319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20225294A JPH0868319A (en) 1994-08-26 1994-08-26 Exhaust double-pipe structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20225294A JPH0868319A (en) 1994-08-26 1994-08-26 Exhaust double-pipe structure

Publications (1)

Publication Number Publication Date
JPH0868319A true JPH0868319A (en) 1996-03-12

Family

ID=16454475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20225294A Pending JPH0868319A (en) 1994-08-26 1994-08-26 Exhaust double-pipe structure

Country Status (1)

Country Link
JP (1) JPH0868319A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020061821A (en) * 2001-01-18 2002-07-25 (주)부성파이프 An exhaust pipe appendage for vehicles
KR20020061822A (en) * 2001-01-18 2002-07-25 (주)부성파이프 An exhaust pipe appendage for vehicles
JP2007154694A (en) * 2005-12-01 2007-06-21 Nissan Motor Co Ltd Double-tube type exhaust pipe
JP2007321569A (en) * 2006-05-30 2007-12-13 Honda Motor Co Ltd Muffler structure
JP2011127607A (en) * 2009-12-19 2011-06-30 J Eberspecher Gmbh & Co Kg Exhaust gas treatment device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020061821A (en) * 2001-01-18 2002-07-25 (주)부성파이프 An exhaust pipe appendage for vehicles
KR20020061822A (en) * 2001-01-18 2002-07-25 (주)부성파이프 An exhaust pipe appendage for vehicles
JP2007154694A (en) * 2005-12-01 2007-06-21 Nissan Motor Co Ltd Double-tube type exhaust pipe
JP4692252B2 (en) * 2005-12-01 2011-06-01 日産自動車株式会社 Double-pipe exhaust pipe
JP2007321569A (en) * 2006-05-30 2007-12-13 Honda Motor Co Ltd Muffler structure
JP2011127607A (en) * 2009-12-19 2011-06-30 J Eberspecher Gmbh & Co Kg Exhaust gas treatment device
EP2336518B1 (en) * 2009-12-19 2017-06-21 Eberspächer Exhaust Technology GmbH & Co. KG Exhaust gas treatment device

Similar Documents

Publication Publication Date Title
US5079210A (en) Metallic support for exhaust gas purifying catalyst
JP2819864B2 (en) Metal carrier for exhaust gas purification catalyst
JPH04180838A (en) Metal carrier for exhaust gas catalyst of racetrack type car excellent in heat-resistant stress and heat-resistant fatigue characteristics
US5495873A (en) Patterned air gap engine exhaust conduit
EP1091101B1 (en) Exhaust pipe assembly of two-passage construction
JPH07317540A (en) Thin walled double-pipe type exhaust manifold
JPH0868319A (en) Exhaust double-pipe structure
JP4262381B2 (en) Double exhaust pipe for engine and exhaust manifold for engine
JP2832397B2 (en) Metal carrier for exhaust gas purification catalyst
JP2001132872A (en) Double pipe structure and manufacturing method thereof
JPH08277995A (en) Double exhaust pipe
JP3716031B2 (en) Metal carrier for catalyst equipment
JP3271716B2 (en) Metal carrier for exhaust gas purification catalyst
JP2600899B2 (en) Metal carrier for exhaust gas purification catalyst
JP3318817B2 (en) Double pipe exhaust manifold
JP3964321B2 (en) Vehicle exhaust system
JPH08334017A (en) Double exhaust pipe of engine
JP4225015B2 (en) Catalytic converter
JP3971523B2 (en) Insulated exhaust manifold for engine
JPH08986Y2 (en) Metal carrier for exhaust gas purification catalyst
JPH03165842A (en) Metallic carrier for race track type automobile exhaust gas cleanup catalyst having thermal stress resistance and thermal fatigue resistance
JP3497392B2 (en) Heated exhaust pipe for engine
JP2924590B2 (en) Double exhaust pipe for vehicles
JP2746193B2 (en) Catalyst support bracket, seal / support bracket using the same, and method of manufacturing catalyst support bracket
JP3217597B2 (en) Metal carrier for catalyst device